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1. Introduction

One of the fundamental goals of a multi-tasking operating system is the implementation of processes. Two
processes running on the same machine should be isolated so that execution of one does not interfere with
the other in unintended ways.  Without this property, neither process can be expected to execute correctly
even if each is executing a "verified" program.

The purpose of the Kit project is to address the problem of verifying a process isolation property for a
multi-tasking operating system.  Kit is a small operating system kernel written for a uni-processor
computer with a simple von Neumann architecture. (The name Kit suggests the phrase kernel for isolated
tasks.) It is proved at the machine code level to implement a fixed number of conceptually distributed
communicating processes. The kernel provides the following verified services:

• Process scheduling and allocation of CPU time,

• Response to program error conditions,

• Single-word message passing among processes,

• Character I/O to asynchronous devices.

It is important to say what Kit does not do. There is no dynamic creation of processes or communication
channels. There is no file system. Inter-process communication occurs only by message passing; there is
no shared memory. While Kit is not big enough to be considered a kernel for a general purpose operating
system, it does confront some important operating system phenomena. It is adequate for a small special
purpose system such as a communications processor.

A requirement on the Kit project is to treat the problem of process isolation in a sufficiently complex
setting. Primarily, we want to consider interrupts.  We want Kit to maintain process isolation even in the
face of asynchronous events arriving at the target machine. We prove, for example, that the context switch
operation on an interrupt correctly maintains the state of all processes.

The state of a process (i.e., the set of all data to which a process has access) is machine dependent at the
operating system layer in which interrupts are handled.  Typically, a process has access to a set of CPU
registers, some primary and secondary store, and a number of external devices.  Therefore the complete
description of a process state requires information about the architecture of the machine on which the
process runs.

These considerations motivated the decision to verify Kit at the machine code level. If we understand a
computer’s fetch-execute cycle, then we can precisely consider the effect of interrupts on program
execution. In addition, at the machine code level we have complete information about a target machine,
so that we can answer questions about the state of a process. A machine code instruction is defined by its
effect on the entire state of a machine so we can determine both what it does and what it does not do.  This
is critical for considering process isolation which, after all, is concerned with what processes may not do.

This paper is a summary of a longer report [Bevier 87], which is itself a summary of the script of
definitions and theorems which make up the specification, implementation and proof of Kit. The Kit script
contains

• a formal definition of a communicating process,

• a formal specification (called the abstract kernel) of an operating system kernel which
manages a fixed number of communicating processes,

• the proof of a theorem which states that the abstract kernel correctly implements each
process,
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• a formal definition of a von Neumann machine (the target machine, TM) on which to
implement the operating system kernel,

• the machine code implementation of the kernel, and

• the proof of a theorem which states that the machine code running on TM correctly
implements the abstract kernel.

The fundamental assumption of this work is that the target machine definition is a legitimate specification
for the architecture level of a von Neumann computer and could be implemented in hardware.

A process, the abstract kernel, and the target machine are each defined as a finite state machine.  Section 2
explains how we state these definitions, and explains the form of the correctness theorem which relates
two finite state machines. The remainder of the paper summarizes each of the points mentioned above.
See [Bevier 87] for a more detailed discussion.

The formalization of Kit is done in the Boyer-Moore logic, and all proofs are mechanically checked by the
Boyer-Moore theorem prover [Boyer 88].  A brief summary of the logic can be found in Appendix A.
The logic is very similar to pure Lisp. Except in a few places in section 2 we use the notation of the
Boyer-Moore logic, which is the prefix syntax of pure Lisp.  For example, we write (PLUS I J)
where others might write PLUS(I,J) or I+J. We write

(IMPLIES (P X) (EQUAL (F X) (G X)))

in place of P(X) → F(X) =G(X). We write (IF A B  C) instead of the expression IF a THEN b ELSE c.
We use a Lisp convention for naming functions: the names of predicates have a "P" at the end. For
example, the expression (ZEROP X) is Boolean-valued and tests for zero.

2. Interpreters and Interpreter Equivalence Theorems

Kit is verified by proving a correspondence between the behavior of two finite state machines.  An
abstract finite state machine serves as an operational specification.  The kernel running on the bare
computer is also defined as a finite state machine. In this section we explain how we define finite state
machines, and describe the form of the correspondence theorem between two machines.  As an example,
we state the correspondence theorem which establishes that Kit’s specification (the abstract kernel) is
correctly implemented by the Kit machine code.

2.1 Machine States, Interpreters and Oracles

The definition of a finite state machine requires two things: a description of the set of machine states, and
a definition of each transition on a machine state. We define the set of machine states by a predicate which
recognizes a member of the state set, a so-called good state. We define the transitions on a finite state
machine by an interpreter function.

The state of a machine is typically a record structure. The state of a von Neumann computer may contain,
in a simple example, the fields MEMORY, REGISTERS, FLAGS, PROGRAM-COUNTER. In the Boyer-
Moore logic we define such a record structure with the following notation.

Shell Definition.
Add the shell COMPUTER with recognizer COMPUTERP,
defining the record structure
<MEMORY, REGISTERS, FLAGS, PROGRAM-COUNTER>.

The expression (COMPUTER M R FL PC) represents a computer state with memory M, registers R,
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flags FL and program counter PC. The expressions (MEMORY X), (REGISTERS X), (FLAGS X)
and (PROGRAM-COUNTER X) access, respectively, the memory, registers, flags and program-counter
fields of a computer X. If X is a computer as defined above, the following expression represents the
computer state equal to X in every field but the program counter, which in this case takes on a value one
less than X’s program counter.

(COMPUTER (MEMORY X)
(REGISTERS X)
(FLAGS X)
(SUB1 (PROGRAM-COUNTER X)))

We place type restrictions on the fields of a record structure by defining a predicate which constrains each
shell field. In the COMPUTER example, we can constrain each field to be either a string of bits (i.e., a
word) of a certain size, or a finite array of words.  In the following example, the predicate

16GOOD-COMPUTER-STATE constrains memory to be an array of length 2 of 16-bit words, the registers
to be an array of length 8 of 16-bit words, the flags to be a 4-bit word and the program counter to be a
16-bit word. (Assume WORDP recognizes a word of a given size, and WORD-ARRAY recognizes an array
of words of a given size.)

DEFINITION
(GOOD-COMPUTER-STATE X)
=
(AND (WORD-ARRAY (MEMORY X) 16)

(EQUAL (LENGTH (MEMORY X)) (EXP 2 16))
(WORD-ARRAY (REGISTERS X) 16)
(EQUAL (LENGTH (REGISTERS X)) 8)
(WORDP (FLAGS X) 4)
(WORDP (PROGRAM-COUNTER X) 16))

An interpreter function models transitions on a machine over an finite but arbitrary time span.  It is a
dyadic function of the form Int: S × O → S, where S is a set of machine states and O is a set of oracles
for a machine. An oracle has two roles.  It determines the finite time span for which a machine invocation
operates, and it may introduce non-deterministic state changes into a machine, including communication
with other machines.

In a simple situation the set of natural numbers N can be chosen as the oracle set.  An interpreter of the
form Int: S × N → S models a machine which operates in complete isolation. Such a machine can be
defined in the Boyer-Moore logic as shown below. The function STEP advances the state of this machine.
The expression (MACHINE1 STATE N) is the state obtained by applying N successive applications of
STEP to STATE.

DEFINITION
(MACHINE1 STATE N)
=
(IF (ZEROP N)

STATE
(MACHINE1 (STEP STATE) (SUB1 N)))

If we wish to emphasize that the machine state contains a stored program, we define the step function to
be a fetch and an execute operation. FETCH takes a machine state as an argument and returns an
instruction, possibly a machine word. EXECUTE takes an instruction and a machine state and returns the
machine state which results from executing the instruction.
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DEFINITION
(STEP STATE)
=
(EXECUTE (FETCH STATE) STATE)

In a more typical situation, an oracle is a list which represents a finite time-sequenced series of external
events impinging on a machine.  The length of the oracle determines the time span over which the
machine operates.  An element of the oracle is either a single external event, or a symbol such as ’TICK
indicating no event.  The interpreter consumes the next element of the oracle at each step, and runs until
the oracle is exhausted. The definition of MACHINE2 gives the form of such an interpreter. In this
example, the function CONSUME-INPUT consumes the next element of the oracle, incorporating it into
the state of the machine so that the input is visible to STEP. (The function CAR returns the first element
of a list, and CDR returns everything but the first element of a list.)

DEFINITION
(MACHINE2 STATE ORACLE)
=
(IF (NOT (LISTP ORACLE))

STATE
(MACHINE2 (STEP (CONSUME-INPUT STATE (CAR ORACLE)))

(CDR ORACLE)))

The step function in this scenario can be defined to model the interrupt structure of a machine.  The
function EXTERNAL-EVENTP recognizes a condition which must be responded to, e.g., a raised interrupt
bit. For a von Neumann machine, RESPOND-TO-EVENT is usually a simple interrupt transition which
does a partial CPU context switch.

DEFINITION
(STEP STATE)
=
(IF (EXTERNAL-EVENTP STATE)

(RESPOND-TO-EVENT STATE)
(EXECUTE (FETCH STATE) STATE))

2.2 Interpreter Equivalence Theorems

We wish to define an implements relation on two machines. Let Int : S × O → S andA A A A
Int : S × O → S be interpreter functions which define two machines M and M . (The subscripts AC C C C A C
and C are chosen to suggest abstract and concrete machines.) Let MapUp: S → S be an abstractionC A
function which maps a concrete state to an abstract state, and let MapDown: S → S map an abstractA C
state to a concrete state. We say that M implements M if the following theorem holds.C A

∀ s ∈ S ,A A
(1) ∀ o ∈ O ,A A

∃ o ∈ O such thatC C

MapUp (Int (MapDown (s ), o )) = Int (s , o ).C A C A A A

Figure 1 depicts this relation. Notice that if ∀ s ∈ S , MapUp(MapDown(s )) = s , then it is sufficientA A A A
to prove
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∀ s ∈ S ,C C
(2) ∀ o ∈ O ,A A

∃ o ∈ O such thatC C

MapUp (Int (s , o )) = Int (MapUp (s ), o ).C C C A C A

To see this, substitute MapDown (s ) for s in (2). Formula (2) gives the form of the correctness theoremA C
we prove for Kit. Figure 2 illustrates the correspondence which the theorem establishes.

Sa

Sc

Map

TIME

Figure 1: Interpreter Equivalence (version 1)

Sa

Sc

Map

TIME

Figure 2: Interpreter Equivalence (version 2)

We cannot state (1) or (2) in the quantifier-free Boyer-Moore logic.  For (2) we replace the existential
variable o with a function CORACLE which computes an oracle which is sufficient to allow Int to matchC C
the behavior of Int . Typically, this is a function both of the initial concrete state and the value of o . WeA A
re-state (2) in the Boyer-Moore logic as follows.  The predicate GOOD-CSTATE identifies an element of
the set of concrete machine states.

THEOREM IMPLEMENTS-RELATION
(IMPLIES (GOOD-CSTATE CSTATE)

(EQUAL (MAPUP (INT-C CSTATE
(CORACLE CSTATE ORACLE)))

(INT-A (MAPUP CSTATE) ORACLE)))
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2.3 The Correct Implementation of Kit’s Specification

The theorem CORRECTNESS-OF-OPERATING-SYSTEM establishes that Kit running on the target
machine TM implements an operational specification of the kernel called the abstract kernel. In this
theorem, the functions AK-PROCESSOR and TM-PROCESSOR are interpreter functions.  The function
MAPUP-OS is a mapping function which maps the state of the operating system as implemented on our
von Neumann machine up to a corresponding abstract kernel state. The predicate (PLISTP ORACLE)
just says that the oracle is a well-formed list, and is merely a technical requirement. We discuss this
theorem in more detail in Section 8.

THEOREM CORRECTNESS-OF-OPERATING-SYSTEM
(IMPLIES

(AND (GOOD-OS OS) (PLISTP ORACLE))
(EQUAL (MAPUP-OS (TM-PROCESSOR OS

(OS-ORACLE OS ORACLE)))
(AK-PROCESSOR (MAPUP-OS OS) ORACLE)))

3. A Communicating Process

Figure 3 depicts a network of communicating processes.  Single-headed arrows indicate message
communication in the direction of the arrowhead.  Double-headed arrows abbreviate two single-headed
arrows, one going in each direction. Each node of Figure 3 represents a process.

Figure 3: Network

We take this picture as the starting point for the specification and implementation of Kit. Embedded in
this network is a star with five points. (The number five is arbitrary.) Each node at the point of the star is
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intended to be implemented as a Kit process, hereafter called a task. Each node at the extreme perimeter,
which communicates with a task in one direction only, is intended to be implemented as an input or output
device.

The formal definition of a task gives a single task’s view of this network. The state of a task consists of
two parts: a private state which is accessible only to the owning task, and a shared state which is used for
implementing inter-task communication.  We distinguish two categories of transitions on a task: private
transitions update only the private state, communication transitions update the shared state.

The precise nature of the private state of a task is unimportant to the formal definition of a task. Our goal,
though, is to prove that a particular machine code operating system kernel implements multiple tasks.  It is
convenient to identify the private state of a task with the task-visible state of the implementation machine.
The private transitions can then be exactly the machine instructions available to a task on the target
machine. We have done this in the Kit project, defining the private state of a task to be a target machine
"address space", and making the set of private transitions exactly the non-privileged instruction set of the
target machine.  We could substitute any other implementation machine which satisfies the requirement
that execution of an instruction in behalf of the current task modifies only the private state of that task. We
have performed this proof for our chosen target machine.

The shared state of a task is a set of buffers for message communication. Each buffer is a FIFO message
queue of bounded length.  The communication transitions are send and receive, for message passing
among tasks, input, for receiving a message from an input device, and output, for sending a message to an
output device. Each of these is a blocking transition. A task blocks on a send or output if the designated
buffer is full. A task blocks on a receive or an input if the designated buffer is empty. Tasks are formally
distinguished from I/O devices only by the the name of the operation used to perform a communication.
There is no notion of a task being interrupted.

These ideas are formalized in the Boyer-Moore logic by a "good state" predicate GOOD-TASK which
recognizes a proper task state, and an interpreter function TASK-PROCESSOR which defines the
transitions on a state.

The function GOOD-TASK is a predicate on a state which requires that the private state component be
"good" target machine address space. For the case of our particular target machine (see Section 6), this
means that the private state consists of a certain set of CPU registers, and a segment of memory.
GOOD-TASK requires that the shared state be a set of message buffers. Each buffer is represented as a list
of bounded length.

The interpreter function which defines the transitions on a task is called TASK-PROCESSOR (see below).
The first formal argument, TASK, is a task state. The argument I is the identifier of the task in the
network which the task can sense only through its shared state. The task identifier is a non-negative
integer in some bounded range.  The argument ORACLE is a list each of whose elements is either T,
indicating that the task is active and should take a step on its own initiative, or not T, indicating that the
task is not active at this step. In the latter case, the oracle supplies the value of the shared state at the end
of the current step. The oracle thus determines both the speed at which at task advances in "real time", and
supplies changes to the shared state which are non-deterministic with respect to a task.
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DEFINITION
(TASK-PROCESSOR TASK I ORACLE)
=
(IF (LISTP ORACLE)

(IF (TASK-ACTIVEP (CAR ORACLE))
(TASK-PROCESSOR (TASK-STEP TASK I)

I
(CDR ORACLE))

(TASK-PROCESSOR (TASK-UPDATE-CHANNELS TASK
(CAR ORACLE))

I
(CDR ORACLE)))

TASK)

The function TASK-UPDATE-CHANNELS, which updates a task shared state on a non-active step,
preserves the private state of the task. Therefore a task’s private state is not altered when the task is not
active. (The function TASK constructs a task state from two arguments - a private state and a shared state.
TASK-PSTATE accesses the private state of a task.)

DEFINITION
(TASK-UPDATE-CHANNELS TASK NEW-SHARED-STATE)
=
(TASK (TASK-PSTATE TASK)

NEW-SHARED-STATE)

An active task step is defined by the function TASK-STEP. The predicate TASK-COMMUNICATIONP
determines if the current transition is a communication transition. If so, the task executes a communication
step, otherwise a private step. A private step is defined to be a target machine fetch-execute operation.  It
does not change the shared state of a task. The function TASK-COMMUNICATION-STEP defines each
of the four communication transitions send, receive, input and output.

DEFINITION
(TASK-STEP TASK I)
=
(IF (TASK-COMMUNICATIONP TASK)

(TASK-COMMUNICATION-STEP TASK I)
(TASK-PRIVATE-STEP TASK))

We present the definition of the send operation TASK-EXECUTE-SEND. This function takes four
arguments: a message, the identifier of the sending task, the identifier of the destination task and the
sending task’s state. It returns the sending task’s updated state.  If the destination message buffer is full,
then the returned state is identical to the initial state. Otherwise, the task state is updated as follows.  The
private state is modified in an implementation-dependent way to update control past the communication
operation (the function TASK-UPDATE-CONTROL). The shared state is updated by queueing the
message on the destination message buffer.
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DEFINITION
(TASK-EXECUTE-SEND MSG SRCID

DESTID TASK)
=
(IF (QFULLP SRCID DESTID

(TASK-MBUFFERS TASK)
(TASK-MBUFFER-CAPACITY))

TASK
(TASK (TASK-UPDATE-CONTROL (TASK-PSTATE TASK))

(LIST (TASK-IBUFFERS TASK)
(TASK-OBUFFERS TASK)
(ENQ MSG SRCID DESTID

(TASK-MBUFFERS TASK)))))

The functions GOOD-TASK and TASK-PROCESSOR give our highest level specification for Kit.  Kit is
required to implement a fixed number of these tasks on a single von Neumann machine. The property that
a task’s private state is not modified when it is not active is a simple consequence of the definition of a
task. The definition also has the property that no private transition updates shared state.  Any
implementation of tasks must preserve these properties.  An implementation must also carry out the
communication transitions according to specification. These two points - the protection of a task’s private
state, and communication only as specified - encompass our notion of process isolation.

4. The Specification for Kit

The task-level specification for Kit defines the communication transitions in which a task may engage, but
says nothing about how tasks are scheduled.  A lower-level specification for Kit, called the abstract
kernel, defines a scheduling algorithm for a fixed number of tasks, implements the communication
primitives (including the delay of tasks which block on a communication), and handles communication
with asynchronous devices.  The distinction between a task and an I/O device is made more visible:  each
task has a state known completely to the abstract kernel, while the state of an I/O device is unspecified.
Devices communicate with the kernel only through shared ports.

The abstract kernel is defined by two functions GOOD-AK which recognizes a "good" abstract kernel state,
and the interpreter function AK-PROCESSOR which gives the set of transitions on a state. GOOD-AK is an
invariant of AK-PROCESSOR. That is, the following theorem holds.

THEOREM GOOD-AK-AK-PROCESSOR
(IMPLIES (GOOD-AK AK)

(GOOD-AK (AK-PROCESSOR AK ORACLE)))

The predicate GOOD-AK recognizes a structure consisting of the following fields.

• AK-PSTATES is a fixed-length list containing the private state of each task. Each private
state is disjoint from the others.

• AK-IBUFFERS, AK-OBUFFERS and AK-MBUFFERS are the input, output and message
buffers. These are identical to the shared state at the task level.

• AK-READYQ is a queue of task identifiers.  When non-empty, the first element of the queue
identifies the current task.

• AK-STATUS is an array, one element for each task, which gives the current status of the
task. The status of a task is one of:  {ready, error, waiting-to-send, waiting-to-receive,
waiting-to-input, waiting-to-output}. The ready queue is a permutation of the set of ready
tasks as defined by AK-STATUS.
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• AK-RWSTATE is a running/wait state flag.  This flag is set if and only if the ready queue is
empty.

• AK-CLOCK is the program timer used to control allocation of CPU time to a task. The clock
counts down, and when it reaches zero causes a call to the scheduler.

• AK-IPORTS, AK-OPORTS is an array of input and output ports, respectively, for
communication with devices.  This is the physical interface to asynchronous devices.

The interpreter function which defines the transitions on the abstract kernel is AK-PROCESSOR. The
argument AK represents the state of the abstract kernel. The argument ORACLE is an oracle used to
represent asynchronous inputs.  An oracle is a list some of whose elements are I/O interrupts. An input
interrupt is a 2-tuple which gives an input character and a device id. An output interrupt merely contains a
device id. On each step, the AK-INTERPRETER consumes the current input signal and then applies the
step function AK-STEP to the resulting state. (AK-POST-INTERRUPT makes an interrupt visible within
the state of the machine by updating the input or output port associated with the interrupting device.)

DEFINITION
(AK-PROCESSOR AK ORACLE)
=
(IF
(LISTP ORACLE)
(AK-PROCESSOR (AK-STEP (AK-POST-INTERRUPT (CAR ORACLE) AK))

(CDR ORACLE))
AK)

The function AK-STEP defines the single-step function of the abstract kernel.  It defines an interrupt
structure and applies an interrupt handler in response to each type of interrupt.  Each interrupt handler
function returns an updated AK state. The definitions of the interrupt handlers provide a specification for
the services which must be provided by the implementation of Kit on the target machine.

DEFINITION
(AK-STEP AK)
=
(COND
((AK-INPUT-INTERRUPTP AK)
(AK-INPUT-INTERRUPT-HANDLER

(AK-INTERRUPTING-INPUT-PORT (AK-IPORTS AK))
AK))

((AK-OUTPUT-INTERRUPTP AK)
(AK-OUTPUT-INTERRUPT-HANDLER

(AK-INTERRUPTING-OUTPUT-PORT (AK-OPORTS AK))
AK))

((AK-WAITING AK) AK)
((AK-ERRORP AK) (AK-ERROR-HANDLER AK))
((AK-CLOCK-INTERRUPTP AK)
(AK-CLOCK-INTERRUPT-HANDLER AK))
((AK-SVC-INTERRUPTP AK)
(AK-SVC-HANDLER AK))
(T (AK-PRIVATE-STEP AK)))

Input and output interrupt processing has the highest priority. The functions
AK-INPUT-INTERRUPT-HANDLER and AK-OUTPUT-INTERRUPT-HANDLER define the input and
output interrupt handlers. AK-WAITING determines if the machine is in the wait state.  If so, no state
change occurs.  If none of the above conditions hold, the error status of the current task is checked.  The
function AK-ERROR-HANDLER defines the kernel’s error handler.  A clock interrupt signals the end of
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the current task’s time slice.  The function AK-CLOCK-INTERRUPT-HANDLER defines the task switch
on a clock interrupt.  The function AK-SVC-INTERRUPTP detects a request to call a kernel function in
behalf of the current task ("svc" abbreviates "supervisor call").  The services provided by the kernel are
exactly the communication primitives of the task layer: send, receive, input and output. The function
AK-SVC-HANDLER defines these operations at the abstract kernel layer.  Finally, if none of the above
conditions hold, the current task takes a private step as defined by AK-PRIVATE-STEP.

Recall that a task’s private state is a target machine address space, and the transitions on a private state are
the machine instructions available to a task. AK-PRIVATE-STEP applies the function which defines the
target machine’s fetch-execute algorithm, TM-FETCH-EXECUTE, to the current task’s private state.
More precisely, the ith element of the private state array is replaced by the application of
TM-FETCH-EXECUTE to that element, where i is the identifier of the current task.  The isolation of
private states is a simple result of the properties of the list access functions GETNTH and PUTNTH.
GETNTH accesses the nth element of a list. PUTNTH stores a value in the nth location in a list.

DEFINITION
(AK-PRIVATE-STEP AK)
=
(AK (AK-FETCH-EXECUTE (AK-TASKID AK)

(AK-PSTATES AK))
(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(AK-RWSTATE AK)
(SUB1 (AK-CLOCK AK))
(AK-IPORTS AK)
(AK-OPORTS AK))

DEFINITION
(AK-FETCH-EXECUTE ID PSTATES)
=
(PUTNTH (TM-FETCH-EXECUTE (GETNTH ID PSTATES))

ID PSTATES)

An AK step is an application of one of five interrupt functions, or is a private step, or is a no-op in the case
of a waiting machine with no I/O interrupts. The definitions of the five AK interrupt handlers provide a
specification for the services provided by the implementation of Kit on the target machine.  The definition
of a private step establishes a constraint on the protection mechanism provided by the target machine’s
architecture. We examine the definition of clock interrupt handler.

AK-CLOCK-INTERRUPT-HANDLER defines a simple round-robin scheduling algorithm. The identifier
of the current task is the first element of the ready queue.  On a clock interrupt, the first element of the
ready queue is removed and enqueued at the end of the ready queue.  The dispatcher senses an empty
ready queue and sets the kernel state accordingly: the kernel is put in the wait state if the ready queue is
empty, otherwise the kernel is put in the run state and the program clock is initialized. On a clock interrupt
the length of the ready queue is not changed, so the former condition does not hold. The same primitives
which manipulate buffers also manipulate the ready queue. All are finite queues represented as list
structures.
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DEFINITION
(AK-CLOCK-INTERRUPT-HANDLER AK)
=
(AK-DISPATCHER (AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(ENQ (AK-TASKID AK)

(DEQ (AK-READYQ AK)))
(AK-STATUS AK)
(AK-RWSTATE AK)
(AK-CLOCK AK)
(AK-IPORTS AK)
(AK-OPORTS AK)))

DEFINITION
(AK-DISPATCHER AK)
=
(AK (AK-PSTATES AK)

(AK-IBUFFERS AK)
(AK-OBUFFERS AK)
(AK-MBUFFERS AK)
(AK-READYQ AK)
(AK-STATUS AK)
(IF (QEMPTYP (AK-READYQ AK))

(AK-WAIT-STATE)
(AK-RUN-STATE))

(IF (QEMPTYP (AK-READYQ AK))
(AK-CLOCK AK)
(AK-TIME-SLICE))

(AK-IPORTS AK)
(AK-OPORTS AK))

The remaining interrupt handlers are defined in the same way as the clock interrupt handler. Each is a
Boyer-Moore function which constructs a new AK state in response to a particular interrupt.  The result is
an abstract operational specification for a kernel implementation. AK is abstract in the following ways.

• The private state spaces of tasks are transparently isolated.  This provides an important
constraint on the implementation.

• The data structures used to manage tasks are represented as high-level list structures.

• The transitions on the kernel state are specified functionally. All kernel operations take place
in a single abstract step.

Several features of the abstract kernel are defined to coincide with the target machine.  These features
could be replaced with details of a different implementation machine.

• The private state of a task is target machine address space, and a transition on a private state
is a target machine instruction.

• The I/O interface is identical to that of the target machine. That is, the representation of
asynchronous inputs is chosen to match the implementation.

• The interrupt structure of the abstract kernel (as defined by the case structure of AK-STEP)
is defined to match the interrupt structure of the target machine.
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5. The Abstract Kernel Implements Processes

The relationship between the abstract kernel and an individual task is pictured in Figure 4, and is
formalized by the theorem AK-IMPLEMENTS-PARALLEL-TASKS. Intuitively, this theorem says that
for a given good abstract kernel state AK and abstract kernel oracle ORACLE, the final state reached by
task I can equivalently be achieved by running TASK-PROCESSOR on the initial task state, with an
oracle constructed by the function CONTROL-ORACLE. The oracle constructed for TASK-PROCESSOR
accounts for the precise sequence of delays to task I in the abstract kernel.

Task

pro jec t

AK

Figure 4: AK Implements Parallel Tasks

THEOREM AK-IMPLEMENTS-PARALLEL-TASKS
(IMPLIES

(AND (GOOD-AK AK)
(FINITE-NUMBERP I

(LENGTH (AK-PSTATES AK))))
(EQUAL (PROJECT I (AK-PROCESSOR AK ORACLE))

(TASK-PROCESSOR (PROJECT I AK)
I
(CONTROL-ORACLE I AK ORACLE))))

6. The Target Machine

The target machine TM is a simple von Neumann computer. It is not based on an existing physical
machine because we are not interested in the task of formalizing an existing machine. Post hoc
formalization tends to be difficult, if not impossible. We intend for TM to be straightforward.

16TM is a 16-bit machine.  Main memory consists of 2 16-bit words. The processor state contains 8 general
purpose registers, one of which is the program counter and another a stack pointer. There are four flag
fields: a 2-bit condition code, a 6-bit error code, a supervisor call flag, and a 7-bit supervisor call
identifier. TM has simple architectural support for multi-programming.  This support consists of a
base/limit register pair mechanism for memory protection, and a supervisor/user mode flag for protecting
privileged operations. Processor registers which are accessible only in the supervisor mode are the
base/limit register pair, a supervisor address limit register, the supervisor/user mode flag, a running/wait
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state flag and the program clock. TM is capable of asynchronous character I/O.  It communicates with 16
input devices and 16 output devices by an array of input ports and an array of output ports. Figure 5 gives
a summary of the TM architecture in PMS notation [Bell 71].

Memory state

16Mp[0:65535]<0:15> main memory of 2 16-bit words

Pc state

R[0:7]<0:15> 8 general purpose registers;
R[0] is the PC; R[1] is the SP

CC<0:1> 2-bit condition code
ERROR<0:5> 6-bit error code
SVCFLAG 1-bit svc call flag
SVCID<0:6> 7-bit svc identifier

BASE<0:15> 16-bit address base register
LIMIT<0:15> 16-bit address limit register
SLIMIT<0:15> 16-bit address defining the upper limit

of the supervisor based at address 0 in
memory

SVMODE supervisor/user mode flag
RWSTATE running/wait state flag
CLOCK<0:15> program clock used for time slicing

I/O interface

IPORTS[0:15](<0:1>;<0:1>;<0:7>) an array of 16 input ports;
each port is a 3-tuple
(interrupt-flag, overrun-flag, char-buffer)

OPORTS[0:15](<0:1>;<0:1>;<0:7>) an array of 16 output ports;
each port is a 3-tuple
(interrupt-flag, busy-flag, char-buffer)

Figure 5: PMS Description of TM

The target machine is formally defined by two functions - the "good state" predicate GOOD-TM and the
interpreter TM-PROCESSOR.

The predicate GOOD-TM formalizes the contents of Table 5. It recognizes a data structure with the
following fourteen fields: TM-MEMORY, TM-REGS, TM-CC, TM-ERROR, TM-SVCFLAG, TM-SVCID,
TM-BASE, TM-LIMIT, TM-SLIMIT, TM-SVMODE, TM-RWSTATE, TM-CLOCK, TM-IPORTS and
TM-OPORTS. These are the names of the accessor functions to a TM state. GOOD-TM imposes size
restrictions on each field as indicated by Table 5.

The function TM-PROCESSOR is the interpreter function which defines the transitions on a TM state. The
formal argument TM represents a machine state, and the formal argument ORACLE represents an oracle.
An oracle is a list, some of whose elements are I/O interrupts. An input interrupt is a 2-tuple which gives
an input character and a device id. An output interrupt merely contains a device id.
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DEFINITION
(TM-PROCESSOR TM ORACLE)
=
(IF
(LISTP ORACLE)
(TM-PROCESSOR (TM-STEP (TM-POST-INTERRUPT (CAR ORACLE) TM))

(CDR ORACLE))
TM)

TM-POST-INTERRUPT incorporates interrupts into the state of the machine so that they can be sensed.
An input interrupt for device i is posted by changing the value of the ith input port as follows: the interrupt
flag is raised, the error flag gets the previous value of the interrupt flag to signal an overrun condition, and
the input character is placed in the character buffer.  An output interrupt for device i is posted by changing
the value of the ith output port as follows: the interrupt flag is raised, the busy flag is cleared, and the
character buffer is cleared (although this action is superfluous).  When the current oracle element is not an
I/O interrupt, TM-POST-INTERRUPT makes no change to the state of the machine.

The function TM-STEP defines the single step function for the TM interpreter. It gives the interrupt
structure of the target machine. Each of the interrupt branches of TM-STEP (an input interrupt, an output
interrupt, a program error, a clock interrupt and a supervisor call interrupt)  does a PSW swap, which
partially saves the state of the CPU in a fixed location of memory and loads a new program counter giving
the address of an operating system interrupt handling routine. When no I/O interrupt occurs and TM is in
the wait state, TM-STEP returns the current machine state unchanged.  The function
TM-FETCH-EXECUTE defines the instruction fetch-execute cycle of the target machine.

DEFINITION
(TM-STEP TM)
=
(COND ((TM-INPUT-INTERRUPTP TM)

(TM-EXECUTE-INPUT-INTERRUPT TM))
((TM-OUTPUT-INTERRUPTP TM)
(TM-EXECUTE-OUTPUT-INTERRUPT TM))
((TM-WAITING TM) TM)
((TM-ERRORP TM)
(TM-EXECUTE-ERROR-INTERRUPT TM))
((TM-CLOCK-INTERRUPTP TM)
(TM-EXECUTE-CLOCK-INTERRUPT TM))
((TM-SVC-INTERRUPTP TM)
(TM-EXECUTE-SVC-INTERRUPT TM))
(T (TM-FETCH-EXECUTE TM)))

We examine interrupts and the fetch-execute cycle more closely. Figure 6 describes what happens on a
clock interrupt: the current program counter, stack pointer and flags fields are stored in memory locations
[0:2]. A new program counter is loaded from a fixed location in memory giving the address of the clock
interrupt handler, the stack pointer is loaded with the supervisor limit address (a stack occupies the high
address end of a memory segment), and the machine is put in supervisor mode.  All of the other interrupt
transitions referenced in TM-STEP are defined in a similar fashion.

The function TM-FETCH-EXECUTE defines an algorithm for fetching instructions from memory and
decoding opcodes.  For each opcode, TM-FETCH-EXECUTE applies a function which defines a
transformation on the state of the machine.  Figure 7 documents TM’s small instruction set.  The purpose
of the figure is to suggest the extent of the instruction set. We have defined only those instructions
required to program the operating system. Other instructions can be added at the cost of proving that each
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mem[0:2] <- [pc,sp,flags]
pc <- mem[3]
sp <- slimit - 1
svmode <- supervisor-mode

Figure 6: The TM Clock Interrupt

one satisfies the GOOD-TM invariant. TM has instructions of zero, one and two arguments.  The
parameters which occur in Figure 7 should be interpreted as real addresses: one of memory address,
register address or immediate operand. In the case of binary operations, a result is stored at the location
indicated by the first argument.  The condition code is a 2-bit value which indicates two ALU conditions:
zero/non-zero and carry/no-carry.

Non-Privileged Operations

ADD a b add, set the condition code
BR a set the pc unconditionally
BRZ a set the pc if cc = <zero,no-carry>
BRNZ a set the pc if cc not = <zero,no-carry>
CALL a save the pc on the stack, load a new pc
COMPARE a b  set the condition code based on numerically

comparing a and b
DECR a decrement, set the condition code
DECR-MOD a b decrement a modulo b, set the condition code
INCR a increment, set the condition code
INCR-MOD a b increment a modulo b, set the condition code
MOD a b a mod b, set the condition code
MOVE a b move b to location indicated by a
MULT a b multiply, set the condition code
RETURN set the pc to the top element of the stack
SVC addr raise the svcflag, set the svcid

Privileged Operations

LBASE a load the base register
LLIMIT a load the limit register
LPSW a load the pc, sp and flags; put the machine in user mode
POST a raise the output interrupt flag in the output

port given by the argument
RUN put the machine in the run state
TIME a set the clock
STOUT a b start output on the device indicated by a;

the output character is given by b
SVCR a load the pc, sp and flags; put the machine

in user mode; clear the svcflag
TESTI a test the indicated input port for an overrun error
TESTO a test the indicated output port for busy
WAIT put the machine in the wait state

Figure 7: TM’s Instruction Set

TM’s ALU performs the following operations: plus, difference, times, remainder, increment, decrement,
increment-mod and decrement-mod. Increment-mod takes two arguments and increments its first
argument modulo its second argument. Decrement-mod decrements its first argument modulo its second
argument. Besides returning an integer value, each ALU operation also sets a carry bit.  Remainder is a
powerful operation. The kernel in fact uses this operation only to take the remainder of a number by some
power of two. Therefore the remainder operation in the ALU could be replaced by a simpler shift
operation to satisfy the needs of the kernel.
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This completes our summary of TM. It is a very simple von Neumann machine.  It provides a minimal
amount of protection hardware: supervisor/user mode for protecting privileged operations, and a
base/limit register pair for protecting memory access. The operating system kernel is responsible for
implementing isolated tasks using this hardware.

7. The Machine Code Implementation of Kit

In this section we describe the implementation of the kernel on the target machine. The kernel is written in
an assembler language for TM. The assembler is written in the Boyer-Moore logic, but the only role it
plays in the proof is to generate the large constant which is the Kit machine code.

The source code contains about 620 lines including assembler directives, data declarations and comments.
There are about 300 lines of actual assembler language instructions which, when assembled, expands to
750 machine words. The size of the entire kernel including data structures occupies about 3K words of
memory.

To make more vivid the claim that we verify machine code, we exhibit a small portion of the assembler
language listing of the kernel in Figure 8. This is the code which saves the CPU state of the current task
on an interrupt. The code places the address of an entry in a task table into the target machine’s register 2,
and saves the task-visible state of the CPU of our target machine in that entry.  The verification of Kit
proves that the processor state is saved correctly so that the fiction that each process owns the processor is
maintained. Each operation contains 0, 1 or 2 operands.  An operand contains an optional address mode,
an address, and an optional displacement.  The address modes are: 0 - immediate (the default if omitted), 1
- register address, 2 - memory address, 3 - register indirect address.

SAVE-STATE
move 2,temp-r2 1,r2 ;; Save R2 in memory
move 2,temp-r3 1,r3 ;; Save R3 in memory
move 1,r3 readyq ;; Point R3 to ready queue
call qfirst ;; Put current taskid in R2
SAVE-STATE-RETURN
mult 1,r2 task-table-entry-length ;; Multiply by task table entry length
add 1,r2 task-table ;; R2 points to current task table entry
;; Now save CPU registers and flags in consecutive words.
move 3,r2,pc-field 2,reg-save-area,interrupt-pc-field
move 3,r2,sp-field 2,reg-save-area,interrupt-sp-field
move 3,r2,r2-field 2,temp-r2
move 3,r2,r3-field 2,temp-r3
move 3,r2,r4-field 1,r4
move 3,r2,r5-field 1,r5
move 3,r2,r6-field 1,r6
move 3,r2,r7-field 1,r7
add 1,r2,flag-field ;; Bump index register
move 3,r2 2,reg-save-area,interrupt-flag-field
move 1,r2 2,temp-r2 ;; Restore R2 & R3,
move 1,r3 2,temp-r3 ;; This is necessary for SVC interrupts.
return

Figure 8: Assembler Language Listing of State Saving Code

Formally, the target machine loaded with the Kit machine code is another example of a finite state
machine. Its "good state" predicate is GOOD-OS, and its interpreter function is TM’s interpreter,
TM-PROCESSOR.

GOOD-OS defines the state of the target machine when loaded with the kernel, and when running a user
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process. That is, a target machine state may violate GOOD-OS while a Kit routine is executing, but each
Kit routine is proved to return the machine to a GOOD-OS state upon exiting.  A user process always
executes in a GOOD-OS state.

GOOD-OS says formally how TM’s memory is laid out.  It states that the kernel occupies a memory
segment beginning at location 0. Within that segment, GOOD-OS gives invariants on many of the kernel
data structures. Here are some of its provisions.

• Each element of the interrupt vector is required to contain the address of the appropriate
interrupt handling code. These addresses never change.

• A particular segment of the kernel is required to contain exactly the machine code which
results from assembling the kernel. This code is never modified.

• The segment table contains a base/limit register pair for each task, defining the location and
length of each task’s memory segment. It is constrained so that each base/limit pair is
mutually disjoint, and is disjoint from the memory occupied by the kernel. Kit maintains this
invariant, and therefore guarantees the TM’s address protection mechanism is sufficient to
isolate process memory segments, and isolate the kernel from processes.

• When the kernel exits, it leaves the machine in user mode. A user process cannot get into
supervisor mode.

8. The Machine Code Correctly Implements its Specification

The correctness of the machine code implementation of Kit is stated by the theorem
CORRECTNESS-OF-OPERATING-SYSTEM, previously mentioned in section 2.3. It is an interpreter
equivalence theorem which establishes the correspondence between the Kit code running on TM and the
abstract kernel.

THEOREM CORRECTNESS-OF-OPERATING-SYSTEM
(IMPLIES

(AND (GOOD-OS OS) (PLISTP ORACLE))
(EQUAL (MAPUP-OS (TM-PROCESSOR OS

(OS-ORACLE OS ORACLE)))
(AK-PROCESSOR (MAPUP-OS OS) ORACLE)))

The correspondence between the two machines (the abstract kernel and the target machine loaded with the
kernel) is defined by the function MAPUP-OS. MAPUP-OS serves two roles. First, it maps up the
machine implementation of kernel data structures to their abstract representation. This is an application of
Hoare’s method for proving the correctness of data representations [Hoare 72]. Second, MAPUP-OS maps
the current state of each process at the low level to an array of completely isolated private states at the
abstract level.

One thing must be understood about this theorem.  The function OS-ORACLE computes the time required
by Kit to simulate the behavior of the kernel. The abstract kernel can handle an interrupt, that is, put an
input character in a buffer and wake up a process waiting for input, in a single abstract step. It takes the
target machine many steps to run a program which does the same thing. The correctness theorem says
that the target machine simulates the behavior of the abstract kernel when given the right oracle.  This
theorem can be informally read as "Kit simulates the abstract kernel when I/O interrupts don’t arrive too
quickly." The basic requirement is that I/O interrupts arrive with a minimum time interval equal to the
maximum length of time Kit requires to execute any of its services.  This condition is met by the oracle
constructed above, and it can be shown that many other oracles suffice. In particular, if this property could
be proved about ORACLE, then ORACLE would suffice at the target machine level, eliminating the need
for the function OS-ORACLE.
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At the highest level the proof is a simple induction on the oracle.  The proof requires the following two
results.

First, each kernel routine implements its specification at the abstract kernel level. The proof of kernel
routines is accomplished by symbolically interpreting paths through the machine code. The final state
reached by each path is proved to correspond to an operation at the abstract kernel level.

Second, a target machine fetch-execute operation in behalf of a user process implements an abstract
private step. Recall that an abstract private step is an application of the target machine’s fetch-execute
algorithm to one of an array of private task states (see the definition of AK-PRIVATE-STEP in Section
4). The requirement on the fetch-execute algorithm is summarized by two lemmas.  One is a correctness
lemma which says that TM-FETCH-EXECUTE behaves on the current process exactly as if the process
state were a completely isolated machine. The second is a protection lemma which says that
TM-FETCH-EXECUTE modifies no process but the current process.

The two theorems, AK-IMPLEMENTS-PARALLEL-TASKS, Section 5, and
CORRECTNESS-OF-OPERATING-SYSTEM, compose to give a simple proof that the Ith process
projects out of a GOOD-OS state in a way which corresponds to TASK-PROCESSOR. This is the final
result in the Kit proof script. Figure 9 gives a picture of this theorem.

Task

pro jec t

AK

TM

Figure 9: Final Theorem
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THEOREM OS-IMPLEMENTS-PARALLEL-TASKS
(IMPLIES
(AND (GOOD-OS OS)

(PLISTP ORACLE)
(FINITE-NUMBERP I

(LENGTH (AK-PSTATES (MAPUP-OS OS)))))
(EQUAL

(PROJECT-ITH-TASK I
(TM-PROCESSOR OS

(OS-ORACLE OS ORACLE)))
(TASK-PROCESSOR (PROJECT-ITH-TASK I OS)

I
(CONTROL-ORACLE I

(MAPUP-OS OS)
ORACLE))))

The entire statement of the problem, given only the axioms of the Boyer-Moore logic, requires 1020
definitions and 3561 lemmas.  The script of definition and lemmas includes

• facts about numbers, sets and lists,

• the definition of the target machine and a proof that GOOD-TM is an invariant of the target
machine,

• the definition of the abstract kernel and a proof that GOOD-AK is an invariant of the abstract
kernel,

• the definition of the kernel, and a proof that the kernel always leaves a target machine in a
GOOD-OS state,

• the proof of correspondence of each of the kernel routines with its specification,

• the correctness and protection proof about TM-FETCH-EXECUTE,

• the definition of a task, and

• the proof that the abstract kernel correctly implements tasks.

We spent an inordinate amount of time defining and then fine-tuning our database of lemmas about sets,
number and lists. Even in its final state, the script does not have a clean set of rules in these domains. This
resulted in a number of ugly "help" lemmas throughout the script. The development of useful rewrite rules
in these areas would make the Boyer-Moore theorem prover vastly easier to use.

9. Related Work

9.1 Specification and Proof Methods

Our approach to the specification and verification of Kit derives from well known earlier work. The
implements relation established by an interpreter equivalence theorem is similar to Milner’s weak
simulation relation [Milner 71].  Hoare’s approach to proving the correctness of data representations
[Hoare 72], similar to Milner’s work, is also a precursor.  There has been more recent interest in the
issues surrounding the verification of data representations, this work goes under the names data
refinement [Hoare 87], or data reification [Jones 86].

Several attempts to verify operating systems cite the work of Milner, Hoare and others who have
suggested similar approaches to verification.  The methodology for designing operating system software
proposed by Robinson and his co-workers [Robinson 77] calls for a sequence of abstract machines, each
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related by an implements relation. Kemmerer [Kemmerer 82] acknowledges a debt to Milner and Hoare in
the verification of a portion of the security kernel of UCLA Secure Unix. Rushby [Rushby 81a] described
an approach to kernel verification similar to ours.

Several other research efforts have used the Boyer-Moore logic and theorem prover to specify and verify
components of computing systems.  Hunt [Hunt 85] proved an interpreter equivalence theorem to
establish the correctness of the FM8501 microprocessor. A successor to FM8501, called FM8502, has
also been verified.  Moore [Moore 88] proved the correctness of the translator of a high-level assembly
language called Piton.  The Piton assembler is targeted to FM8502 machine code.  Young [Young
88] verified the correctness of a micro-Gypsy compiler targeted to Piton.  A forthcoming special issue of
The Journal of Automated Reasoning is devoted to the description of this stack of verified systems
components, including the conceptual place of Kit in this stack [Bevier, et. al. 89].

There are many formal specification languages other than the Boyer-Moore logic some of which are
supported by mechanical tools. A list of approaches to specification and verification must include Affirm
[Gerhart 80], Gypsy [Good, et. al. 78], HDM [Robinson & Levitt 77], HOL [HOL 87], VDM [Jones 86],
and Z [Spivey 88].  The purpose of the Kit project was to specify an operating system kernel with a
particular process isolation property, and mechanically check the proof of a correct implementation of that
specification at the machine code level. We chose the Boyer-Moore logic for two reasons:  first, our
previous expertise in the logic, and second, the existence of the Boyer-Moore theorem prover. Previous
work with the Boyer-Moore theorem prover [Shankar 86, Hunt 85] had demonstrated that it could be
guided through very large and complex proofs. We attempted no comparison of Kit’s specification in the
Boyer-Moore logic with a specification in a different language.

One technical advantage in pushing operational specifications to an abstract level in the Boyer-Moore
logic deserves mention.  The Boyer-Moore logic’s definitional principle requires a proof of the unique
existence of every function defined, and therefore a proof of consistency of the specification. The theorem
prover handles this proof automatically in most cases.

9.2 Operating System Verification

Two areas predominate in operating system verification: verification of parallel processes, and verification
of security properties.

The area of parallelism is primarily concerned with proving safety and liveness properties of sets of
processes under various models of process communication.  Above the kernel level, an operating system
can be viewed as a set of cooperating parallel processes. So, techniques for verifying parallel processes
can be applied to operating system verification above the kernel level. Our work logically supports this
work. The purpose of our work is to verify a kernel implementation. We don’t reason about the
correctness of a particular set of concurrent processes, but prove that any set of processes which can be
implemented on Kit is implemented without errors introduced by Kit.

The seminal work in this area is the "THE"-multiprogramming system [Dijkstra 68] in which process
synchronization via semaphores is implemented at the lowest layer. This work reveals to what advantage
an operating system can be designed as a system of communicating sequential processes.  Saxena [Saxena
76] considers low level issues of processor and memory sharing in a multiprogrammed operating system.
The design of a scheduler and memory manager, synchronized via monitors, is verified. Flon [Flon
77] treats two subjects related to the correctness of operating systems. First, a methodology for the
design, implementation and verification of operating systems is discussed. Second, the problem of the
total correctness of parallel programs is considered.  Karp [Karp 83] proposes an extension of Pascal to
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include a method of process communication called a module. Concurrent systems expressed in this
language can be demonstrated to be failure free, which is a notion of non-termination. The application of
this communication model to operating systems is demonstrated.

Security is the other major area in operating system verification.  In the early seventies the notion became
current that a security policy should be implemented in the nucleus of an operating system, a security
kernel. A number of efforts attempted to design, implement and verify a security kernel.  A security
policy given by Bell and LaPadula [Bell 75] was the first attempt to formalize a specification for a
security kernel.  Alternative formulations of security were given by Feiertag, Levitt and Robinson
[Feiertag 77], and by Popek and Farber [Popek 78].

The goals of each security kernel project were similar in outline: design a security kernel, prove that the
design satisfies a formally described security policy, implement the kernel, and prove the implementation
correct. Some projects were intended to complete only an initial portion of this sequence of goals. The
goals were met with varying degrees of success.

Many security kernel projects are reported in the literature:  PSOS [Feiertag 79, Neumann 77], KSOS
[McCauley 79, Berson 79], UCLA Secure Unix project [Popek 79, Walker 80], KVM/370 [Gold 79], and
SCOMP [Fraim 83].  The Secure Ada Target (SAT, now called LOCK) [Boebert 85] is an ongoing project
at Honeywell.  Landwehr [Landwehr 83] gives a useful summary of the state of the art circa 1983. Rushby
criticizes the kernel approach to system security [Rushby 81b].  We do not repeat his argument, but point
out that the alternative approach to security which he proposes results in a mandate for the type of
verification carried out for Kit: a proof of the isolation of processes implemented in a shared environment.
Rushby calls this a separation kernel.

Outside of these two categories, mention should be made of the SIFT project [MelliarSmith 81], which
tentatively explored some of the problems of implementing processes, but did not formally prove an
implements relation or do code level proofs.

The relationship between our work and that previously reported in the literature can be summarized as
follows. There are two main threads in operating system verification: verification of parallel processes,
and verification of security.  The work in parallel processes lies inherently above the level of verification
reported for Kit. The work in security reaches in principle down to the implementation level of Kit, but no
work has previously reached that level.

10. Remarks

The purpose of Kit is to provide verified task isolation. That is, tasks can communicate only in specified
ways. As a result, a verified set of communicating processes will run as specified on Kit provided there
are no hardware errors.  Kit is guaranteed not to introduce implementation bugs, since all code is verified.

A number of significant results are required to establish the main theorem.

• The termination of kernel routines.

• The correctness of the address space abstraction, i.e., that an address space can be viewed as
an independent machine.

• The isolation of the operating system from tasks on the target machine.

• The inability of a task to enter supervisor mode.
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Therefore, the verification of Kit checks important security properties.  We have proved task isolation, the
protection of the operating system from tasks, and the inability of tasks to enter supervisor mode. Our
small system is tamper proof. These results are fundamental to computer security, but are a by-product of
the correctness proof. They have received scant attention in formal verification since the focus has been
on sophisticated security models rather than correctness.  The issues involved in correctly implementing
multiple processes on shared resources have been largely ignored.

The proof of Kit is accomplished by establishing a machine simulation theorem which relates Kit to a
definition of a process which appears to be running on its own machine.  Kit is shown to implement a
fixed number of conceptually distributed communicating processes. The specification machine is so
abstract that the proof of its properties is quite tractable.  An example of a property which is trivial to
establish at this level is the protection of a process’s private state. We have not stated and proved other
properties, but clearly it is preferable to do so at the high end than at the low end.  Because the implements
relation is proved, properties established at the high end hold (under some state space mapping) at the low
end.

The verification of Kit revealed a number of bugs. Simple bugs, like naming an incorrect register, or using
the wrong address mode, were found by symbolically interpreting paths through the machine code.
During this process it became obvious when a data structure was manipulated incorrectly. More difficult
bugs were revealed during the proof that each Kit routine implements the corresponding abstract kernel
operation. The most insidious bug revealed at this stage was one in which the state of the current task was
not accurately restored after processing an I/O interrupt. The bug caused a supervisor call request to be
ignored if an I/O interrupt occurred immediately after the request, but before the request had been
handled. Such time-dependent errors are difficult to find by testing.

The Kit project suffers from a number of problems and limitations.  An obvious limitation is the sheer
simplicity of Kit. We have not addressed the problem of dynamic allocation of objects (e.g., tasks,
message ports) and the possibility of resource exhaustion in an implementation. Moore’s subsequent work
on Piton in the Boyer-Moore logic does address this problem.  Also, Kit’s memory management relies on
an archaic method of memory protection. The specification and correct implementation of a virtual
memory management scheme remains to be done. Kit does not directly address concurrency. In particular,
it would be desirable to specify and prove correct a system which manages devices (e.g. a disk) operating
concurrently and asynchronously with the processor.

The main value of the Kit project is its demonstration of what is possible.  Kit is the first example of a
mechanically checked proof of the correct implementation of a complete operating system kernel. The
proof is carried out at the level of von Neumann machine code. The next obvious step is to extend the
complexity of Kit as outlined above, and to target Kit down to a formalization of an existing processor.

The method used to verify Kit may also have applications in areas other than operating systems, such as
small embedded systems. Kit demonstrates the feasibility of direct machine code verification.  We
believe that the difficulties we had verifying Kit’s machine code can be overcome with an adequate set of
libraries for the Boyer-Moore theorem prover. The method of arranging the theorem prover to act as a
symbolic evaluator of machine code can scale up to systems larger than Kit.
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Appendix A

The Boyer-Moore Logic

A complete and precise definition of the logic can be found in [Boyer 88].

We use the prefix syntax of Pure Lisp to write down terms. For example, we write (PLUS I J) where
others might write PLUS(I,J) or I+J. We write (IMPLIES (P X) (EQUAL (F X) (G X))) in
place of P(X) → F(X) =G(X).

The logic is first-order and contains no quantifiers.  It is defined as an extension of propositional calculus
with variables, function symbols, and the equality relation.  Axioms define the following:

• the Boolean objects (TRUE) and (FALSE), abbreviated T and F;

• The if-then-else function, IF, with the property that (IF X Y Z) is Z if X is F and Y
otherwise;

• the Boolean "connector functions" AND, OR, NOT, and IMPLIES; for example, (NOT P) is
T if P is F and F otherwise;

• the equality function EQUAL, with the property that (EQUAL X Y) is T or F according to
whether X is Y;

• inductively constructed objects, including:
• Natural Numbers.  Natural numbers are built from the constant (ZERO) by

successive applications of the constructor function ADD1. The function NUMBERP
recognizes natural numbers, e.g., is T or F according to whether its argument is a
natural number or not.  The function SUB1 returns the predecessor of a non-0 natural
number.

• Ordered Pairs.  Given two arbitrary objects, the function CONS returns an ordered
pair containing them. The function LISTP recognizes such pairs.  The functions
CAR and CDR return the two components of such a pair.

• Each of the classes above is called a "shell", which can be thought of as a data type. T and F
are each considered the elements of two singleton shells.  Axioms insure that all shell
classes are disjoint;

• the definitions of several useful functions, including:
• LESSP which, when applied to two natural numbers, returns T or F according to

whether the first is smaller than the second;

• COUNT which, when applied to an inductively constructed object, returns its "size;"
for example, the COUNT of an ordered pair is one greater than the sum of the
COUNTs of the components.

The user can add of new shells, i.e., new data types. A shell defines a new class of n-tuples with type
restrictions on each component.  For each shell there is a recognizer (e.g., LISTP for the ordered pair
shell), a constructor (e.g., CONS), an optional empty object (e.g., there is none for the ordered pairs but
(ZERO) is the empty natural number), and n accessors (e.g., CAR and CDR).

In our work we use shells solely to define record structures with no type restrictions. The shell FOO below
defines a record structure with three fields, A, B and C.
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SHELL DEFINITION
FOO
with recognizer FOO-SHELLP,
and with accessors
A, type restriction: none,
B, type restriction: none,
C, type restriction: none.

The expression (FOO 1 2 3) builds one of these structures, with 1 in the A field, 2 in the B field and 3
in the C field. The expressions (A X), (B X) and (C X) access the A, B and C fields of a FOO structure
X, respectively. If X is a FOO structure, the expression (FOO (A X) (B X) (BAR X)) builds a FOO
structure equal to X in every field but the C field, which in this case takes on the value (BAR X). We
place type restrictions on the fields of a shell by defining a predicate which constrains each shell field.

The logic provides a principle of recursive definition under which new function symbols may be
introduced. Consider the definition of the list concatenation function APPEND.

DEFINITION
(APPEND X Y)
=
(IF (LISTP X)

(CONS (CAR X) (APPEND (CDR X) Y))
Y)

The equations submitted as definitions are accepted as new axioms under certain conditions that guarantee
that one and only one function satisfies the equation.  One of the conditions is that certain derived
formulas be theorems.  Intuitively, these formulas insure that the recursion "terminates" by exhibiting a
"measure" of the arguments that decreases, in a well-founded sense, in each recursion.  A suitable derived
formula for APPEND is the following.

(IMPLIES (LISTP X)
(LESSP (COUNT (CDR X)) (COUNT X)))

However, in general the user of the logic is permitted to choose an arbitrary measure function (COUNT
was chosen above) and one of several relations (LESSP above).

The rules of inference of the logic, in addition to those of propositional calculus and equality, include
mathematical induction.  The formulation of the induction principle is similar to that of the definitional
principle. To justify an induction schema it is necessary to prove certain theorems that establish that,
under a given measure, the inductive hypotheses are about "smaller" objects than the conclusion.

Using induction it is possible to prove such theorems as the associativity of APPEND.

THEOREM ASSOCIATIVITY-OF-APPEND
(EQUAL (APPEND (APPEND A B) C)

(APPEND A (APPEND B C)))
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