
Improved Steiner Tree Approximation in GraphsGabriel Robins� Alexander ZelikovskyyAbstractThe Steiner tree problem in weighted graphs seeks a minimum weight connected subgraphcontaining a given subset of vertices (terminals). We present a new polynomial-time heuristicwith an approximation ratio approaching 1+ ln 32 � 1:55, which improves upon the previouslybest-known approximation algorithm of [9] with performance ratio � 1:59. In quasi-bipartitegraphs (i.e., in graphs where all nonterminals are pairwise disjoint), our algorithm achieves anapproximation ratio of � 1:28, whereas the previously best method achieves an approximationratio approaching 1:5 [18]. For complete graphs with edge weights 1 and 2, we show that ourheuristic has an approximation ratio approaching � 1:28, which improves upon the previouslybest-known ratio of 43 [4]. Our method is considerably simpler and easier to implement thanprevious approaches. Our techniques can also be used to prove that the Iterated 1-Steinerheuristic [13] achieves an approximation ratio of 1:5 in quasi-bipartite graphs, thus providingthe �rst known nontrivial performance ratio of this well-known method.1 IntroductionGiven an arbitrary weighted graph with a distinguished vertex subset, the Steiner Tree Problemasks for a minimum-cost subtree spanning the distinguished vertices. Steiner trees are importantin various applications such as VLSI routing [13], wirelength estimation [6], phylogenetic treereconstruction in biology [10], and network routing [11]. The Steiner Tree Problem is NP -hardeven in the Euclidean or rectilinear metrics [8].Arora established that Euclidean and rectilinear minimum-cost Steiner trees can be e�cientlyapproximated arbitrarily close to optimal [1]. On the other hand, unless P = NP , the Steiner TreeProblem in general graphs cannot be approximated within a factor of 1 + � for su�ciently small� > 0 [4, 7]. For arbitrary weighted graphs, the best Steiner approximation ratio achievable withinpolynomial time was gradually decreased from 2 to 1:59 in a series of works [19, 20, 2, 21, 17, 14, 9].In this paper we present a polynomial-time approximation scheme with a performance ratioapproaching 1 + ln 32 � 1:55 which improves upon the previously best-known ratio of 1.59 due toHougardy and Pr�omel [9]. We apply our heuristic to the Steiner Tree Problem in quasi-bipartitegraphs (i.e., where all nonterminals are pairwise disjoint). In quasi-bipartite graphs our heuristicachieves an approximation ratio of � 1:28 in time O(mn2), where m and n are the numbers ofterminals and non-terminals in the graph, respectively. This is an improvement over the primal-dual algorithm by Rajagopalan and Vazirani [18] where the bound is more than 1:5. We also show�Department of Computer Science, University of Virginia, Thornton Hall, Charlottesville, VA, 22903,robins@cs.virginia.eduyDepartment of Computer Science, Georgia State University, University Plaza, Atlanta, GA, 30303,alexz@cs.gsu.edu. This work was supported in part by a Packard Foundation Fellowship, and by a GSU ResearchInitiation Grant. 1

that a well-known Iterated 1-Steiner heuristic [12, 13] achieves an approximation ratio of 1:5 forquasi-bipartite graphs; previously, no non-trivial bounds were known for the Iterated 1-Steinerheuristic. Finally, we improve the approximation ratio achievable for the Steiner Tree Problemin complete graphs with edge weights 1 and 2, by decreasing it from the previously known 43 [4]to less than 1:28 for our algorithm.The remainder of the paper is organized as follows. In the next section we introduce basicde�nitions, notation and properties. In Section 3 we present our main algorithm (called k-LCA)and formulate the basic approximation result. In Sections 4 and 5 we prove the approximationratio of the algorithm k-LCA in general graphs. and estimate performance of the Iterated 1-Steiner heuristic and k-LCA in quasi-bipartite graphs and complete graphs with weights 1 and2. We conclude by proving in Section 6 the basic approximation result for k-LCA.2 De�nitions, Notations and Basic PropertiesLet G = (V;E; cost) be a graph with a nonnegative cost function on its edges. Any tree in Gspanning a given set of terminals S � V is called a Steiner tree, and the cost of a tree is de�nedto be the sum of its edge costs. The Steiner Tree Problem (STP) seeks a minimum-cost Steinertree. Note that a Steiner tree may contain non-terminal vertices and these are referred to asSteiner points. We can assume that the cost function over G = (V;E; cost) is metric (i.e., thetriangle inequality holds) since we can replace any edge e 2 E with the shortest path connectingthe ends of e. Henceforth we will therefore assume that G is a complete graph. Similarly, for thesubgraph GS induced by the terminal set S, GS is a complete graph with vertex set S.Let MST (GS) be the minimum spanning tree of GS. For any graph H, cost(H) is the sumof costs of all edges in H. We thus denote the cost of a minimum spanning tree of H by mst(H),e.g., cost(MST (GS)) = mst(GS). For brevity, we use mst to denote mst(GS). In order tosimplify our analyses, we further assume that all edge costs in G are unique (this ensures thatthe optimal Steiner tree and minimum spanning tree are unique).A Steiner tree over a subset of the terminals S0 � S in which all terminals S0 are leaves is calleda full component (see Figure 1(a)). Any Steiner tree can be decomposed into full componentsby splitting all the non-leaf terminals. Our algorithm will proceed by adding full componentsto a growing solution, based on their \relative cost savings" (this notion will be made precisebelow). We assume that any full component has its own copy of each Steiner point so that fullcomponents chosen by our algorithm do not share Steiner points.A Steiner tree which does not contain any Steiner points (i.e., where each full componentconsists of a single edge), will be henceforth called a terminal-spanning tree. Our algorithmwill compute relative cost savings with respect to the \shrinking" terminal-spanning tree whichinitially coincides with MST (GS).The relative cost savings of full components are represented by a ratio of how much a fullcomponent decreases the cost of the current terminal-spanning tree over cost of connection ofits Steiner points to terminals. The cost savings of an arbitrary graph H with respect to aterminal-spanning tree T is the di�erence between the cost of T and the cost of the Steiner treeobtained by augmenting H with the edges of T . Formally, let T [H] be the minimum cost graphin H [T which contains H and spans all the terminals of S (see Figure 2). The gain of Hwith respect to T is de�ned as gainT (H) = cost(T) � cost(T [H]). If H is a Steiner tree, thengainT (H) = cost(T) � cost(H). Note that gainT (H) � cost(T) � mst(T [H) because T [H]cannot cost less than MST (T [H). We will use the following property of gain proved in [20, 2].2

a

d

b
d

b c

a

(c)(b)(a)

c

Figure 1: (a) A full component K: �lled circles denote terminals and empty circles denote Steinerpoints. (b) Connected components of Loss(K) to be collapsed, dashed edges belong to Loss(K).(c) The corresponding terminal-spanning tree C[K] with the contracted Loss(K).
(b)(a)

T[H]T

H

Figure 2: (a) A graph H (dashed edges) and a terminal-spanning tree T (solid edges). (b) Thecorresponding graph T [H] contains H and spans all the terminals.Lemma 1 For any terminal-spanning tree T and graphs H and H 0,gainT (H [H 0) � gainT (H) + gainT (H 0)The minimum-cost connection of Steiner points of a full component K to its terminals isdenoted Loss(K). Formally, Loss(K) is a minimum-cost forest spanning the Steiner nodes of afull component K such that each connected component contains at least one terminal (see Figure1(b)). Intuitively, Loss will serve as an upper bound on the optimal solution cost increase duringour algorithm's execution (as will be elaborated below). We will denote the cost of Loss(K) byloss(K). The loss of a union of full components is the sum of their individual losses.As soon as our algorithm accepts a full component K it contracts its Loss(K), i.e. \collapses"each connected component of Loss into a single node (see Figure 1(c)). Formally, a loss-contractedfull component C[K] is a terminal-spanning tree over terminals of K in which two terminals areconnected if there is an edge between the corresponding two connected components in the forestLoss(K). The cost of any edge in C[K] coincides with the cost of the corresponding edge in K.The 1-1 correspondence between edges ofKnLoss(K) and C[K] implies that cost(H)�loss(H) =cost(C[H]). Similarly, for any Steiner tree H, C[H] is the terminal-spanning tree in which thelosses of all full components of H are contracted.3

Our algorithm constructs a k-restricted Steiner tree, i.e., a Steiner tree in which each fullcomponent has at most k terminals. Let Optk be an optimal k-restricted Steiner tree, and letoptk and lossk be the cost and loss of Optk, respectively. Let opt and loss be the cost and lossof the optimal Steiner tree, respectively.We now prove the following lower bound on the cost of the optimal k-restricted Steiner tree.Lemma 2 Let H be a Steiner tree; if gainC[H](K) � 0 for any k-restricted full component K,then cost(H)� loss(H) = cost(C[H]) � optkProof. Let K1; : : : ;Kp be full components of Optk.cost(C[H])� optk = gainC[H](Optk)= gainC[H](K1 [: : : [Kp)� gainC[H](K1) + : : : + gainC[H](Kp)� 0 utAn approximation ratio of an algorithm is an upper bound on the ratio of the cost of thefound solution over the cost of the optimal solution. In the next section we will propose a newalgorithm for the Steiner Tree Problem, and then prove a (best-to-date) approximation ratio forit.3 The AlgorithmAll previous heuristics (except Berman-Ramayer's [2] approach) with provably good approxima-tion ratios choose appropriate full components and then contract them in order to keep them forthe overall solution. This does not allow to give away an already-accepted full component evenif later we would �nd out that a better full component disagree with a previously accepted (twocomponents disagree if they share at least two terminals).The main idea behind the Loss-Contracting Algorithm (see Figure 3) is to contract as littleas possible so that (i) a chosen full component may still participate in the overall solution but (ii)not many other full components would be rejected. In particular, if we contract Loss(K), i.e.,replace a full component K with C[K], then (i) it will not cost anything to add a full componentK in the overall solution and (ii) we decrease the gain of full components which disagree withK by a small value (e.g., less than in Berman-Ramayer's algorithm for large k and much smallerthan in [14] for any k).Our algorithm iteratively modi�es a terminal-spanning tree T , which is originallyMST (GS),by incorporating into T loss-contracted full components greedily chosen from G. The intuitionbehind the gain-over-loss objective ratio is as follows. The cost of the approximate solution liesbetween mst = mst(GS) and optk. If we accept a component K, then it increases by a gain of Kthe gap between mst and the cost of approximation. Thus the gain of K is our clear pro�t. Onthe other hand, if K does not belong to OPTk, then after accepting K we would no longer be ableto reach Optk because we would need to pay for connection of incorrectly chosen Steiner points.Therefore, the value of loss(K), which is the connection cost of Steiner points of K to terminals,is an upper bound on the increase in the cost gap between optk and the best achievable solution4

after accepting K. Thus loss(K) is an estimate of our connection expense. Finally, maximizingthe ratio of gain over loss is equivalent to maximizing of the pro�t per unit expense.Loss-Contracting Algorithm (k-LCA) for Steiner Trees in GraphsInput: A complete graph G = (V;E; cost) with edge costs satisfying the triangle inequality,a set of terminals S � V and an integer k � jSjOutput: A k-restricted Steiner tree in G connecting all the terminals in ST =MST (GS)H = GSRepeat foreverFind a k-restricted full component K with the maximum r = gainT (K)=loss(K)If r � 0 then exit repeatH = H [KT =MST (T [C[K])]Output the tree MST (H)Figure 3: The k-restricted Loss-Contracting Algorithm (k-LCA).In Section 6 we will show that cost(T)�mst(T [K) = gainT (K). Therefore, each time thealgorithm chooses a full component K, the cost of T decreases by gainT (K)+ loss(K). This willimply the basic approximation result proved in Section 6.Theorem 1 For any instance of the Steiner Tree Problem, the cost Approx of the Steiner treeproduced by algorithm k-LCA is at mostApprox � lossk � ln�1 + mst� optklossk �+ optk (1)
4 Performance of k-LCA in General GraphsOur estimate of the performance ratio of algorithm k-LCA in arbitrary graphs is based on theestimates of optimal k-restricted Steiner trees. Let �k be the worst-case ratio of optkopt . It wasshown in [5] that �k � 1 + (blog2 kc+ 1)�1. We will show below that the approximation ratio ofk-LCA is at most �k(1 + 12 ln(4�k � 1)). Therefore, the approximation ratio of k-LCA convergesto 1 + ln 32 < 1:55 when k ! 1. This is an improvement over the algorithm given by Hougradyand Prommel [9], where the approximation ratio approaches 1.59.Theorem 2 The k-LCA algorithm has an approximation ratio of at most (1 + 12 ln(4�k � 1))�kProof. Since mst � 2opt (see [19]), the inequality (1) yields the following upper bound on theoutput tree cost of k-LCA.Approx � lossk � ln�1 + 2opt� optklossk �+ optk5

It was proved in [14] that for any Steiner tree T , loss(T) � 12cost(T). Therefore, lossk �12optk.The partial derivative (lossk � ln(1+ 2opt�optklossk))0lossk is always positive, therefore, the the upperbound on Approx achieves maximum when lossk = 12optk. Thus, we obtainApproxopt � optkopt �0@1 + ln(4optoptk � 1)2 1ASince the upper bound above grows when optk is increases, we can replace optkopt with the maximumvalue of �k. ut5 Steiner Trees in Quasi-Bipartite Graphs and Complete Graphswith Edge Weights 1 and 2Recently Rajagopalan and Vazirani [18] suggested a primal-dual -based algorithm for approx-imating Steiner trees. They show that their algorithm has an approximation ratio of 1:5 + �for quasi-bipartite graphs, i.e., the graphs where all nonterminals are pairwise disjoint. We �rstshow that the well-known Iterated 1-Steiner heuristic [12, 13] has an approximation ratio of 1.5.Next, we apply algorithm k-LCA to quasi-bipartite graphs and estimate its runtime. Finally weprove that the performance ratio of k-LCA for quasi-bipartite graphs is below 1.28. We alsoapply k-LCA to the Steiner Tree Problem in complete graphs with edge weights 1 and 2. Bernand Plassmann [4] proved that this problem is MAX SNP-hard and gave a 43 -approximationalgorithm. Applying Lovasz's algorithm for the parity matroid problem (see [15]), an 1.2875-approximation algorithm was given in [3]. We will show that the performance ratio of algorithmk-LCA approaches 1.28 for such graphs, improving on previously achievable bounds.The Iterated 1-Steiner heuristic. The Iterated 1-Steiner heuristic (I1S) (see [12, 13]) re-peatedly (while it is possible) adds Steiner points to terminals which decreases the cost of theminimum spanning tree over terminals. Accepted Steiner nodes are deleted if they become use-less, i.e., if their degree become 1 or 2 in the MST over the terminals. Although I1S decreasesthe mst-cost by the maximum possible value at each iteration, we will estimate the cost of theoutput Steiner tree regardless of how it was obtained. The following theorem will also enable usto estimate the performance ratio of a faster Batched variant of the Iterated 1-Steiner heuristic[12, 13].Theorem 3 Given an instance of the Steiner Tree Problem in a quasi-bipartite graph G, let Hbe a Steiner tree in G such that (i) any Steiner point has degree at least 3 and (ii) H cannot beimproved by adding any other Steiner point, i.e., mst(H [v) � cost(H) for any vertex v in G.Then the cost of H is at most 1.5 times the optimal.Proof. Any full component in quasi-bipartite graphs has a single Steiner point. Therefore, theloss of any full component equals the cost of the least-cost edge connecting its single Steiner pointto a terminal. Since any Steiner point has degree at least 3 (condition (i)), the loss of any fullcomponent in H is at most one third of its cost. Thus, loss(H) � 13cost(H).We now show that gainC[H](K) � 0 for any full component K. Indeed, condition (ii) impliesthat mst(H [K) � cost(H). If we contract the loss of H, then we can decrease MST (H [K)6

by at most loss(H) since reduction by loss(H) happens only if all edges of Loss(H) belong toMST (H [K). Therefore, mst(C[H] [K) � mst(H [K) � loss(H) and mst(C[H] [K) �cost(H)� loss(H) = cost(C[H]). Thus, gainC[H](K) � cost(C[H])�mst(C[H] [K) � 0.By Lemma 2, cost(H)� loss(H) � opt and since loss(H) � 13cost(H), we obtain cost(H) �32opt. utThe above result helps explain why the Iterated 1-Steiner and Rajagopalan-Vazirani heuris-tics perform similarly when applied to instances of the Steiner Tree Problem restricted to therectilinear plane (see [16]).Runtime of the algorithm k-LCA in quasi-bipartite graphs. For a given Steiner point v,algorithm k-LCA adds only a full component with the largest gain since the loss is determinedby v. We can �nd a full tree with the maximum gain with respect to a terminal-spanning treeT among all possible full components with Steiner point v by merely �nding all neighbors of vin MST (T [v). Therefore a full component maximizing the gain-over-loss ratio overall k can befound within polynomial time.We estimate the runtime of k-LCA for quasi-bipartite graphs as follows. Let m and n be thenumber of terminals and nonterminals, respectively. The number of iterations is O(n) since aSteiner point can be added only once to H. Each iteration consists of O(n) gain evaluations, eachof which can be computed within O(m) time. Finally, using the appropriate data structures, thek-LCA algorithm can be implemented within a total runtime of O(n2m), where m is the numberof terminals.Performance of the algorithm k-LCA. We �rst estimate the loss of a Steiner tree in thecases of quasi-bipartite graphs and complete graphs with edge weights 1 and 2.Lemma 3 For the Steiner Tree Problem in quasi-bipartite graphs and complete graphs with edgeweights 1 and 2, mst � 2(optk � lossk) (2)Proof. For quasi-bipartite graphs, let K be an arbitrary full component of a Steiner tree T withp terminals connected with the single Steiner point by edges of lengths d0; d1; : : : ; dp�1. Assumethat loss(K) = d0 = minfdig. Let mst(K) be the cost of the minimum spanning tree of GS0 ,where S0 is the set of terminals in K. By the triangle inequality,mst(K) � p�1Xi=1(d0 + di) = p � d0 + cost(K)� 2d0 � 2cost(K)� 2loss(K)The bound (2) follows from the fact that mst, the minimum spanning tree cost of S, does notexceed the sum of mst-costs for terminals in each of the full components in Optk.Now we prove the lemma for the case of complete graphs with edge weights 1 and 2. Letm andn respectively be the number of terminals and Steiner points in the optimal k-restricted Steinertree Optk. Then mst � 2m� 2 since all edge weights are at most 2 and optk � m+ n� 1 sinceOptk contains m+ n nodes. We may assume that full components of Optk contain only edges ofweight 1, and therefore lossk = n. Thus, mst � 2m� 2 = 2(m+n� 1�n) � 2(optk� lossk). utTheorem 4 Algorithm k-LCA has an approximation ratio of at most � 1:279 for quasi-bipartitegraphs and an approximation ratio approaching � 1:279 for complete graphs with edge weights 1and 2. 7

Proof. After substituting the bound (2) on mst into inequality (1), we obtainApprox � lossk � ln� optklossk � 1�+ optk (3)Taking the partial derivative of (loss � ln(optklossk � 1))0lossk , we see that the single maximum of theupper bound (3) occurs when x = losskoptk�lossk is the root of the equation 1 + lnx+ x = 0. Solvingthis equation numerically we obtain x � 0:279. Finally, we substitute x into (3)Approx � x1 + x � optk � ln 1x + optk = (x+ 1) � optk � 1:279 � optkThe bound above is valid for the output of algorithm k-LCA for quasi-bipartite graphs if weset k = jSj, i.e., if we omit the index k. For complete graphs with edge weights 1 and 2, optkconverges to opt, and the approximation ratio of algorithm k-LCA therefore converges to 1.279when k !1. ut6 Approximation Ratio of Algorithm k-LCAThis section is devoted to the proof of the Theorem 1. Let K1; : : : ;Klast be full componentschosen by k-LCA. Let T0 = MST (GS) and let Ti, i = 1; : : : ; last be the tree T produced byk-LCA after i iterations. Let cost(Ti) be the cost of Ti after the i-th iteration of k-LCA.Lemma 4 gainTi�1(Ki) = cost(Ti�1)�mst(Ti�1 [Ki)Proof. It is su�cient to show that Ti�1[Ki] =MST (Ti�1 [Ki). Assume that MST (Ti�1 [Ki)does not contain some edge e 2 Ki and let A and B be two connected components of Ki � feg.We will show that either A or B has a larger gain-over-loss ratio, which contradicts the choice ofKi.Since e does not belong to MST (Ti�1 [Ki), we have cost(Ti�1[A [B]) < cost(Ti�1[Ki]).By Lemma 1, gainTi�1(Ki) < gainTi�1(A [B) � gainTi�1(A) + gainTi�1(B). Note that e isthe longest edge on a Ki-path between some pair of terminals, and therefore cannot belong toLoss(Ki). Thus Loss(Ki) = Loss(A) [Loss(B) and loss(Ki) = loss(A) + loss(B). Finally,gainTi�1(Ki)loss(Ki) < gainTi�1(A) + gainTi�1(B)loss(A) + loss(B) � max(gainTi�1(A)loss(A) ; gainTi�1(B)loss(B)) utWe de�ne the supergain of a graph H with respect to a Steiner tree T as supergainT (H) =gainT (H) + loss(H). By Lemma 4, the supergain of Ki in respect to Ti�1 issupergainTi�1(Ki) = gainTi�1(Ki) + loss(Ki)= cost(Ti�1)�mst(Ti�1 [Ki) +mst(Ti�1 [Ki)� cost(Ti)= cost(Ti�1)� cost(Ti) (4)Let Gi = supergainTi(OPTk) be the supergain of the optimal k-restricted Steiner tree OPTkin respect to Ti i = 0; 1; : : : ; last. Let loss(n) be the loss of the �rst n accepted full treesK1; : : : ;Kn. We will show that the loss of full components accepted by k-LCA does not grow toofast. 8

Lemma 5 If Gn is positive, then loss(n)lossk � ln G0GnProof. Let li = loss(Ki) and gi = supergainTi�1(Ki) be respectively the loss and supergain ofthe i-th full Steiner tree accepted by algorithm k-LCA. Let Optk consist of full components Xj .By lemma 1,G0lossk � PXj2Optk supergainT0(Xj)PXj2Optk loss(Xj) � 1 +maxXj2Optk (gainT0(Xj)loss(Xj)) � 1 + gainT0(K1)loss(K1) = g1l1Inductively, for i = 1; 2; : : : ; n, Gi�1lossk � gili . Therefore,gi � lilosskGi�1 (5)Each time k-LCA accepts a full tree Ki, it decreases the cost of Ti by the supergain of Ki,which results in decrease of the supergain of Optk by the same value. The equality (4) yieldsGi = cost(Ti)� cost(OPTk) + lossk. Therefore, Gi�1 �Gi = cost(Ti�1)� cost(Ti) = gi.The inequality (5) implies that Gi = Gi�1 � gi � Gi�1 �1� lilossk�. Since Gn > 0, unravelingthe last inequality yields GnG0 � nYi=1�1� lilossk�Taking the natural logarithms of both sides and using inequality x � ln(1 + x) we �nally obtainln G0Gn � nXi=1 lilossk = loss(n)lossk (6)utBy Lemma 2, after all iterations terminate, the cost of the last tree Tlast will be at most optk.We stop iterating when cost(Tn+1) < optk � cost(Tn) for some n. In the Appendix we show thatwe can \partially" perform the (n + 1)-st iteration so that cost(Tn+1) will coincide with optk.Then G0 = mst� optk + lossk and Gn+1 = optk � optk + lossk = lossk. Finally,Approx � cost(Tn+1) + loss(n+ 1) � optk + optk � ln mst� optk + lossklosskAcknowledgmentsWe thank Gruia Calinescu for reading earlier drafts of this paper and giving numerous helpfulsuggestions.References[1] S. Arora, \Polynomial Time Approximation Schemes for Euclidean TSP and Other Geometric Problems",Proceedings 37th Annual Symposium on Foundations of Computer Science (1996), 2{11.[2] P. Berman and V. Ramaiyer, \Improved Approximations for the Steiner Tree Problem", J. of Algorithms,17 (1994), 381{408. 9

[3] P. Berman, M. Furer and A. Zelikovsky, \Applications of the Matroid Parity Problem to ApproximatingSteiner Trees", Tech. Rep. 980021, Computer Science Dept., UCLA, Los Angeles, 1998.[4] M. Bern and P. Plassmann, \The Steiner Tree Problem with Edge Lengths 1 and 2", Information Pro-cessing letters 32 (1989), 171{176.[5] A. Borchers and D.-Z. Du, \The k-Steiner Ratio in Graphs", SIAM J. Computing 26 (1997), 857{869.[6] A. Caldwell, A. Kahng, S. Mantik, I. Markov and A. Zelikovsky, \ On Wirelength Estimations forRow-Based Placement", Proceedings of the International Symposium on Physical Design, Monterey, Califor-nia (1998), pp. 4{11.[7] A. E. F. Clementi and L. Trevisan, \Improved Non-Approximability Results for Minimum Vertex Coverwith Density Constraints", Electronic Colloquium on Computational Complexity, TR96-016 (1996).[8] M. R. Garey, D. S. Johnson. \The Rectilinear Steiner Problem is NP-Complete", SIAM J. Appl. Math., 32,826-834, 1977.[9] S. Hougardy and H. J. Pr�ommel, \A 1.598 Approximation algorithm for the Steiner Problem in Graphs",Proceedings of ACM-SIAM Symposium on Discrete Algorithms (1999), 448{453.[10] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner Tree Problem, North-Holland, 1992.[11] B. Korte, H. J. Pr�omel, A. Steger. \Steiner Trees in VLSI-Layouts", In Korte et al.: Paths, Flows andVLSI-Layout, Springer, 1990.[12] A. B. Kahng and G. Robins, \A New Class of Iterative Steiner Tree Heuristics With Good Performance",IEEE Transactions on Computer-Aided Design, 11 (7), 1992, pp. 893-902.[13] A. B. Kahng and G. Robins, On Optimal Interconnections for VLSI, Kluwer Publishers, 1995.[14] M. Karpinski and A. Zelikovsky, \New Approximation Algorithms for the Steiner Tree Problem", Journalof Combinatorial Optimization, 1 (1997), 47{65.[15] L. Lovasz and M. D. Plummer, Matching Theory. Elsevier Science, Amsterdam, 1986.[16] I. I. Mandoiu, V. V. Vazirani and J. L. Ganley, \A New Heuristic for Rectilinear Steiner Trees",manuscript.[17] H. J. Pr�ommel and A. Steger, \RNC-approximation algorithms for the Steiner problems", Proceedings14th Annual Symposium on Theoretical Aspects of Computer Science (1997), 559{570.[18] S. Rajagopalan and V. V. Vazirani, \On the Bidirected Cut Relaxation for Metric Steiner Problem,"Proceedings of ACM-SIAM Symposium on Discrete Algorithms (1999), 742{757.[19] H. Takahashi and A. Matsuyama, \An Approximate Solution for the Steiner Problem in Graphs", Math.Jap. 24 (1980), 573{577.[20] A. Zelikovsky, \An 11/6-Approximation Algorithm for the Network Steiner Problem", Algorithmica 9(1993), 463{470.[21] A. Zelikovsky, \Better Approximation Bounds for the Network and Euclidean Steiner Tree Problems",Technical report CS-96-06, University of Virginia, 1996.
10

7 AppendixGiven that cost(Tn+1) < optk � cost(Tn), we show that the (n+1)-st iteration can be performed\partially" so that cost(Tn+1) = optk. We split gn+1 = supergain(Kn+1) into two values g1n+1and g2n+1 (i.e., gn+1 = g1n+1 + g2n+1) such that cost(Tn)� g1n+1 = optk and, therefore,g1n+1 = cost(Tn)� optk (7)Gn � g1n+1 = cost(Tn)� optk + lossk � (cost(Tn)� optk) = lossk (8)We split ln+1 = loss(Kn+1) proportionally into l1n+1 and l2n+1. Finally, we set loss1(n+ 1) =loss(n) + l1n+1 and G1n+1 = Gn � g1n+1 > 0 (9)Since gn+1ln+1 = g1n+1l1n+1 , the inequality (6) implies thatln G0G1n+1 � loss1(n+ 1)lossk (10)Since gi = gain(Ki) + loss(Ki) � loss(Ki) = li, g2n+1l2n+1 = gn+1ln+1 � 1, and we obtaing2n+1 � l2n+1 (11)The cost of the approximate Steiner tree after n+ 1 iterations is at mostApprox(n+ 1) = mst(T0 [K1 [: : : [Kn+1)� cost(Tn+1) + loss(n+ 1) (12)Since Approx(n) decreases with n, the upper bound on Approx(n+1) also bounds Approx =Approx(last), the output of k-LCA. We �nish the proof of (1) with the following chain of in-equalities. Approx � Approx(n+ 1)�(12) loss(n+ 1) + cost(Tn+1)= loss(n) + l1n+1 + l2n+1 + cost(Tn)� g1n+1 � g2n+1�(11) loss(n) + l1n+1 + cost(Tn)� g1n+1=(7) loss(n) + l1n+1 + optk�(10) lossk � ln G0G1n+1 + optk=(9) lossk � ln mst� optk + losskGn � g1n+1 + optk=(8) lossk � ln mst� optk + lossklossk + optk= lossk � ln�1 + mst� optklossk �+ optk11

