The Under-Appreciated Unfold

Jeremy Gibbons

School of Computing and Math. Sciences

Oxford Brookes University
Gipsy Lane, Headington,
Oxford OX3 0BP, UK.
Email: jgibbons@brookes.ac.uk

Abstract

Folds are appreciated by functional programmers. Their
dual, unfolds, are not new, but they are not nearly as well
appreciated. We believe they deserve better. To illustrate,
we present (indeed, we calculate) a number of algorithms
for computing the breadth-first traversal of a tree. We spe-
cify breadth-first traversal in terms of level-order traversal,
which we characterize first as a fold. The presentation as a
fold is simple, but it is inefficient, and removing the ineffi-
ciency makes it no longer a fold. We calculate a character-
ization as an unfold from the characterization as a fold; this
unfold is equally clear, but more efficient. We also calcu-
late a characterization of breadth-first traversal directly as
an unfold; this turns out to be the ‘standard’ queue-based
algorithm.

Keywords: Program calculation, functional program-
ming, fold, unfold, anamorphism, co-induction, traversal,
breadth-first, level-order.

1 Introduction

Folds are appreciated by functional programmers. The
benefits of encapsulating common patterns of computation
as higher-order operators instead of using recursion directly
are well-known and well understood [14]. The dual notion
to folds, unfolds, have been explored by Hagino [10] and
Malcolm [16], and popularized at this conference by Meijer
et al [18]. Unfolds are certainly not new, but they are not
nearly as well appreciated as folds. (For example, they merit
just half a page in [4], and have disappeared altogether in
[3]. Co-inductive types warrant a few pages in [23], but apart
from that there are no other mentions in the fourteen func-
tional programming textbooks on our shelves.) We believe
unfolds deserve a much higher profile.

To illustrate this claim, we present (indeed, we calcu-
late) a number of algorithms for computing the breadth-first
traversal of a tree in a pure functional language. This is a
thorny problem for functional programmers,; in contrast to
the more natural depth-first traversal: depth-first traversal
runs with the grain of the tree, but breadth-first traversal
runs against the grain. Nevertheless, we can construct a

Technical report CMS-TR-98-05, School of Comput-
ing and Mathematical Sciences, Oxford Brookes Uni-
versity; revised July 1998. To appear in the Third ACM
SIGPLAN International Conference on Functional Pro-
gramming, Baltimore, Maryland, September 1998.

Geraint Jones
Oxford University Computing Lab
Wolfson Building, Parks Road

Oxford OX1 3QD, UK.
Email: geraint@comlab.ox.ac.uk

simple and elegant characterization of breadth-first traversal
in terms of level-order traversal, which we characterize as a
fold. Unfortunately, this characterization is inefficient, and
in order to remove the inefficiency we must resort to a ‘mere’
recursive definition (or to a higher-order fold).

In contrast, from the fold characterization of level-order
traversal we can calculate an unfold characterization. The
unfold characterization is equally clear, but apparently less
obvious, even to experienced functional programmers. (We
have been talking about this topic to various audiences for
five years, but have only recently discovered the unfold char-
acterization.) Moreover, the unfold characterization is effi-
cient, taking linear time. Best of all, it is easier to manip-
ulate; in particular, it leads easily to a deforested program
with no unnecessary data structures.

Taking a different route, we can also calculate a char-
acterization of breadth-first traversal directly as an unfold.
This turns out to be the ‘standard’ queue-based algorithm
which, with a little extra work to make the queue operations
efficient, also takes linear time.

The remainder of this paper is structured as follows. In
Section 2, we briefly present our notation. In Section 3,
we define breadth-first traversal, in terms of level-order tra-
versal. In Section 4, we present the characterization of level-
order traversal as a fold, and show that it is inefficient; we
then calculate the efficient characterization that ceases to
be a (first-order) fold. In Section 5, we calculate the char-
acterization of level-order traversal as an unfold from the
characterization as a fold, and show that it is linear. Fin-
ally, in Section 6 we calculate as an unfold the standard
queue-based algorithm for breadth-first traversal.

2 Notation

We will be using Haskell notation [22], but the translation
into nearly any modern functional language is straightfor-
ward.

2.1 Folds over lists

We will be using two kinds of fold on lists: the normal ‘fold
right’,

foldr :: (a->b->b) -> b -> [a] > b

foldr op e [] = e

foldr op e (a:x) = a ‘op¢ foldr op e x

(here, the function op is converted into a binary operator
‘op‘ by writing it in backquotes) and a restricted version
for non-empty lists, determined by

foldrl op (x++[a]l) = foldr op a x
The two are related by the property that, for non-empty x,
foldr op e x = foldrl op x

when e is a right unit of op.

The normal fold enjoys a universal property, essentially
saying that the definition of foldr, treated as an equation
in the ‘unknown’ foldr op e, has a unique (strict) solution.
In other words, for strict h,

h = foldr op e

h[]=e A h(a:x) =a ‘op‘ hx

A number of promotion properties are simple consequences
of the universal property:

fold-map promotion: if f is strict and
f (a ‘op‘ b) = f a ‘op2° £ b
then

f . foldr op e = foldr op2 (f e) . map f
f . foldrl op = foldrl op2 . map f

fold-join promotion: if
h = foldr op e . map £
where op is associative with identity e, then
h (xs ++ ys) = h xs ‘op‘ h ys
fold-concat promotion: if
h = foldr op e . map £
where op is associative with identity e, then

h . concat = foldr op e . map h

2.2 Unfolds over lists

We also use unfolds [10, 16, 18], a dual to folds. The stand-
ard construction of unfolds [16] gives the characterization

unfold :: (b -> Either () (a,b)) -> b -> [a]
unfold pfg x = case pfg x of
Left () -> I

Right (a,y) -> a : unfold pfg y

but we will find it more convenient to use the equivalent
characterization

unfold :: (b->Bool) -> (b->a) -> (b->b) -> b -> [a]
unfold p f g x
| px = [

[
| otherwise = f x : unfold p f g (g x)

Unfolds too enjoy a universal property, saying that the
above definition, considered as an equation in the unknown
unfold p f g, has a unique solution. In other words,

h = unfold p f g

h x = if p x then [] else f x : h (g x)

We work in the setting cPO of continuous functions
between pointed complete partial orders, as advocated by
Meijer et al [18], instead of the setting SET of total func-
tions between sets originally used by Hagino [10] and Mal-
colm [16], in order better to match the semantics of most
functional programming languages. In particular, because
of the treatment of infinite data structures in SET, the data
structures generated by unfolds are different from the data
structures consumed by folds, so folds and unfolds cannot
be composed; in cPO, the two kinds of data structure are
the same.

2.3 Trees

Our trees are represented by the datatype
data Tree a = Nd a [Tree al

of rose trees [17]. That is, a tree of type Tree a consists of a
root label of type a and a list of children, each again of type
Tree a. We define the two deconstructors root and kids:

root :: Tree a -> a
root (Nd a ts) = a

kids :: Tree a -> [Tree a]
kids (Nd a ts) = ts

Actually, we carry out most calculations on forests, lists of
trees; it turns out simpler that way. We use the type syn-
onym

type Forest a = [Tree al

2.4 Folds over trees

The datatypes of trees and forests are mutually recursive,
so folds over trees and forests are too. We define the two
folds as follows:

foldt :: (a->c->b) -> ([b]->c) -> Tree a -> b
foldt f g (Nd a ts) = £ a (foldf f g ts)

foldf :: (a—>c->b) -> ([b]l->c) -> Forest a -> c
foldf f g ts = g (map (foldt f g) ts)

For example, the function sumt, which sums a tree of num-
bers, is given by

sumt :: Tree Int -> Int
sumt = foldt (+) sum

(where sum sums a list of numbers), and the corresponding
function sumf on forests by

sumf :: Forest Int -> Int
sumf = foldf (+) sum

3 Breadth-first traversal

A tree traversal is an operation that, given a tree, computes
a list consisting of all the elements of the tree in some or-
der. One example of a tree traversal is preorder traversal,
in which every parent appears in the traversal before any of
its children, and siblings appear in left-to-right order. For
example, the preorder traversal of the tree

®
ONONO
® ©® O
is the list [1,2,5,6,3,4,7].

Preorder traversal, postorder traversal (in which a parent
appears after all its children) and inorder traversal (which
only makes sense on binary trees, and in which a parent ap-
pears between its two children) are all examples of depth-first
traversals. They are easy to implement in a pure functional
language, because they naturally follow the structure of the

tree that is, they can be expressed as folds over trees. For
example, preorder traversal of a tree is given by

preordert :: Tree a -> [al
preordert = foldt (:) concat

In contrast, breadth-first traversal goes against the struc-
ture of the tree. The breadth-first traversal of a tree con-
sists first of the root (the only element at depth 1), then
of all the elements at depth 2, and so on. For example, the
breadth-first traversal of the tree aboveis [1,2,3,4,5,6,7].
It is not nearly so obvious how to implement breadth-first
traversal efficiently in a pure functional language. In par-
ticular, breadth-first traversal is not a fold, because the tra-
versal of a forest cannot be constructed from the traversals
of the trees in that forest. The standard implementation
of breadth-first traversal in an imperative language involves
queues, which are awkward to express functionally because
they require fast access to both ends of a list. In contrast,
depth-first traversals are based on stacks, which ‘come for
free’ with recursive programs.

It 4s possible to express the standard queue-based al-
gorithm efficiently in a pure functional language; indeed,
we do so in Section 6. However, this algorithm is unsatis-
factory in a functional language, for two reasons. For one
thing, a little effort is required to implement queues with
(amortized) constant time operations, which is necessary to
get a linear-time program. For another, the queue-based al-
gorithm really describes a process rather than a value, and
so is rather low-level; in a declarative language, we would
prefer a more declarative ‘specification’ of the problem (even
if we then develop a more operational implementation).

We find this more declarative characterization of
breadth-first traversal in the notion of level-order traversal
[7, 8] of a tree. This gives the elements on each level of the
tree, as a list of lists (and so, strictly speaking, this is not
a traversal according to our definition). For example, the
level-order traversal of the tree above is the list of lists

[[11, [2,3,4], [5.,6,7]1]
Given the level-order traversal, the breadth-first traversal is

easy to construct: simply concatenate the levels.

4 Traversal as a fold

In this section, we will present a characterization of level-
order traversal as a fold over trees and forests. That is, we
will define the two related functions

: Tree a —> [[all]
:: Forest a -> [[all

levelt
levelf

to compute the level-order traversals of trees and forests,
respectively. For example, the level-order traversal of the
forest

[® . ® L ®
® 6 O O 6
® ©® O

is the list of lists
[[1,3,5], [2,3,4,4,5], [56,6,7]]

Given the level-order traversal of a tree or forest, the
breadth-first traversal is formed by concatenating the levels:

bftt :: Tree a -> [al
bftt = concat levelt

bftf :: Forest a -> [a]
bftf = concat levelf

Now, the level-order traversal of a forest is found by ‘glu-
ing together’ the level-order traversals of the trees in that
forest. Two lists of lists can be ‘glued together’ in the ap-
propriate way by the function lzc (standing for ‘long zip
with concatenate’). ‘Long zip with’ is related to the stand-
ard function zipWith, but it returns a list as long as its
longer argument, whereas zipWith returns a list as long as
its shorter argument. Formally, we have

lzc :: [[a]l]l -> [[al]l -> [[al]

lzc = lzw (++)

where
1zw :: (a->a->a) -> [a] -> [a] -> [a]
lzw op Xs ys
| null xs = ys
| null ys = xs
| otherwise = (head xs ‘op‘ head ys)

lzw op (tail xs) (tail ys)

(Note that 1zw op is associative when op is.) Therefore we
define the function glue, to glue together the traversals of
the trees in a forest, as follows:

glue :: [[[all] -> [[al]
glue = foldr lzc []

The level-order traversal of a tree consists of the root of
the tree ‘pushed’ on to the traversal of the forest that forms
its children, so we define

push :: a -> [[al]l -> [[al]
push a xss = [a] : xss

Now we can define the two functions levelt and levelf,
returning the level-order traversal of a tree and a forest re-
spectively, by

levelt :: Tree a -> [[a]]
levelt = foldt push glue

levelf :: Forest a —> [[all]
levelf = foldf push glue

(In passing, we observe that 1zw’ f = uncurry (lzw f)
is an unfold:

lzw’ :: (a->a->a) -> ([al,[a]l) -> [al
lzw’ op = unfold p f g where
p (xs,ys) = null xs && null ys

f (xs,ys)

| null ys = head xs

| null xs = head ys

| otherwise = head xs ‘op‘ head ys
g (xs,ys) = (tail’ xs, tail’ ys)
tail’ zs

| null zs = []

| otherwise = tail zs

However, this uncurried version is inconvenient to use, be-
cause the standard definition of foldr requires a curried op-
erator. Moreover, this version is less efficient than the direct
recursion, because it takes time proportional to the length
of the result, whereas the direct recursion only traverses the
shorter argument.)

4.1 Traversal as a fold in linear time

This characterization of level-order traversal (and hence of
breadth-first traversal) does not take linear time, even using
the efficient long zip 1zw. Consider for example the forest

ts = [Nd 1 [t,u]l, Nd 2 [v,w]]

where t, u, v and w are four trees. Unfolding the definitions,
we have

levelf ts
= 1zc ([1] 1lzc (levelt t)
(1zc (levelt u) [1))
(1zc ([2] lzc (levelt wv)

(1zc (levelt w) [1)))
[1

Note that levelt t and levelt u must be traversed once
each to compute levelf [t,u], and then traversed again
to compute levelf ts. In a complete binary tree of depth
d, the level-order traversals of the deepest trees will be re-
traversed d-1 times; the whole algorithm takes time propor-
tional to the size of the forest times its depth.

The standard technique of introducing an accumulating
parameter [1] can be used to remove this inefficiency. We
introduce two auxilliary functions levelt’ and levelf’,
defined by

levelt’ :: Tree a -> [[al]l -> [[all
levelt’ t xss = lzc (levelt t) xss
levelf’ :: Forest a -> [[al]l -> [[all
levelf’ ts xss = lzc (levelf ts) xss

This is a generalization, because

levelt t = levelt’ t []
levelf ts = levelf’ ts []

Now, for levelf’ we have

levelf’ [] xss
{ levelf’ }
lzc (levelf []) xss
= { levelf, lzc }
Xss

and

levelf’ (t:ts) xss
= { levelf’ }

lzc (levelf (t:ts)) xss
= { levelf }

lzc (1zc (levelt t) (levelf ts)) xss
= { lzc is associative }

lzc (levelt t) (lzc (levelf ts) xss)
= { levelt’, levelf’ }

levelt’ t (levelf’ ts xss)

For levelt’, we have to consider separately the two cases
whether or not xss is empty. When xss is empty, we have

levelt’ (Nd a ts) xss
{ levelt’ }
lzc (levelt (Nd a ts)) xss
{ lzc; xss is empty }
levelt (Nd a ts)
{ levelt }
[a] : levelf ts
{ levelf’ }
[a] : levelf’ ts []

and when xss is non-empty, we have

levelt’ (Nd a ts) xss
= { levelt’ }
lzc (levelt (Nd a ts)) xss
= { levelt }
lzc ([a]l:levelf ts) xss
= { lzc; xss is non-empty }
(a:head xss) lzc (levelf ts) (tail xss)
= { levelf’ }

(a:head xss) levelf’ ts (tail xss)

Hence we can define

levelt’ :: Tree a -> [[a]l]l -> [[all
levelt’ (Nd a ts) xss = (a:ys) levelf’ ts yss
where
(ys,yss) | null xss = ([1,[1)
| otherwise = (head xss,tail xss)
levelf’ :: Forest a -> [[al]l —> [[all

levelf’ ts xss = foldr levelt’ xss ts

which takes linear time. (The efficient long zip lzw is neces-
sary here; with the unfold version 1zw’ the program is still
quadratic in the worst case.)

Unfortunately, this efficient characterization of level-
order traversal is no longer a fold: the traversal of a forest is
not constructed from the independent traversals of the trees
in that forest, but rather, the trees must be considered from
right to left, the traversal of one being used as a starting
point for constructing the ‘traversal’ of the next. This is
sad, because we have to resort to expressing the recursion
directly, losing the benefits of higher-order operators [14].
Apart from being more difficult to read, this direct recur-
sion is no longer suitable for parallel evaluation, because the
accumulating parameter is ‘single-threaded’ throughout the
computation.

It is possible to regain a characterization as a fold, but
taking linear time, by abstracting from the accumulating
parameter and constructing instead a function between lists

of lists, in a continuation-based [26] or higher-order fold [6]
style:

levelt’’ :: Tree a —-> [[al]l -> [[all
levelt’’ = foldt f g
where f a hss = (a:) : hss
g = foldr (1zw (.)) [I
levelf’’ :: Forest a -> [[al]l —> [[all
levelf’’ = foldf f g

but this is even more complicated, and moreover it requires
higher-order language features, and so cannot be used in
more traditional languages.

5 Traversal as an unfold

In this section, we calculate a characterization of levelf as
an unfold. We have to find p, f and g such that

levelf = unfold p f g
Since a non-empty forest has a non-empty traversal,
levelf ts = [1] = null ts

which determines p; it remains only to consider non-empty
forests.

head . levelf
= { levelf}
head . foldr lzc [] . map levelt
= { foldr lzc [] = foldrl lzc
on non-empty lists }
head . foldrl lzc . map levelt
= { fold-map promotion: for non-empty xs, ys,
head (lzw f xs ys) = f (head xs) (head ys) }
foldrl (++) . map head . map levelt
= { head . levelt = wrap . root,
where wrap a = [a] }
foldrl (++) . map wrap . map root
= { foldrl (++) . map wrap = id
on non-empty lists }
map root

tail . levelf
= { levelf}
tail . foldr lzc [] . map levelt
= { foldr lzc [] = foldrl lzc
on non-empty lists }
tail . foldrl lzc . map levelt
= { fold-map promotion: for non-empty xs, ys,
tail (lzw f xs ys) =
lzw £ (tail xs) (tail ys) }
foldrl lzc . map tail . map levelt
= {tail . levelt = levelf . kids }
foldrl lzc . map levelf . map kids
= { foldr op e = foldrl op on non-empty lists }
foldr lzc [] . map levelf . map kids
= { fold-concat promotion }
levelf concat . map kids

Therefore, levelf is an unfold as well as a fold:

levelf

= unfold null (map root) (concat . map kids)

We can write levelt using levelf:
levelt t = levelf [t]

which gives a characterization of levelt using an unfold too.

This gives us another linear-time algorithm for level-
order traversal; this algorithm is no more complicated (in-
deed, it is arguably simpler) than the characterization as
a fold, but it is more efficient. Moreover, we will see sub-
sequently that it is also amenable to manipulation; to con-
clude this section, we will use deforestation [25] to eliminate
the intermediate list of lists constructed during the breadth-
first traversal.

5.1 Deforestation

As hinted at above, one of the benefits that accrues from
expressing levelf as an unfold is that bftf is then a hy-
lomorphism, that is, an unfold followed by a fold. Hylo-
morphisms proceed in two stages, the first producing a data
structure and the second consuming it. With lazy evalu-
ation, the intermediate complex data structure need never
exist as a whole the producer and consumer phases op-
erate concurrently—but it is still advantageous to fuse the
two phases into one, to reduce the amount of heap space
turned over. This transformation is known as deforestation
[25], and is now a standard technique; indeed, it can even
be performed mechanically [13, 21].

To be specific, we will use deforestation on functions of
the form

h = foldr op e . unfold p f g

Consider first the case that p holds of the argument:

h x
— {n}

foldr op e (unfold p f g x)
= { assumption: p x holds; unfold }
foldr op e []

{ foldr }

e
When p x does not hold, we have

h x
— {n)
foldr op e (unfold p f g x)
= { assumption: p x does not hold; unfold }
foldr op e (f x : unfold p f g (g x))
= {foldr}
f x ‘op‘ foldr op e (unfold p f g (g x))
= {n}

fx ‘op‘ h (g x)
Therefore

h x
| px = e
| otherwise = f x ‘op‘ h (g x)

Applied to breadth-first traversal, deforestation gives the
program

bftf ts
| null ts]
| otherwise = map root ts ++
bftf (concat (map kids ts))

(In fact, the version generated automatically by HYLO [21]
also deforests away the ++ and the concat . map kids.)
This program was shown to us by Bernhard Moller [19]. It
is certainly elegant, but it is rather low-level; in particular,
it uses recursion directly rather than encapsulating it with
a higher-order operator. It is gratifying to find that this
program arises as a compiler optimization from our more
abstract characterization.

6 Traversal using a queue

It turns out that the standard queue-based traversal al-
gorithm arises from expressing bftf directly as an unfold,
starting from the characterization of level-order traversal as
a fold. The calculation depends crucially on the following
property of 1zw: if op is associative, then

foldr op e (lzw op (x:xs) ys)
= x ‘op‘ foldr op e (lzw op ys xs)

For example,

concat (lzc [xs1,xs2] [ysl,ys2,ys3])
{1lzc }
concat [xsl ++ ysl1, xs2 ++ ys2, ys3]
= { concat }
(xs1 ++ ys1) ++ (xs2 ++ ys2) ++ ys3
= { associativity }
xsl ++ (ysl ++ xs2) ++ ys2 ++ ys3
= { concat, lzc }
xsl ++ concat (lzc [ysl,ys2,ys3] [xs2])

The proof of this property, by induction on xs, is straight-
forward and is omitted.
Returning to traversal, clearly we have

bftf ts = [] = null ts
For a non-null forest, we have

bftf (Nd a us : ts)
= { bftf, levelf }
concat (foldr 1lzc []
(map levelt (Nd a us : ts)))
= { map, foldr }
concat (lzc (levelt (Nd a us))
(foldr lzc [] (map levelt ts)))
= { levelf }
concat (lzc (levelt (Nd a us)) (levelf ts))
= { levelt }
concat (lzc ([a] : levelf us) (levelf ts))
= { crucial property }
[a] ++ concat (lzc (levelf ts) (levelf us))
= { fold-join promotion: levelf (ts ++ us) =
lzc (levelf ts) (levelf us) }
[a] ++ concat (levelf (ts ++ us))
{ ++; bftf }
a : bftf (ts ++ us)

Therefore, we have

bftf = unfold null f g
where f (Nd a us : ts) = a
g (Nd a us : ts) = ts ++ us

—the standard queue-based traversal algorithm. Again, it
is rather low-level, and it is gratifying to be able to derive
it from a more abstract specification.

Of course, this program is not linear-time: appending
the children us of the first tree to the end of the queue ts
takes time proportional to length ts, which grows linearly
in the size of the tree, so the program is quadratic. To make
it take linear time, we could use a clever data structure that
allows queue operations in amortized constant time [12, 20],
but here the simpler technique [5, 9, 11] of using two lists,
one reversed, suffices. That is, the idea is to introduce a
function bftf’ such that

bftf’ (ts,vs) = bftf (ts ++ reverse vs)
where reverse reverses a list; then
bftf ts = bftf’ (ts,[])
and straightforward calculations lead to the characterization

bftf’ :: (Forest a,Forest a) -> [a]
bftf’ ([1,[1) = [I
bftf’ ([],vs) = bftf’ (reverse vs,[])
bftf’ (Nd a us : ts,vs)
= a : bftf’ (ts,reverse us ++ vs)

of bftf’. In fact, bftf’ is an unfold, too:

bftf’ = unfold p f g

where
p (ts,vs) = null ts && null vs
£ ([1,vs) = f (reverse vs,[])
f (t:ts, vs) = root t
g ([1,vs) = g (reverse vs,[])
g (t:ts, vs) = (ts, reverse (kids t) ++ vs)

Expressing bftf’ in this way entails two reversals of the
second list, one for £ and one for g, when the first list runs
out. This is an artifact of our choice of characterization of
unfold; the standard characterization would entail just one
reversal.

Acknowledgements

This paper arose from a discussion late in 1992 on the
Usenet newsgroup comp.lang.functional, on how to per-
form breadth-first traversal in a functional language. We
wrote an earlier paper [15] giving derivations of our solu-
tions, and also giving a rather complicated derivation of
an algorithm for breadth-first labelling, a kind of inverse of
breadth-first traversal originally posed to us by Joe Fasel:
given is a tree t and a list x, and the problem is to con-
struct a tree of the same shape as t but with breadth-first
traversal x.

In response to that earlier paper, Bernhard Moller [19]
showed us the elegant traversal algorithm presented here in
Section 5.1. This led to the much simpler derivations presen-
ted here, and indirectly to our observation that unfolds are
greatly under-appreciated, even in the functional program-
ming community (not least by ourselves at the time).

We are grateful to the Problem Solving Club at Oxford
University Computing Laboratory, to Graham Hutton and
Colin Runciman, and to attendees at the IFIP Working
Group 2.1 meetings in Winnipeg and in Oxford, for their
help in polishing the derivations presented here; also, we
thank Zhenjiang Hu and Yoshiyuki Onoue for their experi-
ments with the HYLO system.

References

(1]

2]

[4]

[5]

[6]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

Richard S. Bird. The promotion and accumulation
strategies in transformational programming. ACM
Transactions on Programming Languages and Systems,
6(4):487-504, October 1984. See also [2].

Richard S. Bird. Addendum to “The promotion and
accumulation strategies in transformational program-
ming”. ACM Transactions on Programming Languages
and Systems, 7(3):490-492, July 1985.

Richard S. Bird. Introduction to Functional Program-
ming Using Haskell. Prentice-Hall, 1998.

Richard S. Bird and Philip L. Wadler. An Introduction
to Functional Programming. Prentice-Hall, 1988.

F. Warren Burton. An efficient functional implement-
ation of FIFO queues. Information Processing Letters,
14(5):205 206, July 1982.

Leonidas Fegaras and Tim Sheard. Revisiting cata-
morphisms over datatypes with embedded functions.
In 23rd ACM SIGPLAN Symposium on Principles of
Programming Languages, pages 284 294, St Petersburg
Beach, Florida, 1996.

Jeremy Gibbons. Algebras for Tree Algorithms. D. Phil.
thesis, Programming Research Group, Oxford Uni-
versity, 1991. Available as Technical Monograph PRG-
94.

Jeremy Gibbons. Deriving tidy drawings of trees.
Journal of Functional Programming, 6(3):535 562,
1996. Earlier version appears as Technical Report
No. 82, Department of Computer Science, University

of Auckland.

David Gries. The Science of Programming. Texts
and Monographs in Computer Science. Springer-Verlag,
1981.

Tatsuya Hagino. A typed lambda calculus with categor-
ical type constructors. In D. H. Pitt, A. Poigné, and
D. E. Rydeheard, editors, LNCS 283: Category Theory
and Computer Science, pages 140 157. Springer-Verlag,
September 1987.

Robert Hood and Robert Melville. Real-time queue op-
erations in pure Lisp. Information Processing Letters,
13(2):50 53, 1981.

Rob Hoogerwoord. A symmetric set of efficient
list operations. Journal of Functional Programming,
2(4):505-513, 1992.

Zhenjiang Hu, Hideya Iwasaki, and Masato Takei-
chi. Deriving structural hylomorphisms from recursive
definitions. In International Conference on Functional

Programming. ACM/SIGPLAN, 1996.

John Hughes. Why functional programming matters.
Computer Journal, 32(2):98 107, April 1989. Also in
[24].

[15]

[16]

[17]

[18]

[19]
[20]

[21]

[22]

23]

24]

[25]

[26]

Geraint Jones and Jeremy Gibbons. Linear-time
breadth-first tree algorithms: An exercise in the arith-
metic of folds and zips. Computer Science Report
No. 71, Dept of Computer Science, University of Auck-
land, May 1993. Also IFIP Working Group 2.1 working
paper 705 WIN-2.

Grant Malcolm. Data structures and program trans-
formation. Science of Computer Programming, 14:255
279, 1990.

Lambert Meertens. First steps towards the theory of
rose trees. CWI, Amsterdam; IFIP Working Group 2.1
working paper 592 ROM-25, 1988.

Erik Meijer, Maarten Fokkinga, and Ross Pater-
son. Functional programming with bananas, lenses,
envelopes and barbed wire. In John Hughes, ed-
itor, LNCS 523: Functional Programming Languages
and Computer Architecture, pages 124-144. Springer-
Verlag, 1991.

Bernhard Moller. Personal communication, May 1993.

Chris Okasaki. Simple and efficient purely functional
queues and deques. Journal of Functional Program-
ming, 5(4):583 592, 1995.

Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and
Masato Takeichi. A calculational fusion system HYLO.
In Richard Bird and Lambert Meertens, editors, Al-
gorithmic Languages and Calculi, pages 76 106. Chap-
man and Hall, 1997.

John Peterson, Kevin Hammond, Lennart Augustsson,
Brian Boutel, Warren Burton, Joseph Fasel, Andrew D.
Gordon, John Hughes, Paul Hudak, Thomas Johns-
son, Mark Jones, Erik Meijer, Simon Peyton Jones,
Alastair Reid, and Philip Wadler. The Haskell 1.4 re-
port. http://www.haskell.org/report/, April 1997.

Simon Thompson. Type Theory and Functional Pro-
gramming. Addison-Wesley, 1991.

David A. Turner, editor. Research Topics in Functional
Programming. University of Texas at Austin, Addison-
Wesley, 1990.

Philip Wadler. Deforestation: Transforming programs
to eliminate trees. Theoretical Computer Science,
73:231 248, 1990.

Mitchell Wand. Continuation-based program trans-
formation strategies. Journal of the ACM, 27(1):164
180, January 1980.

