
A Survey on Reactive Programming

ENGINEER BAINOMUGISHA, Vrije Universiteit Brussel
ANDONI LOMBIDE CARRETON, Vrije Universiteit Brussel
TOM VAN CUTSEM, Vrije Universiteit Brussel
STIJN MOSTINCKX, Vrije Universiteit Brussel
WOLFGANG DE MEUTER, Vrije Universiteit Brussel

Reactive programming has recently gained popularity as a paradigm that is well-suited for developing
event-driven and interactive applications. It facilitates the development of such applications by providing
abstractions to express time-varying values and automatically managing dependencies between such val-
ues. A number of approaches have been recently proposed embedded in various languages such as Haskell,
Scheme, JavaScript, Java, .NET, etc. This survey describes and provides a taxonomy of existing reactive
programming approaches along six axes: representation of time-varying values, evaluation model, lifting op-
erations, multidirectionality, glitch avoidance, and support for distribution. From this taxonomy, we observe
that there are still open challenges in the field of reactive programming. For instance, multidirectionality
is supported only by a small number of languages, which do not automatically track dependencies between
time-varying values. Similarly, glitch avoidance, which is subtle in reactive programs, cannot be ensured in
distributed reactive programs using the current techniques.

Categories and Subject Descriptors: D.3.2 [Language Classifications]: Dataflow languages; Specialised
application languages; D.3.3 [Language Constructs and Features]: Concurrent programming struc-
tures; Constraints; Control structures; Patterns

General Terms: Design, Languages

Additional Key Words and Phrases: Reactive programming, interactive applications, event-driven applica-
tions, dataflow programming, functional reactive programming, reactive systems

ACM Reference Format:
Bainomugisha, E., Lombide Carreton, A., Van Cutsem, T., Mostinckx, S., De Meuter, W. 2012. A Survey on
Reactive Programming. (To appear) ACM Comput. Surv. , , Article (2012), 35 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Today’s applications are increasingly becoming highly interactive, driven by all sorts of
events originating from within the applications and their outside environment. Such
event-driven applications maintain continuous interaction with their environment,
processing events and performing corresponding tasks such as updating the applica-
tion state and displaying data [Pucella 1998]. The most interactive part of such appli-

Engineer Bainomugisha is funded by the SAFE-IS project in the context of the Research Foundation, Flan-
ders (FWO). Andoni Lombide Carreton is funded by the MobiCrant project in the context of InnovIris (the
Brussels Institute for Research and Innovation). Tom Van Cutsem is a Postdoctoral Fellow of the Research
Foundation, Flanders (FWO).
Author’s addresses: Software Languages Lab, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels,
Belgium; email: ebainomu@vub.ac.be
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2012 ACM 0360-0300/2012/-ART $15.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:2 E. Bainomugisha et al.

cations is usually the GUI, which typically needs to react to and coordinate multiple
events (e.g., mouse clicks, keyboard button presses, multi-touch gestures, etc.).

These applications are difficult to program using conventional sequential program-
ming approaches, because it is impossible to predict or control the order of arrival of
external events and as such control jumps around event handlers as the outside en-
vironment changes unexpectedly (inverted control, i.e., the control flow of a program
is driven by external events and not by an order specified by the programmer). More-
over, when there is a state change in one computation or data, the programmer is re-
quired to manually update all the others that depend on it. Such manual management
of state changes and data dependencies is complex and error-prone (e.g., performing
state changes at a wrong time or in a wrong order) [Cooper and Krishnamurthi 2006].
Using traditional programming solutions (such as design patterns and event-driven
programming), interactive applications are typically constructed around the notion of
asynchronous callbacks (event handlers). Unfortunately, coordinating callbacks can be
a very daunting task even for advanced programmers since numerous isolated code
fragments can be manipulating the same data and their order of execution is unpre-
dictable. Also, since callbacks usually do not have a return value, they must perform
side effects in order to affect the application state [Cooper 2008]. As it has been noted
by [Edwards 2009] and [Maier et al. 2010], a recent analysis of Adobe desktop ap-
plications revealed that event handling logic contributes to nearly a half of the bugs
reported [Järvi et al. 2008]. In the literature, the problem of callback management is
infamously known as Callback Hell [Edwards 2009]. To reduce the burden faced by the
programmers, there is a need for dedicated language abstractions to take care of the
event handling logic as well as the management of state changes.

The reactive programming paradigm has been recently proposed as a solution that
is well-suited for developing event-driven applications. Reactive programming tackles
issues posed by event-driven applications by providing abstractions to express pro-
grams as reactions to external events and having the language automatically manage
the flow of time (by conceptually supporting simultaneity), and data and computation
dependencies. This yields the advantage that programmers need not to worry about
the order of events and computation dependencies. Hence, reactive programming lan-
guages abstract over time management, just as garbage collectors abstract over mem-
ory management. This property of automatic management of data dependencies can
be observed in spreadsheet systems, arguably the most widely used end-user program-
ming language. A spreadsheet typically consists of cells, which contain values or for-
mulas. If a value of a cell changes then the formulas are automatically recalculated.
Reactive programming is essentially about embedding the spreadsheet-like model in
programming languages.

The reactive programming paradigm is based on the synchronous dataflow program-
ming paradigm [Lee and Messerschmitt 1987] but with relaxed real-time constraints.
It introduces the notion of behaviours for representing continuous time-varying values
and events for representing discrete values. In addition, it allows the structure of the
dataflow to be dynamic (i.e., the structure of the dataflow can change over time at run-
time) and support higher-order dataflow (i.e., the reactive primitives are first-class cit-
izens) [Cooper 2008];[Sculthorpe 2011]. Most of the research on reactive programming
descends from Fran [Elliott and Hudak 1997];[Wan and Hudak 2000], a functional do-
main specific language developed in the late 1990s to ease the construction of graphics
and interactive media applications. Several libraries and extensions to various lan-
guages have since been conceived to provide support for reactive programming. Other
application domains of reactive programming include modelling and simulation [Nils-
son et al. 2003], robotics [Peterson and Hager 1999], computer vision [Peterson et al.
2001], and stage lighting [Sperber 2001b].

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :3

1

+

2

var1

var2

3
var3

Fig. 1. Graphical representation of expression dependencies in a reactive program.

This article provides a comprehensive survey of the research and recent develop-
ments on reactive programming. We describe and provide a taxonomy of existing re-
active programming approaches along six axes: representation of time-varying values,
evaluation model, lifting operations, multidirectionality, glitch avoidance, and support
for distribution. We further discuss the techniques and algorithms employed by the ex-
isting solutions. From this taxonomy, we identify open issues that still need be tackled
in the reactive programming research. In particular, we observe that multidirection-
ality is only supported by a small number of reactive programming systems that do
not automatically track dataflow dependencies. Another open issue is that when ap-
plying reactive programming to distributed programming – which is in many cases
asynchronous and event-driven – glitch avoidance cannot be ensured using the cur-
rent techniques. With interactive applications (e.g., Web applications) becoming in-
creasingly distributed, we believe that reactive programming needs to be further ex-
plored to cover distributed environments while giving the same assurances as their
non-distributed counterparts. This article builds on prior surveys [Benveniste et al.
2003]; [Whiting and Pascoe 1994]; [Johnston et al. 2004] that review early research on
synchronous programming and dataflow programming.

2. REACTIVE PROGRAMMING
Reactive programming is a programming paradigm that is built around the notion of
continuous time-varying values and propagation of change. It facilitates the declara-
tive development of event-driven applications by allowing developers to express pro-
grams in terms of what to do, and let the language automatically manage when to do
it. In this paradigm, state changes are automatically and efficiently propagated across
the network of dependent computations by the underlying execution model. Let us
explain change propagation with an example.

Consider a simple example of calculating the sum of two variables.

var1 = 1
var2 = 2
var3 = var1 + var2

In conventional sequential imperative programming, the value of the variable var3
will always contain 3, which is the sum of the initial values of variables var1 and var2
even when var1 or var2 is later assigned a new value (unless the programmer explicitly
assigns a new value to the variable var3). In reactive programming, the value of the
variable var3 is always kept up-to-date. In other words, the value of var3 is automat-
ically recomputed over time whenever the value of var1 or var2 changes. This is the
key notion of reactive programming. Values change over time and when they change
all dependent computations are automatically re-executed. In reactive programming
terminology, the variable var3 is said to be dependent on the variables var1 and var2.
We depict such a dependency graph in Figure 1.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:4 E. Bainomugisha et al.

2.1. Distinguishing Features of Reactive Programming Languages
The two distinguishing features of reactive programming languages are: behaviours
and events.

Behaviours. In the reactive programming literature, behaviours is the term used to
refer to time-varying values. Behaviours continuously change over time, are first-
class and composable abstractions [Elliott and Hudak 1997]. A basic example of a
behaviour is time itself. As such most reactive programming languages provide a be-
haviour primitive to represent time (e.g., a primitive seconds to represent the value
of the current seconds of a minute). Other behaviours can easily be expressed as a
function of the time primitive provided by the language. For instance, a behaviour
whose value is 10 times the current seconds can be expressed in terms of seconds
as seconds*10.
Events. Events refer to (potentially infinite) streams of value changes. Unlike be-
haviours that continuously change over time, events occur at discrete points in
time (e.g., keyboard button presses, change in location, etc.). Events and behaviours
can be seen as dual to each other and it has been argued that one may be used to
represent the other [Cooper 2008]. Like behaviours, events are first-class values and
are composable. Most languages provide primitive combinators to arbitrarily com-
bine events or filter a sequence of events. For instance Flapjax [Meyerovich et al.
2009] and FrTime [Cooper and Krishnamurthi 2006] provide merge and filter com-
binators.

3. TAXONOMY
This section discusses the six properties that constitute the taxonomy presented in
Table I. The taxonomy is formulated along six axes – basic abstractions, evaluation
model, lifting, multidirectionality, glitch avoidance, and support for distribution. These
properties are discussed in detail below. We give a summary of the taxonomy at the end
of this section.

3.1. Basic Abstractions
Just like primitive operators (e.g., an assignment) and values (e.g., a number) are ba-
sic abstractions in an imperative language, basic abstractions in a reactive language
are reactive primitives that facilitate the writing of reactive programs. Most languages
provide behaviours (for representing continuous time-varying values) and events (for
representing streams of timed values), which we describe in Section 2.1. These ab-
stractions are usually composable and are used to express a reactive program. Table I
gives a summary of the basic abstractions provided by different reactive languages.

Behaviours that represent continuously changing values present a significant im-
plementation challenge. Their continuous nature implies that when the internal clock
rate of a reactive program is increased, these behaviours yield more precise values.
Depending on the host language, this implementation challenge varies. In Fran and
Yampa, the values that continuous behaviours yield can be computed lazily thanks
to the lazy nature of their host language Haskell. In non-lazy languages, behaviours
appear to continuously change to the programmer because they always have a value
at any point time, but have to be regularly sampled. This difference allows Fran and
Yampa to offer dedicated operations working on continuously changing values, such as
integral and derivative, which are lacking in other languages. They have a strong
importance in the domain of modelling and simulation.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :5

Producer Consumer

Push data to the consumer

Pull data from the producer

The flow of data

Pull-based

Push-based

Fig. 2. Push- Versus Pull-based evaluation model

3.2. Evaluation Model
The evaluation model of a reactive programming language is concerned with how
changes are propagated across a dependency graph of values and computations. From
the programmer’s point of view, propagation of changes happens automatically. Indeed,
this is the essence of reactive programming. A change of a value should be automati-
cally propagated to all dependent computations. When there is an event occurrence at
an event source, dependent computations need to be notified about the changes, possi-
bly triggering a recomputation. At the language level, the design decision that needs
to be taken into account is who initiates the propagation of changes. That is, whether
the source should “push” new data to its dependents (consumers) or the dependents
should “pull” data from the event source (producer). In both cases the sequence of val-
ues flows from the producer to the consumer as depicted in Figure 2. In the reactive
programming literature, there exist two evaluation models:

3.2.1. Pull-based. In the pull-based model, the computation that requires a value
needs to “pull” it from the source. That is, propagation is driven by the demand of new
data (demand-driven). The first implementations of reactive programming languages
such as Fran [Elliott and Hudak 1997] use the pull-based model. The pull model of-
fers the flexibility that the computation requiring the value has the liberty to only pull
the new values when it actually needs it. This is thanks to the lazy evaluation of the
host language Haskell, where the actual reaction will only happen when it needs to be
observed by the outside world.

A major criticism of the pull-based model is that it may result in a significant la-
tency between an event occurrence and when its reaction happens, because all delayed
computations must suddenly be performed to lead to the reaction. This can lead to
space- and time-leaks, which may arise over time. [Hudak et al. 2003] describe space-
and time-leaks as “a time-leak in a real-time system occurs whenever a time-dependent
computation falls behind the current time because its value or effect is not needed yet,
but then requires catching up at a later point in time. This catching up can take an ar-
bitrarily long time (time-leak) and may or may not consume space as well (space-leak)”.
This issue mainly arises in reactive languages that are implemented in a lazy lan-
guage such as Fran [Elliott and Hudak 1997] and Yampa [Hudak et al. 2003]. In the
recent implementation of Fran, NewFran [Elliott 2009] these issues have been fixed.
Yampa [Hudak et al. 2003] avoids these problems by limiting expressiveness through
the use of arrows [Hughes 2000] and restricting the behaviours to be non-first class.

3.2.2. Push-based. In the push-based model, when the source has new data, it pushes
the data to its dependent computations. That is, propagation is driven by availabil-
ity of new data (data-driven) rather than the demand. This is the approach under-
taken by all implementations of reactive programming in eager languages. This usu-

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:6 E. Bainomugisha et al.

ally involves calling a registered callback or a method [Sperber 2001a]. Most recent
implementations of reactive programming such as Flapjax [Meyerovich et al. 2009],
Scala.React [Maier et al. 2010], and FrTime [Cooper and Krishnamurthi 2006] use a
push-based model. Languages implementing the push-based model need an efficient
solution to the problem of wasteful recomputations since recomputations take place
every time the input sources change. Also, because propagation of changes is data-
driven, reactions happen as soon as possible [Elliott 2009].

Push Versus Pull. Each of the evaluation models has its advantages and disadvan-
tages. For instance, the pull-based model works well in parts of the reactive system
where sampling is done on event values that change continuously over time [Sperber
2001a]. Additionally, lazy languages using a pull-based approach yield an advantage
with regard to initialisation of behaviours. Since their actual values are computed
lazily on a by-demand basis, initialisation does not have to happen explicitly. Espe-
cially continuous behaviours will already yield a value by the time it is needed. In a
push-based approach, the programmer must initialise behaviours explicitly to make
sure that they hold a value when eagerly evaluating code in which they are used.

A push-based model on the other hand fits well in parts of the reactive system that
require instantaneous reactions. Some reactive programming languages use either a
pull-based or push-based model while others employ both. Another issue with push-
based evaluation are glitches, which are discussed in the next section. The approaches
that combine the two models reap the benefits of the push-based model (efficiency
and low latency) and those of the pull-based model (flexibility of pulling values based
on demand). The combination of the two models has been demonstrated in the Lula
system [Sperber 2001b] and the most recent implementation of Fran [Elliott 2009].

3.3. Glitch Avoidance
Glitch avoidance is another property that needs to be considered by a reactive lan-
guage. Glitches are update inconsistencies that may occur during the propagation of
changes. When a computation is run before all its dependent expressions are eval-
uated, it may result in fresh values being combined with stale values, leading to a
glitch [Cooper and Krishnamurthi 2006]. This can only happen in languages employ-
ing a push-based evaluation model.

Consider an example reactive program below:

var1 = 1
var2 = var1 * 1
var3 = var1 + var2

In this example, the value of the variable var2 is expected to always be the same
as that of var1, and that of var3 to always be twice that of var1. Initially when the
value of var1 is 1, the value of var2 is 1 and var3 is 2. If the value of var1 changes to,
say 2, the value of var2 is expected to change to 2 while the value of var3 is expected
to be 4. However, in a naive reactive implementation, changing the value of var1 to
2 may cause the expression var1 + var2 to be recomputed before the expression var1
* 1. Thus the value of var3 will momentarily be 3, which is incorrect. Eventually, the
expression var1 * 1 will be recomputed to give a new value to var2 and therefore the
value of var3 will be recomputed again to reflect the correct value 4. This behaviour is
depicted in Figure 3.

In the reactive programming literature, such a momentary view of inconsistent data
is known as a glitch [Cooper and Krishnamurthi 2006]. Glitches result in incorrect pro-
gram state and wasteful recomputations and therefore should be avoided by the lan-
guage. Most reactive programming languages eliminate glitches by arranging expres-

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :7

1

*

1

var1
1

var2

2
var3

+

2

*

1

var1
1

var2

3
var3

+

2

*

1

var1
2

var2

4
var3

+

time

var1 = 1
var2 = 1
var3 = 2

var1 = 2
var2 = 1
var3 = 3

var1 = 2
var2 = 2
var3 = 4

Fig. 3. Glitches: Momentary view of inconsistent program state and recomputation.

sions in a topologically sorted graph [Cooper and Krishnamurthi 2006]; [Meyerovich
et al. 2009]; [Maier et al. 2010], thus ensuring that an expression is always evaluated
after all its dependents have been evaluated.

Most recent reactive implementations achieve glitch avoidance in reactive programs
running on a single computer, but not in distributed reactive programs. Avoiding
glitches in a distributing setting is not straightforward because of network failures,
delays and lack of a global clock. This is a potential sweet spot for future research
on distributed reactive systems that provide glitch freedom. We further discuss dis-
tributed reactive programming as an open issue in Section 5.

Also, an efficient reactive implementation should avoid unnecessary recomputations
of values that do not change. Dependent computations need not be recomputed if the
value they depend on is updated to a new value that is the same as the previous
value. Taking the same example above, suppose the value of var1 that is initially 1, is
afterwards updated to the same value (i.e., 1). In such a case, the values for var2 and
var3 need not to be recomputed as the value of var1 remained unchanged.

3.4. Lifting Operations
When reactive programming is embedded in host languages (either as a library or as a
language extension), existing language operators (e.g., +, *) and user defined functions
or methods must be converted to operate on behaviours. In the reactive programming
literature the conversion of an ordinary operator to a variant that can operate on be-
haviours is known as lifting.

Lifting serves a dual purpose: it transforms a function’s type signature (both the
types of its arguments and its return type) and it registers a dependency graph in the
application’s dataflow graph. In the following definitions, we assume functions that
take a single behaviour argument for the sake of brevity, generalising to functions
that take multiple arguments is trivial.

lift : f(T)→ flifted(Behaviour < T >)

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:8 E. Bainomugisha et al.

In this definition, T is a non-behaviour type while Behaviour is a behaviour type
holding values of type T . Therefore, lifting an operator f that was defined to operate
on a non-behaviour value transforms it into a lifted version flifted that can be applied
on a behaviour.

At time step i, evaluation of a lifted function f called with a behaviour yielding values
of type T can be defined as follows:

flifted(Behaviour < T >)→ f(Ti)

Here, Ti denotes the value of Behaviour at time step i.

3.4.1. Relation Between Typing and Lifting. In the body of work discussed in this survey,
lifting happens in a number of different ways. Before discussing them, it is important
to understand the interplay between the semantics of the host language and trans-
forming a function’s type signature. In a statically typed language (such as Haskell
or Java), a function or method cannot be directly applied onto a behaviour. Usually,
this means that the programmer must explicitly lift procedures or methods to ensure
type safety (or write functions or methods that expect behaviour arguments, i.e., their
parameters are statically typed Behaviour). The need for explicit lifting is mitigated
in many of the statically typed languages discussed in this survey because these lan-
guages offer a rich set of overloaded primitives intended for their particular problem
domain that work on behaviours as well. Of course, this is only true when the language
is restricted to the domain for which adequate overloaded operators are provided by
the language.

In dynamically typed languages, one can pass behaviours as arguments to functions
without having to explicitly lift them to satisfy the type system. In these languages,
lifting usually happens implicitly by the language. Of course, at one moment primi-
tive operators of the language will have to be applied to arguments of an unexpected
type Behaviour (e.g., computing the sum of two behaviours). In dynamically typed lan-
guages, these primitive operators must be properly overloaded to their lifted version
(by, for example, using code transformation techniques to generate lifted operators) by
the language.

3.4.2. Classification of Lifting Strategies. In this section, we classify the different ways in
which the languages that are surveyed in this paper support lifting.

Implicit lifting. In the implicit lifting approach, when an ordinary language operator
is applied on a behaviour, it is automatically “lifted”. Implicit lifting makes reactive
programming transparent, since programmers can freely use existing operators on
behaviours.

f(b1)→ flifted(b1)

In this definition, when an ordinary operator f is applied on a behaviour b1, it is implic-
itly lifted to flifted. This is the approach undertaken by dynamically typed languages.

Explicit lifting. With explicit lifting, the language provides a set of combinators that
can be used to “lift” ordinary operators to operate on behaviours.

lift(f)(b1)→ flifted(b1)

In this definition, the ordinary operator f is explicitly lifted using the combinator lift
to be able to operate on the behaviour b1. This is the approach that is usually under-
taken by statically typed languages. In many cases, reactive programming systems

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :9

target a particular problem domain, for which it offers a rich set of overloaded primi-
tives that directly work on behaviours. In this survey, we still classify this as explicit
lifting, but we mention in the discussion of the language in question when primitive
operators are overloaded to deal with behaviours.

Manual Lifting. With manual lifting, the language does not provide lifting operators.
Instead, the programmer needs to manually obtain the current value of a time-varying
value, which can then be used with ordinary language operators.

f(b1)→ f(currentvalue(b1))

In this definition, the current value of the time-varying value b1 is obtained that is then
used for the ordinary operator f . In languages that do not offer first-class behaviours,
lifting must always happen manually by manually putting values in wrapper values
(sometimes called cells) that encode their dataflow dependencies.

Table I shows how reactive languages compare in terms of lifting operations.

3.5. Multidirectionality
Another property of reactive programming languages is whether propagation of
changes happens in one direction (unidirectional) or in either direction (multidirec-
tional). With multidirectionality, changes in derived values are propagated back to the
values from which they were derived. For example, writing an expression F = (C *
1.8) + 32 for converting temperature between Fahrenheit and Celsius, implies that
whenever a new value of either F or C is available the other value is updated. This
property is similar to the multidirectional constraints in the constraint programming
paradigm [Steele 1980]. Table I shows the surveyed reactive languages that provide
support for multidirectionality.

3.6. Support for Distribution
This property is concerned with whether a reactive language provides support for writ-
ing distributed reactive programs. The support for distribution enables one to cre-
ate dependencies between computations or data that are distributed across multiple
nodes. For example, in an expression var3 = var1 + var2, var1, var2 and var3 can be
located on different nodes. The need for support for distribution in a reactive language
is motivated by the fact that interactive applications (e.g., Web applications, mobile
applications, etc.) are becoming increasingly distributed. However, there is a catch in
adding support for distribution to a reactive language. It is more difficult to ensure
consistency in a dependency graph that is distributed across multiple nodes because of
distributed programming characteristics (such as latency, network failures, etc.). We
further discuss this challenge as of one of the open issues in Section 5. In the Table I,
the column for distribution shows how different reactive languages compare in terms
of support for distribution.

3.7. Discussion
Table I presents a taxonomy of the reactive programming languages that we discuss
in this paper. We evaluate the languages along the aforementioned six axes: basic ab-
stractions, evaluation model, lifting, multidirectionality, glitch avoidance, and support
for distribution. Y in the table under the property column signifies that a language
provides the feature while N signifies that a language does not provide that feature.

3.7.1. Basic abstractions. Most reactive languages provide the same basic composable
abstractions, behaviours and events, for representing continuous values and discrete
values. In this survey, we consider those languages to be siblings, as they inherit their
distinctive features from a single progenitor: Fran [Elliott and Hudak 1997]. There are

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:10 E. Bainomugisha et al.

Table
I.A

taxonom
y

ofreactive
program

m
ing

languages

L
anguage

B
asic

abstractions
E

valuation
m

odel
L

ifting
M

ultidirectionality
G

litch
avoidance

Support
for

distribution

F
R

P
Siblings

F
ran

behaviours
and

events
P

ull
E

xplicit
N

Y
N

Yam
pa

signal
functions

and
events

P
ull

E
xplicit

N
Y

N

F
rT

im
e

behaviours
and

events
P

ush
Im

plicit
N

Y
N

N
ew

F
ran

behaviours
and

events
P

ush
and

P
ull

E
xplicit

N
Y

N

F
rappé

behaviours
and

events
P

ush
E

xplicit
N

N
N

Scala.R
eact

signals
and

events
P

ush
M

anual
N

Y
N

F
lapjax

behaviours
and

events
P

ush
E

xplicit
and

im
plicit

N
Y

(local)
Y

A
m

bientTalk/R
behaviours

and
events

P
ush

Im
plicit

N
Y

(local)
Y

C
ousins

ofR
eactive

P
rogram

m
ing

C
ells

rules,
cells

and
ob-

servers
P

ush
M

anual
N

Y
N

L
am

port
C

ells
reactors

and
reporters

P
ush

and
P

ull
M

anual
N

N
Y

SuperG
lue

signals,
com

ponents,
and

rules
P

ush
M

anual
N

Y
N

T
rellis

cells
and

rules
P

ush
M

anual
N

Y
*

N
R

adul/Sussm
an

P
ropagators

propagators
and

cells
P

ush
M

anual
Y

N
N

C
oherence

reactions
and

actions
P

ull
N

/A
Y

Y
N

.N
E

T
R

x
events

P
ush

M
anual

N
N

?
N

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :11

a few reactive languages that do not provide the same primitive abstractions for rep-
resentation of time-varying values but rather focus on automatic management of state
changes. We refer to those languages as cousins of reactive programming. Examples of
such cousin languages are: Cells [Tilton 2008], Trellis [Eby 2008], .NET Rx [Hamilton
and Dyer 2010], and Radul/Sussman Propagators [Radul and Sussman 2009]. Instead,
the basic abstractions provided by these languages are for creating dependencies be-
tween value producers and consumers.

In short, the most prominent difference between the “sibling” and “cousin” languages
is that the sibling languages provide abstractions to represent time-varying values,
which interoperate with the host language through implicit or explicit lifting. Cousin
languages on the other hand offer “containers” or “cells” of which the value can vary
over time. The programmer must manually store values in these cells and manually ex-
tract them again. In response, the system takes care of correctly propagating changes
throughout the network of cells1. In practice this means that in “sibling” languages
time-varying values can be used in ordinary expressions (albeit with explicitly lifted
operators in some cases) in which dataflow dependencies are automatically tracked,
while “cousin” languages require dedicated code to encode these dependencies.

3.7.2. Evaluation model. Besides NewFran [Elliott 2009] and Lamport Cells [Miller
2003] which employ both the push- and pull-based evaluation models; most reactive
languages are either purely pull- or push-based. For efficiency reasons (instantaneous
reactions), most recent implementations are purely push-based.

3.7.3. Lifting. In languages that require the explicit tracking of dataflow-dependent
values by the programmer instead of relying on behaviours, lifting must always hap-
pen manually by putting values in wrapper values (sometimes called cells) that en-
code their dataflow dependencies. This is the case for Radul/Sussman Propagators,
Cells, Lamport Cells, Superglue, Scala.React, Trellis and .NET Rx. They do not provide
any lifting operations, which implies that the programmer has to manually retrieve a
value of a behaviour in order to use it with primitive operations. Languages that track
dataflow dependencies between expressions (and hence automatically for values) fall
into two categories. As mentioned earlier in Section 3.4.1, this is to be attributed to
the type system of their host language. A number of statically type languages, which
include Fran, Yampa, NewFran and Frappé, require explicit lifting. However, some of
them are heavily targeted towards a particular problem domain (e.g., animation for
Fran and NewFran), for which they offer an extensive set of lifted operators. This is
possible for host languages that support operator overloading, such as Haskell.

Dynamically typed languages such as FrTime (Scheme) and AmbientTalk/R offer
implicit lifting. For Flapjax, this is only true if the Flapjax to JavaScript compiler
is used. It applies the necessary code transformations to generate lifted operators.
When used as a library, lifting must happen explicitly. FrTime uses Scheme’s macro
system for this and AmbientTalk/R its reflection and meta-programming facilities. Co-
herence [Edwards 2009] does not require any lifting operations since the default se-
mantics of the language is reactivity.

3.7.4. Multidirectionality. Multidirectional propagation of changes is a feature that is
only supported by Coherence [Edwards 2009] and Radul/Sussman Propagators [Radul
and Sussman 2009]. The other reactive languages limit propagation of changes to hap-

1Coherence [Edwards 2009] is an exception to this classification: it does not provide the classical abstractions
(behaviours and event sources), but still tracks dependencies implicitly. Coherence differs from the other
languages in the fact that its underlying evaluation model is not dataflow, but a different flavour called
coherent reaction.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:12 E. Bainomugisha et al.

Programming languages
for expressing reactive systems

Synchronous, dataflow and synchronous dataflow languages

The cousins of reactive proramming

The FRP siblings

Fig. 4. Classification of languages for reactive programming.

pen in one direction. We further discuss the support for multidirectionality in reactive
programming languages as an open issue in Section 5.

3.7.5. Glitch avoidance. Most of the surveyed reactive languages achieve glitch free-
dom. However, there are a few exceptions. Radul/Sussman Propagators are not imple-
mented with support for glitch avoidance. Programmers need to employ other tech-
niques such as dependency-directed tracking [Stallman and Sussman 1977]; [Zabih
et al. 1987] that can be easily expressed in the base propagator infrastructure. Trel-
lis has some support for glitch avoidance, however programmers have to take extra
care on program structuring in order to realise glitch freedom (thus indicated as Y*).
.NET Rx is an ongoing project and there is no clear description of the semantics of how
glitches are avoided (thus indicated as N? in the table).

3.7.6. Support for distribution. Distribution is a feature that is not well supported in the
reactive programming languages. We found only three languages: Flapjax [Meyerovich
et al. 2009], Lamport Cells [Miller 2003], and AmbientTalk/R [Carreton et al. 2010],
that provide support for writing distributed reactive programs. However, even in these
languages glitches are avoided only in a local setting (thus indicated Y(local)). This
observation shows that there is still need for research in the field of distributed reac-
tive programming.

In Section 4 we give a full review for each language listed in Table I.

4. LANGUAGE SURVEY
Our survey consists of 15 representative reactive programming languages that we se-
lected based on the availability of their publications. Most of the reactive languages
surveyed are built as language extensions to existing languages. Several reactive lan-
guages are extensions to (mostly) functional programming languages such as Haskell
and Scheme.

For this survey we sort the reactive languages into three categories: The functional
reactive programming (FRP) siblings, the cousins of reactive programming, and syn-
chronous, dataflow and synchronous dataflow languages. The classification is depicted
in Figure 4. We discuss each language based on the features outlined in Section 3. We
illustrate each language with a simple temperature converter example. Where neces-
sary we further illustrate the language with an example of drawing a circle on the
screen that changes colour when the left or right mouse button is pressed.

4.1. The FRP Siblings
The reactive programming languages in this category provide composable abstractions
(behaviours and events). In addition, they typically provide primitive combinators for

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :13

Table II. Functional reactive programming (FRP) siblings

Language Host language
Fran [Elliott and Hudak 1997] Haskell
Yampa [Hudak et al. 2003] Haskell
Frappé [Courtney 2001] Java
FrTime [Cooper and Krishnamurthi 2006] PLT Scheme (now

known as Racket)
NewFran [Elliott 2009] Haskell
Flapjax [Meyerovich et al. 2009] JavaScript
Scala.React [Maier et al. 2010] Scala
AmbientTalk/R [Carreton et al. 2010] AmbientTalk

composing events and switching combinators to support the dynamic reconfiguration
of the dataflow and support higher-order dataflow.

One important point is that the literature on these languages sometimes uses
slightly different terminology for behaviours and events, while sometimes the abstrac-
tions truly differ. In the following, we will always relate the offered abstractions to our
terminology of behaviours and events and stick to this where possible.

In FRP languages, the arguments to functions vary over time and automatically
trigger propagation whenever values change. That is, the function is automatically re-
applied as soon as one of the arguments changes. FRP allows programmers to express
reactive programs in a declarative style. For instance, a sample functional program to
draw a circle on the screen at the current mouse position can be easily expressed as
(draw-circle mouse-x mouse-y). In this expression, whenever the value of mouse-x or
mouse-y changes, the function draw-circle is automatically re-applied to update the
circle position. Elliot et.al [Elliott and Hudak 1997] identify the key advantages of the
FRP paradigm as: clarity, ease of construction, composability, and clean semantics.

FRP was introduced in Fran [Elliott and Hudak 1997], a language specially designed
for developing interactive graphics and animations in Haskell. Since then, FRP ideas
have been explored in different languages including Yampa, FrTime, Flapjax, etc. In-
novative research on reactive programming has been mostly carried out in the context
of FRP. It is therefore not surprising that a large number of the surveyed languages
evolve around the notion of FRP. We review 8 languages (outlined in Table II) in this
category.

Fran
Fran (Functional Reactive Animation) [Elliott and Hudak 1997] is one of the first lan-
guages designed to ease the construction of interactive multimedia animations. Fran
was conceived as a reactive programming library embedded in Haskell. Its main goal is
to enable programming interactive animations with high-level abstractions that pro-
vide ways of expressing what the application does and let the language take care of
how the interaction occurs.

Fran represents continuous time-varying values as behaviours while discrete values
are represented as events. Both behaviours and events are first-class values and can be
composed using combinators. Behaviours are expressed as reactions to events or other
behaviours. In other words, behaviours are built up from events and other behaviours
using combinators.

As Haskell is a statically typed host language, Fran provides lifting operators that
transform ordinary Haskell functions into behaviours. Hence, lifting must happen ex-
plicitly using these operators. In addition, Fran offers a rich set of overloaded primitive
operators that are lifted to work on behaviours as well. Many of these primitives are

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:14 E. Bainomugisha et al.

specifically targeted to its problem domain: animation. In many cases, they eliminate
the need to explicitly lift operators for this particular problem domain.

The first implementation of Fran employs a purely pull-based evaluation model.
However, the recent implementation of Fran [Elliott 2009] (that we refer to as
NewFran in this paper), combines push- and pull-based evaluation models. The com-
bination of these models yields the benefit of values being recomputed only when they
are necessary, and almost instantaneous reactions. The temperature conversion exam-
ple can be realised in Fran as follows.

tempConverter :: Behavior Double
tempConverter = tempF

where
tempC = temp
tempF = (tempC*1.8)+32

tempConverter is a function that returns a behaviour whose value at any given point
in time is the value of the current temperature in degrees Fahrenheit. We assume that
there is a predefined behaviour temp whose value at any given time is the current
temperature in degrees Celsius.

In order to illustrate Fran’s support for the dynamic dataflow structure and high-
order reactivity, we consider an example of drawing a circle on the screen and painting
it red. The colour of the circle then changes to either green when the left mouse button
is pressed or red when the right mouse button is pressed. This example also appears
in [Elliott and Hudak 1997]. Such a program in Fran can be easily expressed as follows:

drawcircle :: ImageB
drawcircle = withColour colour circle

where
colour = stepper red (lbp -=> green .|. rbp -=> red)

In the above example, circle is a predefined behaviour for a circle while lbp and rbp
are events that represent left button presses and right button presses respectively. The
merge operator .|. produces events when either input events have an occurrence. We
use the stepper combinator to create the colour behaviour that starts with red until
the first button press at which point it changes to either green or red. withColour is
a predefined function that takes as argument the colour behaviour and paints the
circle with the colour. Since colour is a behaviour, the function withColour will be
automatically reapplied when the colour behaviour gets a new value.

Yampa
Developed at Yale University, Yampa [Hudak et al. 2003] is a functional reactive lan-
guage that is based on Fran. Like Fran, Yampa is embedded in Haskell. It is specially
designed for programming reactive systems where performance is critical. In Yampa,
a reactive program is expressed using arrows, (a generalisation of monads) [Hughes
2000] which reduce the chance of introducing the problems of space- and time-leaks.

The basic reactive abstractions in Yampa are signal functions and events. Signal
functions differ from behaviours in the sense that they are functions that encapsu-
late time-varying values, but are similar in the sense that they are first-class. Events
in Yampa are represented as signal functions that represent an event stream (event
source) that yields an event carrying a certain value at any point in time. Yampa pro-
vides primitive combinators for composing events (e.g., merging events). Additionally,
it provides a set of switching combinators to provide support for the dynamic dataflow
structure. Its parallel switching combinators allow the support for dynamic collections

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :15

of signal functions that are connected in parallel. Signal functions can be added or
removed from such a collection at runtime in reaction to events.

One of the main differences between Yampa and Fran is that Fran assumes an im-
plicit, fixed “system input” (e.g. the animation loop). which is through which input
sources like the mouse or keyboard connect to the program. In Yampa, such input
sources are explicit, which is why signal functions have an input and output type,
while behaviours in Fran just have an output type.

Yampa provides lifting operators to explicitly lift ordinary functions to the level of
signal functions. As in Fran, Yampa also provides a set of overloaded lifted operators.
Like the earlier version of Fran, the evaluation model of Yampa is pull-based and
employs the same techniques as in Fran to avoid glitches. Multidirectional propagation
of changes is not supported. The temperature conversion example can be realised in
Yampa as follows.

tempConverter = proc -> do
tempC <- tempSF
tempF <- (tempC*1.8)+32

returnA -< tempF

The above code snippet shows a reactive program in Yampa using the arrow syntax.
tempConverter is a signal function that is defined using the proc keyword. proc is
similar to the λ in λ-expressions only that it defines a signal function instead of a pro-
cedure. We assume that there is a predefined signal function tempSF whose value is the
current temperature in degrees Celsius. The conversion of tempC to degrees Fahrenheit
is bound to the variable tempF that is returned as the value whenever the signal func-
tion is accessed. The reactive machinery is taken care of by the underlying arrows.
The arrow notation avoids the need for explicit lifting if only the instantaneous values
need to be observed (i.e. without tracking and propagating changes over time).

To further illustrate Yampa’s events and signal function operators, we show the im-
plementation of the example of drawing a circle on the screen that starts with colour
red and then changes to either green when the left mouse button is pressed or red
when the right mouse button is pressed. This example can be expressed in Yampa as
follows.

drawCircle = proc input -> do
lbpE <- lbp -< input
rbpE <- rbp -< input
redB <- constantB red
thecolour <- selectcolour (lbpE ’lmerge’ rbpE)
colour <- rSwitch (redB thecolour)

returnA -< circle 0 0 1 1 colour

In the above example, we extract lbpE and rbpE from the user input input using the
lbp and rbp signal functions. We then use the lmerge combinator to combine the two
events into a single event that is then used to determine colour using the selectcolour
function. The lmerge works like the merge operator .|. in Fran but gives the prece-
dence the left event in case the two events occur at the same time. We use the rSwitch
combinator (which is similar to the stepper in Fran) to create the colour behaviour
which starts with redB until the first button press at which point it changes to value of
thecolour. The circle function will be automatically reapplied whenever colour gets
a new value.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:16 E. Bainomugisha et al.

FrTime
Developed at Brown University, FrTime [Cooper and Krishnamurthi 2006] is a func-
tional reactive programming language extension to Scheme that is designed to ease the
development of interactive applications. It runs in the DrScheme (which is now known
as Racket) environment [Felleisen et al. 1998] and allows programmers to seamlessly
mix FrTime code and pure Scheme thus enabling reusability of existing libraries such
as the GUI toolkits. FrTime also supports a read-eval-print loop (REPL) that enables
interactive development and allows users to submit new program fragments dynami-
cally. It achieves this by allowing the reactive engine and the REPL to run concurrently
in different threads [Cooper 2008].

The basic reactive abstractions in the language are behaviours and event streams
(which are just events in our terminology) to represent continuous time-varying val-
ues and discrete values, respectively. FrTime provides hold and changes operations for
converting behaviours to events, and vice-versa. The hold primitive is similar to the
stepper in Fran. It consumes an initial value and returns a behaviour with the ini-
tial value as its start value and changes to the event value whenever there is a new
event occurrence. On the other hand, the changes primitive consumes a behaviour and
produces an event value every time the behaviour changes.

Since Scheme is a dynamically typed language, when primitive Scheme functions
are applied to FrTime behaviours, they are automatically lifted (implicit lifting) to
behaviours. Ordinary Scheme functions cannot be applied to events. Instead, the lan-
guage provides a set of event processing combinators (e.g., the filter and map combina-
tors) that can be applied to events in order to obtain new events.

FrTime’s evaluation model is purely push-based. A FrTime program is represented
as a graph of dataflow dependencies with the nodes corresponding to program expres-
sions while the edges correspond to the flow of values between expressions. As the
evaluation model is push-based, the propagation of changes across the graph is initi-
ated by the event sources (e.g., a mouse button click). Whenever a new value arrives at
an event source, all the computations that depend on it are scheduled for re-execution.
To avoid wasteful recomputations, the language makes sure that the computations
dependent on values that did not change are not scheduled for execution.

The language avoids glitches by executing dependent computations in a topologically
sorted order. Each node is assigned a height that is higher than that of any nodes it
depends on. The nodes are then processed in a priority queue using the heights as
the priority. The dataflow graph must be acyclic in order to avoid non-terminating
propagation of changes. This glitch avoidance technique has been adopted by other
reactive languages such as Scala.React [Maier et al. 2010] and Flapjax [Meyerovich
et al. 2009], among others. The temperature conversion example can be realised in
FrTime as follows.

(define (temp-converter)
(let* ((tempC temperature)

(tempF (+ (* tempC 1.8) 32)))
tempF))

The temp-converter function returns a behaviour whose value at any point in time is
the current temperature in degrees Fahrenheit. We assume that there is a predefined
behaviour temperature. FrTime supports implicit lifting, i.e., the operators + and * are
implicitly lifted to operate on behaviours.

We further illustrate FrTime by implementing the example of drawing a circle that
changes colour according to the left or right mouse button press.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :17

(define (drawcircle)
(let ((radius 60)

(colour (new-cell "red")))
(map-e (lambda (e) (set-cell! colour "green")) left-clicks)
(map-e (lambda (e) (set-cell! colour "red")) right-clicks)
(display-shapes
(list
(make-circle mouse-pos radius colour)))))

In the above example, the make-circle function constructs a red circle of radius 60
at the current mouse position and changes to green or red when the left or right mouse
button is pressed. mouse-pos is a predefined behaviour whose value is the current
mouse position. colour is a behaviour whose initial value is "red" (created using the
new-cell construct). We use the FrTime combinator map-e to transform left-clicks
and right-clicks events and derive values for the colour behaviour. When either
the colour behaviour or the mouse-pos behaviour gets a new value, the make-circle
function is automatically reapplied to its arguments.

Flapjax
Flapjax [Meyerovich et al. 2009] is a reactive programming language for web pro-
gramming that is embedded in JavaScript. The design of Flapjax is mostly based on
FrTime [Cooper and Krishnamurthi 2006]. Flapjax can be used as either a JavaScript
library or as a language that is compiled to JavaScript. Flapjax introduces two data ab-
stractions to JavaScript: an event stream which represents a stream of discrete events
(just events in our terminology) and a behaviour which represents a continuous time-
varying value whose changes propagate automatically to all dependent values.

Flapjax supports both explicit and implicit lifting of JavaScript functions into be-
haviours. When used as a library, the programmer needs to explicitly use the lifting
function liftB. When used as a language, the Flapjax compiler automatically trans-
forms regular JavaScript function invocations into invocations of the explicit lifting
function. The compiler also enables Flapjax code to interoperate with JavaScript code.
It is possible to call JavaScript functions from Flapjax and vice-versa.

Like in FrTime, Flapjax’s evaluation model is push-based. Flapjax constructs a
dataflow graph from events to sinks and whenever there is an event occurrence, its
value is pushed through the graph. Nodes of the graph represent computations that
are run when an event is received which in turn may propagate to other dependent
nodes. As in FrTime [Cooper and Krishnamurthi 2006], glitches are avoided by pro-
cessing the dependency graph in a topological order.

In Flapjax, developers can write distributed reactive programs on top of the AJAX
library since it allows interoperation of JavaScript and Flapjax. For this, it pro-
vides built-in event abstractions that represent asynchronous client/server requests
and responses as events, which can be processed using the standard event opera-
tors/combinators, and can be easily converted to behaviours. This way, client/server
interactions become a source of change, just like user input. The reactive programming
paradigm allows to concisely combine both in the application logic. However, glitches
are not avoided in the resulting distributed reactive applications (as acknowledged by
the authors). Since interactive web applications are a prominent problem domain, we
discuss support for distribution as an open issue section 5.

In Flapjax the temperature conversion example can be expressed as follows.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:18 E. Bainomugisha et al.

function tempConverter() {
var temp = Temperature();
var tempC = temp;
var tempF = tempC * 1.8 + 32;
insertValueB(tempC, "tempCtext", "innerHTML");
insertValueB(tempF, "tempFtext", "innerHTML");

}

<body onLoad = "tempConverter()">
<div id= "tempCtext"> </div>
<div id= "tempFtext"> </div>
</body>

The tempConverter function implements the functionality of converting temperature
from degrees Celsius to degrees Fahrenheit. We assume that there is a predefined
behaviour Temperature whose value at any given point in time is the current tempera-
ture. The insertValueB function inserts the values of the behaviours tempC and tempF
in the DOM elements.

We further illustrate Flapjax’s support for first-class behaviours and primitive com-
binators using the example of drawing on a circle a screen that changes colour depend-
ing on whether a left or right mouse button is pressed. The example can be expressed
as follows.

//draw circle at (x,y) and paint it colour
function drawcircle(x, y, colour) {...};

//map button press to colour
function handleMouseEvent(evt) {...};

var buttonE = extractEventE(document,"mousedown");
var colourE = buttonE.mapE(handleMouseEvent);
var colourB = startsWith(colourE, "red");
var canvas = document.getElementById(’draw’);
drawcircle(mouseLeftB(canvas), mouseTopB(canvas), colourB);

In the above example, we use Flapjax’s combinators extractEventE and mapE to ex-
tract mousedown events from the DOM and transform them into colour events. The
function handleMouseEvent defines the logic of transforming button presses to colour.
The startsWith combinator is similar to the stepper in Fran. It takes as arguments
the colour event colourE and initial value "red" creates a behaviour with the initial
value as the red colour and changes value to green or red whenever a mouse button
press event occurs. The drawcircle function takes as argument the mouse position
and colour behaviours and draws the circle on the screen when the mouse position
or colour changes. mouseLeftB and mouseTopB are Flapjax’s combinators that create a
behaviour carrying the x- or y-coordinate of the mouse, relative to the specified DOM
element.

Frappé
Frappé [Courtney 2001] is a functional reactive programming library for Java. It ex-
tends the JavaBeans component model [Oracle 1997] with a set of classes that corre-
spond to functional reactive programming combinators. In Frappé, a reactive program
is constructed by instantiating JavaBeans classes and connecting the components us-
ing the FRP combinators. Frappé defines two Java interfaces, FRPEventSource and

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :19

Behaviour, which provide methods for the basic abstractions of behaviours and events.
Concrete classes providing the events functionality (such as raising an event) must
implement the FRPEventSource interface. Similarly, concrete classes providing the be-
haviours functionality (such as creating a behaviour and behaviour combinators) must
implement the Behaviour interface.

Since Java is a statically typed language, lifting of regular Java methods to be-
haviours is accomplished explicitly by calling the method liftMethod. JavaBeans prop-
erties may be converted to FRP behaviours using the makeBehaviour method. Similarly,
Frappé provides a method makeFRPEvent to convert JavaBeans events into FRP events.
It is also possible to use JavaBeans properties as output sinks for Frappé behaviours.
Such JavaBeans properties need to be mutable.

Propagation of change in values in Frappé is push-based2. Whenever there is a value
change (e.g., an event occurrence) the Java runtime invokes the appropriate event han-
dler on the Frappé object implementing the behaviour or event primitive. The primi-
tive event handler in turn invokes the event handler of each registered listener. This
is achieved by calling the eventOccurred method for events or the propertyChanged
method for the behaviour change. In Frappé, glitch avoidance is not ensured. The tem-
perature conversion example can be expressed in Frappé as follows.

Temperature temp = new Temperature();
Behavior tempC = FRPUtilities.makeBehavior(sched, temp,

"currentTemp");
Behavior tempF = FRPUtilities.liftMethod(sched, temp,

"temperatureConverter", new Behavior[]{tempC});

Assuming that there is a Java Bean Temperature that provides a bound property
currentTemp whose value at any point in time is the current temperature in degrees
Celsius. It also provides temperatureConverter method for converting the tempera-
ture to degrees Fahrenheit. A behaviour is created from the Temperature Bean using
the FRPUtilities.makeBehavior method. The argument sched is a global scheduling
context used by the Frappé implementation. The method FRPUtilities.liftMethod is
used to lift temperatureConverter to work on the behaviour tempC. It returns the be-
haviour that is bound to the variable tempF whose value at any point in time is the
current temperature in degrees Fahrenheit.

We further illustrate Frappé’s support for reactive programming by implementing
the example of a circle that changes colour depending which mouse button is pressed.

Drawable circle = new ShapeDrawable(
new Ellipse2D.Double(-1,-1,2,2));

FRPEventSource lbp = FRPUtilities.makeFRPEvent(sched,
frame, "franMouse","lbp");

FRPEventSource rbp = FRPUtilities.makeFRPEvent(sched,
frame, "franMouse","rbp");

FRPEventSource lbpgreen = new EventBind(sched, lbp,
FRPUtilities.makeComputation(new ConstB(Colour.green)));

FRPEventSource rbpred = new EventBind(sched, rbp,
FRPUtilities.makeComputation(new ConstB(Colour.red)));

FRPEventSource colourE = new EventMerge(sched,

2Although it has been stated in [Cooper 2008] and [Maier et al. 2010] that the evaluation model of Frappé
mixes push- and pull-based models, our experimentation with Frappé reveal that Frappé employs the push-
based model and glitches may occur.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:20 E. Bainomugisha et al.

lbpgreen, rbpred);

Behavior colourB = new Switcher(sched,
new ConstB(Colour.red), colourE);

Behavior anim = FRPUtilities.liftMethod(sched,
new ConstB(circle), "withColour",
new Behavior[] {colourB});

In the above example, we use the ShapeDrawable class to create the circle.
lbp and rbp are button press events that are created from JavaBeans using the
FRPUtilities.makeFRPEvent method. The button press event occurrences are then
bound to the colour values green and red using the EventBind combinator. We use
the EventMerge combinator to create the colourE events that carry the lbpgreen or
rbpred occurrence. The Switcher switching combinator similar to the stepper in Fran.
It creates the colourB behaviour whose initial value is colour red. colourB changes to
red or green when the left or right button is pressed. Whenever the colour changes the
circle is redrawn using the withColour method.

AmbientTalk/R
AmbientTalk/R [Carreton et al. 2010] is a reactive extension to AmbientTalk [Cutsem
et al. 2007], which is an actor-based language that is specially designed for developing
mobile applications. AmbientTalk/R integrates reactive programming with the imper-
ative prototype-based object model of AmbientTalk. The basic reactive abstractions
in AmbientTalk/R are based on those found in Fran [Elliott and Hudak 1997] and
FrTime [Cooper and Krishnamurthi 2006]. AmbientTalk/R provides events and be-
haviours. Like Flapjax [Meyerovich et al. 2009], AmbientTalk/R can be used as either
a library or as part of the language.

Events in AmbientTalk/R are realised as first-class messages that are emitted at dis-
crete points in time. Behaviours in AmbientTalk/R are used to represent time-varying
values. AmbientTalk/R provides a snapshot operation that allows capturing of a “snap-
shot” of a behaviour at a certain point in time. However, unlike behaviours where a
change in value is automatically propagated to all its dependents, a snapshot value
does not trigger change propagation. In AmbientTalk/R, behaviours are derived from
events. For example, the mouse position can be derived from the mouseEvent events
provided by the language.

Ordinary AmbientTalk operations are implicitly lifted to behaviours. When a be-
haviour is passed as argument to an AmbientTalk function or method, the result
of that invocation is itself a behaviour. However, there are primitives whose seman-
tics are preserved and are not automatically lifted to behaviours. For example, the
snapshot operator always returns a plain value.

In AmbientTalk/R, the evaluation strategy is push-based (i.e., events trigger com-
putation). The glitch avoidance technique employed by AmbientTalk/R is similar to
that in FrTime [Cooper and Krishnamurthi 2006], Flapjax [Meyerovich et al. 2009],
and Scala.React [Maier et al. 2010]. The language maintains a topologically sorted
dependency graph that is sorted based on the heights of the dependencies.

AmbientTalk/R builds on the actor-based distributed programming model of Ambi-
entTalk to provide support for distributed reactive programming. Reactive values need
not reside on a single host and can be distributed onto multiple hosts. However, unlike
in the local setting where there is glitch avoidance assurance, it is not the case in a
distributed setting. We further discuss distributed reactive programming as an open
issue in Section 5.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :21

The following example shows how to realise the temperature conversion example in
AmbientTalk/R.

def temperatureConverter := object: {
def @Reactive temp := Temperature.new();
def tempC := temp;
def tempF := tempC * 1.8 + 32;

}

In this example, the object: keyword creates a fresh object that is bound to the vari-
able temperatureConverter. The object includes a reactive field temp which is defined
using the annotation Reactive and is initialised to the current temperature value. The
variable tempC has a dependency on the reactive variable temp. Similarly, the variable
tempF creates a dependency on the variable tempC. Therefore, whenever the value of
temp changes, the value of tempC is updated and the value of tempF is recalculated.

The example of a circle that changes colour depending which mouse button is pressed
can be implemented in AmbientTalk/R as follows.

// draw a circle object
def drawCircle(circle) { ... };

def @Reactive circle := object: {
def posx := 0;
def posy := 0;
def colour := Colour.red;

};

def circleEventSource := changes: circle;
circleEventSource.foreach: { |circle| drawCircle(circle);

def handleMouseClickEvent(e) {
// Update the circle object’s coordinates and colour given e.

};

canvas.addMouseClickListener(handleMouseClickEvent);

The circle object is a behaviour which can be updated by setting its fields. This hap-
pens in the handleMouseClickEvent procedure which is registered as a listener to de-
tect mouse clicks. Before that, an event source is extracted from the circle behaviour
to draw a circle with the correct colour for each mouse click.

Scala.React
Scala.React [Maier et al. 2010] is an extension of Scala [Odersky and al. 2004] with the
goal of providing reactive programming abstractions in place of the observer pattern.
Scala.React provides a general interface that represents generic events. The general
interface is represented as a type parameterised Scala class that provides methods to
create events and raise events. Reacting to events involves registering a closure on a
particular event source. Scala.React also provides operations for composing multiple
events into one.

Behaviours in Scala.React are known as signals. A signal expression continuously
evaluates to a new signal value and automatically takes care of synchronisation of data
changes and dependencies. Signals are used to create dependencies among variables.

In Scala.React, a signal c that depends on the sum of two signals a and b must be
created as follows:

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:22 E. Bainomugisha et al.

val c = Signal{ a()+b() }

First, the current values of a and b must be extracted by calling the closure that encap-
sulates their current value before they can be summed into a new signal c. Although
this is manual lifting, we still classify Scala.React as a “sibling” language because of
the automatic tracking of dependencies.

Scala.React employs a push-based model for the propagation of changes. As in Fr-
Time [Cooper and Krishnamurthi 2006] and Flapjax [Meyerovich et al. 2009], glitches
are avoided by processing the dependency graph in a topological order. It deals with
dynamic dependencies by aborting the current evaluation in case its level is found to
be higher than the previous one. Then the affected signal is assigned a higher level
and rescheduled for validation in the same propagation cycle.

The temperature conversion example can be realised in Scala.React as follows.

val tempC = Signal{ Temperature() }
val tempF = Signal{ tempC() * 1.8 + 32}

observe(tempC) { C =>
// print on label

}
observe(tempF) { F =>
// print on label

}

Assuming that there is a predefined signal Temperature whose value at any given
point in time is the current temperature in degrees Celsius. The above code snippet
uses the Signal function to create signals tempC and tempF. The tempC is dependent
on the Temperature signal while tempF is dependent on the tempC. In Scala.React, sig-
nals are referred to through a function call in the form of signalName(). The observe
method accepts a closure that is executed whenever the signal value changes. In the
above example, the closures are used to display the values of tempC and tempF in the
GUI.

In Scala.React, the example of a circle that changes colour depending on the left or
right button press can be expressed as follows.

val selectedcolour = mouseDown map {md =>
//transform button press events to colour signal
}
val colour = selectedcolour switchTo Signal{Colour.red}
observe(colour) { c =>
// redraw circle
}

The above example uses the map combinator to extract the kind of button press from
the mouseDown events. The resulting event value is used to create the selectedcolour
signal whose value corresponds to the left or right button press. Then, we create
the colour signal from the selectedcolour or the SignalColour.red signal. Initially,
colour holds the current value of the SignalColour.red and then switches to that of
the selectedcolour signal when the left or right button press event occurs. Every time
the colour signal gets a new value, the closure of the observe method is automatically
invoked resulting in the circle to be redrawn.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :23

Table III. The cousins of reactive programming

Language Host language
Cells [Tilton 2008] CLOS
Lamport Cells [Miller 2003] E
SuperGlue [McDirmid and Hsieh 2006] Java
Trellis [Eby 2008] Python
Radul/Sussman Propagators [Radul and Sussman 2009] MIT/GNU Scheme
Coherence [Edwards 2009] Coherence
.NET Rx [Hamilton and Dyer 2010] C#.NET

4.2. The Cousins of Reactive Programming
As discussed in Section 3.7, there are a few reactive languages that do not provide
primitive abstractions for representation of time-varying values and primitive switch-
ing combinators for dynamic reconfiguration but provide support for automatic prop-
agation of state changes and other features of reactive programming such as glitch
avoidance. Since their abstractions for representing time-varying values do not inte-
grate with the rest of the language, lifting must always performed manually by the
programmer in these languages. We refer to those languages as cousins of reactive
programming. Table III outlines the reactive languages in this category.

As with the FRP siblings, we illustrate each cousin reactive language with the tem-
perature conversion example. However, since these languages do not provide event
and behaviour combinators such as merge, map-e, and switch, it is difficult to express
some applications such as that of drawing a circle that starts with a colour red and
switches to green or red depending on the left or right mouse button is pressed.

Cells
Cells [Tilton 2008] is a reactive programming extension to the Common Lisp Object
System (CLOS). It allows programmers to define classes whose instances can have
slots that trigger events when their values change. These slots are known as cells.
Such classes are defined using the defmodel abstraction, which is similar to defclass
for class definition in CLOS, but with support for defining cells as slots.

A programmer can define dependencies between cells such that when a value of
one cell changes, all the dependent cells are updated. In addition, cells can get their
values by evaluating rules that are specified at instance creation time. Rules contain
regular CLOS code as well as reads of other cells. Rules are run immediately after
instantiation and any reads to other cell slots create dependencies between the cell on
which the rule is specified and the cell being read.

Computations external to the object model need to be defined as observer functions.
One can define an observer function that is invoked when a cell of a specified name
is updated to a new value. Any observer function is guaranteed to be invoked at least
once during the instance creation process.

The propagation of changes in Cells is push-based. That is, when a cell slot is as-
signed a new value, all dependent cells rules are rerun and observers are notified to
reflect the changes. The Cells engine ensures that values that do not change are not
propagated, thereby avoiding wasteful recomputations. It also avoids glitches by ensur-
ing that all dependent cells and observers see only up-to-date values. The temperature
conversion example can be expressed as follows in Cells.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:24 E. Bainomugisha et al.

(defmodel TempConverter ()
((tempC :cell t

:initform (c-in Temperature)
:accessor tempC)

(tempF :cell t
:initform (c? (+ (* (^tempC) 1.8) 32))
:accessor tempF)))

The TempConverter class has two slots (cells) tempC and tempF. The slot option :cell
t implies that the slot is managed by the Cells engine giving it a reactive property.
Regular CLOS slots that should not be handled by the Cells engine need to be specified
with :cell nil. Slots are initialised with the (c-in expression) and (c? expression)
forms. The c-in specifies that the cell can be modified (e.g., with the setf form) while
c? specifies that a cell cannot be modified but only changes when the cell it depends on
changes. In the above example we assume that there is a predefined Temperature field
whose value is the current temperature in degrees Celsius that is used to initialise the
tempC cell. A cell can refer to other cells by calling the (^cell-name) function, where
cell-name is the name of another slot in the class. Therefore, (^tempC) implies that
the tempF cell depends on the tempC cell. Whenever the value of tempC changes, the
value of tempF is recomputed.

SuperGlue
SuperGlue [McDirmid and Hsieh 2006] is a reactive language that integrates the no-
tion of time-varying values with component programming. The basic abstractions in
SuperGlue are signals, components, and rules. In SuperGlue, a reactive program is
expressed as a set of signal connections between components. Components interact
with each other’s state through signals. A component provides state for viewing to
other components through its exported interface, and views other components’ state
through its imported interface.

In addition, SuperGlue allows support for expressing an unbounded number of sig-
nal connections between components (i.e., the number of connections need not to be
known in advance). This is achieved by enhancing signals with object-oriented abstrac-
tions. It supports rules that can be used to express new connections through type-based
pattern matching on existing connections. Each signal connection involves objects that
reify the import being connected and the expression that import is being connected to.
The types of these objects are then used to identify the connection when rules are eval-
uated. The types that are used in connection pattern matching are supported through
object-oriented mechanisms: nesting, traits, and extensions.

Connections between components can be identified at runtime by the types of signals
that they connect to. A rule can then create a new connection relation to any existing
connection that matches a specified type pattern. SuperGlue supports such type-based
pattern matching with object-oriented abstractions. Thus, objects in SuperGlue serve
two roles: they are containers of imported and exported signals and they serve as nodes
in the program’s dependency graph.

SuperGlue components are implemented using either Java or SuperGlue code but
the component connections must be expressed in SuperGlue. When implemented us-
ing Java, signals are represented by special Java interfaces that enable wrapping of
existing Java libraries. The evaluation model in SuperGlue is push-based and the im-
plementation ensures that glitches do not occur.

The temperature conversion example can be realised in SuperGlue as follows.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :25

atom Thermometer {
export temp : Float;

}

atom Label {
import tempCText : String;
import tempFText : String;

}

let model = new Thermometer;
let view = new Label;
let tempF = (model.temp * 1.8) + 32;
view.tempCtext = "Celsius: " + model.temp;
view.tempFtext = "Fahrenheit: "+tempF;

Thermometer is an atom that declares an exported temp signal whose value at any
given point in time is the current temperature in degrees Celsius. The Label atom
declares two imported signals tempCText and tempFText for displaying the values of
temperature in degrees Celsius and Fahrenheit, respectively. The Thermometer and
Label atoms are instantiated to create components that are then bound to model and
view. Interactions between components are established by connecting their signals
together. In this example the tempF signal refers to the temp signal that is exported
from the model component. Therefore, whenever there is a new value of temp, the value
of tempF is recomputed. Similarly, the tempCText and tempFText signals of the view
component are automatically updated to reflect the current temperature value.

Trellis
Trellis [Eby 2008] is a reactive programming library for Python that automatically
manages callback dependencies. It enables programmers to express a reactive pro-
gram in terms of rules. Rules are expressions that operate on values stored in special
attributes known as cells. A cell value may be a variable, a constant or computed value
from a rule. Whenever a value stored in a cell changes, dependent rules are rerun. The
language avoids wasteful recomputations for values that do not change.

Trellis automatically manages the order of dependencies to ensure consistent up-
dates. During each rule execution, it keeps track of dependencies between rules and
automatically rolls back in case of an error or an inconsistent result. This avoids some
glitches, however programmers need to take extra care in order to write completely
glitch free programs. According to the authors, this can be achieved by dividing a Trel-
lis program into input code, processing rules, and output rules. Input code sets Trellis
cells or calls modifier methods but does not run inside Trellis rules. Processing rules
compute values, while output rules send data to other systems (e.g., the display).

The temperature conversion example can be realised in Trellis as follows.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:26 E. Bainomugisha et al.

class TempConverter(trellis.Component):
tempC = trellis.attr(Temperature)
tempF = trellis.maintain(

lambda self: self.tempC * 1.8 + 32,
initially = 32

)

@trellis.perform
def viewGUI(self):

display "Celsius: ", self.tempC
display "Fahrenheit: ", self.tempF

The above code snippet defines the TempConverter class that is derived from
trellis.Component. A trellis.Component is an object whose attributes are reactive.
The attr form creates an attribute that is writable. In this example we assume that
there is a predefined variable Temperature whose value is used to initialise the tempC
cell attribute. The value of Temperature at any given point in time is the current tem-
perature in degrees Celsius. The tempF is derived from a maintenance rule that uses
the value tempC to perform temperature conversion. The value of tempF is automati-
cally recalculated whenever the value of tempC changes. @perform defines a rule that is
used to perform non-undoable actions such as output I/O. In this example, a perform
rule is used to display the values of tempC and tempF.

Lamport Cells
Lamport Cells [Miller 2003] is a reactive library for E [Miller et al. 2005]. In Lamport
Cells, a reactive program is expressed in terms of reactors and reporters. Reactors
subscribe to receive reports from the reporters, and reporters accept subscriptions and
send reports to the registered reactors.

Reactors may subscribe either to receive at most one report (whenever-reactors) or
to receive every report (forever-reactors). The subscription for a whenever-reactor lasts
only until the first report is received. The client may then decide to re-subscribe when
it needs a less stale value. In this respect, the evaluation model is pull-based as the
client re-subscribes to receive a new value only when it is needed. On the other hand,
a forever-reactor immediately re-subscribes to continually receive new values. In this
respect, the evaluation model is push-based. The propagation of changes is unidirec-
tional.

Lamport Cells provides support for distributed reactive programming in that the
reactor and the reporter may be located on different hosts in a network. In order to
provide support for distribution, subscriptions and reports are sent asynchronously
with no return values. Lamport Cells tackles the potential space-leak problems, by
only retaining “live” references to each subscribing reactor. However, Lamport Cells
does not avoid glitches (neither in a local nor a distributed setting).

The temperature conversion example can be expressed in Lamport Cells as follows.

def tempConverter(){
def tempC := makeLamportSlot(Temperature);
def tempF := whenever([tempC], fn{tempC * 1.8 + 32}, fn{true});
return tempF;

}

The above code defines the tempConverter function. The makeLamportSlot construct
creates a reporter that is then bound to the variable tempC. In this example, the re-
porter is initialised with the value of the predefined variable Temperature whose value

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :27

at any moment in time is the current temperature in degrees Celsius. The whenever
construct creates a whenever-reactor that is bound to the variable tempF. It subscribes
to the reporter tempC and specifies the anonymous function (defined with the keyword
fn) that implements the temperature conversion functionality. The fntrue argument
indicates that we automatically re-subscribe. Therefore, whenever tempC gets a new
value, its value is sent asynchronously to the reactor which in turn triggers the exe-
cution of the anonymous function in order to give tempF a new temperature value in
degrees Fahrenheit. Both tempC and tempF can be distributed.

Radul/Sussman Propagators
Developed by Radul and Sussman [Radul and Sussman 2009], Radul/Sussman Prop-
agators is a general purpose propagation model that can be used for functional re-
active programming, constraint programming, and logic programming. It is built on
top of MIT/GNU Scheme. Programs are expressed as a network of propagators inter-
connected by cells. Propagators subscribe to cells of interest and are automatically
scheduled for evaluation whenever the contents of those cells change.

Propagators and cells are the basic reactive primitives in this model. Propagators
represent computations while cells are places for storing values like variables in con-
ventional programming. Propagators continuously produce new values based on the
contents of the cells while cells consume the values. But unlike variables in conven-
tional languages where a variable holds one value, cells are specially designed to hold
multiple values from different event sources at the same time. This property makes it
possible to express more complex dependencies between computations.

The propagation of changes in this model is push-based. The availability of new
data at a cell results in triggering the execution of the propagators that previously
subscribed to it. One distinguishing property of the propagators model is its support
for propagating partial information. This is unlike other reactive languages where
only fully computed values are propagated. Propagating partial information allows
computations to perform useful computations with the currently available data. For
example, in a reactive program where a certain cell is responsible for accumulating
location information (longitude and latitude coordinates), can already propagate the
longitude coordinates even if the latitude coordinates are not yet available.

Scheme primitive functions need to be manually lifted to propagators and native
values such as numbers must be manually added to cells in order to be operated on by
propagators. The model itself does not ensure a glitch free reactive program though
glitches can be avoided by use of dependency-directed tracking techniques [Radul
2009];[Stallman and Sussman 1977]. Multidirectional flow of information is inherently
supported by the propagation model and therefore the propagation of changes is mul-
tidirectional. The temperature conversion example in Radul/Sussman propagators is
expressed as follows:

(define (temp-converter C F)
(let ((nine/five (make-cell))

(C*9/5 (make-cell))
(thirty-two (make-cell)))

((constant 1.8) nine/five)
((constant 32) thirty-two)
(multiplier C nine/five C*9/5)
(adder C*9/5 thirty-two F)))

(define tempC (make-cell Temperature))

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:28 E. Bainomugisha et al.

(define tempF (make-cell))
(temp-converter tempC tempF)

The temp-converter function takes two cells C and F as arguments. It then creates
three additional cells for internal computations. A cell is created using the make-cell
function. adder and multiplier are propagators that represent the lifted versions of
the Scheme primitives + and *, respectively. Propagators perform computations on the
input cells and output the result to the output cell (the last argument). constant is a
special propagator that takes a Scheme value and puts it in a cell. Attaching propa-
gators to cells creates a propagation network that is run when the value of input cells
changes. To illustrate how this works, we create the tempC cell that is initialised with
the value of the current temperature Temperature in degrees Celsius. The cell tempF
represents the output cell to which the temperature in degrees Fahrenheit is output.
The expression (temp-converter tempC tempF) passes the two cells to the network
and the temperature in degrees Fahrenheit is written to the tempF cell. The propa-
gation of changes is multidirectional. Therefore, adding a new temperature value to
either the tempC or tempF cell triggers the computation of the other.

Coherence
Coherence [Edwards 2009] is a language that is essentially designed for automati-
cally coordinating side effects in imperative programming. Coherence uses coherent
reactions to build interactive applications. In Coherence, a coherent reaction is one in
which a reaction is executed before any others that are affected by its effects.

Programmers can express dependencies between variables by way of derivations.
Derivations happen lazily upon need (demand-driven). Derived expressions are re-
evaluated every time they are accessed. To overcome the problem of wasteful recompu-
tations, the language has some support for caching values that are still valid. Deriva-
tions are multidirectional. Changes to a variable can propagate back to the variables
it was derived from. The default semantics of Coherence is reactivity; therefore lifting
of operations is not necessary.

Coherence ensures that the execution of each reaction happens before other com-
putations that depend on it. It avoids glitches by automatically detecting the correct
execution order of reactions. Reactions are arranged in a topologically sorted order, the
same technique used by FrTime [Cooper and Krishnamurthi 2006], Flapjax [Cooper
and Krishnamurthi 2006], and Scala.React [Maier et al. 2010]. Similar to Trellis [Eby
2008], the entire cascade of reactions is processed in a transaction that commits them
atomically or not at all. In addition, the language dynamically detects any incoher-
ences as they occur and the effects of prematurely executed reactions are rolled back
and re-executed later [Edwards 2009].

temperatureConverter: {
tempC = Temperature,
tempF = Sum(Product(tempC, 1.8), 32)}

The above code snippet defines a structure temperatureConverter that contains two
fields tempC and tempF. In this example, we assume that there is some global vari-
able Temperature that contains a time-varying value of the current temperature. The
derivation of one field from another is indicated by the = sign. The field tempC is said
to be derived from Temperature and tempF is derived from the expression on the right
hand side of the equals sign. The derivation expression uses the Sum and Product func-
tions to perform the temperature conversion. Whenever tempF is accessed, the deriva-
tion expression is calculated.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :29

.NET Rx

.NET Rx [Hamilton and Dyer 2010] is a reactive programming extension to .NET.
It is built on top of LINQ [Microsoft 2007], a project that adds query facilities
to the .NET Framework. As in Scala.React, .NET Rx provides a generic interface
IObservable<T> for representing event sources. The IObservable interface provides a
method Subscribe that enables one to register a closure that will be executed when an
event occurs. In addition, .NET Rx allows event composition. New specific events can
be created from general events using the rich set of LINQ combinators (e.g., aggregate,
selection, joins, etc.).

The propagation of events in .NET Rx is based on the push model. Consumers reg-
ister interest in particular event types and then the events are pushed to them when
they occur. This work is still ongoing and from the available documentation it is not
explained if the language achieves glitch freedom.

The temperature conversion example can be realised in .NET Rx as follows.

var temperature = new Temperature();
temperature.Subscribe(temp =>

{
var tempC = temp.currentTemperature;
var tempF = (tempC*1.8)+32;

})

Temperature is a class that implements the IObservable interface and emits events
when the current temperature changes. The Subscribe method registers a closure that
is executed for each temperature change event. The closure includes the logic of con-
verting the temperature from degrees Celsius to Fahrenheit.

4.3. Synchronous, Dataflow and Synchronous Dataflow Languages
There have been programming paradigms that have been used to model (real-time) re-
active systems. These include synchronous programming, dataflow programming and
synchronous dataflow programming. In this section, we give a brief review of those
paradigms because there exist surveys [Benveniste et al. 2003]; [Whiting and Pascoe
1994]; [Johnston et al. 2004] that give a full review of the research on the languages
in the family of synchronous programming, dataflow programming and synchronous
dataflow programming.

Synchronous programming is the earliest paradigm proposed for the development of
reactive systems with real-time constraints. Synchronous languages are based on the
synchrony hypothesis where reactions are assumed to take no time and are atomic. It
is assumed that a reaction takes no time with respect to the external environment and
that the environment remains unchanged during the execution of the reaction. This as-
sumption simplifies programs and can be compiled into efficient finite-state automata,
which can be translated into a program in a sequential language [Berry and Gonthier
1992]. A number of synchronous languages exist. These include Esterel [Berry and
Gonthier 1992], StateCharts [Harel and Politi 1998], and FairThreads [Boussinot
2006].

Another approach that has been used to model reactive systems is dataflow pro-
gramming (originally developed to simplify parallel programming) [Johnston et al.
2004];[Whiting and Pascoe 1994]. A dataflow program is expressed as a directed graph
with nodes representing operations and arcs representing data dependencies between
computations. The difference between traditional dataflow languages and reactive lan-
guages is that in dataflow languages are first-order. Examples of dataflow languages
include LabVIEW [Kalkman 1995] and Simulink [The MathWorks 1994].

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:30 E. Bainomugisha et al.

A later development of dataflow is synchronous dataflow [Lee and Messerschmitt
1987], which combines the synchronous and dataflow paradigms. In synchronous
dataflow the structure of the graph is known at compile time and can therefore be
statically scheduled and converted into a sequential program that does not require
dynamic scheduling. Like synchronous languages, the target domain of synchronous
dataflow is reactive systems where time is a crucial element of a computation. Ex-
amples synchronous dataflow languages include Lustre [Halbwachs et al. 1991] and
Signal [Amagbégnon et al. 1995]. Recently, there have been FRP variations that en-
sure real-time guarantees (i.e., the time and space cost of each execution step for a
given program are statically bound) and therefore are closer to synchronous dataflow
programming languages than the FRP siblings. These include Real-time FRP (RT-
FRP) [Wan et al. 2001] and Event-driven FRP (E-FRP) [Wan et al. 2002].

5. OPEN ISSUES AND POSSIBLE SOLUTIONS
The evaluation of the reactive languages surveyed based on the taxonomy reveals some
challenges that still need to be tackled in the reactive programming research. In par-
ticular, based on the taxonomy described in Section 3, very few reactive languages
support multidirectionality and distributed reactive programming. In this respect, ex-
tending reactive programming to support multidirectionality and work in a distributed
setting requires further investigation.

5.1. Multidirectionality
In traditional functional reactive programming, the only possible direction of change
propagation is to dataflow-dependent expressions via acyclic data flows. Some of the
approaches surveyed in this paper show that multidirectional constraints can be sat-
isfied [Apt et al. 1998];[Foster et al. 2007], namely Radul/Sussman Propagators and
Coherence. They both belong to the “cousins of reactive programming” family of sys-
tems and do not provide the classic abstractions of the “sibling” languages, namely
behaviours and event sources.

In the field of graphics and user interaction, TBAG [Elliott et al. 1994] is a lan-
guage that is more akin to functional reactive programming. It can be considered as
the more graphics-oriented precursor to Fran implemented on top of C++. TBAG sup-
ports multidirectionality and has the notion of behaviours and event sources. However,
TBAG does not provide first-class behaviours and event sources. Instead, the program-
mer must explicitly assert the relations between the geometrical objects of a 3D scene.
When operations on such objects are performed, a constraint solver attempts to satisfy
all assertions by performing transformations on all related objects. One can for exam-
ple relate two graphical objects by asserting that the distance between the two must
remain fixed. Moving one of these object results in the other one following to keep the
distance constraint satisfied. If satisfying all assertions fails due to conflicts between
the assertions, a runtime error is raised. For this, these objects are not mutable using
standard C++ operations, but instead must be manipulated in the functional sense
by performing dedicated transformations (which like in Fran and Yampa may be true
continuous functions parameterised with time) on them that return new versions of
the objects. Internally, old versions are automatically garbage collected and the latest
versions are represented as time-varying behaviours. This happens by preprocessing
existing graphical and mathematical operations and generating overloaded version in
the preprocessing step. This approach turned out to be satisfactory for TBAG’s partic-
ular problem domain and explains the choice for Haskell as a functional language for
subsequent work on functional reactive programming in Fran. With Fran, reactivity
was used for a wider problem domain (i.e., more general event handling), requiring

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :31

first-class behaviours and event sources and a dataflow evaluation strategy (working
in a single direction).

Functional Hybrid Modelling [Nilsson et al. 2003] (FHM) is a modelling language
that proposes a similar idea: instead of directly integrating multidirectionality with
behaviours and event sources, it integrates multidirectionality with Yampa’s signal
functions and switching constructs.

Both TBAG and FHM make the constraints or relations between time-varying val-
ues explicit. This is a different approach than the one of the “sibling” reactive pro-
gramming language where behaviours and event sources are treated as first-class val-
ues and the dependencies between them are tracked implicitly. It remains an open
question whether reactive programming in the classical sense as embodied by these
“sibling” languages can be reconciled with multidirectionality.

5.2. Distributed Reactive Programming
To cope with network failures and delays or to increase scalability, many distributed
systems are implemented as event-driven systems. Examples are Ajax applications
that communicate through asynchronous web service requests, publish/subscribe sys-
tems, etc. An asynchronous communication style decouples the communicating parties
in time: they do not have to be connected at the same time to allow communication,
increasing robustness. The downside is that asynchronous invocations do not imme-
diately return a result to the caller, but instead signal an event as soon as they have
produced a response. Hence, reactive programming is very promising for more complex
distributed programs that usually consist of concurrently running components that
signal events to each other and react to these events by means of explicit callbacks.

There are however two main issues in distributing reactive programs. The first is
that glitches are difficult to avoid in a distributed setting. The second is that main-
taining the dependency graph in a distributed reactive program tightly couples the
dependent distributed application components, and hence renders them less resilient
to network failures and reduces overall scalability. We discuss both problems in the
remainder of this section and look at some possible solutions and trade-offs.

5.2.1. Avoiding glitches in a distributed setting. Glitches occur because of dependent code
that is executed in the wrong order. This can easily happen in a distributed setting
where events are communicated over the network and are hence delivered with a delay
of which the severity depends on different factors, such as the underlying network
technology, network congestion, network failures, etc. Hence, time-stamping of events
is necessary to allow them to be correctly ordered at the receiver side. The problem here
is that distributed clocks can diverge, which can be problematic for ordering events
that happen in close succession.

A possible solution could be to use a centralised entity with a central clock to which
all parties involved in the distributed reactive program connect and that is solely re-
sponsible for ordering events. This centralised approach of course introduces a single
point of failure and possibly a considerable communication overhead as all parties in-
volved in the system have to communicate with a single host for every event they signal
and to receive every event propagated to them as well, potentially limiting scalability.

A decentralised solution could be to accept that events in close succession cannot
be ordered as a fact of life and take into account a minimum time interval in which
events are considered to occur simultaneously. This is similar to ideas found in real-
time synchronous languages where the system is assumed to react atomically to events
before any other events occur and a global clock with a minimal tick rate determines
the time interval. This minimal tick rate could be used as the maximal magnitude of
which distributed clocks may diverge in a distributed reactive program. As long as it

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:32 E. Bainomugisha et al.

can be guaranteed that all the clocks in the system do not diverge more than this time
interval, glitches can be prevented while keeping a decentralised architecture. The
applicability of this assumption depends on a number of factors such as the number of
parties involved in the distributed interaction, the magnitude of clock divergence, the
quality of the network, and, most importantly, the nature of the reactive program. For
programs that have to quickly react on events occurring in very close succession this
approach might not be feasible, while for programs that work on human time-scales
(such as seconds, minutes, etc.) this assumption might be acceptable.

5.2.2. Network failure handling. Maintaining a dependency among reactive application
components tightly couples these application components. Since in most cases this cou-
pling does not have to be explicitly managed by the programmer, this is a non-issue for
local applications. However, for distributed applications, a loose coupling of the com-
municating parties is required to achieve scalability in very large systems [Carzaniga
et al. 2000] or to be applicable in certain settings such as mobile ad hoc networks
[Huang and Garcia-Molina 2004]. In these cases, network failures prevent events to
be propagated among distributed application components that depend on each other,
causing the application to halt or causing glitches.

Publish/subscribe-style interaction offers event-driven applications an interaction
style that is both decoupled in space and time [Eugster et al. 2003]. It is decoupled
in time because the publish/subscribe infrastructure stores event messages such that
producers and consumers do not have to be connected at the same time to propagate
an event. Additionally, they are decoupled in space because dependencies are created
indirectly by simply subscribing to a certain topic (topic-based publish/subscribe) or by
intensionally describing the content of the events in which a subscriber is interested
(content-based publish/subscribe). Hence, event producers can be dynamically replaced
or be dynamically discovered when they join the publish/subscribe system and events
can be multicast to a multitude of subscribers.

In an extension targeting mobile ad hoc network applications built on top of Ambi-
entTalk/R discussed in [Carreton et al. 2010], it is shown that publish/subscribe-style
interaction can be integrated with distributed reactive programming, reaping the ben-
efits of both. In the same extension to AmbientTalk/R, event messages are buffered
such that they can be resent when they do not arrive to their destinations because
of network failures. Additionally, it is possible to express more complex dataflow de-
pendencies by making use of the publish/subscribe-infrastructure to notify multiple
distributed parties of the same event or to subscribe to events from different produc-
ers that are aggregated in reactive lists (i.e., behaviours that denote time-varying lists
of behaviours). The downside of such a decentralised approach is that glitches caused
by the network cannot be prevented.

6. CONCLUSIONS
Reactive programming is a paradigm that is well-suited for developing event-driven
applications, which are otherwise difficult to program using conventional program-
ming techniques. We provide a classification of reactive programming approaches
along six axes: the basic abstractions for representing time-varying values, evalua-
tion model, lifting operations, multidirectionality, support for distribution, and glitch
avoidance. We discussed how several reactive languages compare to each other with
respect to this classification. Most of the research on reactive programming has been
carried out in the functional reactive programming area, and the representative lan-
guages have been discussed.

We have observed that the multidirectionality property is not widely supported and
even not at all by classical reactive programming languages. Hence, multidirection-

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :33

ality seems like an interesting avenue to explore. We also observed that there is a
growing interest in reactive programming to develop interactive distributed applica-
tions (such as Web applications and peer-to-peer mobile applications). This can be
attributed to the fact that these applications are usually implemented in an event-
driven style. Unfortunately, as we observed in Section 5, the combination of reactive
programming and distribution can give rise to glitches. Hence, integrating reactive
programming into distributed programming is another path that requires further in-
vestigation.

ACKNOWLEDGMENTS

We are grateful to the editors and the anonymous reviewers who made important suggestions to improve
the paper. We would like to thank the members the Software Languages lab for the discussion about the
content of the paper. This work was partially funded by the Research Foundation - Flanders (FWO), the
SAFE-IS project, the MobiCrant project, the STADiUM project, the VariBru project of the ICT Impulse
Programme of the Institute for the encouragement of Scientific Research and Innovation of Brussels (ISRIB),
the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT), and the
Brussels Institute for Research and Innovation (InnovIris). Belgium.

REFERENCES
AMAGBÉGNON, P., BESNARD, L., AND LE GUERNIC, P. 1995. Implementation of the data-flow synchronous

language SIGNAL. In PLDI ’95: Proceedings of the ACM SIGPLAN 1995 conference on Programming
language design and implementation. ACM, New York, NY, USA, 163–173.

APT, K. R., BRUNEKREEF, J., PARTINGTON, V., AND SCHAERF, A. 1998. Alma-o: an imperative language
that supports declarative programming. ACM Trans. Program. Lang. Syst. 20, 1014–1066.

BENVENISTE, A., CASPI, P., EDWARDS, S. A., HALBWACHS, N., GUERNIC, P. L., ROBERT, AND SIMONE,
D. 2003. The synchronous languages 12 years later. In Proceedings of The IEEE. 64–83.

BERRY, G. AND GONTHIER, G. 1992. The ESTEREL synchronous programming language: design, seman-
tics, implementation. Sci. Comput. Program. 19, 2, 87–152.

BOUSSINOT, F. 2006. FairThreads: mixing cooperative and preemptive threads in C: Research articles. Con-
curr. Comput. : Pract. Exper. 18, 5, 445–469.

CARRETON, A. L., MOSTINCKX, S., VAN CUTSEM, T., AND DE MEUTER, W. 2010. Loosely-coupled dis-
tributed reactive programming in mobile ad hoc networks. In Proceedings of the 48th International
conference on Objects, models, components, patterns. TOOLS’10. Springer-Verlag, Berlin, Heidelberg,
41–60.

CARZANIGA, A., ROSENBLUM, D. S., AND WOLF, A. L. 2000. Achieving scalability and expressiveness in
an internet-scale event notification service. In Proceedings of the nineteenth annual ACM symposium on
Principles of distributed computing. PODC ’00. ACM, New York, NY, USA, 219–227.

COOPER, G. H. 2008. Integrating dataflow evaluation into a practical higher-order call-by-value language.
Ph.D. thesis, Providence, RI, USA.

COOPER, G. H. AND KRISHNAMURTHI, S. 2006. Embedding dynamic dataflow in a call-by-value language.
In ESOP’06: Proceedings of the 15th European conference on Programming Languages and Systems.
Springer-Verlag, Berlin, Heidelberg, 294–308.

COURTNEY, A. 2001. Frappé: Functional reactive programming in java. In Proceedings of the Third
International Symposium on Practical Aspects of Declarative Languages. PADL ’01. Springer-Verlag,
London, UK, UK, 29–44.

CUTSEM, T. V., MOSTINCKX, S., BOIX, E. G., DEDECKER, J., AND MEUTER, W. D. 2007. AmbientTalk:
object-oriented event-driven programming in mobile ad hoc networks. In Proceedings of the XXVI In-
ternational Conference of the Chilean Society of Computer Science. SCCC ’07. IEEE Computer Society,
Washington, DC, USA, 3–12.

EBY, P. J. 2008. Trellis. http://pypi.python.org/pypi/Trellis. [Online; accessed 10-April-2011].
EDWARDS, J. 2009. Coherent reaction. In OOPSLA ’09: Proceeding of the 24th ACM SIGPLAN conference

companion on Object oriented programming systems languages and applications. ACM, New York, NY,
USA, 925–932.

ELLIOTT, C. AND HUDAK, P. 1997. Functional reactive animation. In Proceedings of the second ACM SIG-
PLAN International conference on Functional programming. ICFP ’97. ACM, New York, NY, USA, 263–
273.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

:34 E. Bainomugisha et al.

ELLIOTT, C., SCHECHTER, G., YEUNG, R., AND ABI-EZZI, S. S. 1994. Tbag: a high level framework for in-
teractive, animated 3d graphics applications. In Proceedings of the 21st Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH 1994. ACM, 421–434.

ELLIOTT, C. M. 2009. Push-pull functional reactive programming. In Proceedings of the 2nd ACM SIGPLAN
symposium on Haskell. Haskell ’09. ACM, New York, NY, USA, 25–36.

EUGSTER, P. T., FELBER, P. A., GUERRAOUI, R., AND KERMARREC, A.-M. 2003. The many faces of pub-
lish/subscribe. ACM Computing Surveys 35, 2, 114–131.

FELLEISEN, M., FINDLER, R. B., FLATT, M., AND KRISHNAMURTHI, S. 1998. The drscheme project: an
overview. SIGPLAN Not. 33, 6, 17–23.

FOSTER, J. N., GREENWALD, M. B., MOORE, J. T., PIERCE, B. C., AND SCHMITT, A. 2007. Combinators
for bidirectional tree transformations: A linguistic approach to the view-update problem. ACM Trans.
Program. Lang. Syst. 29.

HALBWACHS, N., CASPI, P., RAYMOND, P., AND PILAUD, D. 1991. The synchronous dataflow programming
language LUSTRE. In Proceedings of the IEEE. 1305–1320.

HAMILTON, K. AND DYER, W. 2010. Reactive extension for .NET. http://msdn.microsoft.com/en-us/
devlabs/ee794896.aspx. [Online; accessed 4-April-2011].

HAREL, D. AND POLITI, M. 1998. Modeling Reactive Systems with Statecharts: The Statemate Approach 1st
Ed. McGraw-Hill, Inc., New York, NY, USA.

HUANG, Y. AND GARCIA-MOLINA, H. 2004. Publish/subscribe in a mobile environment. Wirel. Netw. 10, 6,
643–652.

HUDAK, P., COURTNEY, A., NILSSON, H., AND PETERSON, J. 2003. Arrows, robots, and functional reac-
tive programming. In Summer School on Advanced Functional Programming 2002, Oxford University.
Lecture Notes in Computer Science Series, vol. 2638. Springer-Verlag, 159–187.

HUGHES, J. 2000. Generalising monads to arrows. Sci. Comput. Program. 37, 1-3, 67–111.
JÄRVI, J., MARCUS, M., PARENT, S., FREEMAN, J., AND SMITH, J. N. 2008. Property models: from inciden-

tal algorithms to reusable components. In GPCE ’08: Proceedings of the 7th International conference on
Generative programming and component engineering. ACM, New York, NY, USA, 89–98.

JOHNSTON, W. M., HANNA, J. R. P., AND MILLAR, R. J. 2004. Advances in dataflow programming lan-
guages. ACM Comput. Surv. 36, 1, 1–34.

KALKMAN, C. 1995. Labview: A software system for data acquisition, data analysis, and instrument control.
Journal of Clinical Monitoring and Computing 11, 1, 51–58.

LEE, E. A. AND MESSERSCHMITT, D. G. 1987. Synchronous Data Flow. In Proceedings of the IEEE. Vol. 75.
1235–1245.

MAIER, I., ROMPF, T., AND ODERSKY, M. 2010. Deprecating the Observer Pattern. Tech. rep.
MCDIRMID, S. AND HSIEH, W. C. 2006. SuperGlue: Component programming with object-oriented signals.

In ECOOP. 206–229.
MEYEROVICH, L. A., GUHA, A., BASKIN, J., COOPER, G. H., GREENBERG, M., BROMFIELD, A., AND KR-

ISHNAMURTHI, S. 2009. Flapjax: a programming language for ajax applications. In OOPSLA ’09: Pro-
ceeding of the 24th ACM SIGPLAN conference on Object oriented programming systems languages and
applications. ACM, New York, NY, USA, 1–20.

MICROSOFT, C. 2007. LINQ: .NET language-integrated query. http://msdn.microsoft.com/library/
bb308959.aspx. [Online; accessed 10-April-2011].

MILLER, M., E. TRIBBLE, D., AND SHAPIRO, J. 2005. Concurrency among strangers: Programming in E as
plan coordination. In Symposium on Trustworthy Global Computing. LNCS Series, vol. 3705. Springer,
195–229.

MILLER, M. S. 2003. The reporter/reactor pattern. http://www.erights.org/javadoc/org/erights/e/
elib/slot/EverReporter.html. [Online; accessed 10-March-2011].

NILSSON, H., PETERSON, J., AND HUDAK, P. 2003. Functional hybrid modeling. In Proceedings of the 5th
International Symposium on Practical Aspects of Declarative Languages. PADL ’03. Springer-Verlag,
London, UK, UK, 376–390.

ODERSKY, M. AND AL. 2004. An overview of the Scala programming language. Tech. Rep. IC/2004/64, EPFL
Lausanne, Switzerland.

ORACLE. 1997. JavaBeans component model. http://www.oracle.com/technetwork/java/javase/tech/
index-jsp-138795.html. [Online; accessed 17-December-2011].

PETERSON, J. AND HAGER, G. 1999. Monadic robotics. In Proceedings of the 2nd conference on Conference
on Domain-Specific Languages - Volume 2. DSL’99. USENIX Association, Berkeley, CA, USA, 8–8.

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

A Survey on Reactive Programming :35

PETERSON, J., HUDAK, P., REID, A., AND HAGER, G. D. 2001. Fvision: A declarative language for visual
tracking. In Proceedings of the Third International Symposium on Practical Aspects of Declarative Lan-
guages. PADL ’01. Springer-Verlag, London, UK, UK, 304–321.

PUCELLA, R. R. 1998. Reactive programming in standard ml. In Proceedings of the 1998 International
Conference on Computer Languages. ICCL ’98. IEEE Computer Society, Washington, DC, USA, 48–.

RADUL, A. 2009. Propagation networks: A flexible and expressive substrate for computation. Ph.D. thesis,
MIT.

RADUL, A. AND SUSSMAN, G. J. 2009. The (abridged) art of the propagator. In ILC 2009: Proceedings of the
International Lisp Conference 2009. ACM.

SCULTHORPE, N. 2011. Towards safe and efficient functional reactive programming. Ph.D. thesis, Notting-
ham, UK.

SPERBER, M. 2001a. Computer-assisted lighting design and control. Ph.D. thesis, University of Tbingen.
SPERBER, M. 2001b. Developing a stage lighting system from scratch. In ICFP ’01: Proceedings of the sixth

ACM SIGPLAN International conference on Functional programming. ACM, New York, NY, USA, 122–
133.

STALLMAN, R. M. AND SUSSMAN, G. J. 1977. Forward reasoning and dependency-directed backtracking in
a system for computer-aided circuit analysis. Artif. Intell. 9, 2, 135–196.

STEELE, JR., G. L. 1980. The definition and implementation of a computer programming language based
on constraints. Tech. rep., Cambridge, MA, USA.

THE MATHWORKS, I. 1994. Simulink - simulation and model-based design. http://www.mathworks.nl/
products/simulink/index.html. [Online; accessed 17-December-2011].

TILTON, K. 2008. The Cells manifesto. http://smuglispweeny.blogspot.com/2008/02/cells-manifesto.
html. [Online; accessed 10-April-2011].

WAN, Z. AND HUDAK, P. 2000. Functional reactive programming from first principles. In Proceedings of
the ACM SIGPLAN 2000 conference on Programming language design and implementation. PLDI ’00.
ACM, New York, NY, USA, 242–252.

WAN, Z., TAHA, W., AND HUDAK, P. 2001. Real-time frp. SIGPLAN Not. 36, 10, 146–156.
WAN, Z., TAHA, W., AND HUDAK, P. 2002. Event-driven frp. In Proceedings of the 4th International Sym-

posium on Practical Aspects of Declarative Languages. PADL ’02. Springer-Verlag, London, UK, UK,
155–172.

WHITING, P. G. AND PASCOE, R. S. V. 1994. A history of data-flow languages. IEEE Ann. Hist. Com-
put. 16, 4, 38–59.

ZABIH, R., MCALLESTER, D., AND CHAPMAN, D. 1987. Non-deterministic lisp with dependency-directed
backtracking. In AAAI’87: Proceedings of the sixth National conference on Artificial intelligence. AAAI
Press, 59–64.

Received May 2011; revised June 2012; accepted August 2012

ACM Computing Surveys, Vol. , No. , Article , Publication date: 2012.

