
Learning Computer Science using Games and Puzzles
Paul Curzon

Middlesex University
p.curzon@mdx.ac.uk

Abstract

Many children’s games have similarities to the structures we
teach in Computer Science and those structures are chosen for
similar reasons. Strategies for winning some games share
properties with efficient algorithms. General lessons, such as
why finiteness and determinism are important properties of
algorithms, can also be found in games. We explore the idea of
using games to teach introductory computer science and
describe initial evidence evaluating the approach.

Many children’s games have similarities to the structures we teach in Computer
Science and those structures are chosen for similar reasons. For example, standard race
game boards are lists - processed from start to end. More interesting games use more
interesting structures. A circular list is found in Monopoly: the game could never end. Snakes
and Ladders uses a directed graph. A treasure hunt is a traversal of a linked list. Stacks are
so important that they abound in childhood, from the toys consisting of poles and rings we
give to toddlers to the Tower of Hanoi puzzle. The similarities are not surprising since abstract
data types model structures from the real world, as do games.

General lessons about algorithms can also be found in games. For example, the aim
of Patience is to sort a pack of cards. Are its rules an algorithm? It illustrates why finiteness
and determinism are important properties of algorithms. The importance of choice of
representation can be demonstrated by, for example, the games of Spit-Not-So and Nim. In
Spit-Not-So nine cards are placed face up. Each has on it one of the words: Spit, Not, So,
Fat, Fop, As, If, In, Pan. Players take turns to pick a card. The aim is to be the first player to
collect all cards containing a particular letter. A game might thus go:

PLAYER 1: SPIT
PLAYER 2: SO
PLAYER 1: FAT
PLAYER 2: NOT
PLAYER 1: FOP
PLAYER 2: IF
PLAYER 1: PAN

At this point Player 1 wins as they have the cards: SPIT, FOP and PAN – all the Ps. This
game is equivalent to Noughts and Crosses/Tic-Tac-Toe [2]. Changing the representation to a
3-by-3 grid with a word in each cell makes the game suddenly easier. For example, the above
game will end with your table looking like the following:

NOT
O

IN PAN
X

SO
O

SPIT
X

AS

FOP
X

IF
O

FAT
X

Nim consists of three piles of matches. Players take turns to remove any number of
matches from one pile. The winner is the player who takes the last match. Winning moves
can most easily be identified if the piles are represented using binary numbers. Winning
moves are ones where the addition-without-carry of the three numbers of the resulting
position is zero. Choose a good representation and you win the game.

20-Questions illustrates why binary search is faster than linear search. Would you
start by asking "Is it Michelle Pfeiffer?" or would you ask questions such as "Male or Female?"
that halve the number of people left whatever the answer? The most successful players are
the ones who come up with a series of questions that approximate a binary search.

We can conversely design new games by starting from Computer Science. For
example, let us invent a game based on Heaps. In Patience, the seven stacks of cards are
arranged as an array. Cards can be moved between any of the stacks. In our newly invented
“Heap Patience” the stacks are arranged as a binary tree. Cards can only be moved to the top
of their parent’s stack. In addition, the face up part of any stack can be exchanged with its
parent, provided the top card is greater than the top card on the parent stack. The stacks thus
act together like a heap with high cards moving to the root of the heap. Playing it provides the
basis for an understanding of Heaps. Rather than teaching it to undergraduates, teach it to
children.

This idea of using games to teach introductory computer science have been piloted at
Middlesex University on first year programming (approximately 250 students) and second
year data structures and algorithms (50 students) modules. Examples based on games have
been used in lectures to explain ideas before looking at them in computer terms. A booklet [3]
containing a wide range of examples related to data structures and algorithms, based both on
games and other non-computer situations was made available to students in addition to the
normal module handbook. Also a lecture on binary search taught using 20-questions has
been given on several occasions in 2000 at Open Days for School students (approximately
300-400 students in total) who had applied to Middlesex to do Computing courses.

Anecdotal evidence suggests that the approach works. Student results on the second
year module have been high, and for the first years improving as more of this kind of example
was introduced. The student feedback has been overwhelmingly positive with respect to
lecture delivery. The first and second year students gave on average satisfaction ratings of 4
out of 5, for example. Written comments from the First Years suggested that the use of
examples form everyday life were very useful in understanding computing concepts:

"...metaphors and examples are excellent"
"[the most useful part of the module was that] the lecturer was able to show
demonstrations using everyday examples."
"lecture well-constructed using appropriate examples of everyday life"

This approach did not suit everyone however: one student singled out the examples as being
"useless and meaningless". A separate survey compared the booklet on data structures and
algorithms in every day life [3], the module handbook and various assessed exercises given
to the second years. It asked which of these the students found most useful in helping them
meet the learning objectives of the module. They gave the highest rating to the booklet (see
Figure 1). Open day feedback was similarly positive. One mother who accompanied her son
to the lecture had used computers at work but had expected to find the lecture boring as she
had little interest in computers. However, afterwards she was very positive about the lecture
and was glad her son had made her stay. This feedback suggests that use of examples from
everyday life (as opposed to specifically games) is an effective teaching tool. Games do
however provide a rich seam of such examples. One reason the approach may be effective is
that it provides opportunity for interaction into lectures. To be successful, however, it is
important that it is made clear how the examples relate to the learning objectives of the
module.

Figure 1: Which resource/assessment was most useful for meeting the learning
objectives

0

1

2

3

4

5

6

7

8

9

10

handbook computing without
computers

programming
exercises

exam question as
coursework

short answer test dry run test efficiency
investigation

re
sp

o
n

se
s

1- poor

2

3

4

5- excellent

Childhood is an excellent training ground for computer scientists. By this we do not
mean that good games players will make the best computer scientists. Rather we suggest
that the world of games and puzzles is full of hooks upon which the learning of computer
science can be hung. Bell et al. [1] demonstrated a similar idea, developing activities for
children that teach computing without using computers. We suggest that existing games use
the same underlying structures as the data structures of Computer Science, their aim is often
similar to the aim of common algorithms, and in some cases the best play is that which most
successfully approximates the best algorithms. The more games and puzzles a person
knows, the greater the foundation upon which the teaching of data structures and algorithms
can be built. Games developed from Computer Science can both be fun and provide the
foundations for learning the subject. We have looked at links between games and data
structures and algorithms. It may also be possible to identify or design games with links to
other aspects of Computer Science. We are currently using games to teach data structures
and algorithms. With a longer-term view we should be designing new games that have deeper
relationships with Computer Science concepts. We should be teaching them to children to
provide the basis for them to learn Computer Science in the future.

References

1. T. Bell, I. Witten and M. Fellows, Computer Science Unplugged,
http://unplugged.canterbury.ac.nz

2. E.R. Berlekamp, J.H. Conway and R.K. Guy, Winning Ways, V.2, Ch.22, Academic
Press, 1982.

3. P. Curzon, Computing Without Computers in Everyday Life, Version 0.2, January
2000.

An earlier version of this paper was presented at the Computers and Fun II
Workshop, York, December 1999.

