
Rank 2 Intersection Type Assignment
in Term Rewriting Systems

Steffen van Bakel
Dipartimento di Informatica, Università degli Studi di Torino,

Corso Svizzera 185, 10149 Torino, Italia
bakel@di.unito.it

Abstract

A notion of type assignment on Curryfied Term Rewriting Systems is introduced that uses Intersection
Types of Rank 2, and in which all function symbols are assumed to have a type. Type assignment will
consist of specifying derivation rules that describe how types can be assigned to terms, using the types
of function symbols.
Using a modified unification procedure, for each term the principal pair (of basis and type) will be
defined in the following sense: from these all admissible pairs can be generated by chains of operations
on pairs, consisting of the operations substitution, copying, andweakening.
In general, given an arbitrary typeableCuTRS, the subject reduction property does not hold. Using
the principal type for the left-hand side of a rewrite rule, a sufficient and decidable condition will be
formulated that typeable rewrite rules should satisfy in order to obtain this property.

Introduction

In the recent years, several paradigms have been investigated for the implementation of functional
programming languages. Not only the Lambda Calculus (LC) [10], but also Term Rewriting Systems
(TRS) [28] and Term Graph Rewriting Systems (TGRS) [12] are topics of research. LC (or rather Com-
binator Systems) constitutes the underlying model for the functional programming language Miranda
[37], TRS were used in the underlying model for the language OBJ [22], and TGRS were the model
for the language Clean [13, 32].

For the implementation of a language, independent of the chosen implementation model, the notion
of types plays an important role. Types are essential to obtain efficient machine code when compiling
a program and are also used to make sure that the programmer has a clearer understanding of the
programs that are written. In fact, type assignment to programs and objects is a way of performing
abstract interpretation that provides necessary information for both compilers and programmers.

Since functional programming languages had their origin inLC, formal notions like type assign-
ment or strictness analysis, used for those languages, are often studied on the level of LC. Several
authors, when presenting new notions of type assignment to be used in programming, presented their
results within (extended) lambda calculi (see, for example, [30], and [31]) that are normally extensions
of the Curry Type Assignment System [19].

The scope of this paper is to develop decidable intersectiontype assignment in the context of TRS.
The restriction studied in this paper of the Intersection Type Discipline (ITD) for LC as presented
in [16, 11, 1, 3] is the one suggested in [29]: the limitation of the set of types to intersection types
of Rank 2. In that paper is stated that (part of) the type assignment system for ML can be seen as
a restriction of ITD when types are limited in that way. However, using Rank 2 intersection types
significantly extends the set of typeable terms as well as theaccuracy of derivable types. Moreover,

1

sometimes a program that is correct in the programmers mind can be rejected because of type errors,
while it could be accepted after the programmer has rewritten the specification. Such a rewrite would
not be necessary if Rank 2 types are used (see Subsection1.2 for an example).

In [2], Curryfied Term Rewriting Systems (CuTRS) were defined as the TRS that contain a special
binary operatorAp.1 The motivation for the use ofCurryfied TRS instead of the general first-order
TRS is the following. The notion of type assignment as studied in this paper uses higher-order types:
in general, a termt can have a type�!� , a type that expresses thatt is considered to be a function.
Given a termt0 of type�, it is natural to allow for the application oft to t0, creating in this way a term
of type� . This calls for the introduction of a notion of explicit application into the first-order rewrite
systems, and, therefore, in this paper systems equipped with a binary functionAp are considered. Using
this Ap, also Curryfied versions of function symbols (other thanAp), and related rewrite rules can be
expressed, thus enlarging the expressive power of the rewrite system. In this way, it is possible to
formulate a typeable first-order rewrite system that has full Turing-machine power (see Definition2.7).

For these systems, in [4] strong normalization of typeable terms has been proved, provided that
recursive rules do not surpass the complexity of primitive recursion (for details, see [4]); a head-
normalization result was shown to hold in [5] for systems that are a slight restriction of those considered
in [4]. The notion of type assignment presented here is a restriction of those presented in [2, 4, 5] in that
types are restricted to those of Rank 2; in particular, the result of [4] applies: given the there defined
restriction on recursive rewrite rules, typeable terms arestrongly normalizable.

Although it may seem straightforward to generalize type assignment systems for LC to the (signif-
icantly larger) world of TRS, it is not evident that those borrowed systems have still all the properties
they possessed in the world of LC. For example, type assignment in TRS in general does not satisfy
the subject reduction property, i.e.: types are not preserved under rewriting, as illustrated in [6]. More-
over, this paper aims to present type assignment for languages that allow for patterns, and as discussed
in Section6.1, notions of type assignment with intersection types for LC and TRS are, in general,
incomparable, and cannot be ported from one to the other.

Recently, some results have been obtained in the field of typed TRS [20] and the combination of
those with (intersection) type assignment systems for LC (e.g. [7], [8], [9]).

Using essentially the solution of [6], also for the system aspresented in this paper we will prove that
type assignment is closed for subject reduction. To obtain this result, first the three operations specified
(Subsection3.1) are proven to be sound on typeable terms (Theorem3.2.3). Then principal pairs are
defined for terms (Definition4.2), followed by the proof that every typeable term has a principal pair
(Theorem4.2.8). Using the principal pair of the left-hand side, type assignment on rewrite rules is
defined (Definition5.1) that is proven to be sufficient for the subject reduction result (Theorem5.6).
Since it is decidable if a term has a principal type, also the restrictions that rewrite rules should satisfy
to obtain subject reduction are decidable.

1 Context of this paper

1.1 Rank 2 type assignment for Lambda Calculus

In this subsection, we will briefly discussa notion of Rank 2 type assignment for LC (the system
presented here is not the only one possible: a variant could be to consider also the empty intersection,
but we will not take that direction here).

Intersection types of Rank 2 are a true subset of the set of intersection types as defined in [16, 11,
1, 3], and only a minor extension of the set of Curry-types. They are defined by:

1In fact, there the nameApplicativeTRS is used; the set-up of the systems defined in this paper is almost the same as the
one used there.

2

Definition 1.1.1 i) TC, the set ofCurry-typesis inductively defined by:
a) All type-variables'0, '1, . . . 2 TC.

b) If �, � 2 TC, then�!� 2 TC.

ii) T1 is defined by: If�1, . . . ,�n 2 TC (n � 1) then�1\� � �\�n 2 T1.
iii) T2 is inductively defined by:

a) If � 2 TC, then� 2 T2.
b) If � 2 T1, � 2 T2, then�!� 2 T2.

iv) TR, the set ofintersection types of Rank 2is defined by: if�1, . . . , �n 2 T2 (n � 1) then�1\� � �\�n 2 TR.

The next definition presents a partial order relation� on TR, that is induced by intersections.
This relation is used to define an equivalence relation� on types. Types� and� are equivalent under
this relation if� can be obtained from� by permuting subtypes that are part of an intersection subtype.

Definition 1.1.2 i) OnTR, the relation� is defined by:
a) 8 1� i�n (n � 1) [�1\� � �\�n � �i].
b) 8 1� i�n (n � 1) [� � �i]) � � �1\� � �\�n.

c) � � � � �) � � �.

ii) OnTR, the relation� is defined by:
a) For�, � 2 TR: � � � � �) � � � .

b) For�!� , �!�2 TR: � � � & � � �) �!� � �!�.

In this paper, types are considered modulo� . Therefore,�\(�\�) = (�\�)\� , and�\�!� =�!� . Unless stated otherwise, if�1\� � �\�n is used to denote a type, all�1, . . . ,�n are assumed to be
in T2.
Definition 1.1.3 i) A statementis an expression of the formM :�, whereM 2� and� 2 TR. M is

thesubjectand� thepredicateof M :�.

ii) A basisis a set of statements with distinct term-variables as subjects and types inT1 as predicates.

iii) Two types (bases, pairs of basis and type) aredisjoint if and only if they have no type-variables in
common.

Notice that, in bases, only types inT1 are allowed as predicates.

Definition 1.1.4 i) The relation� is extended to bases by:B � B0 () 8 x:�0 2B0 9 x:� 2B [� � �0].
ii) If B1, . . . ,Bn are bases, then�fB1, . . . ,Bng is the basis defined as follows:

x:�1\� � �\�m 2�fB1, . . . ,Bng if and only if fx:�1, . . . ,x:�mg is the set of all statements whose
subject isx that occur inB1[� � �[Bn.

Notice that�fB1, . . . , Bng is well defined, since if�1, . . . , �m are predicates of statements inB1[� � �[Bn, then all�1, . . . ,�m, and�1\� � �\�m are elements ofT1.
Definition 1.1.5 For LC,Rank 2 type assignmentandRank 2 derivationsare defined by:

3

[x:�1] � � � [x:�n]
...M :�

(!I): (a)�x:M :�!� M :�!� N :�
(!E): MN :�M :�1 . . . M :�n
(\I): (n � 1)M :�1\� � �\�n

(a) If x:�1, . . . , x:�n are all and nothing but the statements aboutx on whichM :� depends, and� � �1\� � �\�n. If x does not occur free inM , so no statement with subjectx is used to obtainM :� , then� 2 T1.
It is possible to show that the system presented in this way has the principal type property, and that

type assignment is decidable. The technique to prove the first of these properties is very similar to the
one used in this paper: specifying operations on types that are proven sound, to define principal pairs
and to show that the specified operations are complete, i.e. every correct pair for a typeable term can be
obtained from its principal pair by applying some sequence of operations to it. Because of the strong
similarity in approach, we will not present the details of such a result; instead, in Subsection6.1, we
will briefly discuss the fundamental differences between the two systems.

To avoid confusion, it is necessary to point out that there also exists a notion of type assignment that is
called the Rank 2PolymorphicType Assignment System, defined in [25]. This system is an extension
of Milner’s system, by allowing for the8-type constructor to occur also on the left-hand side of an
arrow-type, instead of only at top level. (It is also a restriction of the Polymorphic Type Discipline
[23], where types are restricted to polymorphic types of Rank 2.) As in the system presented here, type
assignment in that system is decidable.

1.2 Intersection type assignment versus ML type assignment

In [29] was remarked that (part of) the ML Type Assignment System [30] can be seen as a restriction
of the ITD [11] by limitation of the set of types to intersection types of Rank 2. This observation can
be understood by the following intuitive argument:

The ML Type Assignment System is in fact a type assignment system for an extended lambda
calculus. This calculus is defined by:

Definition 1.2.1 i) The set of ML terms,Exp, is defined as�, the set of lambda terms, extended by:
a) If M , N 2Exp, andx a term-variable, then (let x = N in M) 2Exp.

b) Y2Exp.

ii) The notion of reduction onExp, !ML , is defined as!� , extended by:
a) (let x = N in M)!ML M [N=x].
b) YM !ML M(YM).
With this extended notion of reduction, the terms (let x = N in M) and ((�x:M)N) are both

denotations for reducible expressions (redexes) that bothreduce to the termM [N=x]. However, the
semantic interpretation of these terms is different (for details of this semantic, see [30]). The term((�x:M)N) is interpreted as a function with an operand, whereas the term (let x = N in M) is in-
terpreted as the termM [N=x] would be interpreted. This difference is reflected in the waythe type
assignment system treats these terms.

4

In fact, thelet-construct is added to ML to cover precisely those cases in which the term((�x:M)N)
is not typeable, but the contractionM [N=x] is, while it is desirable for the term((�x:M)N) to be ty-
peable. The problem to overcome is that, in assigning a type to ((�x:M)N), the term-variablex can
only be typed withoneCurry-type; this is not required forx in (let x = N in M). When assigning a
type to that term, first the ‘operand’N is typed by, say, the Curry-type�. SupposeM is typeable with
the type� , and then free occurrences ofx in M are typed by the Curry-types�1, . . . ,�n respectively.
If for every �i there is a substitutionS i such thatS i (�) = �i, then also (let x = N in M) is typeable
by � . B[fx:�g ` x:�

(INST)B[fx:�g ` x:�1 � � � B[fx:�g ` x:�
(INST)B[fx:�g ` x:�n

...B[fx:�g `M :� B ` N :�
(LET)B ` (let x = N in M):�

Under those conditions, however, the term((�x:M)N) can be typed in the Rank 2 system, because
there the term(�x:M) can be typed by�1\� � �\�n!� . Also, sinceB ` N :�, and type assignment in
the Rank 2 system is closed for substitution of types,N is typeable by every�i. So, when using
intersection types, thelet-construct is not needed.

[x:�1] � � � [x:�n]
...M :��x:M :�1\� � �\�n!� N :�1 � � � N :�nN :�1\� � �\�n(�x:M)N :�

Notice that the construction sketched above uses only Rank 2intersection types.
The Rank 2 system and Milner’s system are not really equivalent, because there are terms that are

typeable in the former and not typeable in the latter, like the term�x:xx. Moreover, when using the
ML-type checker it can be that a program is rejected because of occurring type conflicts, whereas it
could be accepted after the programmer has rewritten the specification, by performing in advance some
of the reductions. Such a rewrite would not be necessary if Rank 2 types are used.

Example 1.2.2Take the following Miranda program:

Add x y = x + y

LengthList [] = 0
LengthList (a:b) = 1 + (LengthList b)

F f g c i = f (g c) (g i)

F Add LengthList [’a’,’b’,’c’] [1,2,3]

When using Milner’s approach to type this program (as is donein Miranda), the last term in this
program gives a type-error, since the type derived for the symbol F is:

F :: (��!��!���) ! (�!��) ! � ! � ! ���,
and the types[char] and[num] cannot be unified. (Notice that the definition forF corresponds to the

5

ML-term (�fgci :f(gc)(gi)).) It is possible to modify this into a typeable program, by replacing the
definition forF:

Add x y = x + y

LengthList [] = 0
LengthList (a:b) = 1 + (LengthList b)

F f c i = f (LengthList c) (LengthList i)

F Add [’a’,’b’,’c’] [1,2,3]

but of course this is not the same program. Notice that in thismodification, the definition forF has
been replaced by the ‘ML-term’(let g = LengthList in �fci :f(gc)(gi)).

Using intersection types, however, the first definition ofF is typeable with

F :: (��!�����!���) ! ((�!��)\(����!�����)) ! � ! ���� ! ���,
so third and fourth argument need not be of the same type, which makes the last term typeable. Notice
that this last type forF is an intersection type of Rank 2.

But not only the class of typeable terms is significantly extended when intersection types of Rank 2
are used, also more accurate types can be deduced for terms. For example, the termSKSI (whereS, K andI are the well-known lambda terms) has in the Rank 2 system a more general principal type
than in the ML system; in the notion of type assignment as presented in the previous subsection, the
principal type forSKSI is '!', whereas in Milner’s system it is ('0!'1)!'0!'1 (see Example
4.2.3). This implies, for instance, that more accurate types can be deduced for programs that are
translated into combinator expressions.

The here noted equivalence gives rise to the idea that the ML-Type Assignment System (and in
particular, the unification algorithm for that system), andthe limitation of the ITD to Rank 2 are as far
as decidability is concerned, equivalent. In fact, the results of this paper show that type assignment
in the here presented notion of Rank 2 type assignment is decidable. This is accomplished mainly by
showing that the unification procedure as defined in this paper is always terminating.

1.3 CuTRS versus Function-Constructor systems

The kind of rewrite systems presented in this paper is an extension to those suggested by most functional
programming languages. Such languages, like Miranda for instance, allow for the formal operand of a
function to have structure. This makes definitions like

In-left(Pair(x,y)) ! x
In-right(Pair(x,y)) ! y

possible. The subtermPair(x,y) in the definitions of bothIn-left and In-right is called apattern,
and the termIn-right t, for example, can only be reduced when there are termst1 and t2 such thatt � Pair(t1,t2). As suggested by this example, languages like Miranda allowprogrammers to specify
an algorithm (function) as a set of rewrite rules, although there is a restriction on thekindof patterns that
is allowed: the symbols of the language are divided in two groups,function symbolsandconstructors.
Constructors are meant to construct objects of a specific algebraic data type (hence their name), and are
only allowed to occur in a pattern when supplied with all the required arguments.

The reason to distinguish between function symbols and constructors is fundamental, and lies
directly in the fact that programming languages in this class are in fact sugared lambda calculi: only
those patterns are allowed that can be translated to LC. Whentranslating function definitions using

6

patterns to pure lambda terms through a mapping [[]], at a certain stage it is necessary to deal with the
pattern. One approach could be to, given the rewrite ruleF(P) ! E, define that

[[F]] = (�v.IF (v = [[P]]) [[E]] FAIL)

but this gives only a solution for certain cases. The problemis that the function ‘=’, i.e. equality be-
tween lambda terms, cannot be expressedin LC: there exist no lambda term that is capable of deciding
if two terms are the same (this is known as the problem of separability). Only in specific cases, like for
example when dealing with Church-numerals, lists, or pairs, it is possible to express equality. To guar-
antee that patterns in function-constructor systems can beadequately translated to LC, the only patterns
allowed are those based on data structures, using constructors (see, for an extensive treatment, Chapter
Six of [34]). So functions symbols arenot allowed to occur in patterns; for example, a definition like

Pair(In-left(x),In-right(x)) ! x.

is, given the two rules above, not allowed.
A difficulty with these three rules together, is that they form Klop’s famous ‘Surjective Pairing’

example [27]; this function cannot be expressed in LC because when added to LC, the Church-Rosser
property no longer holds. This implies that, although both LC and TRS are Turing-machine complete,
there is no general syntactic solution for patterns in LC, soa full-purpose translation (interpretation) of
TRS in LC is not feasible. It is this fundamental impossibility that prohibits rules like the last one: in
order to be able to apply that rule to a term

Pair(In-left(t1)),(In-right(t2)),
the termst1 andt2 have to beequivalent, something that cannot be expressed in LC.

For a very elegant discussion of a lambda calculus with patterns, see [33].

The kind of programming language we aim at uses more general rewrite systems than just function-
constructor systems. The systems considered in this paper do not discriminate against the varieties
of function symbols that can be used in patterns. As such there is no distinction between function
symbols and constructor symbols; the extension made consists of allowing for not only constructor-
symbols in the operand space of the left-hand side of rewriterules, but all function symbols. Since
function-constructor systems are a true restriction of thesystems considered here, the results obtained
in this paper apply also there.

1.4 The limitations of many-sorted rewrite systems

One way to study type assignment on TRS is to work within the framework of first-order many-sorted
rewrite systems, as used in the underlying model for the language OBJ [22]. The differences between
that approach and the one taken in this paper are significant.

First of all, first-order many-sorted rewrite systems are far less general than those suggested by
functional programming languages: rewrite rules are considered to specify operations over data-types,
instead of over arbitrary objects. This implies that an enumerable collection ofsorts is defined, and it
is assumed that everyF with arity n has a types1�� � ��sn!sn+1, wheres1, . . . ,sn+1 are sorts. Using
this approach, everyF has in factonly onetype, so in particular no function symbol can be called
polymorphic. Moreover, the biggest shortcoming of this approach is that neither one of the arguments
of a function symbol, nor the result of applying a function symbol to sufficiently many arguments can
have a type that is not a sort: ‘higher-order’ types are not allowed.

The notion of type assignment as presented in this paper is combining the approach taken in those
multi-sorted, first-order rewrite systems, with the one commonly used for type assignment in LC. Com-
pared to the multi-sorted systems, the main change is to allow for higher-order types. In multi-sorted

7

systems, a term containing the binary functionAp can be typed, butonly in oneway; by definition, there
are sortss1, s2 ands3 such thatAp has types1�s2!s3. In order to get a notion of type assignment that
resembles notions for LC, in this paper the type used forAp is the one implicitly used in the derivation
rule (!E). That rule describes what the relation is between the types assigned to the left-hand term in
an application, to the right-hand term, and to the application itself.M :�!� N :�

(!E): MN :�
This scheme gives that the natural type-scheme forAp should be (�!�)��!� – or, in a different

notation, (�!�)!�!� – so in particular the left-hand argument has an arrow-type.This extension
invokes the possibility to assign arrow-types to all objects.

2 Curryfied Term Rewriting Systems

In this paper, type assignment on Curryfied Term Rewriting Systems is studied, that are defined as a
slight extension of TRS as defined in [28] or [20]. In the literature, several different formal definitions of
TRS exist. The one chosen in this paper is that of functional,first-order systems: terms are constructed
from term variables and function symbols that have a fixed arity greater than or equal to zero, and each
function symbol can only be used with the right amount of arguments present.

Definition 2.1 An alphabetor signature� consists of:
i) A countable infinite setX of variablesx1, x2, x3, . . . (orx, y, z, . . .).

ii) A non-empty setF of function symbolsF, G, . . . , each with an ‘arity’ (a natural number), i.e. the
number of ‘arguments’ it is supposed to have.

iii) A special binary operator, calledapplication(Ap).

Definition 2.2 The setT(F;X) of terms(or expressions) is defined inductively by:
i) X � T(F;X).
ii) If F2F [fApg is ann-ary symbol(n � 0), and t1, . . . , tn 2T(F;X), then F (t1, . . . , tn)2

T(F;X). Theti (1� i�n) are theargumentsof the last term.

Definition 2.3 A replacementR is a map fromT(F;X) to T(F;X) satisfying

R(F (t1, . . . , tn)) = F(R(t1), . . . , R(tn)).

So, R is determined by its restriction to the set of variables; we will write tR instead of R(t).
Definition 2.4 i) A rewrite rule r is a pair(l; r) of terms inT(F;X), also written asr : l! r. Three

conditions will be imposed:
a) l is not a variable.

b) The variables occurring inr are contained inl.
c) If Ap occursl, thenr is of the shape:

Ap(Fi�1 (x1, . . . ,xi�1), xi) ! Fi (x1, . . . ,xi)
For every (unindexed)F2F [fApg with arity n there aren additional rewrite rules:

Ap(Fn�1 (x1, . . . ,xn�1), xn) ! F(x1, . . . ,xn)
...

Ap(F1 (x1),x2) ! F2 (x1,x2)
8

Ap(F0, x1) ! F1 (x1)
The function symbolsFn, . . . ,F1, F0, are theCurryfied versions ofF .

ii) A rewrite ruler : l! r determines a set ofrewriteslR ! rR for all replacements R. The left-hand
sidelR is called aredex; it may be replaced by its ‘contractum’ rR inside a context C[]; this gives
rise torewrite steps:

C[lR] !r C[rR].

iii) !r is called theone-step rewrite relationgenerated byr . Concatenating rewrite steps (possibly
infinite) rewrite sequencest0 ! t1 ! t2 ! � � � are obtained.

Because of the added rules forF0, . . . ,Fn, the rewrite systems considered in this paper are called
Curry-closed. When presenting a rewrite system, however, only the rules that are essential are shown,
not the rules that define the Curryfied versions.

Definition 2.5 A Curryfied Term Rewriting System(CuTRS) is a pair(�;R) of an alphabet� and a set
R of rewrite rules.

In a rewrite rule a certain symbol is defined; it is this symbolto which the structure of the rule
gives a type.

Definition 2.6 In a rewrite ruler , the leftmost, outermost symbol in the left-hand side that is not an
Ap, is calledthe defined symbolof r . Thenr definesF, andF is a defined symbol. Q2F is called a
constant symbol, if there is no rewrite rule that definesQ.

When the dependency-graph of the defined function-symbols of a CuTRS is drawn (i.e. a graph is
constructed whose nodes are labeled by the defined symbols ofthe rewrite rules, with a directed edge
going fromF to G if G occurs in the right-hand side of one of the rules that defineF) then in that graph
cycles can occur, like for the rewrite system

F(x) ! G(x)
G(x) ! F(x)

A defined symbolF is called arecursive symbolif it occurs on a cycle in the dependency-graph,
and every rewrite rule that definesF is calledrecursive. All function-symbols that occur on one cycle
in the dependency-graph depend on each other and are, therefore, definedsimultaneously. This in fact
forces to give a different notion of defined symbol; the two rewrite rules above are calledmutually
recursive, andboth define the symbolsF and G. To avoid this problem, rules are assumed to benot
mutually recursive.

Notice that the definition of recursive symbols, using the notion of defined symbols, is different
from the one normally considered. SinceAp is never a defined symbol, the following rewrite system

D(x) ! Ap(x, x)
Ap(D0, x) ! D(x)

is not considered a recursive system. Moreover, the termD(D0) has no normal form (this term plays
the role of(�x:xx)(�x:xx) in LC). This means that, in the formalism of this paper, thereexist non-
recursive first-order rewrite systems that are not normalizing.

Definition 2.7 Curryfied Combinatory Logic(CCL) is theCuTRS(�;R), whereF = fS, S2, S1, S0,
K, K1, K0, I, I0g, andR contains the rewrite rules

9

S(x, y, z) ! Ap(Ap(x, z), Ap(y, z))
K(x, y) ! x
I(x) ! x

and their Curryfied versions. Since CCL is Curry-closed, it is even combinatory complete: every
lambda term can be translated into a term in CCL; for details of such a translation, see [10, 21].

Example 2.8 In general, if the left-hand side of a rewrite rule isF (t1, . . . , tn), then theti need not be
simple variables, but can be terms as well, as for example in the rewrite rule

M(S2 (x, y)) ! S2 (I0, y)

It is also possible that for a certain symbolF, there are more than one rewrite rule that defineF, as
for example for the rewrite rules:

F(x) ! x
F(x) ! Ap(x, x)

3 Rank 2 Intersection Type Assignment

The notion of type assignment presented here is defined following the type assignment strategy as used
for languages like ML and Miranda. In particular, the way of dealing with function symbols that are
defined by more than one rewrite rule as used in Miranda is copied, as well as the way of dealing
with untyped recursive definitions. (This is a slightly moreliberal way of dealing with recursion than
used for ML. In [31, 26] another extension of the way of dealing with recursion in the ML-system
is presented, in which type assignment is no longer decidable, but that is nevertheless used for type
checking in Miranda. This system was used for the notion of type assignment defined in [6], but will
not be used here.)

Compared to the notion of type assignment used in OBJ, the system here is an extension by allow-
ing for higher-order types as well as polymorphism.

3.1 Operations on pairs

In this subsection, three operations on pairs of basis and type are defined, namely substitution, copy-
ing, and weakening. In Theorem3.2.3 it will be proved that these operations are sound: they return
admissible pairs for a term when applied to an admissible pair for that term (see Definition3.2.2 (ii)),
and in Theorem4.2.7 that they are complete: they are sufficient to generate all admissible pairs for a
term from its principal pair.

In this paper, substitution is defined as the operation that replaces type-variables by elements ofTC.
Although perhaps this is a more restricted kind of substitution than could be expected, it is a sound
operation and will be proven to be sufficient.

Definition 3.1.1 The substitution(' 7! �) : TR ! TR, where' is a type-variable and� 2 TC, is
defined by:

(' 7! �)(') = �
(' 7! �)('0) = '0, if ' 6= '0
(' 7! �)(�!�) = (' 7! �)(�)!(' 7! �)(�)
(' 7! �)(�1\� � �\�n) = (' 7! �)(�1)\� � �\(' 7! �)(�n).

10

If S 1 andS 2 are substitutions, then so isS 1�S 2, whereS 1�S 2 (�) = S 1 (S 2 (�)). Substitutions are
extended to bases byS(B) = fx:S(�) j x:� 2Bg, andS(hB; �i) = hS (B);S (�)i.

Substitution is normally defined as the operation that replaces type-variables by types, without
restriction. In general, this definition would not be correct for the Rank 2 system, since, for example,
the replacement of the type-variable' in '!' by the type (�!�)\�!� would give a type that is not
an element ofTR.

The next operation on pairs, copying, can be seen as a very simple version of the various operations of
expansion as defined in [17, 36, 3]. For readers familiar withthose definitions of expansion: copying
is a total expansion, that is not ‘computed’: all type-variables occurring in basis and type are copied.
It is an operation on types that deals with the replacement ofa type by an intersection of a number of
copies of that type.

Definition 3.1.2 Let B be a basis,� 2 TR, andn � 1. The triple<n;B; �> determines acopying
C<n;B;�> : TR ! TR, that is constructed as follows: SupposeV = f'1, . . . ,'mg is the set of all type-
variables occurring inhB; �i. Choosem � n different type-variables'11, . . . ,'n1 , . . . ,'1m, . . . ,'nm,
such that each'ij (1� i�n, 1� j�m) does not occur inV. Let S i be the substitution that replaces
every'j by'ij . Then

C<n;B;�> (�) = S 1 (�)\� � �\S n (�).

Copying is extended to bases and pairs by:C<n;B;�> (B0) = fx:C<n;B;�> (�) j x:� 2B0g, andC<n;B;�> (hB0; �0i)
= hC<n;B;�> (B0);C<n;B;�> (�0)i.
To simplify notation,<n;B; �> will be written instead ofC<n;B;�>.

Notice that if� does not contain type-variables that occur inV, then<n;B; �>(�) = �\� � �\� , which
is by definition of� the same as� .

The last operation is that of weakening; it replaces a basis by a more informative one.

Definition 3.1.3 A weakening Wis an operation characterized by a pair of baseshB0; B1i such thatB1 � B0, and is defined by: ifB = B0, thenW(hB; �i) = hB1; �i, andW(hB; �i) = hB; �i, otherwise.

Definition 3.1.4 i) A transformation sequenceis an object<O1; : : : ;On>, where eachOi is an op-
eration of substitution, copying, or weakening, and<O1; : : : ;On>(hB; �i) = On (� � �(O1 (hB; �i))� � �).

ii) On transformation sequences the operation of concatenation is denoted by� , and:<O1; : : : ;Oi> �<Oi+1; : : : ;On> = <O1; : : : ;On>.

iii) A type-chainis a transformation sequence<O1; : : : ;On> of operations of substitution and copy-
ing only, and is extended to types by:<O1; : : : ;On>(�) = On (� � �(O1 (�))� � �).

iv) A chain is a type-chain concatenated with one operation of weakening.

v) We say thatCh1 = Ch2, if for all �,Ch1 (�) =Ch2 (�).

For type-chains, the following properties hold:

Lemma 3.1.5 Let Ch be a type-chain.

11

i) There are a copying C and substitutionsS 1, . . . ,S n such that Ch =<C ;S 1; : : : ;S n>.

ii) If � 2 T2, andCh (�)2 T2, then there is a substitution S such thatCh (�) = S (�). Without loss of
generality, there is also a type-chainCh 0 such that Ch =<S> �Ch 0.

iii) If � 2 T2, andCh (�) 2 TR, then there are�1, . . . , �n and substitutionsS 1, . . . , S n such thatCh (�) = �1\� � �\�n, and, for every1� i�n, S i (�) = �i.
Proof: Easy, using part(i) in part(iii) .

3.2 Rank 2 type assignment inCuTRS

The type assignment system presented in this paper is a partial system in the sense that not only will
be defined how terms and rewrite rules can be typed, but it is also assumed that every function symbol
already has a type, stored in an environment, of which the structure is usually motivated by a rewrite
rule. In fact, this approach is very close to the one taken in [24], where the principal Curry-type scheme
of an object in Combinatory Logic is defined.

Definition 3.2.1 Let (�;R) be aCuTRS.
i) A mappingE : F ! T2 is called anenvironmentif, for every F2F with arity n, E (F) = E (Fn�1)

= � � � = E (F0).
ii) ForF2F , � 2 T2, andE an environment, the environmentE [F :=�] is defined by:E [F :=�](G) = �, if G2 fF, Fn�1, . . . ,F0gE [F :=�](G) = E (G), otherwise.

Type assignment onCuTRS is defined in two stages. In the next definition type assignment on terms
is defined, and in Definition5.1 type assignment on term rewrite rules will be defined.

Definition 3.2.2 Let (�;R) be aCuTRS, andE an environment.
i) Type assignmentandderivationsare defined by the following natural deduction system.

x:� � � �
(�): (� 2 T1, � 2 TC)

x:� t:�1 . . . t:�n
(\I): (a)t:�1\� � �\�nt1:�!� t2:�

(Ap): (� 2 T2, � 2 T1)Ap(t1; t2):� t1:�1 . . . tn:�n
(F): (b)F(t1; : : : ; tn):�

(a) If n � 1, and for every1� i�n, �i 2 T2.
(b) if there exists a type-chainChsuch thatCh(E(F)) = �1!� � �!�n!�, and for every0� i�n,�i 2 T1.

ii) Let t2T(F;X) be typeable by� with respect toE . The notationB `E t:� is used to express thatB is a basis that contains at least all the statements with variables as subject that occur in the
derivation fort:�. ThenhB; �i is calledan admissible pair fort.
An environment does not provide a type forAp; instead in rule (Ap) it is defined how an application

should be typed; this is because although�!� and� 2 T1, not necessarily (�!�)!�!� 2 T2.
The use of an environment corresponds to the use of ‘axiom-schemes’, and the use of a chain in rule
(F) to the use of ‘axioms’ as in [24], and corresponds to the use of a ‘combinator basis’ and the
axioms in Definition 3.2 of [21]. The combination of those twodefinitions also introduces a notion of

12

polymorphism into the type assignment system of this paper.The environment returns the ‘principal
type’ for a function symbol; this symbol can be used with types that are ‘instances’ of its principal type.

The following theorem shows the operations are sound on derivations; in Theorem5.4, we will
prove a soundness result for rewrite rules.

Theorem 3.2.3 i) Let S be a substitution. IfB `E t:�, thenS (B) `E t:S (�).
ii) Let C be a copying such thatC (hB; �i) = hB0; �0i. If B `E t:�, thenB0 `E t:�0.

iii) For every t2T(F;X): if B `E t:�, then, for every weakening W: ifW (hB; �i) = hB0; �0i, thenB0 `E t:�0.
Proof: Part(i) follows by straightforward induction, part(ii) follows by Definition3.1.2, part(i) and
rule (\I), and part(iii) follows by an easy induction.

4 Completeness of operations on pairs

In this section, the principal type property will be shown tohold for the here presented type assignment
system: for every termt typeable with respect toE , there exists a pairPPE (t) = hP; �i, the principal
pair of t with respect toE , such thatP `E t:�, and, for every pairhB; �i such thatB `E t:�, there
exists a chain of operationsCh such thatCh(hP; �i) = hB; �i.

As in [24], principal types are defined using a notion of unification.

4.1 Unification of intersection types of Rank 2

In the context of types, unification is a procedure normally used to find a common instance for de-
manded and provided type for applications, i.e: ift1 has type�!� , andt2 has type�, then unification
looks for a common instance of the types� and� such thatAp (t1,t2) can be typed properly. The
unification algorithmunifyR2 presented in the next definition deals with just that problem. This means
that it is not a full unification algorithm for intersection types of Rank 2, but only an algorithm that
finds the most general unifying chain for demanded and provided type. It is defined using Robinson’s
well-known unification algorithmunify .

Definition 4.1.1 (Robinson’s Unification Algorithm [35]) LetS be the set of all substitutions.unify : TC�TC ! Sunify (', '0) = (' 7!'0)unify (', �) = (' 7!�), if ' does not occur in� and� is not a type-variableunify (�, ') = unify (', �)unify (�!� , �!�) = S 2�S 1
whereS 1 = unify (�, �)S 2 = unify (S 1 (�), S 1 (�))

Property 4.1.2([35]) unify returns the most general unifier of two Curry-types� and� (if it exists),
i.e.: For all �, � 2 TC, substitutions S: ifS (�) = S (�), then there are substitutionsS u andS 0 such thatS u = unify(�; �), andS (�) = S 0�S u (�) = S 0�S u (�) = S (�).
Since the substitution returned byunify is defined only on type-variables occurring in� and� , it is
even possible to show thatS= S 0�S u.

13

The unification algorithm works roughly as follows: in finding the principal pair for the term
Ap (t1,t2), by construction the demanded type� in �!� is in T1 and the provided type� is in T2. The
unification algorithm looks for types that can be assigned tothe termst1 andt2 such that the application
term can be typed properly. In order to be consistent, the result of the unification of� and� – a chain
Ch – should always be such thatCh(�) 2 T1. However, if� 62 TC, then in generalCh(�) 62 T1. To
overcome this difficulty, an algorithmtoTC will be inserted that, when applied to the type�, returns a
type-chain of operations that removes, if possible, intersections in�.

Definition 4.1.3 Let C be the set of all type-chains, and letIdS be the substitution that replaces all
type-variables by themselves.

toTC : T2 ! C
toTC (�) = <Id S>, if � 2 TC
toTC (�1\� � �\�n!�) = <S 1; : : : ;S n�1> �Ch, otherwise

whereS i = unify (<S 1; : : : ;S i�1>(�1), <S 1; : : : ;S i�1>(�i+1)),
for every1� i�n�1

Ch = toTC (<S 1; : : : ;S n�1>(�))

The algorithmunifyR2 is called with the types� and�0, the latter being� in which the intersec-
tions are removed (so�0 = toTC (�)(�); notice thattoTC (�) is an operation on types that removes all
intersections in�).

It is possible that� 62 TC, so it can be that�0 must be duplicated. Since such an operation affects
also the basis, the third argument ofunifyR2 is a basis.

Definition 4.1.4 (Rank 2 Unification) LetB be the set of all bases, andC the set of all type-chains.unifyR2 : T1�TC�B ! CunifyR2 (�, �, B) = unify (�, �), if � 2 TCunifyR2 (�1\� � �\�n, �, B) = <C ;S 1; : : : ;S n>, otherwise
whereC = <n;B; �>�1\� � �\�n = C(�)S i = unify (<S 1; : : : ;S i�1>(�i), �i), for every1� i�n

Notice thatunifyR2 andtoTC only fail whenunify fails, and that<n;B; �> never fails. Because of
this relation betweenunifyR2 and toTC on one side, andunify on the other, the procedures defined
here are terminating and type assingment in the system defined in this paper is decidable.

With Property4.1.2, it is possible to prove the following lemma.

Lemma 4.1.5 i) For every� 2 T2, type-chain Ch: ifCh (�) = � 2 T1, then there is a type-chainCh 0
such thattoTC (�) �Ch 0 (�) = � . (Without loss of generality, Ch =toTC (�) �Ch 0.)

ii) For every � 2 T1, � 2 TC that are disjoint: if there exists a type-chain Ch such thatCh (�) =Ch (�), then, for every basisB that shares no type-variables with�, there are type-chainsCh 0
and Chu such thatChu = unifyR2 (�; �;B) and Ch (�) = Chu �Ch 0 (�) = Chu �Ch 0 (�) =Ch (�). (Without loss of generality, Ch =Chu �Ch 0.)

Proof: i) By 3.1.5 (iii) there are substitutionsS 1, . . . ,S n such thatCh(�) = S 1 (�)\� � �\S n (�). Let� = �1\� � �\�m!�. Since, for every1� i�n, S i (�) 2 TC, also for1� i�n, 1� j 6= k�m,S i (�j) = S i (�k). The result follows from Property4.1.2and Definition4.1.3.

ii) If � 2 TC, then it is easy to show that� and� must have a common substitution-instance, so from
Property4.1.2the result follows. If� = �1\� � �\�n, then likewise it is easy (but laborious) to show

14

that, for every1� i�n, �i and� have a substitution-instance in common. Then by induction on
Definition4.1.4, using Property4.1.2, the result follows.

4.2 Principal pairs for terms

In this subsection, the principal pair for a termt with respect toE –PPE (t) – is defined, consisting of
basisP and type�. In Theorem4.2.8it will be shown that, for every term, this is indeed the principal
one.

Definition 4.2.1 For everyt2T(F;X), usingunifyR2,PPE (t) = hP; �i is defined by:
i) t � x. ThenhP; �i = hfx:'g; 'i.
ii) t � Ap (t1,t2). LetPPE (t1) = hP1; �1i,PPE (t2) = hP2; �2i, (choose, if necessary, trivial variants

such that these pairs are disjoint), andS 2 = toTC (�2), then:
a) If �1 = ', then:PPE (Ap (t1,t2)) = hS 2;S 1i(h�fP1; P2g; '0i)

whereS 1 = unify (', S 2 (�2)!'0),
and'0 is a type-variable not occurring in any other type.

b) If �1 = �!� , then:PPE (Ap (t1,t2)) = hS 2i �Ch(h�fP1; P2g; � i)
whereCh = unifyR2 (�, S 2 (�2), S 2 (P2)).

iii) t � F (t1, . . . , tn). If E (F) =
1!� � �!
n!
, and, for every1� i�n, PPE (ti) = hPi; �ii,
(choose, if necessary, trivial variants such that thehPi; �ii are disjoint in pairs and these pairs
share no type-variables with
1!� � �!
n!
), then:PPE (F (t1, . . . , tn)) = Ch(h�fP1; : : : ; Png;
i)

whereCh = <S 1; : : : ;S n> �Ch1 � � � � �ChnS i = toTC (�i)Ch i = unifyR2 (Ch1 � � � � �Ch i�1 (
i), S i (�i), S i (Pi)).
Note that, sinceunifyR2 may fail, not every term has a principal pair.

Example 4.2.2The typed rules forF as in Example5.2 seem perhaps somewhat ad hoc, but using the
environment:E (K) = 1!2!1, E (Z) = 3!4!4, E (I) = 5!5, andE (F) = 7\(6!7)\6!7, whereZ is
defined byZ(x, y) ! y, and using Definition4.2.1, the following can easily be checked:

i) `E F(I0):8!8, `E I:8!8, and `E I(I0):8!8.

ii) `E F(Z0):(8!8)!8!8, `E Z0:(8!8)!8!8, and `E Z1 (Z0):(8!8)!8!8.

iii) `E F(K0):(8!9)!9!8!9, `E K0:(8!9)!9!8!9, and `E K1 (K0):(8!9)!9!8!9.

The given types are the principal types for respectivelyF(I0), F(Z0), andF(K0).
Example 4.2.3Using Rank 2 intersection types, the termS(K0,S0,I0) has a more general principal
type than using Curry-types. With the environmentE (S) = (1!2!3)!(4!2)!(1\4)!3E (K) = 5!6!5E (I) = 7!7,

and Definition4.2.1, the following can easily be checked:̀E S(K0,S0,I0):8!8.

15

K0:(8!8)!(((9!10)!9)!(9!10)!10)!8!8

S0:((9!10)!9!10)!((9!10)!9)!(9!10)!10

I0:(8!8)\((9!10)!9!10)

S(K0,S0,I0):8!8

Notice that in Curry’s system – and in ML – the termSKSI has the principal type(9!10)!9!10.
With D defined byD(x) ! Ap(x,x), it is even possible to check that for exampleD(S(K0,S0,I0))

andD(I0) are typeable by11!11. Notice that the termI(D0) is not typeable.

The following lemma expresses that a principal pair for the termt is an admissible pair fort.
Lemma 4.2.4 IfPPE (t) = hP; �i, thenP `E t:�, and� 2 T2.
Proof: By induction on the definition ofPPE (t), using Theorem3.2.3.

The following lemmas are needed in the proofs of Theorem4.2.7and Lemma5.5 (iii). The first
states that if a type-chain maps the principal pairs of termsin an application to pairs that allows the
application itself to be typed, then these pairs can also be obtained by first performing a unification.
The second generalizes this result to arbitrary function applications.

Lemma 4.2.5 Let� 2 T2, and fori = 1; 2: PP E (ti) = hPi; �ii, such that these pairs are disjoint, and
let Ch be a type-chain such thatCh (PPE (t1)) = hB1; �!�i, andCh (PPE (t2)) = hB2; �i.
Then there are type-chainsChg andCh 0, and type�2 T2 such thatPPE (Ap (t1,t2)) = Chg (h�fP1; P2g; �i), andCh 0 (PPE (Ap (t1,t2))) = h�fB1; B2g; �i.
Proof: SinceCh(�2) 2 T1, by4.1.5 (i)there is aCh1 such thatCh=<S 2> �Ch1, withS 2 = toTC (�2).

i) �1 = '. TakeS 1 = unify (', S 2 (�2)!'0), where'0 is a type-variable not occurring in any other
type. Assume, without loss of generality, thatCh1 ('0) = �. Then, by Definition4.2.1 (ii.a),PPE (Ap (t1,t2)) = hS 2; S 1i(h�fP1; P2g; '0i).
Since'2 TC and�!� 2 T2, also�!� 2 T1, so �!� 2 TC and� 2 TC. SoCh1 (S 2 (�2)!'0)2 TC, and, by Lemma3.1.5 (ii), there are a substitutionS 3 and a type-chainCh2 such thatS 3 (S 2 (�2)!'0) = �!�, andCh1 =<S 3> �Ch2. Assume, without loss of generality, thatS 3 (')
= �!�. By Property4.1.2, there is a substitutionS 4 such thatS 3 = S 4�S 1. So

Ch = <S 2> �Ch1 = <S 2> �<S 3> �Ch2 = <S 2; S 1> �<S 4> �Ch2.
TakeChg = <S 2; S 1>,Ch 0 = <S 4> �Ch2 and� = '0.

ii) �1 = �!�. Since the pairshP1; �!�i andhP2; �2i are disjoint,Ch1 (�!�) = �!�. SinceCh1 (�)
= Ch1 (S 2 (�2)), by Lemma4.1.5 (ii), there are type-chainsChu andCh2 such thatChu = unifyR2 (�, S 2 (�2), S 2 (P2)), andCh1 = Chu �Ch2.
By Definition4.2.1 (ii.b), PPE (Ap (t1,t2)) = hS 2i �Chu (h�fP1; P2g; �i). Then

Ch = <S 2> �Ch1 = <S 2> �Chu �Ch2.
TakeChg = <S 2> �Chu,Ch 0 =Ch2, and� = �.

Lemma 4.2.6 Let� 2 T2, and, for every1� i�n,PPE (ti) = hPi; �ii, such that the pairshPi; �ii and
the typeE (F) =
1!� � �!
n!
 are disjoint, and let Ch be a type-chain such thatCh (E (F)) = �1!� � �!�n!� and, for every1� i�n,Ch (hPi; �ii) = hBi; �ii.

16

Then there are type-chainsChg andChp such thatPPE (F (t1; : : : ; tn)) = Chg (h�fP1; : : : ; Png;
i), andChp (PPE (F (t1; : : : ; tn))) = h�fB1; : : : ; Bng; �i.
Proof: As part(ii) of the proof for the previous lemma, constructingChp by induction onn.

In order to prove that the operations are complete, we prove that ifB `E t:�, thent has a principal
pair and there is a chain that maps this principal pair tohB; �i.
Theorem 4.2.7 IfB `E t:�, then there are a basisP , type� and a chain Ch such thatPPE (t) = hP; �i,
andCh (hP; �i) = hB; �i.
Proof: By induction on the structure of derivations.
((�)): Thent � x, B � fx:�g, � 2 TC, andPP E (x) = hfx:'g; 'i.

TakeCh = <' 7!�; hfx:�g; Bi>.

((Ap)): Then t � Ap (t1,t2), and there are� 2 T1 and basesB1, B2 such thatB1 `E t1:�!�, andB2 `E t2:� . By induction fori = 1; 2 there arePi, �i, and chainCh i such thatPPE (ti) = hPi; �ii,Ch1 (PPE (t1)) = hB; �!�i, andCh2 (PPE (t2)) = hB; �i.
LetCh i = Ch 0i �W i, whereCh 0i is a type-chain, andBi � B such thatW i = hBi; Bi. Since the
pairshPi; �ii are disjoint, the type-chainsCh 0i do not interfere, soCh 01 �Ch 02 (PPE (t1)) = hB1; �!�i, andCh 01 �Ch 02 (PPE (t2)) = hB2; � i.
Then, by Lemma4.2.5, there is aCh 0 such thatCh 0 (PPE (Ap (t1,t2))) = h�fB1; B2g; �i.
TakeCh = Ch 0 �<h�fB1; B2g; Bi>.

((F)): Thent � F (t1, . . . , tn); let E (F) =
1!� � �!
n!
. There are�1, . . . ,�n such that, for every1� i�n, B `E ti:�i, and a type-chainChF such thatChF (
1!� � �!
n!
) = �1!� � �!�n!�.

By induction, for1� i�n, there arehPi; �ii, (disjoint in pairs) and chainCh i, such thatPPE (ti) = hPi; �ii, andCh i (PPE (ti)) = hB; �ii.
Let Ch i = Ch 0i �W i, whereCh 0i is a type-chain, andBi � B such thatW i = hBi; Bi. Since
the pairshPi; �ii are disjoint, the chainsCh 0i do not interfere. Assume, without loss of gen-
erality, that none of the type-variables occurring in
1!� � �!
n!
 occur in any of the pairshPi; �ii. LetCh 0 = ChF �Ch 01 � � � � �Ch 0n. Since, for every1� i�n, Ch 0 (hPi; �ii) = hBi; �ii,
andCh 0 (
1!� � �!
n!
) = �1!� � �!�n!�, by Lemma4.2.6 there is a type-chainCh 00 such
thatCh 00 (PPE (F (t1, . . . , tn))) = h�fB1; : : : ; Bng; �i.
TakeCh = Ch 00 �<h�fB1; : : : ; Bng; Bi>.

((\I)): Then� = �1\� � �\�n, and, for every1� i�n, B `E t:�i.
By induction there areP , �, such thatPPE (t) = hP; �i. LetC = <n;P; �>, then

C(hP; �i) = h�fP1; : : : ; Png; �1\� � �\�ni, withPPE (t) = hPi; �ii.
By induction there are type-chainsCh1, . . . ,Chn such that

for 1� i�n,Ch i (hPi; �ii) = hBi; �0ii.
LetCh i = Ch 0i �W i, whereCh 0i is a type-chain, andB0i � Bi such thatW i = hB0i; Bii. Without
loss of generality, we can assume that everyCh 0i =Ch 00i �<S i>, such that theCh 00i do not interfere.
TakeCh = <C> �Ch 001 � � � � �Ch 00n �<S 1� � � � �S n; h�fB1; : : : ; Bng; Bi>.

17

Theorem 4.2.8(Principal pair property) i) Soundness. IfPPE (t) = hP; �i, and Ch is a chain such
thatCh (hP; �i) = hB; �i, thenB `E t:�.

ii) Completeness. IfB `E t:�, then there are a basisP and type� such thatPPE (t) = hP; �i, and
there is a chain Ch such thatCh (hP; �i) = hB; �i.

Proof: i) By Lemma4.2.4, and Theorem3.2.3.

ii) By Theorem4.2.7.

5 Subject reduction

If a term t is rewritten to the termt0 using the rewrite rulel ! r, there is a subtermt0 of t, and a
replacement R, such thatlR = t0; t0 is obtained by replacingt0 by rR. The subject reduction property
for this notion of reduction is:

If B `E t:�, andt can be rewritten tot0, thenB `E t0:�.

In this section, it will be shown that the notion of type assignment as given in this paper satisfies
the subject reduction property. We will present in Definition 5.1a notion of type assignment on rewrite
rules using a restriction on the possible type assignments that guarantees this property. We will also,
through examples, show that if the restriction is weakened,the thus obtained systems do not satisfy the
subject reduction property: then there are rewrite rules typeable with respect to an environmentE , that
match a termt typeable by� with respect toE , for which the result of the application of the rewrite
rule ont is not typeable by� with respect toE .

Using the notion of principal pair, we now give a definition ofa typeable rewrite rule and a typeable
rewrite system.

Definition 5.1 Let (�;R) be aCuTRS, andE an environment.
i) r : l! r 2R with defined symbolF is typeable with respect toE , if there are basisB, type� 2 T2,

such that
a) PP E (l) = hB; �i, andB `E r:�.

b) In B `E l:� andB `E r:�, all F are typed withE (F).

ii) (�;R) is typeable with respect toE , if every r 2R is typeable with respect toE .

Example 5.2Derivations for the rewrite rules as given in Example2.8, using:E2 (M) = (1!2)!((3!4)\1)!4E2 (F) = (6\(5!6)\5)!6E2 (S) = (7!8!9)!(10!8)!(7\10)!9E2 (I) = 11!11.

x:1!3!2 y:1!3

S2(x,y):1!2

M(S2(x,y)):((3!4)\1)!4

! I0:(3!4)!3!4 y:1!3

S2(I0,y):((3!4)\1)!4

x:6\(5!6)\5

F(x):6
! x:6\(5!6)\5

x:6

x:6\(5!6)\5

F(x):6
! x:6\(5!6)\5

x:5!6

x:6\(5!6)\5

x:5

Ap(x,x):6

Example 5.3([6]) The condition ‘PPE (l) = hB; �i’ in Definition 5.1 (i.a) is crucial. Just saying

18

B `E l:� andB `E r:�
would give a notion of type assignment that is not closed under rewriting (i.e. does not satisfy the
subject reduction property).

Take the rewrite system of Example2.8, that then would be typeable with respect to the following
environment:E3 (M) = ((1!2)!3)!(1!2)!2E3 (S) = (4!5!6)!(4!5)!4!6E3 (I) = 7!7

x:(1!2)!1!3 y:(1!2)!1

S2(x,y):(1!2)!3

M(S2(x,y)):(1!2)!2

! I0:(1!2)!1!2 y:(1!2)!1

S2(I0,y):(1!2)!2

Take the termM(S2 (K0,I0)). It is easy to see that the rewrite rule is allowed, and thatthis term
rewrites toS2 (I0,I0). Although the first term is typeable by(4!5)!5 with respect toE3,

K0:(4!5)!(4!5)!4!5 I0:(4!5)!4!5

S2(K0,I0):(4!5)!4!5

M(S2(K0,I0)):(4!5)!5

the termS2 (I0,I0) is not typeable by the type(4!5)!5 with respect toE3. (In fact, it is not typeable at
all with respect toE3; when constructing the principal pair for this term with respect toE3, unification
fails.)

Notice that this example shows that the loss of subject reduction is not connected to the fact that
intersection types are allowed.

In buildingPPE3 (M(S2 (x, y))), types are assigned in the following way:

x:(1!2)!4!3 y:(1!2)!4

S2(x,y):(1!2)!3

M(S2(x,y)):(1!2)!2

The right-hand sideS2 (I0,y) of the rewrite rule is not typeable with(1!2)!2 using the basisfx:(1!2)!4!3, y:(1!2)!4g. If the right-hand side should be typed with(1!2)!2, the type needed
for y is (1!2)!1.

I0:(1!2)!1!2 y:(1!2)!1

S2(I0,y):(1!2)!2

Since types assigned to term-variables in the right-hand side should occur in type assigned to types
in the left-hand side, the type-variable4 should be replaced by1, so in the typed rewrite rule no longer
the most general pair for the left-hand side is used.

We will now show that the use of a type-chain in rule (F) is sound in the following sense: if there
is a type-chainChsuch thatCh(E (F)) = �, then, for every type� 2 T2 such that� � � , the rewrite rules
that defineF are typeable with respect to a changed environment, in whichE (F) is replaced by� .

19

Theorem 5.4 i) Let S be a substitution. Letr : l! r be a rewrite rule typeable with respect to the envi-
ronmentE , and letF be the defined symbol ofr . Thenr is typeable with respect toE [F :=S (E (F))].

ii) Let C be a copying such thatC (hB; �i) = hB0; �0i. Let r : l! r be a rewrite rule typeable with
respect to the environmentE , and letF be the defined symbol ofr . If C (E (F)) = � 2 TR, then, for
every�2 T2 such that� � �, r is typeable with respect toE [F :=�].

Proof: i) Straightforward.

ii) For every�2 T2 such that� � �, by Definition3.1.2there is a substitutionSsuch that� = S(E (F)).
The proof is completed by part(i).

Before coming to the proof that the condition is sufficient, some preliminary results are needed.

Lemma 5.5 i) IfB `E tR:�, then there is a basisB0 such thatB0 `E t:�, and for allx:�2B0,B `E xR:�.

ii) If B `E t:�, and R is a replacement andB0 a basis such that, for every statementx:� 2B,B0 `E xR:�, thenB0 `E tR:�.

iii) Let t be typeable,PPE (t) = hP; �i, and for the replacementR there areB and � such thatB `E tR:�, then there is a type-chain Ch, such thatCh (�) = �, and, for every statementx:�2 P ,B `E xR:Ch (�).
Proof: The proofs of parts(i) and(ii) follow by easy induction on the structure oft. For part(iii) , use
part(i), and Theorem4.2.8.

The following theorem shows that the condition suffices.

Theorem 5.6(Subject reduction)Let r : l! r be a typeable rewrite rule. Then, for every replacement
R, basisB and a type�: B `E lR:�) B `E rR:�.

Proof: Let PPE (l) = hP; �i. Sincer is typeable,P `E r:�. Suppose R is a replacement such that
there areB, � such thatB `E lR:�. (Assume�2 T2.) By Lemma5.5 (iii), there is a type-chainCh
such that

Ch(�) = � & 8 x:� 2 P [B `E xR:Ch(�)].

By Theorem3.2.3, Ch(P) `E r:Ch(�), soCh(P) `E r:�, and8 x:� 2 P [B `E xR:Ch(�)]) 8 x:� 2Ch(P) [B `E xR:�].

So, by Lemma5.5 (ii), B `E rR:�.

In [6] it is also shown that the there formulated condition isnecessary. This result is reached by
extending the set of types with type constants, as also used in Example5.3, and, for every rewrite rule
that is typeable in the less restrictive way, creating a specific replacement that gives the counterexample.
In this construction it is used that every type� can be inhabited in a trivial way: just pick a constantQ,
not already used, and assume thatE (Q) = �.

In the notion of type assignment as defined in this paper this construction cannot be given, because
not every type can be trivially inhabited. An environment inthis paper returns types inT2, and a
function symbolF can only have an intersection type�\� if there exists a type-chainCh such that
Ch(E (F)) = �\�. This means that it is not possible to show that there is for example a function symbol
that can be assigned the typeint\(int!int).

20

6 Concluding remarks

6.1 Rank 2 type assignment in LC versus Rank 2 type assignment in
CuTRS

This paper introduced a notion of type assignment forCuTRS. Although it is possible, as illustrated in
Section1.1, to define a similar notion for LC, results for such a system cannot be directly brought to
CuTRS. This is caused by an important difference between LC andTRS: the concept ofabstractionis
part of the definition of the former, but not of the latter. (Abstraction can be modelled in TRS, but it is
not an explicit syntactic constructor of terms or rules in TRS.)

As argued in that section, it is possible to show that the principal type property holds. However,
an important difference between a proof of the principal type property for the system for LC and the
one obtained here forCuTRS, is that the collection of operations differs. For the system of this paper,
this collection of operations consists of substitution, copying, and weakening. Notice that, using the
approach sketched above, the principal type for the term(�x:x) would be'!'. Notice that also a type
like �\�!� can be derived for(�x:x), so, in order to prove the principal type property, an operation
of lifting should be specified that allows for the introduction of more types to the left of an arrow-type
constructor, an operation that can change�!� into �\�!�. Although theCuTRS equivalent of the
term (�x:x) can be given the type�\�!�, it is not possible to obtain that type from the type�!�:
none of the operations specified in this paper is capable of changing a type in the way needed to go
from �!� to �\�!�.

Moreover, the operation that performs this is not sound forCuTRS. Take for example the rewrite
system

I(x) ! x
G(I0) ! I0
H(x) ! x

that is typeable with respect to the environmentE :E (I) = 1!1E (G) = (1!1)!1!1E (H) = (1!1)!1!1.

The operations that can be applied to types are defined on types only, so there is no way of distin-
guishing the types forG andH. We can safely add types to the ‘argument’ type for the rule that defines
G, since the rule is typeable with respect toE [G := ((1!1)\�)!1!1], for all �. For the rule that defines
G, however, not all types can be safely inserted: since all types� should be types forI, the rewrite rule
for G is not typeable with respect to the environmentE [G := (2!2)\4!3!3].
So, the principal type property for the Rank 2 type assignment for LC is no direct consequence of the
results of this paper. The converse also does not hold, sincethe proof of that property for the system in
LC requires the operation of lifting, that is not provided for in the system of this paper. This of course
implies that a notion of type assignment for LC cannot be directly translated into a type assignment
system for a programming language that allows for functionsto be specified as rewrite rules.

6.2 On implementation

The results of this paper could be used to implement a type-check algorithm forCuTRS. It should be
pointed out that the notion of type assignment as defined in this paper is really atype-checksystem, in

21

the sense that it is not possible to create a type-inference algorithm, based on the approach of this paper.
To obtain a type-inference algorithm an operation should beinserted that allows for more specific types
than generated by substitution and copying. Take for example the rewrite rules (see examples2.8 and
5.2)

F(x) ! x
F(x) ! Ap(x,x)

A type-inference algorithm could for example type both alternatives separately and try to combine
the results found. For the first rule it would findE (F) ='1!'1, for the secondE (F) = ('2!'3)\'2!'3.
The problem is that it is not possible to create the desired type, ('5\('4!'5)\'4)!'5, from these
other two applying the operations specified in this paper. Toobtain the correct type forF,'6\('5!'6)\'5!'6,
an operation is needed that inserts extra types in the left-hand side of the top arrow-type constructor,
like the one needed for LC.

So, it is allowed to give an environment for function symbolsthat is not a combination of possible
environments for the various rules. This implies that, in particular, combining types found for one
function symbol defined by several rules, applying the here defined operations, does not always lead
to the right solution. It can be that the user ‘sees’ the righttype for the rules, which the type-check
algorithm is not capable of deducing, but will be capable of checking on its correctness. This can be
seen as a disadvantage of the system, but, on the other hand, for many people it is nowadays considered
to be programming hygiene to explicitly state the types for function definitions.

Although type assignment (and type-checking) using the here defined notion of type assignment
is decidable, the complexity of type-checking is bigger than for a system based on Curry-types. The
biggest problem arises when checking the type provided for afunction symbol. Supposel ! r is a
rewrite rule. One way to implement type-checking for this rule would be to construct the principal pairhP; �i for the terml and to try to typer using this pair. Let�1\� � �\�n be the type assigned to the
term-variablex in P . Then, for every occurrence ofx in r, some selection of the types in�1\� � �\�n
should be made. In the worst case the number of possibilitiesthat must be tried is huge:2n. There
are some more efficient ways to type-check a rule, but the complexity is still exponential. However, in
every day programming lifen will rarely be larger than 2.

6.3 Overloading

The concept of overloading in programming languages is normally used to express that different ob-
jects (typically procedures) can have the same identifier. (For another approach to overloading, see
[15, 14].) At first sight this seems to be nothing but a tool to obtain programming convenience, but
the implementational aspects of languages with overloading are not at all trivial. In functional pro-
gramming languages, functions arefirst-order citizenswhich means that they can be handled as any
object, like for example numbers. In particular, a functioncan be passed as argument to another one,
or could be its result. Especially in the first case it can occur that at compile time it is not possible to
decide which of the several bodies (or pieces of code) for an overloaded identifier should be linked into
the object-code. If this decision cannot be made, the compiler should generate code that contains all
possible functions and some kind ofcase-construct that makes it possible to select at runtime whichis
the code to use. For reasons of efficiency – and to avoid run-time checks on function types – it seems
natural to allow for overloaded objects only if at compile time it can be decided which of the different
function definitions is meant, since then, for every occurrence of an overloaded symbol, the compiler
can decide which of the several function definitions should be linked into the object code.

The intersection type constructor is a good candidate to express overloading. It seems natural to
say for example that the type for additionAdd is (int!int!int)\(real!real!real). Bringing the

22

notion of overloading into a formal system for type assignment as defined in this paper implies that the
restriction on the types that can be provided by an environment should be dropped; in such a formalism,
types provided by the environment should be inTR, not justT2.

However, this extension itself creates strange effects. Let, for example,F be a function symbol
that has type(int!int!int) \ (real!real!real) ! �. Then, by the notion of type assignment as
defined here, the termF(Add) can be typed by�. Moreover, letG be a function symbol that has the
type�\�!�, and letH be an overloaded function symbol withE (H) = �\�. Then finding the principal
pair for the termG(H) requirers more than just the kind of unification defined in this paper. In general,
there can be several cases, since all possible combinationshave to be tried:� unify (�, �) andunify (� , �) are both successful.� unify (�, �) andunify (� , �) are both successful.� unifyR2 (�\� , �) andunifyR2 (�\� , �) are both successful.� unifyR2 (�\� , �) fails,unifyR2 (�\� , �) is successful.� unifyR2 (�\� , �) fails,unifyR2 (�\� , �) is successful.

It can even be that more than one of these cases is true at the same time, like for example the
first and second. This in particular is troublesome, since itis not obvious at all what in this case the
type ofG(H) should be. One solution for this problem would be to allow, like in [18], for more than
one principal pair for a term (notice that this is not the sameas saying that a principal type can be an
intersection). Another would be to introduce – formally – anextra type constructor+ with the same
meaning as\, and to define overloading using this notion. Then the unification of �\� and�+� can
be defined as the combination of the results of unifying�\� and�, and unifying�\� and�.

A good solution to all aforementioned problems is toforce selectionof one of the function definitions
for an overloaded identifier. This can be accomplished by defining, as in Definition5.1, how a rewrite
rule can be typed, but by adding that, for every� 2 T2 such thatE (F) � �, all the rewrite rules that
defineF should be typeable using the type�, for every occurrence ofF. (Another approach would be to
introduce a new syntactic construct into the language that is used to separate the rules that defineF in
groups, and to ask that, for every� 2 T2 such thatE (F) � �, there is at least one group of rules that can
be typed using�.) Moreover, it is possible to define, as in rule (F) how a type for a function symbol
can be obtained form the one provided by the environment, in the following way:t1:�1 . . . tn:�n

(F): (9 � 2 T2, Ch [E(F) � � & Ch(�) = �1!� � �!�n!�])F(t1; : : : ; tn):�
Then the termF(Add) mentioned above cannot be typed. This selection is then reflected in the

way intersection types are unified. Since onlyoneof the types in an ‘overloaded’ type can be used, the
unification should try to unify the demanded type witheach individual typeoccurring in the provided
type.

Using this definition, the notion of ‘principal pair’ becomes slightly more complicated. This is best
explained by discussing the implementation of the type-checker that is looking for such a pair. Take
the well-known functionfoldr that is defined by

foldr f i [] = i
foldr f i (a:b) = f a (foldr f i b)

and can be typed by(1!2!2)!2![1]!2. Take the termfoldr Add 1 [2,3,4], then it is clear that
this term should be typeable by the typeint. When constructing the type assignment for this term,

23

the subtermfoldr Add is typed. For this term as such the type needed forAdd cannot be uniquely
determined: it is the second argument offoldr that forces the selection. Since there is a chance of
success, the type-checker should postpone the decision to reject the term and consider both possibilities
simultaneously. This means that formally the termfoldr Add hastwo principal types.

References

[1] S. van Bakel. Complete restrictions of the IntersectionType Discipline. Theoretical Computer
Science, 102:135–163, 1992.

[2] S. van Bakel. Partial Intersection Type Assignment in Applicative Term Rewriting Systems.
In M. Bezem and J.F. Groote, editors,Proceedings of TLCA ’93. International Conference on
Typed Lambda Calculi and Applications,Utrecht, the Netherlands, volume 664 ofLecture Notes
in Computer Science, pages 29–44. Springer-Verlag, 1993.

[3] S. van Bakel. Intersection Type Assignment Systems.Theoretical Computer Science, 151(2):385–
435, 1995.

[4] S. van Bakel and M. Fernández. Strong Normalization of Typeable Rewrite Systems. In Jan
Heering, Karl Meinke, Bernhard Möller, and Tobias Nipkow,editors,Proceedings of HOA ’93.
First International Workshop on Higher Order Algebra, Logic and Term Rewriting,Amsterdam,
the Netherlands. Selected Papers, volume 816 ofLecture Notes in Computer Science, pages 20–
39. Springer-Verlag, 1994.

[5] S. van Bakel and M. Fernández. (Head-)Normalization ofTypeable Rewrite Systems. In Jieh
Hsiang, editor,Proceedings of RTA ’95. 6th International Conference on Rewriting Techniques
and Applications,Kaiserslautern, Germany, volume 914 ofLecture Notes in Computer Science,
pages 279–293. Springer-Verlag, 1995.

[6] S. van Bakel, S. Smetsers, and S. Brock. Partial Type Assignment in Left Linear Applicative Term
Rewriting Systems. In J.-C. Raoult, editor,Proceedings of CAAP ’92. 17th Colloquim on Trees in
Algebra and Programming,Rennes, France, volume 581 ofLecture Notes in Computer Science,
pages 300–321. Springer-Verlag, 1992.

[7] F. Barbanera and M. Fernández. Combining first and higher order rewrite systems with type as-
signment systems. In M. Bezem and J.F. Groote, editors,Proceedings of TLCA ’93. International
Conference on Typed Lambda Calculi and Applications,Utrecht, the Netherlands, volume 664 of
Lecture Notes in Computer Science, pages 60–74. Springer-Verlag, 1993.

[8] F. Barbanera and M. Fernández. Modularity of Termination and Confluence in Combinations of
Rewrite Systems with�!. In A. Lingas, R. Karlsson, and S. Carlsson, editors,Proceedings of
ICALP ’93. 20th International Colloquium on Automata, Languages and Programming,Lund,
Sweden, volume 700 ofLecture Notes in Computer Science, pages 657–668. Springer-Verlag,
1993.

[9] F. Barbanera, M. Fernández, and H. Geuvers. Modularityof Strong Normalization and Conflu-
ence in the�-algebraic-cube. InProceedings of the ninth Annual IEEE Symposium on Logic in
Computer Science,Paris, France, 1994.

[10] H. Barendregt.The Lambda Calculus: its Syntax and Semantics. North-Holland, Amsterdam,
revised edition, 1984.

[11] H. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A filter lambda model and the complete-
ness of type assignment.Journal of Symbolic Logic, 48(4):931–940, 1983.

24

[12] H.P. Barendregt, M.C.J.D. van Eekelen, J.R.W. Glauert, J.R. Kennaway, M.J. Plasmeijer, and M.R.
Sleep. Term graph rewriting. InProceedings of PARLE, Parallel Architectures and Languages
Europe,Eindhoven, The Netherlands, volume 259-II ofLecture Notes in Computer Science, pages
141–158. Springer-Verlag, 1987.

[13] T. Brus, M.C.J.D. van Eekelen, M.O. van Leer, and M.J. Plasmeijer. Clean - A Language for
Functional Graph Rewriting. InProceedings of the Third International Conference on Functional
Programming Languages and Computer Architecture,Portland, Oregon, USA, volume 274 of
Lecture Notes in Computer Science, pages 364–368. Springer-Verlag, 1987.

[14] G. Castagna. A Meta-Language for Typed Object-Oriented Languages. In R.K. Shyamasunda,
editor, Proceedings of FST&TCS ’93. 13th Conference on Foundations of Software Technology
and Theoretical Computer Science,Bombay, India, volume 761 ofLecture Notes in Computer
Science, pages 52,71. Springer-Verlag, 1993.

[15] G. Castagna, G. Ghelli, and G. Longo. A Calculus for Overloaded Functions with Subtyping.
Information and Computation, 117(1):115–135, 1995.

[16] M. Coppo and M. Dezani-Ciancaglini. An Extension of theBasic Functionality Theory for the�-Calculus.Notre Dame Journal of Formal Logic, 21(4):685–693, 1980.

[17] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional characters of solvable terms.
Zeitschrift f̈ur Mathematische Logik und Grundlagen der Mathematik, 27:45–58, 1981.

[18] M. Coppo and P. Giannini. A complete type inference algorithm for simple intersection types.
In J.-C. Raoult, editor,Proceedings of CAAP ’92. 17th Colloquim on Trees in Algebra and Pro-
gramming,Rennes, France, volume 581 ofLecture Notes in Computer Science, pages 102–123.
Springer-Verlag, 1992.

[19] H.B. Curry and R. Feys.Combinatory Logic, volume 1. North-Holland, Amsterdam, 1958.

[20] N. Dershowitz and J.P. Jouannaud. Rewrite systems. In J. van Leeuwen, editor,Handbook of
Theoretical Computer Science, volume B, chapter 6, pages 245–320. North-Holland, 1990.

[21] M. Dezani-Ciancaglini and J.R. Hindley. Intersectiontypes for combinatory logic.Theoretical
Computer Science, 100:303–324, 1992.

[22] K. Futatsugi, J. Goguen, J.P. Jouannaud, and J. Meseguer. Principles of OBJ2. InProceedings
12th ACM Symposium on Principles of Programming Languages, pages 52–66, 1985.

[23] J.Y. Girard. The System F of Variable Types, Fifteen years later.Theoretical Computer Science,
45:159–192, 1986.

[24] J.R. Hindley. The principal type scheme of an object in combinatory logic.Transactions of the
American Mathematical Society, 146:29–60, 1969.

[25] A.J. Kfoury and J. Tiuryn. Type reconstruction in finite-rank fragments of the second-order�-
calculus.Information and Computation, 98(2):228–257, 1992.

[26] A.J. Kfoury, J. Tiuryn, and P. Urzyczyn. A proper extension of ML with an effective type-
assignment. InProceedings of the Fifteenth Annual ACM SIGACT-SIGPLAN Symposium on Prin-
ciples of Programming Languages,San Diego, California, pages 58–69, 1988.

[27] J.W. Klop. Term Rewriting Systems: a tutorial.EATCS Bulletin, 32:143–182, 1987.

[28] J.W. Klop. Term Rewriting Systems. In S. Abramsky, Dov.M. Gabbay, and T.S.E. Maibaum,
editors,Handbook of Logic in Computer Science, volume 2, chapter 1, pages 1–116. Clarendon
Press, 1992.

[29] D. Leivant. Polymorphic Type Inference. InProceedings 10th ACM Symposium on Principles of
Programming Languages, pages 88–98, Austin Texas, 1983.

25

[30] R. Milner. A theory of type polymorphism in programming. Journal of Computer and System
Sciences, 17:348–375, 1978.

[31] A. Mycroft. Polymorphic type schemes and recursive definitions. InProceedings of the Inter-
national Symposium on Programming,Toulouse, France, volume 167 ofLecture Notes Computer
Science, pages 217–239. Springer-Verlag, 1984.

[32] E.G.J.M.H. Nöcker, J.E.W. Smetsers, M.C.J.D. van Eekelen, and M.J. Plasmeijer. Concurrent
Clean. InProceedings of PARLE ’91, Parallel Architectures and Languages Europe,Eindhoven,
The Netherlands, volume 506-II ofLecture Notes in Computer Science, pages 202–219. Springer-
Verlag, 1991.

[33] V. van Oostrom. Lambda Calculus with Patterns. Technical Report IR-228, Faculteit der Wiskunde
en Informatica, Vrije Universiteit Amsterdam, 1990.

[34] S. Peyton Jones.The Implementation of Functional Programming Languages. Series in Computer
Science. Prentice/Hall International, Englewood Cliffs,NJ, USA, 1987.

[35] J.A. Robinson. A machine-oriented logic based on the resolution principle.Journal of the ACM,
12(1):23–41, 1965.

[36] S. Ronchi della Rocca and B. Venneri. Principal type schemes for an extended type theory.Theo-
retical Computer Science, 28:151–169, 1984.

[37] D.A. Turner. Miranda: A non-strict functional language with polymorphic types. InProceedings
of the conference on Functional Programming Languages and Computer Architecture, volume
201 ofLecture Notes in Computer Science, pages 1–16. Springer-Verlag, 1985.

26

