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Abstract

A notion of type assignment on Curryfied Term Rewriting Systemstisdtuced that uses Intersection
Types of Rank 2, and in which all function symbols are assumed to hayeaType assignment will
consist of specifying derivation rules that describe how types can benassig terms, using the types
of function symbols.

Using a modified unification procedure, for each term the principal pair &ésfsband type) will be
defined in the following sense: from these all admissible pairs can beajedday chains of operations
on pairs, consisting of the operations substitution, copying veeakening.

In general, given an arbitrary typealdB¥ RS, the subject reduction property does not hold. Using
the principal type for the left-hand side of a rewrite rule, a sidfitiand decidable condition will be
formulated that typeable rewrite rules should satisfy in order taiolihis property.

Introduction

In the recent years, several paradigms have been investigat the implementation of functional
programming languages. Not only the Lambda Calculus (LO), [Aut also Term Rewriting Systems
(TRS) [28] and Term Graph Rewriting Systems (TGRS) [12] apeds of research. LC (or rather Com-
binator Systems) constitutes the underlying model for threefional programming language Miranda
[37], TRS were used in the underlying model for the langua@a 22], and TGRS were the model
for the language Clean [13, 32].

For the implementation of a language, independent of thearhimplementation model, the notion
of types plays an important role. Types are essential tamlefficient machine code when compiling
a program and are also used to make sure that the programmex tlaarer understanding of the
programs that are written. In fact, type assignment to @nogr and objects is a way of performing
abstract interpretation that provides necessary infaondor both compilers and programmers.

Since functional programming languages had their origib@, formal notions like type assign-
ment or strictness analysis, used for those languages,ftae studied on the level of LC. Several
authors, when presenting new notions of type assignmerg tesbd in programming, presented their
results within (extended) lambda calculi (see, for exap{3@], and [31]) that are normally extensions
of the Curry Type Assignment System [19].

The scope of this paper is to develop decidable intersettjpmassignment in the context of TRS.
The restriction studied in this paper of the Intersectiop&Discipline (ITD) for LC as presented
in [16, 11, 1, 3] is the one suggested in [29]: the limitatidrth®e set of types to intersection types
of Rank 2. In that paper is stated that (part of) the type assemt system for ML can be seen as
a restriction of ITD when types are limited in that way. Howgwsing Rank 2 intersection types
significantly extends the set of typeable terms as well astoaracy of derivable types. Moreover,



sometimes a program that is correct in the programmers rmandbe rejected because of type errors,
while it could be accepted after the programmer has rewrifte specification. Such a rewrite would
not be necessary if Rank 2 types are used (see Subsécifor an example).

In [2], Curryfied Term Rewriting System&{f RS) were defined as the TRS that contain a special
binary operatorAp.> The motivation for the use dEurryfied TRS instead of the general first-order
TRS is the following. The notion of type assignment as sulidethis paper uses higher-order types:
in general, a ternt can have a type—, a type that expresses thais considered to be a function.
Given a termt’ of type o, it is natural to allow for the application a@fto ¢, creating in this way a term
of type . This calls for the introduction of a notion of explicit apgation into the first-order rewrite
systems, and, therefore, in this paper systems equippadwinary functiorAp are considered. Using
this Ap, also Curryfied versions of function symbols (other ti#gy), and related rewrite rules can be
expressed, thus enlarging the expressive power of theteegystem. In this way, it is possible to
formulate a typeable first-order rewrite system that hashuling-machine power (see Definitiéh?).

For these systems, in [4] strong normalization of typeabtens has been proved, provided that
recursive rules do not surpass the complexity of primitigeursion (for details, see [4]); a head-
normalization result was shown to hold in [5] for systemg Hra a slight restriction of those considered
in [4]. The notion of type assignment presented here is @ctseh of those presented in [2, 4, 5] in that
types are restricted to those of Rank 2; in particular, tiselteof [4] applies: given the there defined
restriction on recursive rewrite rules, typeable termssarengly normalizable.

Although it may seem straightforward to generalize typégaseent systems for LC to the (signif-
icantly larger) world of TRS, it is not evident that those tmaved systems have still all the properties
they possessed in the world of LC. For example, type assighmelRS in general does not satisfy
the subject reduction property, i.e.: types are not prestnnder rewriting, as illustrated in [6]. More-
over, this paper aims to present type assignment for laregutgut allow for patterns, and as discussed
in Section6.1, notions of type assignment with intersection types for Il &RS are, in general,
incomparable, and cannot be ported from one to the other.

Recently, some results have been obtained in the field oflty{B&S [20] and the combination of
those with (intersection) type assignment systems for L@ (€], [8], [9]).

Using essentially the solution of [6], also for the systemrasented in this paper we will prove that
type assignment is closed for subject reduction. To obtagresult, first the three operations specified
(SubsectiorB.1) are proven to be sound on typeable terms (Thedet®. Then principal pairs are
defined for terms (Definitiod.2), followed by the proof that every typeable term has a ppatpair
(Theorem4.2.8. Using the principal pair of the left-hand side, type aseignt on rewrite rules is
defined (Definitior5.1) that is proven to be sufficient for the subject reductiornulte§lheorem5.6).
Since it is decidable if a term has a principal type, also ##rictions that rewrite rules should satisfy
to obtain subject reduction are decidable.

1 Context of this paper

1.1 Rank 2 type assignment for Lambda Calculus

In this subsection, we will briefly discussnotion of Rank 2 type assignment for LC (the system
presented here is not the only one possible: a variant cautd bonsider also the empty intersection,
but we will not take that direction here).

Intersection types of Rank 2 are a true subset of the setafsimttion types as defined in [16, 11,
1, 3], and only a minor extension of the set of Curry-typeseylare defined by:

1In fact, there the namapplicative TRS is used; the set-up of the systems defined in this papknésathe same as the
one used there.



Definition 1.1.1 i) 7¢, the set ofCurry-typesis inductively defined by:
a) All type-variablesyy, ¢1, ... € Tc.
b) If o, 7 € T, theno—1 € T¢.
ii) 7y is defined by: Ifo, ...,0, € Tc (n > 1) thenon- - -noy, € T1.
iif) 72 is inductively defined by:
a) If o € T, theno € Ts.
b) If c € T1, 7 € Ts, thenoc—1 € Ts.

iv) Tr, the set ofintersection types of Rank i8 defined by: ifoy, ..., 0, €72 (n > 1) then
oin---Noy, € Tr.

The next definition presents a partial order relatien on 7g, that is induced by intersections.
This relation is used to define an equivalence relatioron types. Types andr are equivalent under
this relation ifo can be obtained from by permuting subtypes that are part of an intersection qabty

Definition 1.1.2 i) On7g, the relation< is defined by:
a)vV1i<i<n(n>1)[o1n - nop <ol
b)vVi<i<n(n>1)[oc <o = o <o1n - Noy.
Co<1t<p=0<p.

ii) On7Tg, the relation~ is defined by:
a)Foro,7reTr:0<7<0 =>o0~T.
b) Foro—=r, p—op€eTr:o~p & T~pu = o—=7 ~ p—p.

In this paper, types are considered moduo. Therefore,pn(cnt) = (pno)nr, andono—71 =
o—7. Unless stated otherwise,dfn- - -no,, is used to denote a type, all, ...,o, are assumed to be
in 7.

Definition 1.1.3 i) A statemenis an expression of the forf®/:o, whereM € A ando € Tg. M is
thesubjectando thepredicateof M :o.

i) A basisis a set of statements with distinct term-variables as stdbpnd types iff; as predicates.

iif) Two types (bases, pairs of basis and type)dispint if and only if they have no type-variables in
common.

Notice that, in bases, only typesTh are allowed as predicates.

Definition 1.1.4 i) The relation< is extended to bases by:
B<B < Vxco' eB' 3dxiceBlo<d'].

i) If By, ...,B, are bases, theli{B;, ..., B,} is the basis defined as follows:
X:o1n- - -Noy € I{ By, ..., B, } ifand only if {X:o1, ...,Xo, } IS the set of all statements whose
subject isx that occur inB;U- - -UB,,.

Notice thatIl{Bs, ..., B,} is well defined, since iby, ..., o, are predicates of statements in
BiU---UB,, then alloy, ...,0,, andoin- - -no,, are elements of;.

Definition 1.1.5 For LC,Rank 2 type assignmeahdRank 2 derivationsre defined by:



M:.io—1t N:o

[z:01] - - - [2:00] (—E):
: MN:T
G — @
- —— @ Moy ... Moy,
Az.M:o—T (n1): ! (n > 1)
M:o1n---Nop
@) If z:0q, ..., z:0, are all and nothing but the statements abowin which M:+ depends, and

o < o1n---no,. If z does not occur free iR/, so no statement with subjeetis used to obtain
M7, theno € T;.

Itis possible to show that the system presented in this waytteprincipal type property, and that
type assignment is decidable. The technique to prove ttiefithese properties is very similar to the
one used in this paper: specifying operations on types tegpraven sound, to define principal pairs
and to show that the specified operations are completeyveey eorrect pair for a typeable term can be
obtained from its principal pair by applying some sequerfogperations to it. Because of the strong
similarity in approach, we will not present the details oflswa result; instead, in Subsectiérl, we
will briefly discuss the fundamental differences betweantito systems.

To avoid confusion, it is necessary to point out that these akists a notion of type assignment that is
called the Rank PolymorphicType Assignment System, defined in [25]. This system is agnesibn

of Milner's system, by allowing for th&/-type constructor to occur also on the left-hand side of an
arrow-type, instead of only at top level. (It is also a resion of the Polymorphic Type Discipline
[23], where types are restricted to polymorphic types oflR2i As in the system presented here, type
assignment in that system is decidable.

1.2 Intersection type assignment versus ML type assignment

In [29] was remarked that (part of) the ML Type Assignmentt8ys[30] can be seen as a restriction
of the ITD [11] by limitation of the set of types to intersemtitypes of Rank 2. This observation can
be understood by the following intuitive argument:

The ML Type Assignment System is in fact a type assignmertesysor an extended lambda
calculus. This calculus is defined by:

Definition 1.2.1 i) The set of ML termsExp, is defined as\, the set of lambda terms, extended by:
a) If M, N € Exp, andz a term-variable, thendt x = N in M) € Exp.
b) Y € Exp.
i) The notion of reduction o&xp, —wr, , is defined as— 3 , extended by:
a) (letz = Nin M) =y, M[N/z|.
b) YM —y, M(YM).

With this extended notion of reduction, the terntst@¢ = N in M) and ((Az.M)N) are both
denotations for reducible expressions (redexes) that teathice to the termd/[N/z]. However, the
semantic interpretation of these terms is different (forade of this semantic, see [30]). The term
((Az.M)N) is interpreted as a function with an operand, whereas tme &t + = N in M) is in-
terpreted as the term/ [N /x| would be interpreted. This difference is reflected in the sy type
assignment system treats these terms.



In fact, thelet-construct is added to ML to cover precisely those cases ioiwthe term((Az. M) N)
is not typeable, but the contractidd [N/ z] is, while it is desirable for the terrf(Az.M)N) to be ty-
peable. The problem to overcome is that, in assigning a typé\:.M ) N), the term-variable: can
only be typed withone Curry-type; this is not required for in (let z = N in M). When assigning a
type to that term, first the ‘operandV is typed by, say, the Curry-type SupposeV/ is typeable with
the typer, and then free occurrences af in M are typed by the Curry-types, ...,o, respectively.
If for every o; there is a substitutiol§; such thatS; (¢) = o;, then alsolet z = N in M) is typeable
by 7.

BuU{zio}tFzio BuU{zio}tFzio
(INST) -~ (INST)

Bu{zio}t zioq Bu{zio}t ziop

Bu{zio}t+ M:T BF N:o

. (LET)
Bl (letz=Nin M):r

Under those conditions, however, the teifhz. M) N) can be typed in the Rank 2 system, because
there the term{Az.M) can be typed byn- - -no,—7. Also, sinceB - N:o, and type assignment in
the Rank 2 system is closed for substitution of typ&sjs typeable by every;. So, when using
intersection types, thiet-construct is not needed.

[z:01] -+ [zion]
M:T N.oy -+ N,
Ax.M:.o1n- - -Nop—T N:.oin--Noy,
(Ax.M)N:t

Notice that the construction sketched above uses only Ramie&ection types.

The Rank 2 system and Milner’'s system are not really equivalecause there are terms that are
typeable in the former and not typeable in the latter, like tdrm\z.zz. Moreover, when using the
ML-type checker it can be that a program is rejected becatiseaurring type conflicts, whereas it
could be accepted after the programmer has rewritten ttafggagion, by performing in advance some
of the reductions. Such a rewrite would not be necessaryrikRaypes are used.

Example 1.2.2Take the following Miranda program:

Add x y =X+y
LengthList[] =0

LengthList (a:b) = 1 + (LengthList b)
Ffgci =f(gc)(gi)

F Add LengthList ['a’,/b’,c'] [1,2,3]

When using Milner’s approach to type this program (as is daridiranda), the last term in this
program gives a type-error, since the type derived for tmatsyl F is:

F oo (ks —xx%) — (x—>%%) = % —> % — kxk,

and the typegchar] and[num] cannot be unified. (Notice that the definition fercorresponds to the



ML-term (Mfgci. f(gc)(gi)).) It is possible to modify this into a typeable program, bplaging the
definition forF:

Add x y =X+y

LengthList[] =0

LengthList (a:b) = 1 + (LengthList b)

Ffci = f (LengthList c) (LengthList i)
F Add ['a’,b’,/c’] [1,2,3]

but of course this is not the same program. Notice that inrtfoslification, the definition foF has
been replaced by the ‘ML-ternflet g = LengthList in Afci.f(gc)(gi)).
Using intersection types, however, the first definitior-a§ typeable with

F oo (k= krksk—nnk) — (k)N (kx> kkkonk)) — % —> sokskk —> ok,

so third and fourth argument need not be of the same type hwhikes the last term typeable. Notice
that this last type foF is an intersection type of Rank 2.

But not only the class of typeable terms is significantly estgsl when intersection types of Rank 2
are used, also more accurate types can be deduced for teongxample, the tern$ K ST (where
S, K andI are the well-known lambda terms) has in the Rank 2 system a gemweral principal type
than in the ML system; in the notion of type assignment asgmtesl in the previous subsection, the
principal type forS K ST is p—, whereas in Milner's system it iso§—¢1)—@o— 1 (See Example
4.2.3. This implies, for instance, that more accurate types camdduced for programs that are
translated into combinator expressions.

The here noted equivalence gives rise to the idea that thelYyde- Assignment System (and in
particular, the unification algorithm for that system), d@hd limitation of the ITD to Rank 2 are as far
as decidability is concerned, equivalent. In fact, the ltesaf this paper show that type assignment
in the here presented notion of Rank 2 type assignment islaalei. This is accomplished mainly by
showing that the unification procedure as defined in this papgways terminating.

1.3 GITRS versus Function-Constructor systems

The kind of rewrite systems presented in this paper is amsida to those suggested by most functional
programming languages. Such languages, like Miranda &airce, allow for the formal operand of a
function to have structure. This makes definitions like

In-left(Pair(x,y)) — X
In-right(Pair(x,y)) -y

possible. The subterrRair(x,y) in the definitions of bothin-left and In-right is called apattern
and the termin-right ¢, for example, can only be reduced when there are tegnedt, such that
t = Pair(t1,t2). As suggested by this example, languages like Miranda gllmgrammers to specify
an algorithm (function) as a set of rewrite rules, althouwgre is a restriction on thend of patterns that
is allowed: the symbols of the language are divided in twaigsgfunction symbolandconstructors
Constructors are meant to construct objects of a specifabadic data type (hence their name), and are
only allowed to occur in a pattern when supplied with all taguired arguments.

The reason to distinguish between function symbols andtearers is fundamental, and lies
directly in the fact that programming languages in this €lage in fact sugared lambda calculi: only
those patterns are allowed that can be translated to LC. Whaslating function definitions using



patterns to pure lambda terms through a mapping [ ]|, at &aizestage it is necessary to deal with the
pattern. One approach could be to, given the rewrite Fffe) — E, define that

[FI = (Av.IF (v =[P]) [ E] FAIL)

but this gives only a solution for certain cases. The prohiethat the function=’, i.e. equality be-
tween lambda terms, cannot be expreseddC: there exist no lambda term that is capable of deciding
if two terms are the same (this is known as the problem of sdyiléty). Only in specific cases, like for
example when dealing with Church-numerals, lists, or p#iis possible to express equality. To guar-
antee that patterns in function-constructor systems caéguately translated to LC, the only patterns
allowed are those based on data structures, using corsBske, for an extensive treatment, Chapter
Six of [34]). So functions symbols aret allowed to occur in patterns; for example, a definition like

Pair (In-left(x),In-right(x)) — Xx.

is, given the two rules above, not allowed.

A difficulty with these three rules together, is that theynfioKlop’s famous ‘Surjective Pairing’
example [27]; this function cannot be expressed in LC bexadwen added to LC, the Church-Rosser
property no longer holds. This implies that, although bothdnd TRS are Turing-machine complete,
there is no general syntactic solution for patterns in LCa $dll-purpose translation (interpretation) of
TRS in LC is not feasible. It is this fundamental impossipithat prohibits rules like the last one: in
order to be able to apply that rule to a term

Pair (In-left(1)),(In-right(t5)),

the termst; and¢s have to beequivalent something that cannot be expressed in LC.
For a very elegant discussion of a lambda calculus with patteee [33].

The kind of programming language we aim at uses more genanalte systems than just function-
constructor systems. The systems considered in this papeoddiscriminate against the varieties
of function symbols that can be used in patterns. As sucletlseno distinction between function
symbols and constructor symbols; the extension made dsrisllowing for not only constructor-
symbols in the operand space of the left-hand side of rewwits, but all function symbols. Since
function-constructor systems are a true restriction ofsygtems considered here, the results obtained
in this paper apply also there.

1.4 The limitations of many-sorted rewrite systems

One way to study type assignment on TRS is to work within taenBwork of first-order many-sorted
rewrite systems, as used in the underlying model for thedagg OBJ [22]. The differences between
that approach and the one taken in this paper are significant.

First of all, first-order many-sorted rewrite systems aneléas general than those suggested by
functional programming languages: rewrite rules are a®rsid to specify operations over data-types,
instead of over arbitrary objects. This implies that an eetahle collection ofortsis defined, and it
is assumed that evefywith arity n has a types; x- - - xs,—S, 41, Wheresy, ...,S,+1 are sorts. Using
this approach, ever has in factonly onetype, so in particular no function symbol can be called
polymorphic. Moreover, the biggest shortcoming of thisrapgh is that neither one of the arguments
of a function symbol, nor the result of applying a functiommol to sufficiently many arguments can
have a type that is not a sort: ‘higher-order’ types are riot\aid.

The notion of type assignment as presented in this papembioing the approach taken in those
multi-sorted, first-order rewrite systems, with the one aoonly used for type assignment in LC. Com-
pared to the multi-sorted systems, the main change is te d&io higher-order types. In multi-sorted



systems, aterm containing the binary functigmcan be typed, bugnly in oneway; by definition, there
are sortss;, S, andss such thatAp has types; xs;,—S3. In order to get a notion of type assignment that
resembles notions for LC, in this paper the type used\fois the one implicitly used in the derivation
rule (—E). That rule describes what the relation is between thestgssigned to the left-hand term in
an application, to the right-hand term, and to the applcatiself.

M:.o—T N:o

(—E):
MN:T

This scheme gives that the natural type-scheméjfoshould be §—7)xo— 7 — or, in a different
notation, 6—7)—oc—7 — so in particular the left-hand argument has an arrow-tyfi@s extension
invokes the possibility to assign arrow-types to all olgect

2 Curryfied Term Rewriting Systems

In this paper, type assignment on Curryfied Term Rewritingt&ws is studied, that are defined as a
slight extension of TRS as defined in [28] or [20]. In the kiewre, several different formal definitions of
TRS exist. The one chosen in this paper is that of functidirat;order systems: terms are constructed
from term variables and function symbols that have a fixety grieater than or equal to zero, and each
function symbol can only be used with the right amount of argats present.

Definition 2.1 An alphabetor signatureX. consists of:
i) A countable infinite se’ of variablesxy, Xa, X3, ... (OrX,y, z,...).

i) A non-empty setF of function symbol$, G, ..., each with an ‘arity’ (a natural number), i.e. the
number of ‘arguments’ it is supposed to have.

iif) A special binary operator, callexpplication (Ap).

Definition 2.2 The sefl (£ X) of terms(or expressionsis defined inductively by:
) X CT(EX).
i) If Fe FU{Ap} is ann-ary symbol(n > 0), andty, ..., t, € T(EX), thenF(t1,...,t,) €
T(E X). Thet; (1 <i<n) are theargumentf the last term.

Definition 2.3 A replacemenR is a map fronT(F X') to T(F &) satisfying

R(F (t1,...,tn) = F(R(1), ..., RE)).
So, R is determined by its restriction to the set of varigbbes will write t® instead of Rt).

Definition 2.4 i) A rewrite ruler is a pair(l,r) of terms inT(% X), also written as : | — r. Three

conditions will be imposed:

a) [ is not a variable.

b) The variables occurring in are contained i.

¢) If Ap occursl, thenr is of the shape:
Ap(Fio1 (X1, -y Xi-1), X)) — Fi(Xq, ..., %)

For every (unindexedy € F U {Ap} with arity n there aren additional rewrite rules:
Ap(Fr1(X1, - Xp 1), Xn) — F(X1, ..., %)

Ap(Fq (Xl.)7X2) — Fa(X1,X2)



Ap(Fo, X1) — F1(x1)
The function symbol§-,, ...,F1, Fg, are theCurryfied versions of'.
i) Arewrite ruler : I — r determines a set eéwrites/® — R for all replacements R. The left-hand
sidel® is called aedex it may be replaced by itsbntractum ® inside a context C[ ]; this gives
rise torewrite steps

C[I®] —; C[R].
iii) —, is called theone-step rewrite relatioenerated by. Concatenating rewrite steps (possibly
infinite) rewrite sequences — t; — to — - - - are obtained.

Because of the added rules fey, . .., F,, the rewrite systems considered in this paper are called
Curry-closed When presenting a rewrite system, however, only the riiasare essential are shown,
not the rules that define the Curryfied versions.

Definition 2.5 A Curryfied Term Rewriting Systef@TRS) is a paif(3, R) of an alphabeE and a set
R of rewrite rules.

In a rewrite rule a certain symbol is defined; it is this symtwolvhich the structure of the rule
gives a type.

Definition 2.6 In a rewrite ruler, the leftmost, outermost symbol in the left-hand side teatdt an
Ap, is calledthe defined symbdf r. Thenr definesF, andF is a defined symbolQ € F is called a
constant symboif there is no rewrite rule that defin€3.

When the dependency-graph of the defined function-symbd@dsGIrRS is drawn (i.e. a graph is
constructed whose nodes are labeled by the defined symbthle ofwrite rules, with a directed edge
going fromF to G if G occurs in the right-hand side of one of the rules that definiaen in that graph
cycles can occur, like for the rewrite system

FX) — G(X)
GX) — F(x)

A defined symboF is called arecursive symboailf it occurs on a cycle in the dependency-graph,
and every rewrite rule that defin€sis calledrecursive All function-symbols that occur on one cycle
in the dependency-graph depend on each other and are ateerééfinedsimultaneously This in fact
forces to give a different notion of defined symbol; the twamite rules above are calleshutually
recursive andboth define the symbol& and G. To avoid this problem, rules are assumed tanbée
mutually recursive.

Notice that the definition of recursive symbols, using théaroof defined symbols, is different
from the one normally considered. Singp is never a defined symbol, the following rewrite system

D(x) — Ap(X, X)
Ap(Dg, X) — D(x)

is not considered a recursive system. Moreover, the tBxfD,) has no normal form (this term plays
the role of(Az.zx)(Az.zx) in LC). This means that, in the formalism of this paper, thexest non-
recursive first-order rewrite systems that are not norrivaiiz

Definition 2.7 Curryfied Combinatory Logi¢CCL) is theGI'RS (£, R), whereF = {S, S,, S1, Sy,
K, K1, Ko, I, Ip}, andR contains the rewrite rules



S(x, ¥, 2) — Ap(Ap(X, 2), Ap(Y, 2))
KX vy) — X
1(X) — X

and their Curryfied versions. Since CCL is Curry-closed,sieven combinatory complete: every
lambda term can be translated into a term in CCL; for detdilioh a translation, see [10, 21].

Example 2.81n general, if the left-hand side of a rewrite ruleFst., . . ., t,), then thet; need not be
simple variables, but can be terms as well, as for exampleeimgwrite rule

M(S2(x, y)) — Sa(lg,y)

It is also possible that for a certain symlglthere are more than one rewrite rule that definas
for example for the rewrite rules:

FX) — X
FX) — Ap(x, X)

3 Rank 2 Intersection Type Assignment

The notion of type assignment presented here is definedvioiipthe type assignment strategy as used
for languages like ML and Miranda. In particular, the way efating with function symbols that are
defined by more than one rewrite rule as used in Miranda isechms well as the way of dealing
with untyped recursive definitions. (This is a slightly mdikeeral way of dealing with recursion than
used for ML. In [31, 26] another extension of the way of deglmith recursion in the ML-system
is presented, in which type assignment is no longer deaddhlt that is nevertheless used for type
checking in Miranda. This system was used for the notion pé tgssignment defined in [6], but will
not be used here.)

Compared to the notion of type assignment used in OBJ, theraytsere is an extension by allow-
ing for higher-order types as well as polymorphism.

3.1 Operations on pairs

In this subsection, three operations on pairs of basis gmel aye defined, namely substitution, copy-
ing, and weakening. In Theoreg2.3it will be proved that these operations are sound: they metur
admissible pairs for a term when applied to an admissiblefpathat term (see DefinitioB.2.2 (ii)),
and in Theoren#.2.7that they are complete: they are sufficient to generate afisgible pairs for a
term from its principal pair.

In this paper, substitution is defined as the operation tataces type-variables by elements7ef.
Although perhaps this is a more restricted kind of substituthan could be expected, it is a sound
operation and will be proven to be sufficient.

Definition 3.1.1 The substitution(y — «a) : Tr — Tr, Whereyp is a type-variable and € 7¢, is
defined by:

(p = ) (p) =«
(p = ) (¥") =g, ifp#¢
(p = @) (o—7) = (p = a)(o) = (¢ = a)(7)

(¢ = a)(o1n---Now) = (¢ = ) (o1)n-- N (p = @) (on).

10



If S; and S, are substitutions, then so #5055, whereS1055(c) = S1(S2(0)). Substitutions are
extended to bases I8(B) = {x:S(0) | X:o € B}, andS((B, o)) = (S (B), S (0)).

Substitution is normally defined as the operation that egdaype-variables by types, without
restriction. In general, this definition would not be cotrfar the Rank 2 system, since, for example,
the replacement of the type-varialtan ¢ —¢ by the type §—7)no—7 would give a type that is not
an element ofg.

The next operation on pairs, copying, can be seen as a vepfesirarsion of the various operations of
expansion as defined in [17, 36, 3]. For readers familiar wWitse definitions of expansion: copying
is a total expansion, that is not ‘computed’: all type-vhalés occurring in basis and type are copied.
It is an operation on types that deals with the replacemeattgpe by an intersection of a number of
copies of that type.

Definition 3.1.2 Let B be a basisg € Tg, andn > 1. The triple<n, B, 0> determines &opying
Ccn,Bo> - Tr — Tr, that is constructed as follows: Suppose {¢1, ..., ¢} is the set of all type-
variables occurring ifB, o). Choosem x n different type-variablesol, ..., o7, ..., oL, ..., 0%,
such that eacba;'- (1<i<n,1<j<m)does not occur iV. Let S; be the substitution that replaces
everyyp; by 5. Then

CanBo> (1) = S1(r)N- - NSn (7).

Copying is extended to bases and pairs®y;, g o~ (B') = {X:C<n.B,o> (p) | X:p € B'}, andC, B o~ ((B',0'))
=(Ccn,Bo>(B"),CconBo> (')
To simplify notation,<n, B, o> will be written instead oC.,, 5+~

Notice that ifr does not contain type-variables that occuWirthen<n, B, o> (1) = 7n- - -n7, which
is by definition of ~ the same as.
The last operation is that of weakening; it replaces a bas&rore informative one.

Definition 3.1.3 A weakening Ws an operation characterized by a pair of ba§Bg, B,) such that
B; < By, and is defined by: iB = By, thenW((B, o)) = (B, o), andW((B, o)) = (B, o), otherwise.

Definition 3.1.4 i) A transformation sequends an object<Oy,...,0,>, where eacl®; is an op-
eration of substitution, copying, or weakening, and

<O1,...,0,>((B,0)) = On(---(0:((B,0))) ).
i) On transformation sequences the operation of concateniatidenoted by« , and:
<Oi,...,0> # <Ojy1,...,0,> = <Op,...,0p>.

ii) A type-chainis a transformation sequenedy, ..., O, > of operations of substitution and copy-
ing only, and is extended to types by:

<O1,...,0,>(0) = Op(---(O1(0)) ).

iv) A chainis a type-chain concatenated with one operation of weagenin
v) We say thatChq = Chy, if for all o, Chy(¢) = Cha (o).

For type-chains, the following properties hold:

Lemma 3.1.5 Let Ch be a type-chain.
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i) There are a copying C and substitutiofis, ...,S, such that Ch =<C, S4,...,S,>.

ii) If o € T2, andCh (o) € Tz, then there is a substitution S such tlgédt (o) = S (o). Without loss of
generality, there is also a type-chah’ such that Ch =<S> % Ch'.

i) If o €7z, and Ch (o) € Tg, then there arery, ..., 0, and substitutionsSy, ..., S, such that
Ch (o) = o1n- - -Noy, and, for everi <i <n, S; (o) = o;.
Proof: Easy, using paii) in part(iii) . ]

3.2 Rank 2 type assignment irGTRS

The type assignment system presented in this paper is alpgrstem in the sense that not only will
be defined how terms and rewrite rules can be typed, but issadsumed that every function symbol
already has a type, stored in an environment, of which thetstre is usually motivated by a rewrite
rule. In fact, this approach is very close to the one take@4, [where the principal Curry-type scheme
of an object in Combinatory Logic is defined.

Definition 3.2.1 Let (X, R) be aGirRS.
i) A mapping€ : F — Tz is called arenvironmentf, for every F € F with arity n, £(F) = £ (F,,_1)
=...= E(FO)
i) ForFe F, o € T2, and€ an environment, the environmefifF := o| is defined by:
E[F:=0](G)=0, fGe{F, Fn_1,...,Fo}
E[F :=0](G) = £(G), otherwise.

Type assignment 0BTRS is defined in two stages. In the next definition type assé@n on terms
is defined, and in DefinitioB.1 type assignment on term rewrite rules will be defined.

Definition 3.2.2 Let (X, R) be aGQI'RS, and€ an environment.
i) Type assignmerandderivationsare defined by the following natural deduction system.

X.o oc<T toy ... tiop
(<): (ceT,7€Tc) (nl): @)
XiT t.on---Noy,
t1.0—>T to.o ti:01 ... tpiop
(Ap): (r€T20€Th) (F): (b)
Ap(tl,tg):T F(tl,...,tn)ia

(@) If n>1,and forevernyl <i<mn, o; € Ts.
(b) if there exists a type-chai@h such thaCh(£(F)) = 01— - -—0o,— 0, and for evenp <i <n,
o, €T1.
ii) Lett € T(F X) be typeable by with respect tc€. The notationB ¢ t:o is used to express that
B is a basis that contains at least all the statements witlahlas as subject that occur in the
derivation fort:o. Then(B, o) is calledan admissible pair for.

An environment does not provide a type fgp; instead in rule Ap) it is defined how an application
should be typed; this is because althoughr andos € 71, not necessarilyf{—7)—o—1 € Ts.

The use of an environment corresponds to the use of ‘axidrarses’, and the use of a chain in rule
(F) to the use of ‘axioms’ as in [24], and corresponds to the usa ‘combinator basis’ and the
axioms in Definition 3.2 of [21]. The combination of those tdefinitions also introduces a notion of
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polymorphism into the type assignment system of this papke environment returns the ‘principal
type’ for a function symbol; this symbol can be used with tygeat are ‘instances’ of its principal type.

The following theorem shows the operations are sound owat@ns; in Theorenb.4, we will
prove a soundness result for rewrite rules.

Theorem 3.2.3 i) Let S be a substitutionBlf-¢ t:0, thenS (B) ¢ ¢:5 (o).
ii) Let C be a copying such that ((B, o)) = (B',d'). If B¢ t:o, thenB' F¢ t:0'.
i) For everyt € T(E X): if B ¢ t:o, then, for every weakening W: W ((B, o)) = (B',d'), then
B' ¢ t:o'.
Proof: Part(i) follows by straightforward induction, pafi) follows by Definition3.1.2 part(i) and
rule (nl), and part(iii) follows by an easy induction. [ |

4 Completeness of operations on pairs

In this section, the principal type property will be showrhtad for the here presented type assignment
system: for every term typeable with respect t8, there exists a paiPP¢ (t) = (P, «), the principal
pair of ¢ with respect taf, such thatP +¢ ¢:7, and, for every paiKB, o) such thatB F¢ t:o, there
exists a chain of operatiorish such thaCh((P, 7)) = (B, o).

As in [24], principal types are defined using a notion of uifion.

4.1 Unification of intersection types of Rank 2

In the context of types, unification is a procedure normabgdito find a common instance for de-
manded and provided type for applications, i.e;ihas typer— 7, andt, has typex, then unification
looks for a common instance of the typesand « such thatAp (¢;,¢2) can be typed properly. The
unification algorithmunifyrs presented in the next definition deals with just that probl&his means
that it is not a full unification algorithm for intersectiogpes of Rank 2, but only an algorithm that
finds the most general unifying chain for demanded and pealigipe. It is defined using Robinson’s
well-known unification algorithmunify.

Definition 4.1.1 (Robinson’s Unification Algorithm [35]) Le§ be the set of all substitutions.
unify . Te X Te — S

unify (¢, ¢) = (p—¢)
unify (o, 7) = (p— ), if ¢ does not occur irr andr is not a type-variable
unify (o, @) = unify (¢, o)

unify (c—1, p—p) = 85920851
whereS = unify (o, p)
So = unify (S1(7), S1(1))

Property 4.1.2([35]) wunify returns the most general unifier of two Curry-typeand r (if it exists),
i.e.: Forall o, 7 € T¢, substitutions S: if (o) = S (7), then there are substitutiors, and .S’ such that
Sy = unify(o,7),andS (o) = §'0Sy (o) = S'0S, (1) = S (7). [ |

Since the substitution returned hyify is defined only on type-variables occurringdnand, it is
even possible to show th&t= 505 ,,.
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The unification algorithm works roughly as follows: in findinthe principal pair for the term
Ap (t1,t2), by construction the demanded typén o— 7 is in 7T; and the provided type is in 75. The
unification algorithm looks for types that can be assignatiedermg; and¢, such that the application
term can be typed properly. In order to be consistent, thdtre§the unification ofr anda — a chain
Ch — should always be such th&h(a) € 7;. However, ifa & T¢, then in generaCh(a) ¢ 7;. To
overcome this difficulty, an algorithito7¢ will be inserted that, when applied to the typereturns a
type-chain of operations that removes, if possible, ieiens ina.

Definition 4.1.3 Let C be the set of all type-chains, and ldis be the substitution that replaces all
type-variables by themselves.

toTc: Ta — C
to7c (o) =<ldg>, if o €7Tc
to7c(o1n- - -nop,—0o) =<8S41,...,S, 1> *Ch, otherwise
whereS; = unify (<S1,...,Si1>(01), <S1,...,S;1>(0i11)),
foreveryl <i<n-—1
Ch =t0TC(<Sl,...,Sn,1>(U))

The algorithmunifygr, is called with the types and<’, the latter beingy in which the intersec-
tions are removed (sa’ = to7¢ (o) (a); notice thatto7¢ («) is an operation on types that removes all
intersections iny).

It is possible that ¢ T, so it can be that' must be duplicated. Since such an operation affects
also the basis, the third argumentwfifyrs is a basis.

Definition 4.1.4 (Rank 2 Unification) Lef3 be the set of all bases, addhe set of all type-chains.
unifyrs : Ti X Te x B — C

unifyra (o, a, B) = unify (o, a), if o€ 7T¢
unifyra (o10- - -Noy, a, By =<C, S1,...,S5,>, otherwise
whereC =<n,B,a>
a1n- - -Nay, = C(a)
S; = unify (<Sl, R Si71>(0i)1 Ozi), for everyl<i:<n

Notice thatunifyr, andto7¢ only fail whenunify fails, and that<n, B, a> never fails. Because of
this relation betweennifyro andto7¢ on one side, andnify on the other, the procedures defined
here are terminating and type assingment in the system défirthis paper is decidable.

With Property4.1.2 it is possible to prove the following lemma.

Lemma4.1.5 i) For every € T3, type-chain Ch: ifCh (o) = T € Ty, then there is a type-chai6h’
such thatto7¢c (o) * Ch' (o) = 7. (Without loss of generality, Ch & 7¢ (o) x Ch'.)

ii) For everyo € T1, a € T¢ that are disjoint: if there exists a type-chain Ch such tidét(o) =
Ch(a), then, for every basi® that shares no type-variables with there are type-chain€'h’
and Ch,, such thatCh, = unifyra(c,a,B) and Ch(c) = Chy * Ch'(c) = Chy * Ch'(a) =
Ch (). (Without loss of generality, Ch €h,, « Ch'.)

Proof: i) By 3.1.5 (iii) there are substitutionS,, ..., S, such thatCh(c) = S; (o)n---nS, (o). Let
o = ain---Na,—0B. Since, for evernyl <i<n, S;(c) € Tc, also for1 <i<n, 1<j #k<m,
Si(a;) = Si(ax). The result follows from Propert§.1.2and Definition4.1.3

i) If o € T¢, thenitis easy to show thatanda must have a common substitution-instance, so from

Property4.1.2the result follows. lfo = o1n- - -no,, then likewise it is easy (but laborious) to show
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that, for everyl <i < n, o; anda have a substitution-instance in common. Then by induction o
Definition4.1.4 using Property.1.2 the result follows. [ |

4.2 Principal pairs for terms

In this subsection, the principal pair for a termwith respect t&€ — PP¢ (t) —is defined, consisting of
basisP and typer. In Theoremé4.2.8it will be shown that, for every term, this is indeed the pipat
one.

Definition 4.2.1 For everyt € T(F X), usingunifyrs, PP¢ (t) = (P, ) is defined by:
) t =X. Then(P,x) = ({x:¢}, ¢).
ii) t =Ap(t1,t2). LetPPg (t1) = (P, m ), PP¢ (t2) = (P2, m), (choose, if necessary, trivial variants
such that these pairs are disjoint), &= to7¢ (72), then:
a) If m =, then:
PPg (Ap (t1,t2)) = (S2, S1) (TI{ P1, P2}, ¢"))
whereS = unify (o, S2 (m2)—¢'),
andy’ is a type-variable not occurring in any other type.
b) If 1, =o—r, then:
PPg (Ap (t1,t2)) = (S2) * Ch((II{ P, P2}, 7))
whereCh = um’fsz (U, Sa (7‘(‘2), Sa (Pg))

i) t=F(t1,...,ty). If EF) = y1— - -—=y,—, and, for everyl <i<n, PP¢(t;) = (P;, ™),
(choose, if necessary, trivial variants such that {fe ;) are disjoint in pairs and these pairs
share no type-variables with —- - -—~,—"), then:

PPg (F(t1,...,tn)) =Ch({(II{Py,...,P,},7))
whereCh =<S¢,...,8,>* Chyx---% Chy,
S; =toTc (71'2)
Ch; = unifyra (Chy % - - - ¥ Chi_1(v:), Si(m), S (P;)).

Note that, sincewnifygro may fail, not every term has a principal pair.

Example 4.2.2The typed rules foF as in Examplé.2 seem perhaps somewhat ad hoc, but using the
environment: € (K) = 1-52—1, £(Z) = 3—4—4, £() = 5-5, and& (F) = 7n(6—7)n6—7, whereZ is
defined byZ(x, y) — vy, and using Definitiod.2.1, the following can easily be checked:

i) kg F(lg):8—8, F¢ 1:8-8,and ¢ 1(lp):8—8.

i) FeF(Z):(8—+8)—+8—8, F¢ Zy:(8—8)—8—8, and ¢ Z; (Zy):(8—8)—8—8.
i) Fg F(Kg):(8—9)—9—8—9, F¢ Kg:(8—9)—9—8-9, and ¢ K; (Kg):(8—9)—9—8—9.

The given types are the principal types for respective(ly), F(Zy), andF (Ky).

Example 4.2.3Using Rank 2 intersection types, the te®(Kq,Sq,lg) has a more general principal
type than using Curry-types. With the environment

E£(S) = (1—2—3)—=(4—2)—(1n4)—3
E£(K) =5—6—5
E() =77,

and Definitior4.2.1, the following can easily be checked:s S(Kg,Sg,lp):8—8.

15



Sp:((9—10)—9—10)—((9—10)—9)—(9—10)—10
Ko:(8—8)—(((9—10)—~9)—(9—10)—10)—8—8 lo:(8—8)n((9—10)—9—10)

S(KU,SU,|0)28—>8

Notice that in Curry’s system — and in ML — the te$v S I has the principal typé— 10)—9—10.
With D defined byD (X) — Ap(X,X), it is even possible to check that for exampléS (Kq,Sg,lo))
andD(lp) are typeable by1—11. Notice that the ternh(Dy) is not typeable.

The following lemma expresses that a principal pair for grentt is an admissible pair far.

Lemma4.2.4 IPPg (t) = (P, ), thenP ¢ t:7r, andw € Ts.
Proof: By induction on the definition oPP¢ (t), using Theoren3.2.3 [ ]

The following lemmas are needed in the proofs of TheofiePn7 and Lemméb.5 (iii). The first
states that if a type-chain maps the principal pairs of temen application to pairs that allows the
application itself to be typed, then these pairs can alsobtaireed by first performing a unification.
The second generalizes this result to arbitrary functigulieations.

Lemma4.2.5 Let € Ty, and fori = 1,2: PP¢ (t;) = (P;, m;), such that these pairs are disjoint, and
let Ch be a type-chain such that

Ch(PP¢ (t1)) = (B1,7—0),andCh (PP¢ (t3)) = (Ba, 7).
Then there are type-chainsh, and Ch', and typex € T3 such that
PPg (Ap (t1,t2)) = Chy ((II{ P, P, }, ), and Ch' (PP¢ (AP (t1,t2))) = (II{ B1, B2}, 0).
Proof: SinceCh(ms) € T1, by4.1.5 (i)there is aCh; such thaCh= <S> % Chq, with S5 =t07¢ (72).

i) m = . TakeS; = unify (¢, S2(m2)—¢'), wherey' is a type-variable not occurring in any other
type. Assume, without loss of generality, th@i; (¢') = o. Then, by Definitiord.2.1 (ii.a),

PPg (Ap (t1,t2)) = (S2, S1)((TI{ P, Pa}, ¢")).

Sincep € Tc andt—0o € Ty, alsor—o € Ty, S0T7—0 € Tc andt € Te. S0 Chy(So(m2)—¢')
€ T¢, and, by LemmaB.1.5(ii), there are a substitutio§; and a type-chainCh, such that
S3(S2(ma)—¢') =7—0,andCh; = <S3> * Chy. Assume, without loss of generality, th&s (¢)
=7—0. By Property4.1.2 there is a substitutio§ 4 such thatS3 = S405;. So

Ch=<89>% Ch1 =<S9> % <S3>x Chy =<S9, S1> % <S54> * Chsy.

TakeChy = <S5, S1>, Ch' = <S4>* Chy anda = ¢'.
ii) m =p—p. Since the pairéP;, p—pu) and(P», m) are disjoint,Chy (p—p) = 7—0o. SinceCh (p)
= Ch1(S2(m2)), by Lemma4.1.5 (i), there are type-chainSh,, and Chs such that

Chy = unifyra (p, S2(m2), S2(F2)), andChy = Chy, * Cha.

By Definition4.2.1 (ii.b), PP ¢ (Ap (t1,t2)) = (S2) * Chy (II{ Py, Py}, 1)). Then

Ch=<89> % Ch; = <S9> * Chy, * Chs.

TakeChy = <S> % Chy, Ch' = Chy, anda = p. n
Lemma4.2.6 Let € T3, and, for everyl <i <n, PP¢ (t;) = (P;, m;), such that the pairsP;, ;) and
the typef (F) = y;—- - -—v,— are disjoint, and let Ch be a type-chain such that

Ch(€(F)) = 01— - -—0o,—0o and, for everyl <i <n, Ch ({P;,m;)) = (B;, ;).
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Then there are type-chairGh, and Ch,, such that

PPS (F (tla R tn)) = Chg(<H{Pla .- 7Pn}’7>)7 and
Chy,(PPg (F(t1, ..., ty))) = (II{Bi1,..., By}, 0).
Proof: As part(ii) of the proof for the previous lemma, constructitg, by induction on.. =

In order to prove that the operations are complete, we pitwaeit B ¢ ¢:o, thent has a principal
pair and there is a chain that maps this principal paiBoo).

Theorem 4.2.7 IB ¢ t:0, then there are a basiB, typer and a chain Ch such thdtP¢ (¢) = (P, ),
and Ch ((P,x)) = (B, o).
Proof: By induction on the structure of derivations.
((£)): Thent =x, B < {xio}, 0 € Tc, andPP¢ (X) = ({x:¢}, ¥).
TakeCh= <p—o, ({x:c}, B)>.
((Ap)): Thent = Ap (t1,t2), and there are- € 7; and basesB;, Bs such thatB; k¢ t;:7—0, and
By ¢ to:7. By induction fori = 1, 2 there areP;, =;, and chainCh; such that

PP¢ (t;) = (P;, m;), Chi(PPg (t1)) = (B, 7—0), andChs (PP¢ (t2)) = (B, ).
Let Ch; = Ch} x W, whereCh/ is a type-chain, an@®; < B such thatW; = (B;, B). Since the
pairs(P;, ;) are disjoint, the type-chainSh; do not interfere, so
Chll * Ché(PPg (tl)) = <Bl, T—)O’), andC’h’l * Ché(PPg (t2)) = <B2, ’T>.

Then, by Lemma.2.5 there is aCh' such thatCh' (PP ¢ (Ap (t1,t2))) = (II{ By, B2}, 0).
TakeCh= Ch' x <(II{ By, B2}, B)>.

((F)): Thent =F (¢1,...,t,); let E(F) =y1—- - -—y,—7. There arery, ..., 0, such that, for every
1<i<n, Bt¢ t;i0;, and a type-chait®’h p such that

Chp(y1—- - —=yn—7y) = 01— - —op—0.
By induction, forl <i < n, there arg P;, m;), (disjoint in pairs) and chaid's;, such that
PP¢ (tz) = <R, 7Ti>: andChz(PPg (tz)) = <B, Uz’>-

Let Ch; = Ch} x W,, where Ch} is a type-chain, and; < B such thatW, = (B;, B). Since
the pairs(P;, ;) are disjoint, the chain€h do not interfere. Assume, without loss of gen-
erality, that none of the type-variables occurring-in—- - -—,— occur in any of the pairs
(P;,m;). Let Ch' = Chp x ChY % --- % Chl,. Since, for everyl <i:<n, Ch'((P;, 7;)) = (B, i),
and Ch/(y1— - - —=yn—7) = 01—+ - -—0o,—0, by Lemma4.2.6there is a type-chair®h” such
that Ch" (PP¢ (F (t1,...,tn))) =(II{By,...,By},0).
TakeCh= Ch" « <(II{By, ..., By}, B)>.

((nN): Theno =o1n- - -noy,, and, for everyl <i <n, B k¢ to;.
By induction there aré, w, such thatPP¢ (t) = (P, «). LetC = <n, P, 7>, then

C(<P, 7T>) = <H{P1, . ,Pn}, min- - 'ﬂ7‘l’n>, with PPg (t) = <PZ, 7Ti>-
By induction there are type-chair@, ..., Ch, such that
for1<i<n, Chz(ujz, 7Tz>) = <Bz, 0’;>

Let Ch; = Ch} « W;, whereCh/ is a type-chain, an@; < B; such thatW; = (B;, B;). Without
loss of generality, we can assume that exeky = Ch;' * <S;>, such that the’h;’ do not interfere.
TakeCh=<C> % Chy{ *--- % Chll x <Sy0-- 08, (II{B1,...,Bp}, B)>. ]
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Theorem 4.2.8Principal pair property) i) Soundness. [PP¢ (t) = (P, ), and Ch is a chain such
that Ch ((P,)) = (B, o), thenB k¢ t.o.
ii) Completeness. IB ¢ t:o, then there are a basi® and typer such thatPP¢ (t) = (P, w), and
there is a chain Ch such thath ((P, )) = (B, o).
Proof: i) By Lemma4.2.4 and Theoren3.2.3
ii) By Theorem4.2.7. [ |

5 Subject reduction

If a termt is rewritten to the ternt’ using the rewrite ruléd — r, there is a subtermy of ¢, and a
replacement R, such th#t = ¢g; t' is obtained by replacing, by »®. The subject reduction property
for this notion of reduction is:

If B ¢ t:o, andt can be rewritten te', thenB ¢ t':o0.

In this section, it will be shown that the notion of type assiggnt as given in this paper satisfies
the subject reduction property. We will present in Defimitto1 a notion of type assignment on rewrite
rules using a restriction on the possible type assignméatsguarantees this property. We will also,
through examples, show that if the restriction is weakettesithus obtained systems do not satisfy the
subject reduction property: then there are rewrite rulegaple with respect to an environmeéhtthat
match a ternt typeable byo with respect taf, for which the result of the application of the rewrite
rule ont is not typeable by with respect tc€.

Using the notion of principal pair, we now give a definitioreddypeable rewrite rule and a typeable
rewrite system.

Definition 5.1 Let (3, R) be aGI'RS, and€ an environment.

i) r: I — r € Rwith defined symboF is typeable with respect &, if there are basi®, typeo € T,
such that

a) PP¢ (1) =(B,o),andB k¢ rio.
b) In B k¢ l:o0 andB ¢ r:o, all F are typed withe (F).
i) (3,R) is typeable with respect t6, if everyr € R is typeable with respect 6.

Example 5.2 Derivations for the rewrite rules as given in Exampl8, using:

Es (M) = (1-2)—=((3—4)n1)—4
Es(F) = (6n(5—6)N5)—6
&-2(S) = (7—-8—9)—(10—-8)—(7n10)—9

Ex(l) =11-11
X:1-3=2 y:1-3 lo:(3—4)—3—4 y:1-3
Sa(x,y):1—-2 -

Sa(lp,y):((3—4)n1)—4

M(S2(X,¥):((3—4)n1)—4

xX:6n(5—6)N5 x:6n(5—6)nN5

X:6n(5—6)n5 X:6n(5—6)n5 X:6n(5—6)N5
R E——— [
F(x):6 X:6 F(x):6

- X:5—6 X:5

Ap(x,X):6

Example 5.3([6]) The condition PP¢ (1) = (B, c)" in Definition 5.1 (i.a) is crucial. Just saying
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BFrglioandB g rio

would give a notion of type assignment that is not closed umneleriting (i.e. does not satisfy the
subject reduction property).

Take the rewrite system of ExameB, that then would be typeable with respect to the following
environment:

E3(M) = ((1—=2)—=3)—=(1—=2)—2
£3(S) = (4—+5—6)—(4—5)—4—6
Es(l) =7-7

X(1=2)=1=3 y:(1=2)~1 lo:(1—-2)—»1—2 y:(1—2)—1

Sa(X,y):(1—2)—3 —
M(Sa(x,¥)):(1—=2)—2

S2(|0 ,y):(1—>2)—>2

Take the termM (S, (Ko,lp)). It is easy to see that the rewrite rule is allowed, and thistterm
rewrites toSs (lp,lp). Although the first term is typeable l§¢—5)—5 with respect tcf'3,

Ko:(4—5)—(4—5)—4—5 lo:(4—5)—4—5

S»(Ko,lo):(4—5)—4—5
M(S2(Kg,lp)):(4—5)—5

the termS; (lg,lp) is not typeable by the typ@—5)—5 with respect t€5. (In fact, it is not typeable at
all with respect tcf 3; when constructing the principal pair for this term withpest to€ 3, unification
fails.)

Notice that this example shows that the loss of subject témues not connected to the fact that
intersection types are allowed.

In building PP ¢, (M(S2(x, ¥))), types are assigned in the following way:

X:(1-2)—4—-3 y:i(1-2)—4

Sa(X,y):(1—2)—3
M(Sa2(x,y)):(1—=2)—2

The right-hand side&S; (lp,y) of the rewrite rule is not typeable witfi—2)—2 using the basis
{X:(1>2)—4-3, y:(1—2)—4}. If the right-hand side should be typed with-2)—2, the type needed
foryis (1—2)—1

lo:(1=2)—1—2 y:(1-2)—1

82 (|0 ,y) : (1—) 2)—>2

Since types assigned to term-variables in the right-hasel giould occur in type assigned to types
in the left-hand side, the type-variableshould be replaced ki, so in the typed rewrite rule no longer
the most general pair for the left-hand side is used.

We will now show that the use of a type-chain in ruf€)(is sound in the following sense: if there

is a type-chairCh such thaCh(€ (F)) = o, then, for every type € T, such that < 7, the rewrite rules
that defineF are typeable with respect to a changed environment, in wh{f is replaced byr-.
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Theorem 5.4 i) LetS be a substitution. tet — r be a rewrite rule typeable with respect to the envi-
ronment, and letF be the defined symbolaf Therr is typeable with respect ®©[F := S (€ (F))].

ii) Let C be a copying such that ((B,o)) = (B',o'). Letr: | — r be a rewrite rule typeable with
respect to the environmeét and letF be the defined symbol of If C (£ (F)) = 7 € Tr, then, for
everyu € Ty such thatr < p, r is typeable with respect ©[F := p.

Proof: i) Straightforward.

i) Foreveryu € T2 such that- < p, by Definition3.1.2there is a substitutioBsuch thaj. = S(€ (F)).

The proof is completed by pa(i . ]

Before coming to the proof that the condition is sufficieatn® preliminary results are needed.

Lemma5.5 i) IB ¢ tR:o, then there is abasiB’ such thatB’ k¢ t:o, and for allx:a € B', B ¢ x®:q.
i) If Brgt:o, and R is a replacement anB’ a basis such that, for every statement € B,

B' k¢ x®:q, thenB' ¢ tR:0.

i) Let ¢ be typeable,PP¢ (t) = (P,x), and for the replacemer there are B and o such that
B ¢ tR:0, then there is a type-chain Ch, such ti#t () = &, and, for every statemerta € P,
B g xR:Ch(a).

Proof: The proofs of part$i) and(ii) follow by easy induction on the structure ©fFor part(iii) , use

part(i), and Theorernd.2.8 [ |

The following theorem shows that the condition suffices.

Theorem 5.6(Subject reduction)Letr : I — r be a typeable rewrite rule. Then, for every replacement
R, basisB and atypeu: B¢ I®:y = B¢ rRup.

Proof: Let PP¢ (1) = (P, w). Sincer is typeable,P ¢ r:w. Suppose R is a replacement such that
there areB, u such thatB ¢ I®:u. (Assumeyu € 75.) By Lemmab.5 (iii), there is a type-chaih
such that

Ch(r)=pu & Vxia € P[ B k¢ x®:Ch(a) ].
By Theorem3.2.3 Ch(P) ¢ r:Ch(x), soCh(P) k¢ r:u, and
VXxia€P[BFgx®:Ch(a)] = VxaeCh(P)[ B¢ xRl
So, by Lemmd.5 (i), B F¢ r®:p. n

In [6] it is also shown that the there formulated conditiomécessary. This result is reached by
extending the set of types with type constants, as also nsegamples.3, and, for every rewrite rule
that is typeable in the less restrictive way, creating aifipeeplacement that gives the counterexample.
In this construction it is used that every typean be inhabited in a trivial way: just pick a const@nt
not already used, and assume #§&D) = o.

In the notion of type assignment as defined in this paper thistcuction cannot be given, because
not every type can be trivially inhabited. An environmenttliis paper returns types iy, and a
function symbolF can only have an intersection type3 if there exists a type-chai@h such that
Ch(& (F)) = ang. This means that it is not possible to show that there is famg{e a function symbol
that can be assigned the tyipen(int—int).
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6 Concluding remarks

6.1 Rank 2 type assignmentin LC versus Rank 2 type assignment in
GTRS

This paper introduced a notion of type assignmentd@®RS. Although it is possible, as illustrated in
Sectionl.1, to define a similar notion for LC, results for such a systemnca be directly brought to
GTRS. This is caused by an important difference between LCTd&8: the concept adbstractionis
part of the definition of the former, but not of the latter. @action can be modelled in TRS, but it is
not an explicit syntactic constructor of terms or rules inSIR

As argued in that section, it is possible to show that thecipal type property holds. However,
an important difference between a proof of the principaktypoperty for the system for LC and the
one obtained here fd@irRS, is that the collection of operations differs. For thetsyn of this paper,
this collection of operations consists of substitutionpying, and weakening. Notice that, using the
approach sketched above, the principal type for the {ermx) would bep— . Notice that also a type
like cnT—0o can be derived fofAz.z), so, in order to prove the principal type property, an operat
of lifting should be specified that allows for the introdwaetiof more types to the left of an arrow-type
constructor, an operation that can chamgeo into cnT—o. Although theGTRS equivalent of the
term (Az.z) can be given the typenr—o, it is not possible to obtain that type from the typeso:
none of the operations specified in this paper is capable arfigihg a type in the way needed to go
fromo—o toonrt—o.

Moreover, the operation that performs this is not soundddRS. Take for example the rewrite
system

IxX) —x
G(lo) —lo
H(X) — X

that is typeable with respect to the environmént

E() =11
£(G)=(1—=1)—1-1
E(H) = (1—-1)—1-1

The operations that can be applied to types are defined or tygg so there is no way of distin-
guishing the types fo& andH. We can safely add types to the ‘argument’ type for the rude defines
G, since the rule is typeable with respecti := ((1—+1)no)—1—1], for all o. For the rule that defines
G, however, not all types can be safely inserted: since afigypshould be types fal; the rewrite rule
for G is not typeable with respect to the environméng := (2—2)n4—3—3].

So, the principal type property for the Rank 2 type assigrinfi@nL_C is no direct consequence of the
results of this paper. The converse also does not hold, #ireceroof of that property for the system in
LC requires the operation of lifting, that is not provided fio the system of this paper. This of course
implies that a notion of type assignment for LC cannot bedtliyetranslated into a type assignment
system for a programming language that allows for functiorise specified as rewrite rules.

6.2 Onimplementation

The results of this paper could be used to implement a typekchlgorithm forGIRS. It should be
pointed out that the notion of type assignment as definedsrptper is really &ype-checlsystem, in

21



the sense that it is not possible to create a type-inferelgogithm, based on the approach of this paper.
To obtain a type-inference algorithm an operation shoulmhberted that allows for more specific types
than generated by substitution and copying. Take for exartiya@ rewrite rules (see examp@$8 and
5.2

F(X) — X
F(X) — Ap(X,X)

A type-inference algorithm could for example type bothmlggives separately and try to combine
the results found. For the first rule it would fiddF) = o1 — 1, for the second (F) = (2 —p3)Npa— 3.
The problem is that it is not possible to create the desireé,tfosn(ps— ps5)Nps)— s, from these
other two applying the operations specified in this papenbiain the correct type fd¥, wsn(s—ws)Nws— g,
an operation is needed that inserts extra types in the &efttHside of the top arrow-type constructor,
like the one needed for LC.

So, itis allowed to give an environment for function symkhthiat is not a combination of possible
environments for the various rules. This implies that, imtipalar, combining types found for one
function symbol defined by several rules, applying the hefindd operations, does not always lead
to the right solution. It can be that the user ‘sees’ the rigpe for the rules, which the type-check
algorithm is not capable of deducing, but will be capableladaking on its correctness. This can be
seen as a disadvantage of the system, but, on the other banthriy people it is nowadays considered
to be programming hygiene to explicitly state the types forction definitions.

Although type assignment (and type-checking) using the defined notion of type assignment
is decidable, the complexity of type-checking is biggemtfia a system based on Curry-types. The
biggest problem arises when checking the type provided foneation symbol. Supposke— r is a
rewrite rule. One way to implement type-checking for thienwould be to construct the principal pair
(P, ) for the terml and to try to typer using this pair. Letn---no, be the type assigned to the
term-variablex in P. Then, for every occurrence afin », some selection of the typesdnn: - -nop,
should be made. In the worst case the number of possibittigsmust be tried is huge™. There
are some more efficient ways to type-check a rule, but the ity is still exponential. However, in
every day programming life will rarely be larger than 2.

6.3 Overloading

The concept of overloading in programming languages is aflynused to express that different ob-
jects (typically procedures) can have the same identifiear &nother approach to overloading, see
[15, 14].) At first sight this seems to be nothing but a tool btain programming convenience, but
the implementational aspects of languages with overl@pdne not at all trivial. In functional pro-
gramming languages, functions diest-order citizenswhich means that they can be handled as any
object, like for example numbers. In particular, a functaan be passed as argument to another one,
or could be its result. Especially in the first case it can othat at compile time it is not possible to
decide which of the several bodies (or pieces of code) fovan@aded identifier should be linked into
the object-code. If this decision cannot be made, the campiiould generate code that contains all
possible functions and some kindazse-construct that makes it possible to select at runtime wisich
the code to use. For reasons of efficiency — and to avoid ma-thecks on function types — it seems
natural to allow for overloaded objects only if at compiled it can be decided which of the different
function definitions is meant, since then, for every ocaureeof an overloaded symbol, the compiler
can decide which of the several function definitions sho@ldiriked into the object code.

The intersection type constructor is a good candidate toesspoverloading. It seems natural to
say for example that the type for additiédxdd is (int—int—int)n(real—real—real). Bringing the
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notion of overloading into a formal system for type assignhas defined in this paper implies that the
restriction on the types that can be provided by an envirerirsieould be dropped; in such a formalism,
types provided by the environment should b&ip not just7s.

However, this extension itself creates strange effectd, foe example,F be a function symbol
that has typdint—int—int) n (real—real—real) — «. Then, by the notion of type assignment as
defined here, the terf(Add) can be typed by.. Moreover, letG be a function symbol that has the
typeonT—p, and letH be an overloaded function symbol wifi{H) = ang. Then finding the principal
pair for the termG (H) requirers more than just the kind of unification defined is fhaper. In general,
there can be several cases, since all possible combindiiwesto be tried:

e unify (o, o) andunify (7, 3) are both successful.

unify (o, B) andunify (r, «) are both successful.

unifyro (on7, a) andunifyrs (ent, B) are both successful.

unifyra (on7, B) fails, unifyra (on7, @) is successful.

unifyro (on7, ) fails, unifyrs (ont, B) is successful.

It can even be that more than one of these cases is true atrtietsae, like for example the
first and second. This in particular is troublesome, sings fitot obvious at all what in this case the
type of G(H) should be. One solution for this problem would be to alltiee in [18], for more than
one principal pair for a term (notice that this is not the samesaying that a principal type can be an
intersection). Another would be to introduce — formally —eatira type constructo# with the same
meaning as, and to define overloading using this notion. Then the unifoaof cnr anda+8 can
be defined as the combination of the results of unifying anda, and unifyingonr andg.

A good solution to all aforementioned problems iddae selectiorof one of the function definitions
for an overloaded identifier. This can be accomplished byndefj as in Definitiorb.1, how a rewrite
rule can be typed, but by adding that, for everg 7> such that€ (F) < o, all the rewrite rules that
defineF should be typeable using the tygpefor every occurrence df. (Another approach would be to
introduce a new syntactic construct into the language thaséd to separate the rules that defiria
groups, and to ask that, for everye T, such that (F) < o, there is at least one group of rules that can
be typed using.) Moreover, it is possible to define, as in rut€)(how a type for a function symbol
can be obtained form the one provided by the environmenheridllowing way:

ti:o1 ... tpion
(F): ETeT2,Ch[E(F) <1 & Ch(r) =01+ —0op—0])
F(tl, Ce ,tn):U

Then the tern(Add) mentioned above cannot be typed. This selection is theectefl in the
way intersection types are unified. Since ooheof the types in an ‘overloaded’ type can be used, the
unification should try to unify the demanded type watdch individual typeccurring in the provided
type.

Using this definition, the notion of ‘principal pair’ becomslightly more complicated. This is best
explained by discussing the implementation of the typesk@ethat is looking for such a pair. Take
the well-known functiorfoldr that is defined by

foldrfi[] =i
foldr fi (a:b) =f a (foldr fi b)

and can be typed bjt—2—2)—2—[1] —2. Take the ternfoldr Add 1 [2,3,4], then it is clear that
this term should be typeable by the tyjpe. When constructing the type assignment for this term,
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the subtermfoldr Add is typed. For this term as such the type neededAfdd cannot be uniquely
determined: it is the second argumentfoldr that forces the selection. Since there is a chance of
success, the type-checker should postpone the decisiejett the term and consider both possibilities
simultaneously. This means that formally the tdaidr Add hastwo principal types.
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