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Abstract

It is well known that in two or more variables Bernstein polynomi-
als do not preserve convexity. Here we introduce two variations, one
stronger than the classical notion, the other one weaker, which are
preserved. Moreover, a weaker sufficient condition for the monotony
of subsequent Bernstein polynomials is given.

§1

Introduction
Consider m41 points po, . .., P € R?in general position; i.e., the vectors
Pr — Po, k = 0,...,m, are linearly independent, in the course of which d has

to be greater than or equal to m. A point p in the affine hull of pg,...,pn
can be uniquely written as

p= Zukpk, where ug + -+ + u,, = 1.
k=0

The coefficients of u = (ug, ..., u,) € R™*! are called the barycentric coor-
dinates of p with respect to pg,...,pPmn. Moreover, the points of the simplex
[P0, - - - » Pm), spanned by the vertices pg, ..., p, have nonnegative barycen-
tric coordinates and vice versa. In other words, we can identify [po, ..., Pm]
with

Sm={u=(ug,...,upn) up >0, ug+ -+ u, =1}

by using the 1-1 mapping which associates each point of the simplex with
its uniquely defined barycentric coordinates.

We consider S, = {(21,...,2n) 2 >0, 214+ - + 2, <1} to be the
standard unit simplex in R™. If f is a function defined on an arbitrary m-—
dimensional simplex, especially on S,,, it will prove quite useful to consider
f as a function defined over S, by the use of barycentric coordinates.



Let i = (i9,...,%,m) € Ng*! be a multiindex with [i| = ig + -+ + i,, = n,
and let u € S,,. The i-th Bernstein (base—) polynomial of degree m is defined
by
. ! . .
Bin(u) = .—‘ul = niuloo . ulm‘

N m

1! vl

Given any control polyhedron ® = {b; : |i| = n} C R¢ we define the associated
Bernstein — Bézier — polynomial b™ : S, — R? of degree n via

u— b"(u) = Z b; B (u).

li|=n

In this paper we will be especially interested in polynomials, associated with
functions f: 5, — R, as follows:

v = X7 (1) s

li|=n

where % = (%0, ey %’") are properly defined barycentric coordinates. This
polynomial, known as the Bernstein polynomial of f of degree n, was intro-
duced by Dinghas [4] and Lorentz [6] in 1951, independently.

Dealing with functions defined over an arbitrary simplex, it has shown to
be convenient to make use of directional derivatives because no information is
needed about the exact position of the simplex and its vertices. A direction
d in S5, is given by the difference of two points in 5,,; i.e., d = u — v,
u,v € 5,. According to this the directional derivative of a function f with
respect to d is defined in the following way:

Daf(u) = fig LI - 5702w,

k=0

Some special, but nevertheless important directions are given by €, = e, — ey,
where eq, ..., e,, denote the unit vectors in R™*!; considered as barycentric
coordinates they form the vertices of the simplex 5,,. If we identify S, with
the m-dimensional unit simplex S,,, the directional derivatives Ds, coincide
with the standard partial derivatives =2-. As a consequence we can replace

dxy *
multiple partial derivatives by '

DF flw) = Dyt - Dy f(u),

2



where r = (rq,...,7ry,) € NJ*.

The main tool managing these partial derivatives of Bernstein polyno-
mials is given by the forward difference operator, which is well-known, but
remains overlooked in the CAGD-literature up to now. Forward differences,
according to a nonnegative multiindex r = (rq,...,r,) € NJ' are inductively
defined as follows:

Ag by = by,

Ay by = Ag;lbi_l_ék - Ag;lbi,

A'b; = Ag e Ag:’;bi
where 1 is a multiindex with ¢g > |r| to guarantee that A" is well defined.
Sometimes we will use the abbreviation A, to mean A%+ for 1 < j, k <

m. Now we are in position to represent the derivatives D' of a Bernstein
polynomial in terms of differences A"; indeed,

|
Db (u) = —— S A'biy e, B () (1)

(=) g 2y

which is proved by using the well-known identity

DaB(u) = ndeB” L

lek

as well as

Do, br(u) = 37 bin (B (u) = B (w))

li|=n

= n Z bije, — 1+eo)Bin_1(u)
li|=n—-1

= n Z Aékbi+eoBi71_1(u).
li|=n—-1

It is sometimes nescessary and helpful to write a Bernstein polynomial
of degree < n in terms of the base polynomials BI'*! of degree n + 1. The
formula, needed in this context is known as degree raising. We have

S kBl = > b B”‘"1 where Z

li]=n ll=n+1

(2)

n—l—l bjc,;



for a proof see [5].

§2
Convexity

A function f : S,, — R is said to be convex if for every two points
u,v € 5, and every A € [0, 1]

FOu+(1=X)v) <Af(u) + (1= A) f(v);

it is known that for twice differentiable functions this is equivalent to the
statement that the Hessian H[f](u) is positive semi-definite for every u € S,,;
i.e., for each direction d = (dy,...,dy) (remember: every direction can be
written as linear combination di€; + - - - d,,€,,)

d H[f](u)d” > 0.

Using this characterization and the endpoint interpolation property of
Bernstein polynomials; i.e., b"(ex) = bye, (see e.g. [5]), we obtain at once
that for every convex Bernstein polynomial the matrices

A(Z,O,...,O)bi o A(I,O,...,O,l)bi
Hi = : : (3)
A(I,O,...,O,l)bi o A(O,...,O,Z)bi
have to be positive semi-definite for all i = (n — 2)e;, + 2e, k = 0,...,m,

since H[b"|(er) = H(n—2)e,+2e0-

On the other hand, we are also in a position to give a sufficient condition
for convexity, which is due to the Chang and Feng [2]: the Bernstein poly-
nomial b™ is convex if the matrices H; are positive semi-definite for every 1
with 79 > 2.

The proof is quite easy: for a direction d = (dy,...,d,) we consider

dHb"(w)d" = Y (dHiyze,d”) B (u).

li|=n—2

Due to the positive semi-definiteness of the Hj, all coefficients of the right-
hand polynomial are nonnegative from which at once follows that H[b"] is
positive semi-definite, hence that b” is convex.
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In his classical book on Bernstein polynomials [6] Lorentz pointed out
that in one variable Bernstein polynomials preserve many properties of the
associated functions, among others convexity. This does not remain valid in
two or more variables as the simple function |u; — usy| shows where for m = 2
the matrix H,e, takes on the form

1(0 -2
n\—2 0

which is not positive semi-definite, in contradiction to the nescessary condi-
tion stated above.

This counterexample was first given in 1975 by Schmid ! in [7], a similar
example was later also considered by Chang and Davis [1].

§3

Axial convexity

As convexity seemed somehow inappropriate for dealing with multivariate
Bernstein polynomials, the concept of axial convexity was introduced in [7]
as a variant of classical convexity. Stepping from one to higher dimensions,
it proves to be the right choice: indeed, axial convexity is preserved by
Bernstein polynomials and, although much weaker than convexity, it also
proves to be a sufficent condition for the monotony of subsequent Bernstein
polynomials; i.e., b"~![f] > b"[f].

A function f : S, — R is called azially conver, if f is convex with respect
to the directions e —e;, 0 <7 <k <m, on 5, that is

F O+ (1= A)v) < Af(w) + (1= ) f(v)

for A € [0,1] and all u,v with u — v = g (e — e;) and suitable y, 0 < j <
k < m. This property is obviously weaker than convexity. As an example
for a function which is axially convex, but not convex serves u — —uyus.

1At the conference on multivariate approximation in Oberwolfach, Black Forest, in
April 1976 H. Berens gave a talk about multidimensional Bernstein polynomials in which
he discussed various results of H.J. Schmid and himself. Among others he pointed out that
two- and higher- dimensional Bernstein polynomials do not preserve convexity, but that
axially convex functions, see the section below, have axially convex Bernstein polynomials
of all orders. The definition of and the results on axial convexity, given below, go back to
Schmid in the case of two variables.



First we will give a characterization of axially convex functions, general-
izing Schmid’s two-dimensional results.

Proposition 1. A continuous function f : S,, — R is axially convex if and
only if the following inequalities hold for all n € N

Aprf (%) >0 (4)
and . .
AlLT (%) = (A + A =20, f (%) >0 (5)

where [ij =n and 1 < j <k <m.

Proof: Convexity in the direction of e; — eq yields

D)) ()

which can easily be rewritten as (4). Moreover (6) is equivalent to convexity

in the direction of ey — eg, since, due to the continuity of f, the curve ¢ —
f(u+té) is convex if and only if it is midpoint convex; i.e., L f (u+ 2t&;) +
1f(u) > f(u + té;) which yields (6) by choosing u = % and ¢ = <.

The same argumentation applied to e, — e; will produce the equivalence to
(5), respectively. O

For twice differentiable f another characterization is obtained by the fol-
lowing

Proposition 2. A C? - function f : S,, — R is axially convex if and only
if for all u € 5, the following inequalities hold:

and
Djjf(u) + Drpf(u) = 2D, f(u) 2 0 (8)
where D; . f denotes D¢, De, [ for 1 < j <k < m.
The proof is based on the identity

Nf() / /Dr ( +§j§jekt)dt}---dt;;n (9)

k=0 j=1
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which is obtained by noting that

gt ( —I_tek) Dekf( ‘|‘tek)
/%Dékf( ‘|'tek) dt = / af( —I—tek) dt = Aékf (%) ,

the fundamental step for induction.
Using (9), the equations (4) and (7) are easily proved to be equivalent,
as are () and (8), too. Combining these results, we get

and

Theorem 3. If f:5,, — R is a continuous and axially convex function,
then all Bernstein polynomials b™[f], n € N, are axially convex, too.

Proof: Since f is axially convex, the inequality A, , f (%) > 0 holds for all
1 with 79 > 2, due to Proposition 1; we have

:
Db = 3 Akkf( Lt eo) Br? > 0;

li|=n—2
i.e., inequality (7) holds. Similarly, (8) can be deduced, and an application
of Proposition 2 completes the proof. a

Given an arbitrary vector h = (ho,...,h,) € R™ where |h| = ho +
-+ + h,,, we define the difference

m

Vif(u) = 3 £ (a-t b [hley) — f( (10)

k=0

where the increment vector h is called permissible, if u +h — |hle, € 5, for
0 <k <m. We notice that simple calculations yield the identity

Zf u-+h— |hle;) =u, (11)

where we are facing a special barycentric combination. This difference leads
us to another characterization of axial convexity:



Proposition 4. The function f : S,, — R is axially convex iff Vi f(u) > 0
for allu € S,, and all permissible h € R™+L,

Proof: We set u) = u+ h — |h|e;, and deal with the following recursion:

V= - Y i i 12
uk |h| — hO e — hj_l u] —I_ ( |h| — ho . hj_l uk7 ( )

where j =0,...,m—1and k =75+ 1,...,m. For the sake of brevity we set

_ h;
I

Aj

so that (12) now reads ui"’l = )\jU§ +(1=X) uf.

First we notice that u{ — u) = |h| (ex — e;), and obtain in addition
oWt = ul (1= — el — (1= A)u) = (1= \) (u] —u]
= Ajug 4 i)y, — Aug — iy = ( i) \ug — g

so that two points of the same level, say ui and u{, differ only in a multiple
of e, — e;, and hence

N () + (=) f (ud) > f (), (13)

due to the axial convexity of f.
In the second step we calculate

up = ApoupTp (L= Aaoup™h =

= )\0U8—|—(1—)\0))\1U?—|——|—(1—)\0)(1—)\m_1)u9n,
and notice that

lh| —ho |h|—ho—h1 hy _
[ lh| — Ao lh| = ho—---—hx—1 |hj

as well as

|h|_h0_"'_hm—1 hm
1= Ao (1= Apy) = _ D
A= o) b b




which yields, in combination with (11),

Using the same argumentation for (13), we finally get

m

F(w) = f(um) < Zﬁl—’] (uth— [hley).

k=0

Thus we proved that for every axially convex f, every u € 5, and every
permissible h the difference Vy, f(u) is always nonnegative. The equivalence

is simply completed by setting u = He and choosing hy = hy = % which

yields (4), or u = i—l_éjT—l_ék and h; = hy = * to get (5), respectively. O

Finally, we use a special case of (10), namely,
1 m Zk 1— €L 1
AV — | = = _ _
)z (=) )
to establish

Theorem 5. If [ is axially convex, then b"'[f] > b"[f].

Proof: According to (2) we only have to calculate

b ![f)(uw) = b"[fl(u) = ¥ (fj%f(i_e’“)—f(—)) Bf'(u)

lil=n \k=0 n—1

- Yy (5) Bi(u) > 0

li|=n
to get the monotone behavior of b™[f] for axially convex functions. O
§4
Polyhedral convexity

Polyhedral convexity is another way of dealing with the non-preservation
of convexity by Bernstein polynomials, using a stronger variation instead of
a weaker one, as done introducing axial convexity. The notion is strongly
geometrically motivated, because the convexity of the control polyhedron is
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something the human eye can perceive, at least in two variables where a two-
dimensional surface in R?is formed. Otherwise it seemed nothing but natural
that the de Casteljau — Algorithm, using only convex combinations, should
produce nothing else but a convex patch, when applied to a convex polyhe-
dron, as it was pointed out by Chang and Davis [1] for bivariate Bernstein
polynomials at least. We will see that m—dimensional polyhedrons provide
some hidden traps for someone who wishes to get close to their convexity.

Given a function f : 5,, — R, the evaluation polyhedron associated to
f is defined as the piecewise linear function L[f] : S,, — R, given by the
vertices

Since a piecewise linear function has to be considered over a simplicial dissec-
tion of the parameter space, this definition fails to be sufficient for the case
m > 3, as the points =, defining the vertices (or knots) of the dissection of Sy,

where each vertex is joined to its neighbours 1—|—ek7—e]7 0 <y <k <m,leave

“holes”; i.e., m—dimensional polyhedrons with vertices %, 0<5,k<m.

These polyhedrons have W vertices, so that they are no simplices for

m > 3. The construction of triangulations of 5,,, completing the definition
of L[f], is discussed by Dahmen and Micchelli [3], but we shall see that there
is no real need for it.

Nevertheless it is clear that a polyhedron given by ® = {b; € R : |i| = n}
is convex, independently of any triangulations, iff all the subpolyhedrons,
given by the vertices by, bjs, and bjis ye,, Where |i| = n, 49 > 2, 1 <
J,k < m are convex. So it is sufficient to examine only polyhedrons of that
type, the vertices denoted by b;,, 0 < j, & < m where b, = bj ¢ 1¢,, and
€y = eg—eo = 0. Similarly, we will denote by u;; € 5, the points 146,48 )
the parameter space, obtaining b;, = f(u;), so that we can associate b,
with u; k.

Indepently of any triangulation, the vertices u;;, 0 < 7 < m, form m +1
simplices o, in S, defining affine linear functions ¢ : S, — R by ¢4(u; ) =
b; ;. So convexity yields that all b;; have to be positioned atop of ; i.e.,
b > Yr(ujy), 0 < g, kI <m. From this we obtain

b;;+bi;>b;r+ b, (14)
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which can be transformed into

being true for 0 < j < k < m and 1 with i > 2.

But how to proceed with the “hole”? Since all triangulations are equiv-
alent, there are two possibilities to call ® convex: either if there exists a
triangulation such that the resulting polyhedron is convex, or we want ® to
process convex polyhedrons under arbitrary triangulations. The first way
was recommended by Dahmen and Micchelli [3], who then prove that this
property remaines valid under degree elavation and who proclaime that con-
vex polyhedrons in this first sense would guarantee convexity of the Bernstein
polynomials, due to the uniform convergence of degree elavated polyhedrons
against b™. We shall see below that this does not hold even for m = 3, and
that we will have to deal with the second, much more restrictive form of a
convex polyhedron to avoid contradictions.

To give a counterexample to the claim in [3] we will consider the case
m = 3 more thoroughly where for n = 2 the following figure appears:

U3 3
u
Ug 3 1,3
Uz 3

Upo /U0 Ui

Ug,2
U2

Uz 2

Here we have, with respect to symmetry, three possibilities to triangulate
the “hole” by introducing an additional edge, that is

Up,1 <> U23, Ugz2 <> U3, and Up,3 <> Uy 2.

11



Convexity with respect to the first introduced vertex leads to

b2+ b1 s

>b b
bos + bry = 0,1+ b2z,

which can be transformed in the following way (i = (2,0,...,0)):

boz+bis > boi+ bys,
bi+é1+é3 - bi-|—é1 > bi+é2+é3 - bi+é27
A}gg bi-|-é1 > A}ES bi+é2 s
A173bi > A273bi.

Applying this idea to all triangulations, convexity with respect to the first
case turns out to be equivalent to

A, ,bj

A1,3bi > A2,3bi7 (16)

introducing a vertex of the second type leads to

A, ,by

A273bi > A1,3bi7 (17)

while the last case means

A, sbj

A273bi > Al,zbi- (18)

We now consider the control polyhedron spanned by the vertices
b(0,2,0,0) = b(0,1,1,0) = b0,0,20) = P0,0,1,1) = b(o,002) =1
and all remaining by = 0. This results in the matrix

m

A= (Aj7kb(2,0,0,0))

110
=l
. 01 1

which shows that the control polyhedron satisfies the inequalities (15) and
(17) and is therefore convex with respect to the second triangulation. Ac-

cording to [3]
g b*(u) = > bii(u)

|i|:2

12



is a convex function.

On the other hand one evaluates H[b?], to be equal to %A; not being
positive semi-definite, since det A = —1, in contradiction to the nescessary
condition for convexity stated above. Hence it follows, that convexity with
respect to one single triangulation does not lead to consistent results.

Due to these results we call a polyhedron ® convez, if it is convex with
respect to all triangulations; that means, ® is convex in the sense of (15) and
the vertices of the “hole” are complanar in an m—dimensional meaning; i.e.,
these points lie on an m—dimensional hyperplane, thus forming one face of
®, which seems to be a nice geometric interpretation. In other words, ® is
convex if and only if the inequalities

Ak,kbi > A]‘7kbi >0 (19)
and
A]‘,kbi = Awbi (20)

hold for 1 < j,k,1 < m and iy > 2, where (20) is the numerical expression
for complanarity.

A function f:S,, — R is said to be polyhedrally convez, if all evaluation
polyhedrons & = {f(%) i = n} are convex for n > 1. Using (9) once again,
we can give the characterization of polyhedrally convex functions:

Proposition 6. A C? — function f : S,, — R is polyhedrally convex if and
only if the inequalities
Dy f(u) = Djy f(u) =0 (21)
and
Djxf(u) = Dy, f(u) (22)
hold for 1 < j,k,l <m andu € S,,.

We notice that polyhedral convexity (especially for m > 3) is a rather
restrictive property, but nevertheless Bernstein polynomials do preserve it.
Indeed, we prove in analogy to Theorem 3

Theorem 7. If f : 5, — R is a polyhedrally convex function, then all
Bernstein polynomials b"[f], n € N are polyhedrally convex, too.
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Let us finally remark that from the point of view given above, the two-
dimensional case, as discussed in [1], can now be simply transferred to the
m-dimensional one without any further difficulties. Indeed, one can easily
show that the conditions stated in (19) and (20) are more than sufficient for
the positive semi-definiteness of H; and thus for the convexity of b".

§5

Conclusions

In the paper we included the notion of convexity between two other no-
tions, one stronger than classical convexity, the other one weaker, so that they
are all equivalent in the univariate case. We further showed that they are
preserved by the Bernstein poylnomials in the multivariate case, according
to the following scheme

f polyhedrally convex = convex = axially convex,

s ¥ 4

b"[f] polyhedrally convex = convex = axially convex.

Moreover, we were able to proof one further property of axially convex
functions, namely the monotony of subsequent Bernstein polynomials, as
well as to point out some hidden traps in dimensions lying out of our normal
range of imagination.
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