
Multivariate Bernstein polynomials and convexitybyThomas SauerAbstractIt is well known that in two or more variables Bernstein polynomi-als do not preserve convexity. Here we introduce two variations, onestronger than the classical notion, the other one weaker, which arepreserved. Moreover, a weaker su�cient condition for the monotonyof subsequent Bernstein polynomials is given.x1IntroductionConsiderm+1 points p0; : : : ;pm 2 Rd in general position; i.e., the vectorspk �p0, k = 0; : : : ;m, are linearly independent, in the course of which d hasto be greater than or equal to m. A point p in the a�ne hull of p0; : : : ;pmcan be uniquely written asp = mXk=0ukpk; where u0 + � � �+ um = 1:The coe�cients of u = (u0; : : : ; um) 2 Rm+1 are called the barycentric coor-dinates of p with respect to p0; : : : ;pm. Moreover, the points of the simplex[p0; : : : ;pm], spanned by the vertices p0; : : : ;pm have nonnegative barycen-tric coordinates and vice versa. In other words, we can identify [p0; : : : ;pm]with Sm = fu = (u0; : : : ; um) : uk � 0; u0 + � � �+ um = 1gby using the 1{1 mapping which associates each point of the simplex withits uniquely de�ned barycentric coordinates.We consider Sm = f(x1; : : : ; xm) : xk � 0; x1 + � � � + xm � 1g to be thestandard unit simplex in Rm. If f is a function de�ned on an arbitrary m{dimensional simplex, especially on Sm, it will prove quite useful to considerf as a function de�ned over Sm by the use of barycentric coordinates.1



Let i = (i0; : : : ; im) 2 Nm+10 be a multiindex with jij = i0 + � � �+ im = n,and let u 2 Sm. The i-th Bernstein (base{) polynomial of degreem is de�nedby Bni (u) = n!i! ui = n!i0! � � � im!ui00 � � � uimm :Given any control polyhedron� = fbi : jij = ng � Rdwe de�ne the associatedBernstein { B�ezier { polynomial bn : Sm ! Rd of degree n viau 7! bn(u) = Xjij=nbiBni (u):In this paper we will be especially interested in polynomials, associated withfunctions f : Sm ! R, as follows:bn[f ](u) = Xjij=n f  in!Bni (u)where in = ( i0n ; : : : ; imn ) are properly de�ned barycentric coordinates. Thispolynomial, known as the Bernstein polynomial of f of degree n, was intro-duced by Dinghas [4] and Lorentz [6] in 1951, independently.Dealing with functions de�ned over an arbitrary simplex, it has shown tobe convenient to make use of directional derivatives because no information isneeded about the exact position of the simplex and its vertices. A directiond in Sm, is given by the di�erence of two points in Sm; i.e., d = u � v,u;v 2 Sm. According to this the directional derivative of a function f withrespect to d is de�ned in the following way:Ddf(u) = limt!0 f(u+ td)� f(u)t = mXk=0 dk @@uk f(u):Some special, but nevertheless important directions are given by êk = ek�e0,where e0; : : : ; em denote the unit vectors in Rm+1; considered as barycentriccoordinates they form the vertices of the simplex Sm. If we identify Sm withthe m-dimensional unit simplex Sm, the directional derivatives Dêk coincidewith the standard partial derivatives @@xk . As a consequence we can replacemultiple partial derivatives byDrf(u) = Dr1ê1 � � �Drmêmf(u);2



where r = (r1; : : : ; rm) 2 Nm0 .The main tool managing these partial derivatives of Bernstein polyno-mials is given by the forward di�erence operator, which is well{known, butremains overlooked in the CAGD{literature up to now. Forward di�erences,according to a nonnegative multiindex r = (r1; : : : ; rm) 2 Nm0 are inductivelyde�ned as follows: �0̂ekbi = bi;�r̂ekbi = �r�1êk bi+êk ��r�1êk bi;�rbi = �r1̂e1 � � ��rmêmbiwhere i is a multiindex with i0 � jrj to guarantee that �r is well de�ned.Sometimes we will use the abbreviation �j;k to mean �ej+ek for 1 � j; k �m. Now we are in position to represent the derivatives Dr of a Bernsteinpolynomial in terms of di�erences �r; indeed,Drbn(u) = n!(n� r)! Xjij=n�jrj�rbi+jrje0Bn�jrji (u) (1)which is proved by using the well-known identityDdBni (u) = n mXk=0 dkBn�1i�ek(u);as well as Dêkbn(u) = Xjij=nbi n �Bn�1i�ek (u)�Bn�1i�e0(u)�= n Xjij=n�1 (bi+ek � bi+e0)Bn�1i (u)= n Xjij=n�1�1̂ekbi+e0Bn�1i (u):It is sometimes nescessary and helpful to write a Bernstein polynomialof degree � n in terms of the base polynomials Bn+1i of degree n + 1. Theformula, needed in this context is known as degree raising. We haveXjij=nbiBni = Xjjj=n+1 b̂jBn+1j ; where b̂j = mXk=0 jkn+ 1bj�ek ; (2)3



for a proof see [5]. x2ConvexityA function f : Sm ! R is said to be convex if for every two pointsu;v 2 Sm and every � 2 [0; 1]f (�u + (1� �)v) � �f(u) + (1 � �) f(v);it is known that for twice di�erentiable functions this is equivalent to thestatement that the HessianH[f ](u) is positive semi-de�nite for every u 2 Sm;i.e., for each direction d = (d1; : : : ; dm) (remember: every direction can bewritten as linear combination d1ê1 + � � � dmêm)dH[f ](u)dT � 0:Using this characterization and the endpoint interpolation property ofBernstein polynomials; i.e., bn(ek) = bnek (see e.g. [5]), we obtain at oncethat for every convex Bernstein polynomial the matricesHi = 0BB@ �(2;0;:::;0)bi : : : �(1;0;:::;0;1)bi... . . . ...�(1;0;:::;0;1)bi : : : �(0;:::;0;2)bi 1CCA (3)have to be positive semi-de�nite for all i = (n � 2)ek + 2e0, k = 0; : : : ;m,since H[bn](ek) = H(n�2)ek+2e0.On the other hand, we are also in a position to give a su�cient conditionfor convexity, which is due to the Chang and Feng [2]: the Bernstein poly-nomial bn is convex if the matrices Hi are positive semi-de�nite for every iwith i0 � 2.The proof is quite easy: for a direction d = (d1; : : : ; dm) we considerdH[bn](u)dT = Xjij=n�2 �dHi+2e0dT�Bn�2i (u):Due to the positive semi-de�niteness of the Hi, all coe�cients of the right-hand polynomial are nonnegative from which at once follows that H[bn] ispositive semi-de�nite, hence that bn is convex.4



In his classical book on Bernstein polynomials [6] Lorentz pointed outthat in one variable Bernstein polynomials preserve many properties of theassociated functions, among others convexity. This does not remain valid intwo or more variables as the simple function ju1�u2j shows where for m = 2the matrix Hne0 takes on the form1n  0 �2�2 0 !which is not positive semi-de�nite, in contradiction to the nescessary condi-tion stated above.This counterexample was �rst given in 1975 by Schmid 1 in [7], a similarexample was later also considered by Chang and Davis [1].x3Axial convexityAs convexity seemed somehow inappropriate for dealing with multivariateBernstein polynomials, the concept of axial convexity was introduced in [7]as a variant of classical convexity. Stepping from one to higher dimensions,it proves to be the right choice: indeed, axial convexity is preserved byBernstein polynomials and, although much weaker than convexity, it alsoproves to be a su�cent condition for the monotony of subsequent Bernsteinpolynomials; i.e., bn�1[f ] � bn[f ].A function f : Sm ! R is called axially convex, if f is convex with respectto the directions ek � ej, 0 � j < k � m, on Sm, that isf (�u + (1� �)v) � �f(u) + (1� �) f(v)for � 2 [0; 1] and all u;v with u � v = � (ek � ej) and suitable �, 0 � j <k � m. This property is obviously weaker than convexity. As an examplefor a function which is axially convex, but not convex serves u 7! �u1u2.1At the conference on multivariate approximation in Oberwolfach, Black Forest, inApril 1976 H. Berens gave a talk about multidimensional Bernstein polynomials in whichhe discussed various results of H.J. Schmid and himself. Among others he pointed out thattwo- and higher- dimensional Bernstein polynomials do not preserve convexity, but thataxially convex functions, see the section below, have axially convex Bernstein polynomialsof all orders. The de�nition of and the results on axial convexity, given below, go back toSchmid in the case of two variables. 5



First we will give a characterization of axially convex functions, general-izing Schmid's two-dimensional results.Proposition 1. A continuous function f : Sm ! R is axially convex if andonly if the following inequalities hold for all n 2 N�k;kf  in! � 0 (4)and �sj;kf  in! = ��j;j +�k;k � 2�j;k� f  in! � 0 (5)where jij = n and 1 � j < k � m.Proof: Convexity in the direction of ek � e0 yields12f  i+ 2êkn !+ 12f  in! � f  i+ êkn ! ; (6)which can easily be rewritten as (4). Moreover (6) is equivalent to convexityin the direction of ek � e0, since, due to the continuity of f , the curve t 7!f(u+ têk) is convex if and only if it is midpoint convex; i.e., 12f (u+ 2têk) +12f(u) � f (u+ têk) which yields (6) by choosing u = in and t = 1n .The same argumentation applied to ek � ej will produce the equivalence to(5), respectively. 2For twice di�erentiable f another characterization is obtained by the fol-lowingProposition 2. A C2 { function f : Sm ! R is axially convex if and onlyif for all u 2 Sm the following inequalities hold:Dk;kf(u) � 0 (7)and Dj;jf(u) +Dk;kf(u) � 2Dj;kf(u) � 0 (8)where Dj;kf denotes DêjDêkf for 1 � j < k � m.The proof is based on the identity�rf  in! = Z 1n0 � � � Z 1n0 Drf 0@ in + mXk=0 rkXj=1 êktkj1A dt11 � � � dtrmm (9)6



which is obtained by noting that@@tf  in + têk! = Dêkf  in + têk!and Z 1n0 Dêkf  in + têk! dt = Z 1n0 @@tf  in + têk! dt = �êkf  in! ;the fundamental step for induction.Using (9), the equations (4) and (7) are easily proved to be equivalent,as are (5) and (8), too. Combining these results, we getTheorem 3. If f : Sm ! R is a continuous and axially convex function,then all Bernstein polynomials bn[f ], n 2 N, are axially convex, too.Proof: Since f is axially convex, the inequality �k;kf � in� � 0 holds for alli with i0 � 2, due to Proposition 1; we haveDk;kbn[f ] = Xjij=n�2�k;kf  i+ 2e0n !Bn�2i � 0;i.e., inequality (7) holds. Similarly, (8) can be deduced, and an applicationof Proposition 2 completes the proof. 2Given an arbitrary vector h = (h0; : : : ; hm) 2 Rm+1, where jhj = h0 +� � �+ hm, we de�ne the di�erencerhf(u) = mXk=0 hkjhjf (u+ h� jhjek)� f(u) (10)where the increment vector h is called permissible, if u+ h� jhjek 2 Sm for0 � k � m. We notice that simple calculations yield the identitymXk=0 hkjhj (u+ h� jhjek) = u; (11)where we are facing a special barycentric combination. This di�erence leadsus to another characterization of axial convexity:7



Proposition 4. The function f : Sm ! R is axially convex i� rhf(u) � 0for all u 2 Sm and all permissible h 2 Rm+1.Proof: We set u0k = u+ h � jhjek and deal with the following recursion:uj+1k = hjjhj � h0 � � � � � hj�1ujj +  1 � hjjhj � h0 � � � � � hj�1!ujk; (12)where j = 0; : : : ;m� 1 and k = j + 1; : : : ;m. For the sake of brevity we set�j = hjjhj � h0 � � � � � hj�1so that (12) now reads uj+1k = �jujj + (1� �j)ukj .First we notice that u0k � u0l = jhj (ek � el), and obtain in additionuj+1k � uj+1l = �jujj + (1 � �j)ujk � �jujj � (1� �j)ujl = (1� �j) �ujk � ujl �so that two points of the same level, say ujk and ujl , di�er only in a multipleof ek � el, and hence�jf �ujj�+ (1 � �j) f �ujk� � f �uj+1k � ; (13)due to the axial convexity of f .In the second step we calculateumm = �m�1um�1m�1 + (1 � �m�1)um�1m =...= �0u00 + (1� �0) �1u01 + � � �+ (1� �0) � � � (1� �m�1)u0m;and notice that(1� �0) � � � (1� �k�1)�k == jhj � h0jhj � jhj � h0 � h1jhj � h0 � � � hkjhj � h0 � � � � � hk�1 = hkjhjas well as (1 � �0) � � � (1 � �m�1) = jhj � h0 � � � � � hm�1jhj = hmjhj8



which yields, in combination with (11),umm = mXk=0 hkjhju0k = u:Using the same argumentation for (13), we �nally getf(u) = f (umm) � mXk=0 hkjhjf (u+ h� jhjek) :Thus we proved that for every axially convex f , every u 2 Sm and everypermissible h the di�erence rhf(u) is always nonnegative. The equivalenceis simply completed by setting u = i+êkn and choosing hk = h0 = 1n whichyields (4), or u = i+êj+êkn and hj = hk = 1n to get (5), respectively. 2Finally, we use a special case of (10), namely,rf  in! = mXk=0 ikn f  i� ekn � 1 !� f  in!to establishTheorem 5. If f is axially convex, then bn�1[f ] � bn[f ].Proof: According to (2) we only have to calculatebn�1[f ](u)� bn[f ](u) = Xjij=n mXk=0 ikn f� i� ekn � 1 �� f� in�!Bni (u)= Xjij=nrf  in!Bni (u) � 0to get the monotone behavior of bn[f ] for axially convex functions. 2x4Polyhedral convexityPolyhedral convexity is another way of dealing with the non-preservationof convexity by Bernstein polynomials, using a stronger variation instead ofa weaker one, as done introducing axial convexity. The notion is stronglygeometrically motivated, because the convexity of the control polyhedron is9



something the human eye can perceive, at least in two variables where a two-dimensional surface in R3 is formed. Otherwise it seemed nothing but naturalthat the de Casteljau { Algorithm, using only convex combinations, shouldproduce nothing else but a convex patch, when applied to a convex polyhe-dron, as it was pointed out by Chang and Davis [1] for bivariate Bernsteinpolynomials at least. We will see that m{dimensional polyhedrons providesome hidden traps for someone who wishes to get close to their convexity.Given a function f : Sm ! R, the evaluation polyhedron associated tof is de�ned as the piecewise linear function L[f ] : Sm ! R, given by thevertices L[f ] in! = f  in! :Since a piecewise linear function has to be considered over a simplicial dissec-tion of the parameter space, this de�nition fails to be su�cient for the casem � 3, as the points in , de�ning the vertices (or knots) of the dissection of Sm,where each vertex is joined to its neighbours i+ek�ejn , 0 � j < k � m, leave\holes"; i.e.,m{dimensional polyhedrons with vertices i+êj+êkn , 0 � j; k � m.These polyhedrons have m(m+1)2 vertices, so that they are no simplices form � 3. The construction of triangulations of Sm, completing the de�nitionof L[f ], is discussed by Dahmen and Micchelli [3], but we shall see that thereis no real need for it.Nevertheless it is clear that a polyhedron given by � = fbi 2 R : jij = ngis convex, independently of any triangulations, i� all the subpolyhedrons,given by the vertices bi, bi+êk and bi+êj+êk , where jij = n, i0 � 2, 1 �j; k � m are convex. So it is su�cient to examine only polyhedrons of thattype, the vertices denoted by bj;k, 0 � j; k � m where bj;k = bi+êj+êk , andê0 = e0�e0 = 0. Similarly, we will denote by uj;k 2 Sm the points i+êj+êkn inthe parameter space, obtaining bj;k = f(uj;k), so that we can associate bj;kwith uj;k.Indepently of any triangulation, the vertices uj;k, 0 � j � m, form m+1simplices �k in Sm, de�ning a�ne linear functions  k : Sm ! R by  k(uj;k) =bj;k. So convexity yields that all bj;l have to be positioned atop of  k; i.e.,bj;l �  k(uj;l), 0 � j; k; l � m. From this we obtainbj;j + bk;l � bj;k + bj;l; (14)10



which can be transformed into�k;kbi � �j;kbi � 0; (15)being true for 0 � j < k � m and i with i0 � 2.But how to proceed with the \hole"? Since all triangulations are equiv-alent, there are two possibilities to call � convex: either if there exists atriangulation such that the resulting polyhedron is convex, or we want � toprocess convex polyhedrons under arbitrary triangulations. The �rst waywas recommended by Dahmen and Micchelli [3], who then prove that thisproperty remaines valid under degree elavation and who proclaime that con-vex polyhedrons in this �rst sense would guarantee convexity of the Bernsteinpolynomials, due to the uniform convergence of degree elavated polyhedronsagainst bn. We shall see below that this does not hold even for m = 3, andthat we will have to deal with the second, much more restrictive form of aconvex polyhedron to avoid contradictions.To give a counterexample to the claim in [3] we will consider the casem = 3 more thoroughly where for n = 2 the following �gure appears:
��������������������������@@@@@@@@������������������@@@@ ��@@@@��������r r rrrrr r rr u1;1u3;3

u2;2 u0;0 u0;1u0;3u0;2 - u1;2 u1;3u2;3
Here we have, with respect to symmetry, three possibilities to triangulatethe \hole" by introducing an additional edge, that isu0;1 $ u2;3; u0;2 $ u1;3; and u0;3 $ u1;2:11



Convexity with respect to the �rst introduced vertex leads tob0;2 + b1;3b0;3 + b1;2 � b0;1 + b2;3;which can be transformed in the following way (i = (2; 0; : : : ; 0)):b0;2 + b1;3 � b0;1 + b2;3;bi+ê1+ê3 � bi+ê1 � bi+ê2+ê3 � bi+ê2;�1̂e3bi+ê1 � �1̂e3bi+ê2;�1;3bi � �2;3bi:Applying this idea to all triangulations, convexity with respect to the �rstcase turns out to be equivalent to�1;2bi�1;3bi � �2;3bi; (16)introducing a vertex of the second type leads to�1;2bi�2;3bi � �1;3bi; (17)while the last case means �1;3bi�2;3bi � �1;2bi: (18)We now consider the control polyhedron spanned by the verticesb(0;2;0;0) = b(0;1;1;0) = b(0;0;2;0) = b(0;0;1;1) = b(0;0;0;2) = 1and all remaining bi = 0. This results in the matrix� = ��j;kb(2;0;0;0)�mj;k=1 = 0B@ 1 1 01 1 10 1 1 1CAwhich shows that the control polyhedron satis�es the inequalities (15) and(17) and is therefore convex with respect to the second triangulation. Ac-cording to [3] b2(u) = Xjij=2biB2i (u)12



is a convex function.On the other hand one evaluates H[b2], to be equal to 12�; not beingpositive semi-de�nite, since det� = �1, in contradiction to the nescessarycondition for convexity stated above. Hence it follows, that convexity withrespect to one single triangulation does not lead to consistent results.Due to these results we call a polyhedron � convex, if it is convex withrespect to all triangulations; that means, � is convex in the sense of (15) andthe vertices of the \hole" are complanar in an m{dimensional meaning; i.e.,these points lie on an m{dimensional hyperplane, thus forming one face of�, which seems to be a nice geometric interpretation. In other words, � isconvex if and only if the inequalities�k;kbi � �j;kbi � 0 (19)and �j;kbi = �k;lbi (20)hold for 1 � j; k; l � m and i0 � 2, where (20) is the numerical expressionfor complanarity.A function f : Sm ! R is said to be polyhedrally convex, if all evaluationpolyhedrons � = nf( in) : jij = no are convex for n � 1. Using (9) once again,we can give the characterization of polyhedrally convex functions:Proposition 6. A C2 { function f : Sm ! R is polyhedrally convex if andonly if the inequalities Dk;kf(u) � Dj;kf(u) � 0 (21)and Dj;kf(u) = Dk;lf(u) (22)hold for 1 � j; k; l � m and u 2 Sm.We notice that polyhedral convexity (especially for m � 3) is a ratherrestrictive property, but nevertheless Bernstein polynomials do preserve it.Indeed, we prove in analogy to Theorem 3Theorem 7. If f : Sm ! R is a polyhedrally convex function, then allBernstein polynomials bn[f ], n 2 N are polyhedrally convex, too.13



Let us �nally remark that from the point of view given above, the two-dimensional case, as discussed in [1], can now be simply transferred to them{dimensional one without any further di�culties. Indeed, one can easilyshow that the conditions stated in (19) and (20) are more than su�cient forthe positive semi-de�niteness of Hi and thus for the convexity of bn.x5ConclusionsIn the paper we included the notion of convexity between two other no-tions, one stronger than classical convexity, the other one weaker, so that theyare all equivalent in the univariate case. We further showed that they arepreserved by the Bernstein poylnomials in the multivariate case, accordingto the following schemef polyhedrally convex ) convex ) axially convex,+ 6+ +bn[f ] polyhedrally convex ) convex ) axially convex.Moreover, we were able to proof one further property of axially convexfunctions, namely the monotony of subsequent Bernstein polynomials, aswell as to point out some hidden traps in dimensions lying out of our normalrange of imagination. AcknowlegdementsThe author wishes to thank Prof. Berens and Prof. Schmid for theirhelpful suggestions and for making me aquainted with their unpublishedmanuscripts. References[1] G. Chang and P.J. Davis. The convexity of Bernstein polynomials overtriangles. J. Approx. Theory, 40, 1984.[2] G. Chang and Y.Y. Feng. An improved condition for the convexity ofBernstein { B�ezier patches. Comput. Aided Geom. Design, 1, 1984.14
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