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34].Although each of the techniques excels on certain ex-amples, complexity results indicate that they are allheuristic|when a concurrent system is modeled as a setof communicating �nite-state automata, analysis of evensimple properties like deadlock is PSPACE -hard [38]. Inaddition, empirical data comparing the performance of thedi�erent techniques are rare. This is understandable giventhe e�ort of constructing even a single analysis tool, thevariations among the models and input languages used byvarious existing tools, and the di�culty of conducting afair and meaningful evaluation. Nevertheless, this kind ofdata is essential for assessing the practical value of the tech-niques and in assisting developers in selecting a techniquefor their particular application. There is growing recogni-tion that software engineering research must focus on \de-signing and carrying out experiments that yield quanti�-able and reproducible results" [39].In this paper we make two contributions. First, we exam-ine the methodological issues of empirically comparing dif-ferent deadlock detection techniques for Ada tasking pro-grams. Second, we evaluate the performance of three anal-ysis techniques and report the results of this evaluation.Speci�cally, we evaluate the e�cacy of a partial order statespace reduction [20], symbolic model checking [4], and in-equality necessary conditions [1] in detecting communica-tion deadlocks of Ada tasking programs. While we foundthat none of the techniques was clearly superior to the oth-ers overall, there was signi�cant variation in the perfor-mance of the techniques on particular programs. Our dataprovide some indication of the kinds of programs to whicheach technique might best be applied. Although our eval-uation is narrow in scope, being restricted to one propertyof one class of concurrent system, we believe that our ba-sic approach is broadly applicable. Anyone conducting anempirical comparison of automated veri�cation techniquesfor �nite-state concurrent systems would bene�t from ourexperience.This paper is organized as follows. Section II de�nesthe model of concurrent software used throughout the pa-per. Section III gives an overview of di�erent approachesto the state explosion problem and provides a brief descrip-tion of the three techniques evaluated. Section IV discussesthe method used for the comparison and discusses the is-sues that arise in such an evaluation. Section V presentsthe results of the experiments and draws some conclusionsabout the relative strengths and weaknesses of the tech-niques evaluated. Section VI considers several alternativemodels of concurrent software and explores how such mod-els might have a�ected the results of our evaluation. Fi-



2 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 3, MARCH 1996nally, Section VII summarizes our experience in conductingthe evaluation. II. ModelTo make the presentation (and later, the evaluation)more uniform, we adopt a canonical model of concurrentsoftware. There are many di�erent kinds of concurrent sys-tems, ranging from gate level hardware, to asynchronousnetwork protocols, to Ada tasking programs. Here, wechose a model that seemed the most natural for represent-ing the class of systems over which we plan to conduct theevaluation: Ada tasking programs. The selection of themodel is one of many issues that can a�ect the outcome ofan evaluation, as we will discuss in Section IV-E.Formally, we model a concurrent system as a set ofcommunicating �nite-state automata (FSAs) M1; : : : ;Mnwhere Mi = (Si;�i;�i; s0;i; Fi) and� Si is a set of local states� �i is a set of actions� �i � Si ��i � Si is a transition relation� s0;i 2 Si is the start state� Fi � Si are the �nal statesWe write (si; a; s0i) 2 �i as si a! s0i where �i is clear. Eachtask in an Ada program is represented by an automatonMi. The local states typically represent points of controlwithin a task and may also encode the values of �nite-ranged variables that are critical for modeling the synchro-nization behavior of the task. The concurrent system mod-eled by this set of automata can be de�ned as another FSAM = (S;�;�; s0; F ) where:� S = S1 � : : :� Sn are global states� � = Si�i� ((s1; : : : ; sn); a; (s01; : : : ; s0n)) 2 � i� 8i = 1; : : : ; n:(a 62 �i ^ si = s0i)_(a 2 �i ^ si a! s0i)� s0 = (s0;1; : : : ; s0;n)� F = F1 � : : :� FnSince we model Ada rendezvous, we may assume taskssynchronize in pairs and thus each symbol a 2 � is in thealphabets of either one or two of theMi. Symbols in the al-phabet of one Mi are called internal actions and representexecution of code within the corresponding task; symbolsin the alphabets of two Mi are called communication ac-tions and represent a rendezvous between the correspond-ing tasks. A deadlock state is a non-�nal global state withno out transitions1. A terminal state is a �nal global statewith no out transitions. A trace ofM is a pre�x of a stringaccepted by M .To illustrate the techniques, we will use a simple concur-rent system comprising two tasks, each of which can eithersynchronize with the other or perform some internal ac-tion. The FSAs used to model this system, as well as theautomaton for the system itself, are shown in Fig. 1.1This is not the only de�nition of deadlock in current use. In par-ticular, some de�nitions require a cyclic wait.
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(1,4)Fig. 1. Example Concurrent SystemIII. MethodsIn this section, we review the basic approaches to thestate explosion problem, discuss how we selected the tech-niques to evaluate, and provide a brief overview of the threetechniques selected for evaluation.A. Approaches to the State Explosion ProblemMany di�erent techniques have been proposed to combatthe state explosion problem. Among them:State-space reductions make a standard reachabilityanalysis more e�cient by reducing the number ofstates that must be explored to verify a property.They range from virtual coarsening techniques [29,40],which coalesce internal actions into adjacent externalactions, to partial order techniques [20, 42], which al-leviate the e�ects of representing concurrency with in-terleaving, to symmetry techniques [31,37] which takeadvantage of symmetries in the state space.Symbolic model checking [4, 32] uses a symbolic repre-sentation of a system's states, which is sometimesmuch more compact than an explicit enumeration.These techniques have proven especially successful inverifying hardware.Compositional techniques [5,7,43] exploit modularity ina system by dividing it into smaller subsystems, verify-ing each subsystem, and then combining the results ofthese analyses to verify the full system. If the subsys-tems have simple interfaces, such a hierarchical anal-ysis can be quite e�ective.Abstraction [6] reduces the number of states by ignoringsome state information. For example, static analysis ofsoftware often considers the state of a process to con-sist only of its control location and ignores the valuesof its variables. The behaviors of this abstract modelare a superset of the behaviors of the actual program.This results in a conservative approximation: if thetechnique reports a property holds for all behaviorsin the model, then it must hold for all behaviors ofthe program. If the property does not hold for allbehaviors of the model, however, it may or may nothold of all behaviors of the program since the coun-



CORBETT: EVALUATING DEADLOCK DETECTION METHODS FOR CONCURRENT SOFTWARE 3terexample may be a behavior of the model but not abehavior of the program. Thus an important issue forany conservative analysis is its accuracy : how closelydo the behaviors of the model match the behaviors ofthe program.Data ow analysis can be employed to yield a conserva-tive analysis of a program's properties, from potentialcyclic deadlocks [30] to general safety properties [15,16]. Although these techniques do not really analyzethe ow of data in a program, they employ the samealgorithms to �nd the �xed point of a set of ow equa-tions.Integer programming has been used in the analysis ofcertain kinds of deadlocks [34] and in a conservativeanalysis for general safety and liveness properties [1,12]. These techniques reduce the veri�cation of a prop-erty to a question about the integral solutions of linearsystems.B. Selecting Methods to EvaluateOf all the techniques available, we selected a partial or-der state space reduction [20], symbolic model checking[4], and inequality necessary conditions [1] to evaluate. Weselected these three techniques for several reasons. First,they represent three very di�erent approaches to the stateexplosion problem and might be expected to perform beston di�erent kinds of systems. Second, they are all \basecase" techniques for verifying properties of systems or partsof systems without further decomposition. Compositionaland abstraction techniques are part of a divide and conquerstrategy for veri�cation. They may be used to simplify thesystem into manageable pieces, but at the lowest level thesepieces must be veri�ed by some other technique. We ex-pect compositional and abstraction techniques to play avital role in the veri�cation of any large system, regardlessof the technique used to verify the base case subsystems.Finally, we selected these three techniques because an im-plementation of each was available to us, as discussed inSection IV-C.In the worst case, the time complexity of all of thesetechniques is exponential in the size of the system [1, 4,20]. In practice, the techniques may have a much lowercomplexity on certain kinds of systems. In the remainderof this section, we provide a brief overview of the threetechniques selected for evaluation.C. Partial Order State Space ReductionThe simplest deadlock analysis technique is to enumer-ate the states M (the automaton representing the sys-tem) and search for deadlock states. This is often in-tractable since the number of states of M is usually anexponential function of n (the number of tasks). One pos-sible solution to this problem is to construct a machineM 0 = (S0;�;�0; s0; F 0) with S0 � S, �0 � �, and F 0 � Fsuch that M has some property P (e.g., a deadlock state)if and only if M 0 has property P . Then we can test for Pin M by testing for P in M 0, which may be much smaller.This general approach is called state space reduction.

Some of the most powerful state space reductions usepartial orders. These techniques are based on the observa-tion that much of the state explosion is due to the modelingof concurrency with interleaving. For example, if the FSAsin Fig. 1 each perform their internal actions, then the con-currency of these actions would be represented the presenseof the traces ac and ca in M . While this produces simplesemantics, it greatly increases the size of M .Partial order semantics represents the actions of a con-current system as a set of partially-ordered events. Twoevents are related by the partial order if one must precedethe other given the semantics of processes and their interac-tion. In the example above, a single partial order in whicha and c are unrelated represents both possible traces. Prop-erties such as deadlock depend only on the partial order ofthe events that occur and not on the particular lineariza-tion of those events. Thus if M 0 contains at least one tracefor each partial order, we may check for deadlock in M bychecking for deadlock inM 0. Conditional stubborn sets andsleep sets are two techniques for constructing such an M 0.These techniques involve identifying sets of transitions that\commute" (do not disable each other) at each global stateand then �ring only one transition from each set. In theexample of Fig. 1, f((1; 3); a; (2; 3)); ((1; 3); c; (1;4))g is onesuch set of transitions enabled in the system's start state.By �ring only one of these transitions, we represent onlyone possible order of the two events, reducing the numberof states generated. See [19,20] for details.D. Symbolic Model CheckingAnother approach to making deadlock detection moretractable is to use a di�erent representation for M . State-space searches typically generate the states ofM explicitlyand store them in a hash table. The state space of realsystems is often very large, but also very regular. For ex-ample, consider a simple system modeling an n-bit counterwith states 0; 1; : : : ; 2n�1 and a transition from each statei to state (i + 1)mod 2n. For n = 32, the size of a typi-cal machine register, this system is far too large for stateenumeration techniques, yet the transition relation is given\symbolically" by � = f(i; a; (i+ 1)mod 2n)g.One way to represent � symbolically is to encode therelation as a boolean function represented by an OrderedBinary Decision Diagram (OBDD) [3]. OBDDs representmany frequently occurring boolean functions very com-pactly (e.g., symmetric functions, addition). An OBDD fora function f(x1; : : : ; xn) and a total order < on the booleanvariables x1; : : : ; xn is a rooted directed acyclic graph withthe following properties. Each internal node v is labeled bysome variable var(v) 2 fx1; : : : ; xng and has exactly twochildren, denoted lo(v) and hi(v). Each leaf node is labeledby 0 or 1. For any internal node v, var(v) < var(lo(v)) andvar(v) < var(hi(v)) (i.e., along any path from the root,variables appear in order). Finally, given an assignment ofvalues to x1; : : : ; xn, the value of f is the label of the leafnode reached by traversing a path from the root node, fol-lowing the arc to lo(v) if var(v) = 0 and following the arcto hi(v) if var(v) = 1. The OBDD for an example function



4 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 3, MARCH 1996x y z f(x; y; z)0 0 0 00 0 1 10 1 0 00 1 1 11 0 0 01 0 1 01 1 0 01 1 1 0
1 0

x

z

x < y < zFig. 2. OBDDf is given in Fig. 2. Dashed arcs are used to connect v tolo(v), solid arcs to connect v to hi(v).Any �nite set S can be encoded as an OBDD overdlog2 jSje variables by assigning each element e 2 S aunique n-bit sequence �(e) and building the OBDD forthe characteristic function:f(x1; : : : ; xn) = � 1 9e 2 S: �(e) = x1 : : :xn0 otherwiseRelations can be similarly encoded since they are simplysets of tuples. The function f in Fig. 2 encodes the transi-tion relation for M1 in Fig. 1 where x represents the cur-rent state, y represents the input, and z represents the nextstate. The encodings for states 1 and 2 and symbols a andb are 0, 1, 0, 1, respectively.Given the transition relation �, the set of reachablestates R is the smallest set of states containing s0 andincluding any state that is reachable from a state in R via�. The OBDD for R can be computed from the OBDDof � with �xed-point techniques that manipulate sets us-ing their characteristic functions encoded as OBDDs. TheOBDD for R can be used to check for reachable states withcertain properties (e.g., deadlock). In fact, model checkingof temporal logic formulas can be performed in this frame-work without ever constructing an explicit representationof M . See [4,32] for details.E. Inequality Necessary ConditionsYet another approach to making deadlock detection moretractable is to forgo any representation of the state space.To verify that a system has a property P , the techniquegenerates necessary conditions for the existence of a traceof M violating P . If these conditions are not satis�able,then M must have property P . If the conditions are sat-is�able, however, then M may or may not satisfy P , sincethe conditions are necessary but not su�cient. If the con-ditions are strong (i.e., are rarely satis�able if P holds)and easy to check, then such a technique can be quite ef-fective. Unlike the previous two techniques, however, thiskind of technique can yield an inconclusive result (of course,for any technique, an intractable analysis is inconclusive).Di�erent kinds of necessary conditions have been used fordeadlock analysis in Ada tasking. Masticola and Ryder[30] used dataow techniques to search for potential cyclicwaits. Here, we consider a more general technique thatuses linear inequalities.

Flow: (state)1 = x1 + x2 (1)x1 + x2 = 1 (2)1 = x3 + x4 (3)x3 + x4 = 1 (4)Communication: (symbol)x2 = x3 (b)Hang: (symbol)x1 + x4 � 1 (b)Require:x1 + x4 � 1Fig. 3. Inequality SystemNecessary conditions in the form of linear inequalitieshave been used to verify a variety of di�erent properties ofconcurrent system, including freedom from deadlock [1],general safety and liveness properties [8], and real-timeproperties [2, 11]. The basic idea is to view each FSA Mias a owgraph and �nd a ow from the start state to some�nal state. This ow represents the path Mi takes in thetrace being sought (i.e., the trace violating P ). The owthrough arc i is represented by an integer variable xi. Flowsare found by generating a ow equation at each state equat-ing the ow into the state with the ow out of the state.There is an implicit ow of 1 into the start state, and animplicit ow of 1 out of the �nal state. Additional inequal-ities are generated to enforce some consistency among thepaths taken by the FSAs.Consider the example in Fig. 1. Let action b represent asynchronization between tasks 1 and 2. Let internal actiona represent task 1 becoming permanently blocked waitingfor task 2 to synchronize on b, and let internal action crepresent task 2 becoming permanently blocked waiting fortask 1 to synchronize on b. The inequalities representingnecessary conditions for the existence of a trace in whichsome task becomes permanently blocked are given in Fig. 3.The ow equations �nd ows in each FSA; the communica-tion equation requires that the b communication occur thesame number of times in the two tasks; the hang inequalityprevents both tasks from becoming permanently blockedwaiting for the same communication action (i.e., events aand c cannot both occur); the requirement inequality re-quires that one task become permanently blocked (i.e., oneof events a or c must occur). Notice that the inequalitieshave no integral solution, proving that deadlock is impos-sible. See [1,12] for details.IV. Method for ComparisonThe performance of an analysis technique depends onmany di�erent factors, including the examples to whichit is applied, the property to be veri�ed, the quality ofthe technique's implementation, the way in which problemsare modeled/speci�ed in the input language, and possiblyother parameters speci�c to the particular technique (e.g.,the OBDD variable ordering for symbolic model checking).A method for comparison must control all these factorsin such a way that the resulting performance data gath-



CORBETT: EVALUATING DEADLOCK DETECTION METHODS FOR CONCURRENT SOFTWARE 5ered may be meaningfully compared. In this section, wedescribe a method for empirically evaluating deadlock de-tection techniques for Ada tasking programs.A. Selection of ExamplesAs noted in Section II, there are many di�erent kinds ofconcurrent systems. We restrict the scope of our evaluationto one kind of concurrent system, Ada tasking programs,for several reasons. First, this allows us to use a very simpleinterleaving model of concurrency in which only one typeof communicationmust be represented. Asynchronous pro-tocols are more naturally represented using a model withexplicit message bu�ers. Hardware circuits are more nat-urally represented using models that allow the next stateof a component to depend on the states of many othercomponents and allow many components to change statesimultaneously. A model that could represent everythingwould probably represent nothing well. Second, given ourlimited resources, the results of an evaluation over a limitedclass of systems is more meaningful since the range of ex-amples provides a better coverage of that particular class.Third, we are familiar with this class of systems and have acollection of examples to use. Of course, this restriction inthe class of systems limits the scope of our results. The ex-periments described in Section V must not be interpretedas an evaluation of the techniques in general, but only asan evaluation of the techniques as applied to Ada taskingprograms.Given this restriction on the class of systems, the tech-nique should be tried on as many examples as possible.Many examples are scalable in some parameter and apply-ing a technique to several sizes of such an example givessome indication of the scalability of the technique. We col-lected as many real Ada tasking programs as possible andalso used standard benchmark examples from the concur-rency analysis literature. The examples analyzed are listedin Section V-A. Our choice of Ada reects a standard inthe �eld of concurrent software analysis [1,14,28,30,43,46].B. Selecting a PropertyWe used the techniques to test for deadlock in the com-munications protocol used by the tasks. We selected dead-lock since it is almost always an undesirable property inthis setting and is essentially the same for all examples(i.e., a program deadlocks if and only if its automaton con-tains a deadlock state, as de�ned in Section II). Morecomplex properties, such as mutual exclusion or starvation,are more system speci�c and often require more knowledgeof a program than is present in its source code. As withthe restriction to one class of systems, our restriction toone particular property limits the scope of our results. Wenote, however, that the veri�cation of any safety propertycan be reduced to a check for deadlock [21].C. ImplementationThe implementation of a technique can greatly a�ect itsperformance. The developer of a technique has a strong

incentive to implement the technique as e�ciently as pos-sible in order to demonstrate the technique's e�ectiveness.Therefore, we decided to use tools written by the devel-opers of the techniques to insure a good implementationof the techniques evaluated. The only alternative to usingavailable implementations would have been to implementthe techniques ourselves, guided by technical reports de-scribing their details. Besides requiring much more e�ort,this approach would likely have produced implementationssigni�cantly inferior to those crafted by experts with yearsof experience with a particular technique.Patrice Godefroid, Didier Pirottin and Pierre Wolper ofthe University of Liege have implemented a partial ordertechnique [20] as an extension to a very fast protocol ana-lyzer called SPIN, which was written by Gerard Holzmannat AT&T Bell Labs [25]. We refer to SPIN with the PartialOrder package installed as SPIN+PO. Note that the latestversion of SPIN (version 2.0) supports a di�erent partial or-der technique which has signi�cantly less memory overheadthan the Liege package; it does not yet include the partialorder reductions for synchronous communication, however,and so was not used in this evaluation. Kenneth McMillanof Cadence Systems has implemented the Symbolic ModelVeri�er (SMV) [32]. Both of these tools are publicly avail-able, stable, and reasonably robust. Unfortunately, the In-equality Necessary Condition Analyzer (INCA), like manyresearch tools, has none of these desirable properties, butsince we constructed most of the components that are cur-rently in use, this was not a problem. INCA is descendedfrom the constrained expression toolset [1], but it supportsmore powerful analysis techniques [11,12] and is more e�-cient.D. Specifying the ExamplesGiven our decision to use existing implementations ofthe techniques, we are faced with a problem: each anal-ysis tool has its own unique speci�cation language. Wesee two solutions to this problem. We could specify eachexample directly in each tool's speci�cation language, orwe could specify each example in some canonical form andthen generate the input for each tool automatically fromthis canonical form. The �rst approach is technically sim-pler since it avoids the tricky issues involved in automaticgeneration of input. On the other hand, if we specify anexample in two di�erent speci�cation languages, on whatformal basis can we say that these speci�cations representthe same system? This issue is more serious than it mayappear since speci�cation languages can be very di�erentand slight changes in the way a system is speci�ed canproduce large variations in the performance of a tool. Wemust be sure that speci�cations of the same example indi�erent languages are formally equivalent before we canmeaningfully compare the performance of the techniqueson the example. We believe this requires using the secondapproach.The next step is to decide on a canonical form for theexamples. One possibility is to use the input language forone of the tools as the canonical form. The problem with
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result result resultFig. 4. Generation of Inputthis approach is that the semantics of most speci�cationlanguages are su�ciently complex and varied that trans-lating one into another is very di�cult. Each language hasconstructs that might be awkward to represent in another,thus the tool whose input language is considered canonicalmight enjoy an unfair advantage in the evaluation. Sinceall of the tools, regardless of their input language, repre-sent a concurrent system as a �nite-state transition system,we instead use the more abstract model of concurrent sys-tems from Section II as the canonical form for all of theexamples. This model has simple semantics, thus it is rel-atively straightforward to embed in the richer semantics ofthe speci�cation languages.Given each example speci�ed as a set of communicatingFSAs, we use translators to automatically generate seman-tically equivalent input for the di�erent tools. The transla-tors for SPIN+PO and SMV are described in Sections IV-F and IV-G, respectively. The back end of INCA (whichperforms the analysis) accepts communicating FSAs di-rectly, thus no translation is required. The communicatingFSAs representing each example are generated automat-ically from an Ada-like speci�cation by the front end ofthe INCA tool. This aspect of the comparison method issummarized in Fig. 4.Although it may seem that we are using the input lan-guage for INCA as the canonical form, we view the frontend of INCA only as a tool for constructing the canoni-cal form. INCA constructs the FSA for each task usingstandard techniques for constructing control ow graphs[17]; these automata are very similar to those produced(internally) by SPIN or any other tool that constructs a�nite-state representation of the control ow of imperativecode. Thus we do not believe that using the front end ofINCA to produce the communicating FSAs conveys anyadvantage on the back end of INCA, which performs theanalysis. While it is true that the input for INCA doesnot go through a translator, we could easily have writtenan INCA translator that reversed the mapping performedby the INCA front end (i.e., converted the communicat-

ing FSAs back to the original Ada-like speci�cation) andthen applied the whole of INCA to this translated input.Since the same communicating FSAs would be analyzedin either case, however, the performance of INCA wouldnot have changed. The real issue is whether our choice ofcanonical form introduces a bias; we discuss this issue inSection IV-E.A description of the algorithm used by the front end ofINCA to translate our Ada-like speci�cation language intocommunicatingFSAs is given in [9]. Since the details of thistranslation are extensive and probably beyond the scope ofthis paper, here we give only an example of a sample spec-i�cation and the FSAs generated from it. Fig. 5 showsour Ada-like speci�cation for the basic dining philosophersproblem and Fig. 6 shows two of the FSAs generated bythe INCA front end from this speci�cation (we selectedthis example because it has the smallest speci�cation andis probably the most familiar). The constant Problem Sizeis set by the INCA front end so that varying sizes of theexample can be generated from the same source code. Thetask discriminant I is set to the index in the array at whichthe philosopher/fork task is placed. A rendezvous betweentwo tasks is modeled by a shared symbol that encodes thecaller, the acceptor, and the entry. For this example, theFSA state encodes only the syntactic location within thesource code. For many examples, the values of a few smallranged variables (e.g., ags or counters) must be encodedinto the task state for accurate modeling of the task's syn-chronization behavior; adding variables to the task speci�-cations causes INCA to perform this encoding.E. Identifying Potential BiasOur model of concurrent systems may introduce a biasagainst SPIN and SMV. While our model is very natu-ral for representing Ada tasking programs, it is not par-ticularly appropriate for representing asynchronous proto-cols or hardware, the domains for which the other toolswere designed. We believe this bias is much worse for theOBDD-based technique for two reasons. First, we use aninterleaving model of concurrency rather than a simulta-neous model (in which multiple actions can occur simulta-neously). OBDD-based techniques generally perform bet-ter on simultaneous models, although this depends on thecommunication structure of the system [32]. Second, theencoding of task variable values within a monolithic taskstate may increase the size of the OBDDs needed to repre-sent the transition relation of the task's FSA. We elaborateon this second e�ect.Large FSAs are generated by data intensive tasks con-taining variables that must be encoded into the state of thetask for accurate modeling of the task's synchronizationbehavior. When a system is directly speci�ed in the SMVinput language, SMV can encode the states more e�cientlyfor representation by OBDDs. For example, consider againthe n-bit counter with states 0; : : : ; 2n � 1, and transitionrelation � = f(i; a; (i+1)mod 2n)g. Since addition can berepresented very e�ciently with OBDDs, the OBDD rep-resenting this transition relation would be much smaller if



CORBETT: EVALUATING DEADLOCK DETECTION METHODS FOR CONCURRENT SOFTWARE 7-- Number of philosophers/forksN : constant := Problem_Size;type Fork_Range is range 0 .. N - 1;task type Philosopher (I : Fork_Range);task type Fork (I : Fork_Range) isentry Up;entry Down;end Fork;Forks : array Fork_Range of Fork;Phils : array Fork_Range of Philosopher;task body Philosopher is -- Philosopher Ibeginloop-- Pick up right, then left forkForks((I + 1) mod N).Up;Forks(I).Up;-- Eat, put down forksForks((I + 1) mod N).Down;Forks(I).Down;end loop;end Philosopher;task body Fork is -- Fork Ibeginloopaccept Up; -- Fork picked upaccept Down; -- Fork put back downend loop;end Fork;Fig. 5. Ada-like Source Code for Dining Philosophers Example
phil_0;fork_1.up

phil_0;fork_1.down

phil_0;fork_0.down phil_0;fork_0.up

phil_0;fork_0.up ,phil_0;fork_0.down ,
phil_3;fork_0.upphil_3;fork_0.down

Philosopher 0

Fork 0

Fig. 6. Two FSAs for Dining Philosophers Example (N = 4)the state's number (in binary) were used by SMV as thestate's encoding. INCA, however, might present the states0; : : : ; 2n� 1 to SMV in an arbitrary order, resulting in anarbitrary binary encoding for each state that does not ex-pose the regularity of the transition relation. In practice,if a task has only one variable and its FSA contains essen-tially one state per value of this variable, then this typeof bias is not introduced since the states are presented toSMV in order. However, if the task has multiple variables,

/* Message type */mtype = { synch };/* Rendezvous channel b */chan b = [0] of { byte };proctype M1() /* FSA 1 */{state1:if/* internal action a */:: skip -> goto endstate2/* rendezvous on channel b */:: b?synch -> goto endstate2fiendstate2:0 ; /* halt */}proctype M2() /* FSA 2 */{state3:if/* rendezvous on channel b */:: b!synch -> goto endstate4/* internal action c */:: skip -> goto endstate4fiendstate4:0 ; /* halt */}init { atomic { run M1(); run M2() }}Fig. 7. Promela Generated by Translatorthen the position of a state in some ordering chosen bythe translator does not reveal the values of the variablesencoded in the state, and thus introduces the bias.The model was chosen to match the domain of the ex-amples, not the analysis tools. Since we are conducting theevaluation over a domain for which SPIN and SMV werenot designed, the introduction of some bias seems unavoid-able. INCA was built to analyze Ada tasking programs,thus it does not su�er from this bias. In Section VI, we ex-plore the extent of the bias by considering di�erent models.F. SPIN TranslatorHere, we describe the how the communicating FSAsrepresenting a concurrent system were translated intoPromela, the input language for SPIN. Promela is aguarded command language like CSP [24], with a C-likesyntax. It directly supports communicating processes, thusthe translation is relatively straightforward.Each FSA is represented by a process created using theproctype declaration. Each state of the FSA is representedby a statement labeled with the name of the state. Thestatement implements the transitions out of the state itrepresents using goto statements guarded by the actioncausing the transition. Fig. 1 shows a pair of communicat-ing FSAs and Fig. 7 shows the Promela code generated forthese FSAs (with some comments added by hand).The if statement in Promela is like the alternative com-mand in CSP, allowing an arbitrary selection among alter-



8 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 3, MARCH 1996natives whose guards are true. There is one alternative foreach transition out of the state. If the state has no outtransitions, then the statement for that state is 0, which isnot executable, causing the process to halt. Each alterna-tive representing a transition on action A to state i consistsof a goto statement to state i's label guarded by a state-ment representing A. Internal actions are always enabledand are represented by the statement skip. Communica-tion actions are discussed below. If a state label beginswith the string \end", then it is considered a �nal state ofthe process for purposes of deadlock detection.Promela supports communication between processes viachannels which are declared like ordinary variables havingtype chan. Channel variables must be initialized, indicat-ing the number of messages that the channel can bu�er. Weuse channels with zero capacity to implement synchronouscommunication. We declare such a channel for each com-munication action in the FSAs. Each communication ac-tion is shared by two processes, one of which is designatedthe sender, and the other, the receiver. The Promela state-ments c!m and c?m are used to send and receive a messageof type m to/from a channel c, respectively. Since the chan-nels have zero capacity, these statements are executable(i.e., may be chosen in the if statement for a state) onlywhen both processes containing the corresponding commu-nication action are in states in which they can take thataction. No information is passed in the messages, thuswe declare and use a single message type synch using themtype declaration.Promela also supports the speci�cation of safety and live-ness properties. We do not generate such speci�cations inour translation, causing SPIN (and SPIN+PO) to searchonly for invalid endstates (i.e., deadlocks).G. SMV TranslatorWe now describe how a set of communicating FSAs istranslated into the SMV input language. Unlike Promelaand Ada, the SMV input language was designed primarilyfor hardware speci�cation. In the SMV language, systemsare speci�ed as a set of variables and a set of functionsthat de�ne the next value of those variables in terms ofthe current values. Facilities for constructing, replicating,and connecting components are also provided. While thisis convenient for specifying gate-level logic and even cer-tain kinds of protocols, we found it awkward for specifyingcommunication between sequential processes. Fortunately,the SMV language also provides an escape that allows thetransition relation to be speci�ed directly. This was meantspeci�cally to facilitate writing translators from other lan-guages into SMV and proved invaluable for this compari-son.The SMV speci�cation we generate has four parts. TheVAR part declares the state variables. A state is an assign-ment of values to the state variables. The INIT part is aboolean function of the state variables. A state is a legalinitial state of the system if this function is true for thatstate. The TRANS part allows any transition relation to bespeci�ed. It is comprised of a single boolean function of

MODULE mainVARx1 : { 1, 2 }; -- State of FSA 1x2 : { 3, 4 }; -- State of FSA 2INIT -- Initial state(( x1 = 1 ) & ( x2 = 3 ))TRANS( -- Transition on 'a'( ( ( x1 = 1 )&( next(x1) = 2 ))&( x2 = next(x2) ))| -- Transition on 'c'( ( x1 = next(x1) )&( ( x2 = 3 )&( next(x2) = 4 )))| -- Transition on 'b'( ( ( ( x1 = 1 )&( next(x1) = 2 ))&( ( x2 = 3 )&( next(x2) = 4 )))))SPECAG -- On all paths globally:( EX 1 -- There is a next state| -- OR all FSAs in final( x1 = 2 & x2 = 4)) -- statesFig. 8. SMV Generated by Translatorthe values of the state variables in the current state andtheir values in the next state. If this function returns truefor a pair of states (s; s0), then there is a transition fromstate s to state s0. Finally, the SPEC part is a temporallogic formula in the logic CTL [32] specifying a propertythat the system must satisfy.We represent a set of communicating FSAs as follows.For each Mi, we declare a state variable xi to hold its cur-rent state. The INIT function Vi(xi = si;0) forces each Mito begin in its start state. The TRANS function encodes thetransition relation of the entire system in one large booleanformula; its construction is described below. Finally, theSPEC formula AG ((EX 1) | FINAL) is used to search fordeadlocks, where FINAL is a formula that is true if the stateis a �nal state. In CTL, this translates as \Along all pathsalways, either there exists some next state, or the currentstate is �nal". Formula FINAL is given byî  _s2Fi xi = s!The main part of the translation is the construction ofthe TRANS formula. We use an interleaving model in whichat most one transition can occur at a time. The TRANSfunction will consist of a disjunction of all possible globaltransitions the concurrent system can make. Global tran-sitions are of two types: internal actions (in which one Michanges state) and communication actions (in which twoMi change state). For each state variable x, next(x) repre-sents the value of x in the next state, while x represents its



CORBETT: EVALUATING DEADLOCK DETECTION METHODS FOR CONCURRENT SOFTWARE 9value in the current state. The disjunct representing theoccurrence of internal action transition s a!s0 in Mi isxi = s ^ next(xi) = s0 ^ ĵ 6=ixj = next(xj)This requires thatMi move from state s to state s0 while allother Mi remain in the same state. Similarly, the disjunctrepresenting the occurrence of communication action tran-sition s a!s0 in Mi synchronously with the communicationaction transition q a!q0 in Mj isxi = s ^ next(xi) = s0^ xj = q ^ next(xj) = q0^ ^k 6=i;j xk = next(xk)Each possible pairing of matching communication actiontransitions produces a distinct global transition. The SMVinput generated for the system in Fig. 1 is shown in Fig. 8.SMV uses & and j for and and or, respectively.V. ExperimentsThis section presents the results of the experiments con-ducted using the comparison method described in Sec-tion IV. We applied the SPIN+PO, SMV, and INCAto seventeen families of scalable examples and to severalnon-scalable programs, measuring the amount of time andmemory used by the tools to check for deadlock. For eachscalable example, we applied each tool to several sizes of theexample to gauge the scalability of the technique. We alsoapplied SPIN, a straight reachability analyzer, to each ex-ample to provide a baseline for measuring the e�ectivenessof the other tools in curbing the state explosion problem.From the raw performance data for the scalable examples,we derived a numerical measure of how fast the resource re-quirements grew with the problem size. Using these growthrates and the raw data for the non-scalable examples, wewere able to correlate the scalability of each technique tocertain features of the examples and thus characterize thekinds of programs to which each technique might best beapplied.This section is organized as follows. Section V-A presentsa brief description of the examples used in the evaluation.Section V-B discusses some issues that arose in modelingthese examples for analysis. Section V-C describes thegeneral approach we used (i.e., what analyses should berun). Section V-D presents the raw data from the anal-yses and the details of its collection. In Section V-E, wedevelop a numerical measure for the rate of growth of thetime/memory required by the tools as an example is scaledup. Finally, in Section V-F, we use these growth rates todraw conclusions about the scalability of the various tech-niques on di�erent kinds of programs.A. ExamplesThis section lists the examples analyzed. We use m asthe size parameter for scalable examples, and denote the

size m version of scalable example X as X(m). Space per-mits only a brief description of each example. The Ada-like speci�cations of these examples, the communicatingFSAs generated from them by the INCA front end, andthe Promela and SMV inputs generated by the translatorsare available for anonymous FTP on ftp.ics.hawaii.eduin /pub/corbett/eval.tar.Z.Some raw characteristics of each example are summa-rized in Table I, whose columns give the lines of code, thenumber of tasks, the number of unique rendezvous, andsome additional features used in our analysis of the resultsin Section V-F. The lines of code given is for the Ada-likeinput to INCA; this is not an accurate measure of the size ofthe resulting system since all the scalable examples use ar-rays of tasks, and thus this measure does not vary with theproblem size. For speci�cations extracted from real pro-grams, we give the size of our speci�cation rather than thesize of the original program since the amount of unmod-eled non-concurrent code is not relevant to our analyses.We count each distinct shared symbol as a unique ren-dezvous; this symbol encodes the caller, the acceptor, theentry name, and any parameters passed in the rendezvous.The examples analyzed were:Alternating Bit Protocol (ABP) A simple but often an-alyzed example modeled with 6 tasks representing twousers, a sender, a receiver, and two lossy channels.Border Defense System (BDS) This example, analyzedin [14,30], is the communication skeleton of a real Adatasking program that simulates a border defense sys-tem. The original source code was written by T. Gri-est of LabTek Corporation and comprised 11K lines ofAda. We obtained the communication skeleton fromthe Concurrent Systems Software Laboratory at theUniversity of Illinois at Chicago (as indicated in Ta-ble I, the skeleton is only 247 lines). The example has15 tasks, but the skeleton of each is relatively simple.Cyclic scheduler (CYCLIC) Milner's cyclic scheduler [7,33] uses m scheduler tasks to keep m customer tasksloosely synchronized.Divide and Conquer (DAC) A program modeling a di-vide and conquer computation by forking up to msolver tasks that proceed in parallel [2,11].Dartes Program (DARTES) The communication skele-ton of a fairly complex Ada program with 32 tasks[30].Dining Philosophers (DP, DPH, DPD, DPFM)Although not a very realistic problem, it does containa nontrivial deadlock and is probably the most com-monly analyzed example [1, 14, 28, 42, 46]. We modeleach of the m philosophers and m forks with a task.These tasks synchronize to model forks being acquiredand released. In addition to the standard version(DP), which can deadlock, we also analyzed severalversions of the problem where deadlock is prevented.In the version with host (DPH), there is an additionalhost task with which a philosopher must synchronizebefore attempting to acquire her forks. This mightmodel a real-world situation in which a task wishing



10 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 3, MARCH 1996Communication Task Size/Problem LOC Tasks Rends Structure StructureCYCLIC(m) 54 2m 3m linear 2m smallDAC(m) 41 m 2m linear m smallDP(m) 34 2m 4m linear 2m smallDPD(m) 47 2m 5m linear 2m smallDPFM(m) 50 m+ 1 2m single star m small, 1 largeDPH(m) 62 2m+ 1 6m linear + single star 2m small, 1 medium linearELEVATOR(m) 278 m+ 3 11m+ 9 multiple stars m+ 2 medium, 1 largeFURNACE(m) 196 2m+ 6 8m+ 6 multiple stars 2m+ 5 small, 1 mediumGASNQ(m) 98 m+ 3 12m+ 2 multiple stars m+ 2 medium, 1 largeGASQ(m) 141 m+ 3 10m+ 2 multiple stars 2 small, m medium, 1 largeHARTSTONE(m) 55 m+ 1 2m single star m small, 1 large linearKEY(m) 388 m+ 5 13m+ 8 single star 3 small, m+ 2 mediumMMGT(m) 202 m+ 4 5m+ 4 multiple stars 4 small, m mediumOVER(m) 79 2m+ 1 11m� 4 linear + single star m+ 1 small, m mediumRING(m) 60 2m 5m linear m small, m mediumRW(m) 65 2m+ 1 4m single star 2m small, 1 medium linearSENTEST(m) 198 m+ 4 m+ 9 single star m+ 3 small, 1 large linearABP 166 6 18 linear 5 small, 1 mediumBDS 247 15 25 multiple stars 14 small, 1 mediumDARTES 1228 32 205 multiple stars 25 small, 7 mediumFTP(1) 572 9 76 multiple stars 3 small, 6 mediumFTP(2) 572 10 102 multiple stars 3 small, 7 mediumQ 615 18 59 multiple stars 10 small, 8 mediumSPEED 245 10 10 multiple stars 10 smallTABLE ICharacteristics of Examplesto use a resource must �rst get permission from a cen-tral server task. The host will allow at most n � 1philosophers to hold forks at any one time. In thedictionary version (DPD), the same e�ect is achievedby having the philosophers pass a dictionary aroundthe table. The philosopher holding the dictionary can-not hold any forks. Finally, in the version with a forkmanager (DPFM), philosophers pick up both forks si-multaneously by rendezvous with a fork manager task,which records the state of all forks in lieu of the forktasks.Elevator(ELEVATOR) This program models a con-troller for a building with m elevators, using tasks tomodel the behavior of the elevators themselves. Thesize m version has m + 3 tasks.File Transfer Program(FTP) This program services re-quests from m users to transfer �les over a network.Our version is an abstraction of the original program,which was too complex to analyze. The size m versionhas m + 8 tasks.Remote Furnace Program(FURNACE) Thisprogram manages temperature data collection for mfurnaces. We analyze the original design presentedin [45] abstracted slightly (e.g., we do not model thetemperature data using the furnace identi�er since weare only verifying freedom from deadlock, not propertransmission of data). The size m version has 2m+ 6tasks.Gas Station(GASNQ, GASQ) This example, whichmodels a self-service gas station, originated in [23] andhas been analyzed in [1, 14, 28, 40]. Customers arriveand pay the operator for gas. The operator activates apump, at which the customer then pumps gas. When

the customer is �nished, the pump reports the amountof gas actually pumped to the operator, who then givesthe customer her change. We analyzed versions withone operator task, two pump tasks, and m customertasks. We analyzed two di�erent versions of this ex-ample. In the original version (GASQ) from [1, 23],the operator task queues customer requests and mustkeep track of which customers are waiting for eachpump and in what order. In the non-queuing version(GASNQ) from [14], the operator does not enforce a�rst-come-�rst-serve order on the customers and mustonly record the number of customers waiting for eachpump in order to activate the pump when any waitingcustomers remain.Hartstone Program (HARTSTONE) The communica-tion skeleton of an Ada program analyzed in [30] inwhich one task starts and then stops m worker tasks.Keyboard Program (KEY) The communication skeletonof an Ada program analyzed in [30] that manages key-board/screen interaction in a window manager. Wescaled the program by making the number of customertasks a parameter (m). The size m version has m+ 5tasks.Distributed Memory Manager (MMGT) The communi-cation skeleton of an Ada program implementing thememory management scheme from [18] with m users.The size m version has m + 4 tasks.Overtake Protocol (OVER) An Ada version of an auto-mated highway system overtake protocol in [22] for mcars comprising 2m+ 1 tasks.Q User Interface (Q) The Ada skeleton of an RPCclient/server-based user interface with 18 tasks thatis used by several real applications.



CORBETT: EVALUATING DEADLOCK DETECTION METHODS FOR CONCURRENT SOFTWARE 11Token Ring Mutual Exclusion Protocol (RING) AnAda implementation of a standard distributed mutualexclusion algorithm in which m user tasks synchronizeaccess to a resource though m sever tasks that pass atoken around a ring.Readers and Writers(RW) This example modelsa database that may be simultaneously accessed byany number of readers or a single writer. Each of them reader tasks and m writer tasks must synchronizewith a controller task before accessing and when �n-ished accessing the database. This system has beenanalyzed in [1,14,28].Sensor Test Program (SENTEST) The communicationskeleton of an Ada program analyzed in [30] that startsup m tasks to test sensors. The size m version hasm + 4 tasks.Speed Regulation Program (SPEED) The com-munication skeleton of an Ada program analyzed in[30] with 10 tasks that monitor and regulate the speedof a car.B. Modeling IssuesFor a few of the examples (DPFM, ELEVATOR,GASNQ, GASQ), it is convenient for a task accepting anentry to be able to test the value of a call parameter be-fore deciding whether to accept the call. This function-ality is absent from Ada 83, although the requeue state-ment of Ada 95 e�ectively adds it. The same e�ect can beachieved in Ada 83 by using a di�erent entry for each valueof the critical parameter, though this often makes scalingthe speci�cation cumbersome. In our speci�cations, weemploy a special assume statement for this purpose. Forexample, the operator task in GASNQ should not acceptthe CHARGE entry for a pump for which no customers arecurrently waiting. This can be expressed as:accept CHARGE ( P : PUMP) doassume WAITING(P) > 0;...end CHARGE;The assume statement is modeled after the assumingclause used by Yeh and Young in [44].Although we believe all of our examples except the stan-dard dining philosophers (DP) are free of deadlocks, ourmodels of the Ada programs DARTES, KEY, and SPEEDcontain spurious deadlocks due to the presence of a globalvariable used for synchronizing task termination. Cur-rently, global variables are not processed by the INCAfront-end, although they can be represented in our modelof concurrent systems using an additional FSA for eachvariable to hold the value of that variable, along with com-munication actions for testing and setting the value of thevariable. Our model of the Q program also contains a spu-rious deadlock due to the abstraction of timing information(the program makes heavy use of conditional entry calls).Since we had so few examples that contain deadlocks, wechose to leave these spurious deadlocks in the models toprovide more data on how quickly the tools can �nd a dead-

lock when one exists. One drawback is that these deadlocksare not subtle|unlike the deadlock in the dining philoso-phers problem, these deadlocks would be likely be foundby random simulation.Several of the examples (DAC, ELEVATOR, HART-STONE, KEY, Q, SENTEST, SPEED) used the Adaterminate alternative to synchronize the termination ofgroups of tasks. In all of these examples, all tasks aredeclared within a single package; thus a task will selectits terminate alternative exactly when all other tasks areeither terminated or similarly blocked on terminate alter-natives. We represent this in our model by making a stateof a task FSA that can select a terminate alternative a�nal state.C. General ApproachWe ran SPIN+PO, SMV, and INCA on the examples de-scribed in Section V-A. We also ran SPIN, a straight reach-ability analyzer, on each of the examples to give a baselinefor measuring the e�cacy of the techniques in curbing thestate explosion problem. For all examples, we measure theCPU time and memory consumed by the tools in perform-ing the analysis.For each scalable example, we selected four arithmeti-cally increasing sizes ending near the maximum size thatcould be handled by all of the tools. This facilitates com-parison of the tools, although it makes most of the mea-sured run times small since the maximum size is set by thetool that performs worst on that example. The step valuefor the size growth was chosen to magnify the variation inthe resource measurements. For most examples, this meantdividing the size range into roughly equal pieces (e.g., if themaximum size is 12, run sizes 3, 6, 9, 12). For a few exam-ples, however, the resource requirements for one or moretools increased very quickly with the size and were thusvery small until the size approached the maximum. Forsuch examples, we chose to use larger sizes to minimize thenumber of small measurements, which are dominated by�xed overhead.Rather than �nding the largest size each tool can handlegiven certain resource constraints, as we did in the pre-liminary version of this paper [10], we simply measure thegrowth in the resources consumed as the example is scaledup (the calculation of these growth rates is described inSection V-E). We believe these growth rates are moremeaningful than the maximum sizes gathered in [10] forseveral reasons. First, various kinds of constant overheadin the implementations are factored out. Second, for someof the examples, the use of translated input, not the toolitself, imposes the maximum size (see the discussion of thedi�culty in scaling HARTSTONE and SENTEST in Sec-tion V-D). For larger sizes of such examples, either theINCA front end runs out of memory building the FSAs or(more often) the translated input, being much larger thana native speci�cation, is too large for the tool. This isa limitation of our comparison method, although a morecompact canonical model (e.g., the EFSAs of Section VI-B) and better translators, which use language constructs



12 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 3, MARCH 1996like Promela arrays to replicate components, would largelysolve this problem. Third, the resource constraints, al-though reasonable, are somewhat arbitrary, especially thelimit on CPU time. In [10] we used three hours, thoughone could argue for a higher or lower limit.In Section V-E, we will investigate the relationship be-tween the size of the concurrent system and the resourcesconsumed by the tools to perform the analysis. Given aconcurrent system in the model of Section II, we must de-�ne exactly what the size of this system is. We might usethe number of reachable states in the model (jSj), but thisobscures the state explosion by making the size measureitself explode as systems are scaled up. Also, it bears lit-tle relation to the size of the Ada program from which themodel was derived. Alternatively, we might use the num-ber of tasks (n). This is closer to the programmer's viewof a program's size, but does not take into account the sizeof the tasks (e.g., the 2-state fork tasks in DP are countedthe same as the 1400-state operator task of GASQ(4)). Toaccount for task size, we might use the number of compo-nent states (Pi jSij) as the measure, but this obscures thestate explosion that results from the use of data within acomponent (as in the gas station and elevator examples).Instead, we use the number of bits required to store thestate of the task as a measure of the task's size, and thesum of these measures (Pi log2jSij) as a measure of the sizeof the program. To avoid confusion, we call this measure ofsize the scale of the example and continue using the word\size" to denote the value of m in the scalable examples.We note that, for all of our examples, the scale is a linearfunction of the size, thus an arithmetic sequence of sizes ofan example will have an arithmetic sequence of scales.D. Raw DataIn this section, we present the data from our experimentsalong with various details of how they were collected.All experiments were conducted on a SPARCstation 10Model 51 with 96 MB of memory. Analysis times are re-ported in user CPU seconds collected using the time com-mand of tcsh and the (get-internal-run-time) functionof Allegro Common Lisp. Statistical analysis of the behav-ior of these functions reveals that the time they report has anear normal distribution with a standard deviation around0:06. If a tool takes very little time on all sizes of an exam-ple, these small variations can have a signi�cant e�ect onthe growth rate we calculate in Section V-E. Therefore, ifthe measured run times of a tool on all sizes of an exampleare less than two seconds, then we run the tool 100 timesand use the average time as a point estimate. For the INCAresults, the analysis times reported include the translationfrom an Ada-like source language to the FSAs. For theother tools, the analysis times include only the actual runtimes of those tools|not the time to translate the Ada-likesource to FSAs, nor the time to translate the FSAs into thetool's input language.The tools themselves report the amount of memory theyused; we trust these �gures, but regard them as approxima-tions. Memory usage is very di�cult to measure externally

since a tool will generally allocate more memory than it ac-tually uses. Also, there is some variation among the toolsas to what memory (i.e., code, stack, heap) is counted inthe total reported. These di�erences are small constantfactors, however, and do not signi�cantly a�ect the rate ofgrowth of memory usage as examples are scaled up.For these experiments, we used version 1.5.10 of SPIN,version 2.0 of the partial order package for SPIN, an uno�-cial version of SMV dated 8/6/93, and version 3.2 of INCA.SPIN, SPIN+PO, and SMV are all written in C. INCA iswritten in Common Lisp, with the integer programmingpackage written in FORTRAN.SPIN+PO and SMV take various command line param-eters that can a�ect their performance. We used the pa-rameters suggested by the authors of those tools, whichwe found produced the best performance. SPIN+PO wasrun with the \proviso" disabled (the -p ag). The pro-viso causes SPIN+PO to generate more states than areneeded for deadlock detection in order to allow state asser-tion checking. Since we are evaluating deadlock detectiononly, this is not needed and removing it improves the per-formance of the tool. SMV was run with the -f ag, whichcalculates the reachable states of the system before check-ing the CTL formula.SPIN and SPIN+PO use arrays whose sizes are set byvarious command line parameters, including: the maxi-mum number of processes, the size of the state vector, andthe maximum search depth. While the default values forthese parameters su�ced for most of the examples, we hadto increase them to complete the analysis of some of theexamples. The maximum number of processes (default:32) was raised to 34 for DARTES and RW, and to 110on HARTSTONE and SENTEST. The state vector size(default: 1024) was raised to 2048 on DARTES, HART-STONE, and SENTEST. The maximum search depth (de-fault: 10K) was raised to 100K on DP (for SPIN only).Parameters were raised uniformly for all sizes of a scalableexample. This increased the memory usage unnecessar-ily for smaller sizes of those examples, but we feel thatthis is more consistent since we do not vary these param-eters for the di�erent sizes of the other scalable examples.In our analysis of performance in Section V-E, we will beconcerned primarily with growth rates rather than magni-tudes.For SPIN and SPIN+PO, the analysis tool �rst gener-ates C source code for an analyzer which is then compiledand run to perform the analysis. We do not include thegeneration and compilation times in our data. The trans-lated input we generate is much larger than the equivalentPromela code that would be used to specify the same sys-tem, and takes much longer to generate and compile (e.g.,for GASNQ(5), a native Promela speci�cation takes 5 sec-onds to generate and compile, compared to 62 seconds forthe translated input). Thus the real run times of thesetools would be slightly larger.The HARTSTONE and SENTEST programs have a verysimple communication structure. Indeed, the number ofstates in these examples grows linearly with the problem



CORBETT: EVALUATING DEADLOCK DETECTION METHODS FOR CONCURRENT SOFTWARE 13size (m). We had di�culty scaling these examples to thelimits of the tools, however, due to our use of translatedinput for SPIN and SPIN+PO. As noted above, the trans-lated input is usually much larger than the equivalent na-tive Promela speci�cation. For large sizes of HARTSTONEand SENTEST, the generated analyzer was too big for ourC compiler, and thus could not be run.For SMV, the order in which the state variables are de-clared in the input �le is the order in which they appearin the OBDDs. Since this greatly impacts the performanceof the technique, we assisted the tool by providing a rea-sonable ordering for each example based upon our knowl-edge of OBDDs and some limited trials with di�erent possi-ble orderings. Unfortunately, there is no general algorithmto determine the best order for a particular situation, al-though heuristics exist. In general, the state variables fortasks that communicate were placed as close together aspossible.The examples DP, DARTES, KEY, Q, and SPEED con-tain deadlocks. For these systems, SPIN, SPIN+PO, andSMV display the sequence of state changes leading up tothe deadlock state, and INCA �nds a solution that is inter-preted as a sequence of actions of each task. For all otherexamples, the tools correctly declared that the system wasfree of deadlocks.The raw performance data are given in Tables II{III.The columns of the table show the problem name and size(if scalable), the scale (Pi log2jSij) rounded to the near-est integer, the number of reachable states (jSj), and thememory (in megabytes) and CPU time (in seconds) con-sumed by the four tools to perform the analysis. A dashindicates the analysis could not be completed with 96 MBof memory and a day of CPU time. We used SPIN togenerate the number of reachable states for each exampleexcept DARTES, DP(12), and KEY(5), on which SPIN ranout of memory. Note that SPIN was able to complete theanalysis of these systems by �nding a deadlock state beforegenerating the entire state space. Those comparing thesenumbers with those in [10], which used INCA version 3.1,may notice slight di�erences for some of the examples. Thefront end of INCA has been extensively modi�ed in version3.2 to support the EFSAs described in Section VI-B.E. AnalysisIn this section, we consider what our data suggest aboutthe scalability of the evaluated techniques. In general, it isdi�cult to characterize the scalability of an analysis tech-nique. Complexity results indicate that there must existproblems on which a technique will not scale. In practice,we are more interested in the average case, but it is di�cultto know what an average program looks like. Techniquesmay scale well on certain kinds of programs and poorlyon others. Furthermore, most techniques are su�cientlycomplex that it is hard to estimate their cost on a partic-ular problem a priori. The best we can do is examine theperformance of the technique on a nontrivial collection ofprograms and try to determine the kinds of programs onwhich the technique seems to scale well.

Table III gives performance data for seventeen scalableexamples. For each scalable example, tool, and resource,we have a set of four points f(xi; yi)ji = 1; 2; 3; 4g whereeach xi is the scale of a di�erent size of the example andeach yi is the the amount of the resource consumed by thetool on that size. By looking down each column, we can getan informal sense of how quickly the resource requirementsare growing with the scale of the problem. Such examina-tion of the data is tedious, however, and makes compar-isons di�cult. We explored graphing the raw data, but therange of the measured resource units is too great to plotall the data for each example on a single graph, and usingmany separate graphs with di�erent scales does not facili-tate comparison. We tried selectively plotting only certaindata or using mathematical transformations to make thedata �t (e.g., log-linear or log-log graphs), but we foundthat the resulting graphs were at best di�cult to interpret,and at worst extremely misleading. In the end, we decidedto obtain a numerical measure of the rate of growth of eachresource of each tool on each example.We want to measure how quickly the resource require-ment (yi) is growing with the scale (xi) of the example.At �rst, we considered �tting a curve of some kind to thepoints f(xi; yi)ji = 1; 2; 3; 4g and using a parameter of the�tted curve to estimate the growth rate (e.g., we might usea linear �t and take the slope, or �t the points to 2ax+band use the parameter a). Unfortunately, the underlyingforms of the actual resource functions generating the dataare unknown. Furthermore, they are clearly not of a sin-gle form; some of the data appear to be linear, while someappear highly exponential. Rather than make unjusti�-able assumptions about the form of the actual resourcefunctions, we simply estimate how much faster the func-tion appears to be growing on the right side of the interval[x1; x4] than on the left size. Speci�cally, for each data setf(xi; yi)ji = 1; 2; 3; 4g, we calculate a growth rate for theresource function by taking the ratio of the slope of theline segment connecting f(x2; y2); (x4; y4)g to the slope ofthe line segment connecting f(x1; y1); (x3; y3)g. (We con-sidered using the ratio of the slopes of the line segmentsconnecting f(x1; y1); (x2; y2)g and f(x3; y3); (x4; y4)g, butin some data sets, consecutive resource measurements areequal and thus the slopes of these segments is zero.) Wealso determined the growth rate of the state space foreach example in a similar way (i.e., by using the pointsf(xi; jSij)ji = 1; 2; 3; 4g where Si is the set of global statesof the ith size of the example). The growth rates obtainedare shown in Table IV.This growth rate measures only the apparent curvatureof the actual resource function and factors out any �xedoverhead (e.g., the memory taken by the analyzer code)or constant factors (e.g., the units in which the resourcesare measured, the speed of the machine used to run thetool). Consequently, we may not only compare the growthrate of a single resource for di�erent tools and examples,but we may directly compare the growth rates of di�erentresources. On the other hand, our measure conceals the ac-tual slope of the growth function over the interval [x1; x4]



14 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 3, MARCH 1996SPIN SPIN+PO SMV INCAProblem(size) Scale States Mem Time Mem Time Mem Time Mem TimeABP 14 113 1.29 0.67 1.71 0.84 1.70 1.03 7.13 7.23BDS 24 36097 8.67 22.03 3.74 11.41 1.97 2.60 7.14 4.40DARTES 90 | 1.65 1.30 2.63 4.02 | | 15.41 26.46FTP(1) 34 104911 49.07 133.32 33.67 202.15 3.93 18.39 14.29 206.44FTP(2) 40 | | | | | 9.63 694.88 | |Q 53 123597 1.31 0.87 1.82 0.98 27.92 536.50 10.13 13.09SPEED 16 8690 1.32 0.82 1.66 0.76 1.84 2.79 6.79 4.39TABLE IIRaw Data for Non-Scalable Examples(e.g., both f(x) = x and g(x) = 100x have a growth rate of1.0). Although the growth rate is clearly more importantthan such constant factors in the limit, in practice largeconstant factors may have a signi�cant impact on the scal-ability of a technique over the range of sizes on which itstool can be run. Thus, if the slope of a resource functionover the interval [x1; x4] is large, then this should be con-sidered along with the function's growth rate in estimatingthe scalability of the technique on the example.As discussed in Section V-C, we chose to measure growthrates rather than determine the maximum sizes each toolcould handle given certain resource constraints. One con-cern with this approach is that the behavior of the toolon large sizes of an example may be dominated by di�er-ent factors than its behavior on the small sizes over whichwe measure the growth rate. In other words, the measuredgrowth rate may not be an accurate characterization of thescalability of a tool. We validate our scalability measure bycomparing the growth rates calculated here with the max-imum sizes determined in [10] on a couple of examples.First we consider DP, an example on which most of thetools can be scaled to much larger sizes than those shown inTable III. For this example, SPIN, SPIN+PO, and INCAall exhausted the 64 MB limit imposed in [10], while SMVexceeded the three hour time limit instead. The memorygrowth rate was 5.9 for SPIN, 2.7 for SPIN+PO, 0.5 forSMV, and 1.0 for INCA. From these rates, we would ex-pect SPIN+PO to be able to handle signi�cantly largersizes than SPIN, and INCA to be able to handle muchlarger sizes. In fact, SPIN exhausted its memory at size14, SPIN+PO at size 22, and INCA around size 325. Notethat, while it would be di�cult to predict the maximumsizes without additional information, they are roughly con-sistent with the growth rates.We also consider the data intensive example GASNQ.In [10], SPIN and SPIN+PO exhausted the memory limit,while SMV and INCA exhausted the time limit. The mem-ory growth rate is 9.1 for SPIN and 7.6 for SPIN+PO. Fromthese rates, we might expect SPIN+PO to be able to scalea bit farther than SPIN. In fact, both tools exhausted theirmemory at size 6. Since the memory growth rate is high,each additional customer adds a great deal of memory, andSPIN+PO could not take the extra step without exceedingthe limit. The memory growth rates for SMV and INCAare 1.5 and 1.8, respectively. As expected, memory is not aproblem for these tools on this example. The time growth

rate is 4.0 for SMV and 2.9 for INCA. From these rates,we might expect INCA to be able to scale a bit fartherthan SMV. In fact, both tools exhausted the time limitat size 10. Examining the raw data reveals that the timefunction for INCA has a much larger slope than the timefunction for SMV, so again, the maximum sizes seem tobe consistent with the growth rates. We therefore believethat our growth rates provide a useful characterization ofthe behavior of the tools on larger sizes of the examples,and thus that they are a reasonable measure of scalability.F. ResultsWe now discuss the implications of our growth rates forthe scalability of the techniques on di�erent kinds of pro-grams. For convenience in our discussion below, we willrefer to rates below 2:0 as low, and rates above 5:0 as high,and intermediate rates asmoderate. We chose these bound-aries such that rates near 1.0 (linear functions) would below, and such that most of the state growth rates wouldbe high, although we admit that this classi�cation is some-what arbitrary. A picture of the overall results is given inFig. 9, which plots the growth rates from Table IV for eachtool.We were able to correlate the performance of the dif-ferent tools to various features of the example programs,principally:Comminication structure. Wemay view the communica-tion structure of a program as a graph in which eachtask is represented by a node, and a (possible) ren-dezvous between two tasks is represented by an edgebetween the corresponding nodes. Our examples ex-hibited several di�erent communication structures. Ina linear communication structure, the tasks can bearranged in a line or ring such that each task commu-nicates primarily with its neighbors. In a single starcomminication structure, most communication is be-tween one particular task and the other tasks. A cou-ple of our examples exhibited a combination of thesetwo patterns (i.e., a line or ring of tasks communicat-ing with their neighbors and one central task). Finally,in a multiple star communication structure, severaltasks communicate with many other tasks.Task size/structure. As discussed in Section IV-E, dataintensive tasks require that the values of certain taskvariables be encoded into the state of the task's FSAfor accurate modeling of the task's synchronization be-



CORBETT: EVALUATING DEADLOCK DETECTION METHODS FOR CONCURRENT SOFTWARE 15SPIN SPIN+PO SMV INCAProblem(size) Scale States Mem Time Mem Time Mem Time Mem TimeCYCLIC(3) 10 43 1.27 0.60 1.66 0.67 1.70 0.80 6.23 3.16CYCLIC(6) 21 639 1.37 0.81 1.69 0.71 1.84 1.00 6.96 6.18CYCLIC(9) 32 7423 2.96 3.81 1.73 0.81 1.90 1.79 7.70 28.36CYCLIC(12) 43 74264 23.01 51.29 1.77 0.93 1.90 2.53 8.44 66.02DAC(6) 18 222 1.29 0.82 1.67 0.68 1.70 0.72 6.51 3.92DAC(9) 26 1790 1.54 1.10 1.70 0.71 1.84 0.93 7.02 4.95DAC(12) 34 14334 4.07 5.97 1.74 0.76 1.84 1.35 7.52 5.99DAC(15) 43 114686 28.92 61.35 1.79 0.85 1.90 1.86 8.02 7.64DP(6) 18 729 3.13 1.06 1.70 0.89 1.77 1.10 6.73 3.79DP(8) 24 6555 3.39 2.12 1.75 1.05 1.84 1.92 7.14 4.32DP(10) 30 48897 6.03 9.06 1.88 1.73 1.90 3.13 7.55 5.01DP(12) 36 | 20.50 41.20 2.24 3.56 1.90 8.78 7.96 5.74DPD(4) 15 601 1.36 0.81 1.74 0.89 1.70 0.88 6.67 4.14DPD(5) 19 3489 1.92 1.91 1.97 1.74 1.84 1.33 6.96 4.85DPD(6) 23 19861 5.80 12.01 2.81 5.02 1.84 1.66 7.24 6.46DPD(7) 27 109965 29.43 94.39 6.02 18.28 1.90 3.11 7.53 7.60DPFM(4) 7 9 1.27 0.62 1.65 0.67 1.70 0.69 6.18 3.00DPFM(6) 10 20 1.27 0.63 1.68 0.67 1.70 0.86 7.17 6.20DPFM(8) 14 49 1.31 0.65 1.80 0.78 1.97 2.10 11.10 45.21DPFM(10) 18 125 1.46 0.74 2.25 1.13 2.69 9.18 27.45 156.90DPH(4) 17 513 1.36 0.64 1.83 1.39 1.70 0.93 6.95 4.59DPH(5) 21 3113 1.94 1.80 2.73 6.36 1.84 1.55 7.42 5.56DPH(6) 25 16897 5.61 8.74 8.95 43.79 1.90 2.60 7.92 6.66DPH(7) 28 79927 24.67 50.93 50.22 359.95 1.97 8.37 8.47 8.09ELEVATOR(1) 15 158 1.30 0.68 1.71 0.73 1.84 1.16 7.59 8.61ELEVATOR(2) 20 1062 1.51 0.78 1.98 1.35 1.97 2.79 10.60 47.10ELEVATOR(3) 26 7121 3.18 2.42 3.90 7.64 2.42 12.16 17.78 289.02ELEVATOR(4) 31 43440 15.18 15.90 19.28 66.46 3.60 60.64 35.48 1265.02FURNACE(1) 13 344 1.31 0.67 1.72 0.94 1.70 0.84 6.46 3.43FURNACE(2) 18 3778 1.92 2.42 2.40 4.34 1.84 1.29 6.93 4.27FURNACE(3) 23 30861 8.30 29.65 8.48 43.28 1.90 2.68 7.49 5.40FURNACE(4) 27 214757 59.93 302.94 53.42 446.60 2.03 12.03 8.10 7.03GASNQ(2) 18 193 1.31 0.66 1.74 0.92 1.84 1.29 7.70 14.20GASNQ(3) 23 1770 1.72 1.09 2.15 1.71 2.16 4.04 10.55 76.99GASNQ(4) 28 14847 6.01 5.74 5.14 9.88 2.82 16.47 16.03 259.01GASNQ(5) 33 115184 44.26 63.40 28.05 76.76 3.67 65.33 25.47 779.06GASQ(1) 11 19 1.27 0.58 1.66 0.64 1.70 0.82 6.36 3.67GASQ(2) 17 181 1.30 0.64 1.73 0.81 1.97 1.40 8.38 20.12GASQ(3) 23 1705 1.68 1.15 2.10 1.39 2.36 7.60 21.55 320.46GASQ(4) 29 15431 5.53 4.77 4.98 7.36 4.98 246.60 32.41 21580.88HARTSTONE(25) 45 53 1.30 0.64 1.94 0.74 1.90 2.03 9.31 11.56HARTSTONE(50) 86 103 1.39 0.67 2.24 0.91 2.49 10.00 13.57 31.17HARTSTONE(75) 126 153 1.54 0.72 2.58 1.14 3.60 31.72 18.29 56.20HARTSTONE(100) 166 203 1.76 0.79 2.96 1.47 5.05 77.34 23.84 89.52KEY(2) 23 537 1.31 0.83 1.74 0.90 2.69 5.85 8.07 7.95KEY(3) 29 4924 1.39 1.04 1.78 0.98 4.33 18.93 9.07 10.81KEY(4) 34 44820 1.43 1.11 1.83 1.06 7.73 68.27 10.07 14.04KEY(5) 39 | 1.49 1.19 1.87 1.15 12.91 221.55 11.09 17.47MMGT(1) 13 73 1.28 0.63 1.67 0.65 1.70 0.88 6.98 4.94MMGT(2) 18 817 1.37 0.76 1.77 1.05 1.90 1.55 8.09 7.64MMGT(3) 23 7703 2.38 3.14 2.54 4.13 1.97 2.77 9.23 10.28MMGT(4) 29 66309 12.62 62.15 9.61 41.88 2.03 8.28 10.40 13.24OVER(2) 13 65 1.28 0.54 1.68 0.70 1.70 0.84 6.60 4.15OVER(3) 20 519 1.38 0.73 1.73 0.81 1.84 1.37 7.29 7.46OVER(4) 26 4175 2.35 2.12 1.89 1.30 1.84 3.19 8.02 13.30OVER(5) 32 33460 12.71 19.11 2.67 4.51 2.16 14.24 8.81 23.84RING(3) 15 87 1.28 0.68 1.68 0.74 1.70 0.77 6.86 4.93RING(5) 25 1290 1.51 1.00 1.75 0.84 1.84 1.29 8.29 18.80RING(7) 34 17000 5.63 8.09 2.04 1.68 1.90 2.91 10.40 99.39RING(9) 44 211528 67.93 147.49 3.19 5.46 1.97 8.79 13.39 634.77RW(6) 15 72 1.29 0.78 1.74 0.96 1.70 0.95 7.41 4.81RW(9) 22 523 1.43 1.38 2.13 3.20 1.97 1.30 8.92 7.66RW(12) 28 4110 2.84 9.02 5.96 32.66 2.03 2.25 10.85 11.29RW(15) 34 29642 14.82 79.10 44.66 413.99 2.10 3.05 13.22 16.02SENTEST(25) 39 232 1.35 0.69 1.87 0.77 1.90 1.97 9.35 11.69SENTEST(50) 64 282 1.46 0.76 2.02 0.87 2.36 6.90 11.42 15.90SENTEST(75) 90 332 1.57 0.83 2.19 1.01 2.88 21.60 13.82 21.57SENTEST(100) 115 382 1.70 0.93 2.37 1.15 4.06 46.20 16.67 28.40TABLE IIIRaw Data for Scalable Examples



16 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 3, MARCH 1996SPIN SPIN+PO SMV INCAProblem States Mem Time Mem Time Mem Time Mem TimeCYCLIC 10.0 12.8 15.7 1.1 1.6 0.3 1.5 1.0 2.4DAC 7.5 9.3 11.0 1.2 1.6 0.4 1.4 0.9 1.2DP 7.3 5.9 4.9 2.7 3.0 0.5 3.4 1.0 1.2DPD 5.5 6.2 8.3 3.8 4.0 0.4 2.3 1.0 1.2DPFM 2.3 4.2 3.2 3.3 3.7 3.2 5.2 3.6 3.1DPH 5.4 6.1 6.9 7.6 9.5 0.7 4.7 1.2 1.4ELEVATOR 6.1 7.3 8.7 7.9 9.4 2.8 5.3 2.4 4.3FURNACE 7.7 9.2 11.5 8.4 11.6 1.1 6.5 1.3 1.6GASNQ 7.7 9.1 12.3 7.6 8.4 1.5 4.0 1.8 2.9GASQ 9.0 10.3 7.2 7.4 8.7 4.6 36.2 1.6 68.1HARTSTONE 1.0 1.6 1.5 1.1 1.4 1.5 2.3 1.2 1.3KEY 10.9 0.9 0.6 1.1 1.2 1.9 3.6 1.1 1.2MMGT 7.8 9.3 22.2 8.2 10.7 0.4 3.2 0.9 1.0OVER 8.7 11.5 12.6 4.8 6.7 2.5 5.9 1.2 1.9RING 12.4 15.3 19.8 4.0 4.9 0.7 3.5 1.4 6.5RW 7.8 9.4 10.2 10.9 14.0 0.4 1.5 1.4 1.4SENTEST 1.0 1.1 1.2 1.1 1.2 1.7 2.0 1.2 1.3TABLE IVTime and Memory Growth Rates for Scalable Examples
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CORBETT: EVALUATING DEADLOCK DETECTION METHODS FOR CONCURRENT SOFTWARE 17havior. Such tasks usually produce FSAs with manystates, while tasks that are not data intensive usuallyproduce FSAs with few states. We classify the size ofa task as small if its FSA has fewer than 10 states,medium if its FSA has between 10 and 99 states, andlarge if its FSA has 100 or more states. Several of thedata intensive tasks in our examples exhibited a linearstructure|the states can be arranged in a line suchthat all transitions are between adjacent states. Suchlinear tasks result from modeling the value of a singleinteger variable used as a counter.In Table I, we characterize the communication structureand task size/structure of each example. For the scalableexamples, the task size classi�cation is determined by thesize of the tasks in the largest size of the example analyzed(e.g., the fork manager task has only 3 states in DPFM(2),but has 1025 states in DPFM(11) and is therefore classi�edas large in the table).Of the deadlock-free scalable examples, SPIN exhibitedlow growth rates only for HARTSTONE and SENTEST,examples on which the state spaces grow linearly with thescale. Although the synchronization structure of these ex-amples is very simple (a master task starts/stops m workertasks), such a structure may not be uncommon in software.SPIN also exhibited low growth rates on KEY, an examplefor which SPIN is able to �nd the deadlock state withoutexploring a signi�cant fraction of the state space.SPIN+PO exhibited signi�cantly lower memory growthrates than SPIN for CYCLIC, DAC, DP, DPD, OVER,and RING. The common feature of these six examples isthat their communication structure is linear. This struc-ture creates the many commuting transitions that allowsthe partial order technique used by SPIN+PO to achievesigni�cant reduction in the state space. Although the par-tial order state space reduction helped in most cases (espe-cially with the memory growth rate, which is generally thelimiting factor for the state space tools), SPIN+PO exhib-ited somewhat higher growth rates than SPIN for DPH,ELEVATOR, and RW. These examples contain a singlestar communication structure. Unlike SPIN, SPIN+POcreates a data structure for each possible pair of synchro-nizing transitions, and thus performs poorly on exampleswith this communication structure. This memory overheadis an artifact of the implementation, not of the techniqueitself.SMV exhibited low time growth rates for CYCLIC, DAC,and RW, and moderate time growth rates for DP, DPD,DPH, GASNQ, HARTSTONE, KEY, MMGT, RING, andSENTEST. Like SPIN+PO, SMV performed better on ex-amples with linear communication patterns, although italso performed reasonably well on examples with a sin-gle star communication pattern. SMV performed worse onELEVATOR, FURNACE, GASNQ, GASQ, and DARTES,examples whose communication patterns contained multi-ple stars. This is not surprising since such a nonlinearstructure makes it di�cult to �nd a good variable orderingfor the OBDDs. SMV also exhibited moderate/high growthrates for programs with data intensive tasks. These pro-

grams include DPFM, which has a single star communica-tion pattern, as well as ELEVATOR, GASNQ, and GASQ.Although symbolic model checking has been used primar-ily for the veri�cation of hardware, our experience indicatethat it may also prove e�ective for verifying software. Notethat SMV performed better than SPIN on most of the scal-able examples, exhibiting lower growth rates for time andmuch lower growth rates for memory.INCA performs worst on DPFM, ELEVATOR, GASNQ,GASQ, and RING. Of these, DPFM, ELEVATOR,GASNQ, and GASQ all contain one data intensive taskwhose size grows rapidly as the example is scaled up. Un-like the other tools, INCA is generally not sensitive to thecommunication structure of the program, but rather to thekind of tasks that comprise it. The time required to solvethe ILP problems INCA generates increases very rapidlywith the size of the task FSAs, unless they have a simplelinear structure, like those in DPH, HARTSTONE, RW,and SENTEST. As mentioned in Section III-E, INCA usesnecessary conditions and thus its analysis can be inconclu-sive if these conditions are not strong enough. We note,however, that these conditions were strong enough for allof the analyses in this paper.Meaningful comparisons are more di�cult for the non-scalable examples. SMV is clearly worse than the othertools on Q and DARTES (large systems with simple dead-locks), but was clearly better on FTP (a large system withno deadlocks). This reects a general trend in our exper-iments: SMV tended to be slower than the other tools in�nding deadlocks. SPIN(+PO) and INCA use techniquesthat allow them to stop as soon as a deadlock state (or in-tegral solution, in the case of INCA) is found. SMV mustconstruct the OBDD for the reachable states of the systemin its entirety before checking for deadlock states. We donot draw any conclusions from these data, however, sinceour sample contained too few programs with deadlocks, andall but one of the deadlocks were trivial and would likelyhave been found by random simulation. In general, it ismuch more di�cult to evaluate the performance of anal-ysis tools when they are used to �nd errors rather thanprove their absence since the time it takes to �nd an erroris very dependent on factors over which the analyst has lit-tle control (e.g., the order in which a reachability analyzerexplores a state space). Note that SMV performed betterthan SPIN in �nding the obscure deadlock in the standarddining philosophers (DP).On each deadlock-free scalable example, SPIN exhibiteda memory growth rate similar to the growth rate of thestate space. SPIN+PO, SMV and INCA, however, eachexhibited signi�cantly lower memory growth rates on sev-eral examples, indicating that the techniques used by thosetools tend to require more time than memory as a prob-lem is scaled. Since memory is usually the scarcer of thetwo resources, this often allows these tools to tackle largerproblems.



18 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 3, MARCH 1996VI. Alternative ModelsIn our experience, the most controversial aspect of ourcomparison method is our choice of communicating FSAsas the canonical model. Several people have questionedwhether the choice of this model and the use of translatorsdoes not bias the evaluation against one or more of the tech-niques. To address this issue, we explore alternative canon-ical models. First, we consider using an informalmodel andmanually generated native speci�cations for each analysistool (thus avoiding the use of potentially biasing transla-tors). Second, we consider using a more complex canonicalmodel in which data values are made explicit. Finally, weconsider a simultaneous model of concurrency. In the end,we found that these alternative models either did not af-fect or actually degraded the performance of the tools, thusincreasing our con�dence in the validity of our results.A. Native Speci�cationsRather than use a formal canonical model, we mighthave used an informal model of each example (e.g., a prosedescription) and used this to specify the example in eachtool's speci�cation language directly. The SMV input lan-guage is intended for describing systems much di�erentthan the programs we analyze. As a result, we would havehad to convert the programs to some kind of state machinejust to encode them in the language. Thus we had littlechoice but to use a more abstract model of the examplesto generate the input for SMV. Promela, however, can eas-ily specify communicating processes. To determine whate�ect using native Promela speci�cation might have hadon the experiments, we selected two examples, coded themdirectly in Promela, and used SPIN (a straight reachabilityanalyzer) to compare number of states in the native modelwith the number of states in the translated model.The �rst example we selected was a version of the stan-dard dining philosophers problem in which deadlock isavoided by having the �rst philosopher pick up her leftfork �rst while all other philosophers pick up their rightfork �rst. This example is representative of many of theprograms we analyzed in that no variables are modeled;the states of the automata representing the program en-code only the control location within each task. For thisexample, the number of states in the native model was ex-actly the same as the number of states in the translatedmodel|a reassuring result.The second example we selected was the non-queuingversion of the common gas station problem (GASNQ).This example is representative of the programs in whichthe state of the task automata encode the values of taskvariables as well as the control location within the task.The story behind our selection of this example is interest-ing. We sent a draft of the predecessor to this paper [10] toGerard Holzmann, the author of SPIN, to solicit commentson our use of his tool. At his request, we also supplied thegenerated Promela inputs. He was concerned that usingtranslated inputs would unduly bias the evaluation, andgave us a version of GASNQ that he had directly codedin Promela. While our translated Promela could be scaled

only to 5 customers, his native Promela could be scaledup to 50 customers|a worrisome result, suggesting thatour translated Promela code was much inferior to a nativePromela speci�cation.Upon closer examination of his code, however, we noticedthat his version of GASNQ was not quite the same as ours.For those familiar with the problem, the di�erence was thatour operator task allowed many customers to prepay andkept a count of how many customers had prepaid at eachpump so that the pumps could be activated so long as anywaiting customers remained. This causes a state explosionin the operator task as the number of customers is scaledup. Holzmann, who worked directly from the translatedPromela without knowledge of the problem or referenceto our Ada-like speci�cation, speci�ed a system in whichthe operator allows only one customer to prepay at eachpump. For this system, the size of the operator task doesnot increase with the number of customers.We pointed out this di�erence and wrote our own nativePromela version of GASNQ to illustrate the structure ofthe program we intended to model. Being the �rst realPromela speci�cation we had ever written, it was quiteine�cient, and could be scaled only to 4 customers, onesize smaller than our translated model. Holzmann thenused our speci�cation as a guide and modi�ed his own ver-sion to allow multiple customers to prepay. This versioncould be scaled to 7 customers, two sizes larger than thetranslated Promela. When we examined this new version,however, we noticed that it too was not quite our GASNQ.Promela allows multiple processes to read from the samechannel, while Ada allows only one task to accept an en-try call. Holzmann's Promela used the same channel torepresent several Ada entries, and achieved some reductionin the state space as a result. In this example, at mostone task would call such an entry at any given time, thusthe behaviors generated were the same. Without knowingthat multiple entries sharing a channel would not be calledsimultaneously (something that would have to be veri�edindependently), this reduction cannot be applied since itwould not correctly model the synchronization behavior ofthe Ada tasks; in general, each entry must be modeled withits own channel. When we modi�ed Holzmann's speci�ca-tion to use one channel per entry, the resulting model couldbe scaled to 5 customers, the same as the translated model,and at this size had roughly three times as many states asthe translated model|again, a reassuring result.This exchange gave us con�dence that our Promelatranslator is not introducing a signi�cant bias into the eval-uation. More importantly, it also convinced us that the useof a canonical model is essential since seemingly small dif-ferences in the speci�cation of a problem can produce largevariations in the resulting model.B. Extended ModelThe simplemodel of Section II is well suited for programsin which little or no data must be represented. For dataintensive programs, however, that model may introduce abias, as discussed in Section IV-E. The hiding of variable



CORBETT: EVALUATING DEADLOCK DETECTION METHODS FOR CONCURRENT SOFTWARE 19SPIN SMVExample Model States Time Trans TimeDPH(5) FSA 3113 1.80 448 1.55EFSA 3114 2.17 1403 2.95GASNQ(2) FSA 193 0.66 1084 1.29EFSA 5704 2.43 out of memTABLE VExperiments comparing EFSA and FSA modelsvalues within a monolithic task state may hinder OBDD-based technique on such problems. In this section, we con-sider an alternative model in which variable values are ex-plicitly represented in the state of the task automata. Weextend the model of Section II by adding a memory to eachFSA. A memory is an array of cells, each of which holdsan integer value from a �nite subrange. Transitions maybe guarded with expressions over the memory values andmay transform the memory with assignments. This verygeneral model, which we call an EFSA (extended �nite-state automata), is capable of representing most uses ofdata we have encountered in Ada tasking programs, includ-ing rendezvous parameters, arrays and records (arbitrarilynested), and reference parameters of inlined procedures.We modi�ed the INCA front end to build EFSAs fromAda-like speci�cations. We then wrote new translators forSPIN and SMV to generate input from this new canonicalform. Both SPIN and SMV support arrays of integers, thusthe translation was still relatively straightforward despitethe richer semantics of EFSAs. We omit the formal de�-nition of EFSAs and the details of these translators sinceboth are extensive and are not used in the evaluation de-scribed in Section V. Note that by encoding the memorycontents into the state of an automaton, INCA translatesEFSAs into FSAs for use by the inequality necessary con-dition technique, which is thus not a�ected by the di�erentmodel.We applied the new translators to two examples andcompared the performance of the tools on the inputs gener-ated from EFSAs to their performance on the inputs gener-ated fromFSAs. The examples we used for this comparisonwere the dining philosophers with host (DPH) with �vephilosophers, and the non-queuing gas station (GASNQ)with two customers. The DPH example has only one taskwith data: the host task has a single variable, which isused as a counter. The GASNQ example has several taskswith data: the operator task has an array of two counters,and the customer tasks each have a variable storing thepump selected. The results of this experiment are shownin Table V, the columns of which show: the example, themodel, the number of reachable states reported by SPIN,the analysis time (in seconds) for SPIN, the number ofOBDD nodes in the transition relation generated by SMV,and the analysis time for SMV. See Section V-D for de-tails on how the analysis times were obtained in all of theexperiments reported in this paper.Using a richer canonical model generally degraded theperformance of the tools reading the translated input. This

e�ect was greater for SMV, and for the more data intensiveexample GASNQ. For SPIN, the EFSA model of DPH wasalmost identical to the FSA model, but the EFSA modelwas much worse for GASNQ. Most of the extra states in theEFSA model result from the inability to express a certainkind of atomicity in Promela. In the FSA model, the mem-ory updates for both processes involved in a rendezvousare performed atomically with the rendezvous (since thememory is encoded in the state). The EFSA translatoremployed the atomic sequence construct of Promela to sim-ulate this, but the semantics are not quite the same. Theproblem is that it is not possible to make the memory up-dates in two processes part of the same atomic action, thusthe EFSA model generated by SPIN must have additionalstates. The performance of SPIN+PO was similarly de-graded using the EFSA model.For SMV, the EFSA models for both examples requiredmuch larger OBDDs to represent the transition relation.We believe any bene�t of representing the variable valuesexplicitly was overwhelmed by the signi�cant increase inthe number of state variables required to store the taskmemories. In the case of GASNQ, we believe that array in-dexing caused the explosion in OBDD size that exhaustedthe memory. The Ada version of this example is most nat-urally coded by using an entry accepting the pump num-ber as a parameter, which is then used as an index intoan array storing the number of customers waiting for eachpump. For comparison, we coded the example without thearray using a separate entry for each pump and using twointeger variables to hold the number of waiting customers.SMV was able to analyze the translated input generatedfrom these EFSAs in just about twice the time it took toanalyze the input generated from the FSAs|a slowdowncomparable to that obtained for DPH.After some experience with the EFSA translators, wewere disappointed to �nd that they produced uniformlyworse performance than the FSA translators. We believeit is possible that an improved EFSA translator might pro-duce comparable or better performance for SMV. Hu et al[27] have explored the veri�cation of higher-level speci�ca-tions with OBDDs and use techniques that we have notattempted, such as interleaving the bits of memory cellsthat are functionally related and partitioning the transi-tion relation. We have decided not to pursue this matterfurther at this time for several reasons. First, most of theAda tasking programs we have collected are not data inten-sive, so this issue is not critical to our evaluation. Second,even for data intensive examples, it is not clear that repre-senting a task's state symbolically with OBDDs, as is donein the EFSA model, will produce better performance thanexplicitly enumerating the task's states, as in done in theFSA model. Hu and Dill [26] report that state enumera-tion is more e�cient than their OBDD-based techniques onmost of the real-life protocols they have tried. Finally, wehave tried to avoid the use of special purpose techniquesfor speci�c kinds of problems in favor of techniques thatare generally applicable. Fully automatic tools will have tosacri�ce some e�ciency for generality and ease of use.



20 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 22, NO. 3, MARCH 1996C. Simultaneous ModelAnother potential bias against the OBDD-based tech-nique is the use of an interleaving model of concurrencyrather than a simultaneous one. In an interleaving model,events are totally ordered, thus exactly one event occurs ateach step. In a simultaneous model, many events may oc-cur simultaneously. OBDD-based techniques tend to per-form better on simultaneous models [32], especially whenthe number of asynchronous processes is large. In this sec-tion, we convert the model of Section II into a simulta-neous model, describe a translation scheme for this modelinto the SMV language, and compare the performance ofSMV on this simultaneous model to its performance on theinterleaving model.We begin by rede�ning the composition of a set of FSAsM1; : : : ;Mn to be an FSA M = (S;�;�; s0; F ) where:� S = S1 � : : :� Sn� � = 2(Si �i)� ((s1; : : : ; sn); A; (s01; : : : ; s0n)) 2 � i� 8i = 1; : : : ; n:(A \�i = ; ^ si = s0i)_(A \�i = fag ^ si a! s0i)� s0 = (s0;1; : : : ; s0;n)� F = F1 � : : :� FnIn this model, each Mi can take at most one transition perstep, but many Mi may take transitions simultaneously.To translate this model into the SMV language, we usea di�erent approach than the one described in Section IV-G. There, the transition relation of M was given as adisjunction of the transitions of the Mi. Here, we give thetransition relation of M as a conjunction of formulae, eachof which represents the legal behavior of one Mi. Given anaction A of M , each Mi either participates in this action(A \ �i 6= ;) or does nothing (A \ �i = ;). Thus, foreach Mi, we declare a state variable �i of enumerated type�i[fskipg that stores the action Mi took on the previousstep. These variables are necessary to insure that each Misynchronizes with at most one other Mi on each step. Wealso declare a state variable xi of enumerated type Si foreach Mi as before.The INIT function is Vi(xi = si;0) as before. The TRANSfunction is constructed as follows. If � is an internal actiontransition s a!s0 in Mi, then let TRANS� benext(�i) = a ^ xi = s ^ next(xi) = s0If � is a communication action transition s a!s0 in Mi syn-chronizing with Mj on action a, then let TRANS� benext(�i) = a ^ xi = s ^ next(xi) = s0 ^ next(�j) = aFinally, let IDLEi be the function next(�i) = skip^xi =next(xi). The TRANS function is then given by^i=1;:::;n IDLEi _ _�2�i TRANS�!We ran several sizes of the standard dining philosophersproblem using the interleaving and simultaneous models.

Example Model Trans TimeDP(5) Interleaving 204 0.84Simultaneous 591 1.64DP(10) Interleaving 439 3.13Simultaneous 1311 18.71DP(15) Interleaving 674 26.93Simultaneous 2031 362.97TABLE VIExperiments with Simultaneous ModelThese results are shown in Table VI, the columns of whichshow: the example (and size), the model, the number ofOBDD nodes in the transition relation generated by SMV,and the analysis time for SMV. The dining philosopherssystems have a ring structure on which the simultaneousmodel should perform well. Unfortunately, the addition ofthe action state variables, which are unnecessary for the in-terleaving model, makes the performance worse. We notethat our original translation scheme for the interleavingmodel included action state variables and caused similarperformance problems for SMV. We conclude that an in-terleaving model, like the one in Section II, is better than asimultaneousmodel for representing Ada tasking programs.VII. ConclusionWe have explored the methodological issues involved inempirically evaluating deadlock detection techniques forAda tasking programs. Among these issues are the se-lection of examples and implementations, the speci�cationof the examples, and the analysis of the resulting behaviorof the implementations. We chose to represent each pro-gram in a canonical model and apply tools implementingthe techniques to inputs generated automatically from thiscanonical representation. In our analysis, we calculated anumerical measure for the rate of growth of the time andmemory required by the tools to complete the analysis asthe example is scaled up. We believe these issues are ofgeneral signi�cance in the empirical comparison of analysistechniques.We have conducted an empirical evaluation of three tech-niques for deadlock detection in Ada tasking programs: apartial order state space reduction, symbolic model check-ing, and inequality necessary conditions. No technique wasclearly superior to the others, but rather each excelledon certain kinds of programs. The state space reductionand symbolic model checking techniques performed beston programs with a linear communication structure. Forprograms with a single star communication structure, sym-bolic model checking generally performed better than thestate space reduction technique. Inequality necessary con-ditions performed well on programs with small or lineartasks, regardless of the communication structure.While our evaluation gives some indication of the kindsof programs to which the evaluated techniques might bestbe applied, it is only the beginning. Considerable e�ort onthe part of many researchers will be required to fully char-acterize the range of applicability of each technique. Such
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