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Evaluating Deadlock Detection Methods
for Concurrent Software

James C. Corbett

Abstract— Static analysis of concurrent programs has been
hindered by the well known state explosion problem. Al-
though many different techniques have been proposed to
combat this state explosion, there is little empirical data
comparing the performance of the methods. This infor-
mation is essential for assessing the practical value of a
technique and for choosing the best method for a partic-
ular problem. In this paper, we carry out an evaluation
of three techniques for combating the state explosion prob-
lem in deadlock detection: reachability search with a partial
order state space reduction, symbolic model checking, and
inequality necessary conditions. We justify the method used
for the comparison, and carefully analyze several sources of
potential bias. The results of our evaluation provide valu-
able data on the kinds of programs to which each technique
might best be applied. Furthermore, we believe that the
methodological issues we discuss are of general significance
in comparison of analysis techniques.

Keywords— concurrency analysis, empirical evaluation,
state space reduction, symbolic model checking, inequality
necessary conditions, Ada tasking.

I. INTRODUCTION

Ada tasks arm software developers with the power, and
dangers, of concurrency. With this power, many systems
composed of cooperating agents can be concisely specified,
but if the communication protocol used by these agents is
faulty, the resulting program may contain concurrency er-
rors such as deadlock or starvation. Concurrent software is
increasingly a part of safety critical systems, thus research
into methods and tools for increasing the reliability of such
software is badly needed [35].

When a concurrent system is modeled as a set of commu-
nicating finite-state components, static reachability analy-
sis provides a method for automatically detecting most con-
currency errors. Its application in practice, however, has
been limited by the state explosion problem: the number
of states in a concurrent system tends to increase exponen-
tially with the number of processes. Many techniques have
been proposed to combat this explosion, including state
space reductions [20,29,40,42], symbolic model checking [4,
32], compositional techniques [43], abstraction [6], dataflow
analysis [16,30], and integer programming techniques [1,

Personal use of this material is permitted. However, permission
to reprint/republish this material for advertising or promotional pur-
poses or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work
in other works must be obtained from the IEEE.

This research was supported by National Science Foundation grant
CCR-9308067.

The author is in the Department of Information and Computer Sci-
ences at the University of Hawai‘i at Manoa, Honolulu, Hawaii 96822
(corbett@hawaii.edu).

A preliminary version of this paper appeared in the Proceedings
of the International Symposium on Software Testing and Analysis,
1994.

34].

Although each of the techniques excels on certain ex-
amples, complexity results indicate that they are all
heuristic—when a concurrent system is modeled as a set
of communicating finite-state automata, analysis of even
simple properties like deadlock is PSPACE-hard [38]. In
addition, empirical data comparing the performance of the
different techniques are rare. This is understandable given
the effort of constructing even a single analysis tool, the
variations among the models and input languages used by
various existing tools, and the difficulty of conducting a
fair and meaningful evaluation. Nevertheless, this kind of
data is essential for assessing the practical value of the tech-
niques and in assisting developers in selecting a technique
for their particular application. There is growing recogni-
tion that software engineering research must focus on “de-
signing and carrying out experiments that yield quantifi-
able and reproducible results” [39].

In this paper we make two contributions. First, we exam-
ine the methodological issues of empirically comparing dif-
ferent deadlock detection techniques for Ada tasking pro-
grams. Second, we evaluate the performance of three anal-
ysis techniques and report the results of this evaluation.
Specifically, we evaluate the efficacy of a partial order state
space reduction [20], symbolic model checking [4], and in-
equality necessary conditions [1] in detecting communica-
tion deadlocks of Ada tasking programs. While we found
that none of the techniques was clearly superior to the oth-
ers overall, there was significant variation in the perfor-
mance of the techniques on particular programs. Our data
provide some indication of the kinds of programs to which
each technique might best be applied. Although our eval-
uation is narrow in scope, being restricted to one property
of one class of concurrent system, we believe that our ba-
sic approach 1s broadly applicable. Anyone conducting an
empirical comparison of automated verification techniques
for finite-state concurrent systems would benefit from our
experience.

This paper is organized as follows. Section II defines
the model of concurrent software used throughout the pa-
per. Section IIT gives an overview of different approaches
to the state explosion problem and provides a brief descrip-
tion of the three techniques evaluated. Section IV discusses
the method used for the comparison and discusses the is-
sues that arise in such an evaluation. Section V presents
the results of the experiments and draws some conclusions
about the relative strengths and weaknesses of the tech-
niques evaluated. Section VI considers several alternative
models of concurrent software and explores how such mod-
els might have affected the results of our evaluation. Fi-
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nally, Section VII summarizes our experience in conducting
the evaluation.

II. MoDEL

To make the presentation (and later, the evaluation)
more uniform, we adopt a canonical model of concurrent
software. There are many different kinds of concurrent sys-
tems, ranging from gate level hardware, to asynchronous
network protocols, to Ada tasking programs. Here, we
chose a model that seemed the most natural for represent-
ing the class of systems over which we plan to conduct the
evaluation: Ada tasking programs. The selection of the
model is one of many issues that can affect the outcome of
an evaluation, as we will discuss in Section IV-E.

Formally, we model a concurrent system as a set of
communicating finite-state automata (FSAs) My, ..., M,
where M; = (S;, i, Ay, 50,4, Fi) and

e S5; 1s a set of local states

e X, 1s a set of actions

o A; C5; xX; x S;is a transition relation

o 505 € 5; is the start state

o F; C 5; are the final states
We write (s;,a, s}) € A; as s; N st where A; is clear. FEach
task in an Ada program is represented by an automaton
M;. The local states typically represent points of control
within a task and may also encode the values of finite-
ranged variables that are critical for modeling the synchro-
nization behavior of the task. The concurrent system mod-
eled by this set of automata can be defined as another FSA
M = (5,2, A, s, F') where:
¢ S =51 x...x 8, are global states

b

Sn),a, (sh, . st eAMfYi=1,. . n
(aQEi/\sizsg)\/(aEEi/\sii)sg)

e Sp = (8071, ceey 50,n)

e F=F x...xF,

Since we model Ada rendezvous, we may assume tasks
synchronize in pairs and thus each symbol a € X is in the
alphabets of either one or two of the M;. Symbolsin the al-
phabet of one M; are called internal actions and represent
execution of code within the corresponding task; symbols
in the alphabets of two M; are called communication ac-
tions and represent a rendezvous between the correspond-
ing tasks. A deadlock state is a non-final global state with
no out transitions'. A terminal state is a final global state
with no out transitions. A trace of M is a prefix of a string
accepted by M.

To illustrate the techniques, we will use a simple concur-
rent system comprising two tasks, each of which can either
synchronize with the other or perform some internal ac-
tion. The FSAs used to model this system, as well as the
automaton for the system itself, are shown in Fig. 1.

I This is not the only definition of deadlock in current use. In par-
ticular, some definitions require a cyclic wait.
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Fig. 1. Example Concurrent System

I1I. METHODS

In this section, we review the basic approaches to the
state explosion problem, discuss how we selected the tech-
niques to evaluate, and provide a brief overview of the three
techniques selected for evaluation.

A. Approaches to the State Explosion Problem

Many different techniques have been proposed to combat

the state explosion problem. Among them:

State-space reductions make a standard reachability
analysis more efficient by reducing the number of
states that must be explored to verify a property.
They range from virtual coarsening techniques [29,40],
which coalesce internal actions into adjacent external
actions, to partial order techniques [20,42], which al-
leviate the effects of representing concurrency with in-
terleaving, to symmetry techniques [31,37] which take
advantage of symmetries in the state space.

Symbolic model checking [4,32] uses a symbolic repre-
sentation of a system’s states, which is sometimes
much more compact than an explicit enumeration.
These techniques have proven especially successful in
verifying hardware.

Compositional techniques [5,7,43] exploit modularity in
a system by dividing it into smaller subsystems, verify-
ing each subsystem, and then combining the results of
these analyses to verify the full system. If the subsys-
tems have simple interfaces, such a hierarchical anal-
ysis can be quite effective.

Abstraction [6] reduces the number of states by ignoring
some state information. For example, static analysis of
software often considers the state of a process to con-
sist only of its control location and ignores the values
of its variables. The behaviors of this abstract model
are a superset of the behaviors of the actual program.
This results in a conservative approzimation: if the
technique reports a property holds for all behaviors
in the model, then it must hold for all behaviors of
the program. If the property does not hold for all
behaviors of the model, however, it may or may not
hold of all behaviors of the program since the coun-
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terexample may be a behavior of the model but not a
behavior of the program. Thus an important issue for
any conservative analysis is its accuracy: how closely
do the behaviors of the model match the behaviors of
the program.

Data flow analysis can be employed to yield a conserva-
tive analysis of a program’s properties, from potential
cyclic deadlocks [30] to general safety properties [15,
16]. Although these techniques do not really analyze
the flow of data in a program, they employ the same
algorithms to find the fixed point of a set of flow equa-
tions.

Integer programming has been used in the analysis of
certain kinds of deadlocks [34] and in a conservative
analysis for general safety and liveness properties [1,
12]. These techniques reduce the verification of a prop-
erty to a question about the integral solutions of linear
systems.

B. Selecting Methods to Evaluate

Of all the techniques available, we selected a partial or-
der state space reduction [20], symbolic model checking
[4], and inequality necessary conditions [1] to evaluate. We
selected these three techniques for several reasons. First,
they represent three very different approaches to the state
explosion problem and might be expected to perform best
on different kinds of systems. Second, they are all “base
case” techniques for verifying properties of systems or parts
of systems without further decomposition. Compositional
and abstraction techniques are part of a divide and conquer
strategy for verification. They may be used to simplify the
system into manageable pieces, but at the lowest level these
pieces must be verified by some other technique. We ex-
pect compositional and abstraction techniques to play a
vital role in the verification of any large system, regardless
of the technique used to verify the base case subsystems.
Finally, we selected these three techniques because an im-
plementation of each was available to us, as discussed in
Section IV-C.

In the worst case, the time complexity of all of these
techniques is exponential in the size of the system [1,4,
20]. In practice, the techniques may have a much lower
complexity on certain kinds of systems. In the remainder
of this section, we provide a brief overview of the three
techniques selected for evaluation.

C. Partial Order State Space Reduction

The simplest deadlock analysis technique is to enumer-
ate the states M (the automaton representing the sys-
tem) and search for deadlock states. This is often in-
tractable since the number of states of M is usually an
exponential function of n (the number of tasks). One pos-
sible solution to this problem is to construct a machine
M = (8,2, A s, F') with " C S, AYCA and F' C F
such that M has some property P (e.g., a deadlock state)
if and only if M’ has property P. Then we can test for P
in M by testing for P in M’  which may be much smaller.
This general approach is called state space reduction.

Some of the most powerful state space reductions use
partial orders. These techniques are based on the observa-
tion that much of the state explosion is due to the modeling
of concurrency with interleaving. For example, if the FSAs
in Fig. 1 each perform their internal actions, then the con-
currency of these actions would be represented the presense
of the traces ac and ca in M. While this produces simple
semantics, it greatly increases the size of M.

Partial order semantics represents the actions of a con-
current system as a set of partially-ordered events. Two
events are related by the partial order if one must precede
the other given the semantics of processes and their interac-
tion. In the example above, a single partial order in which
a and ¢ are unrelated represents both possible traces. Prop-
erties such as deadlock depend only on the partial order of
the events that occur and not on the particular lineariza-
tion of those events. Thus if M’ contains at least one trace
for each partial order, we may check for deadlock in M by
checking for deadlock in M’. Conditional stubborn sets and
sleep sets are two techniques for constructing such an M’.
These techniques involve identifying sets of transitions that
“commute” (do not disable each other) at each global state
and then firing only one transition from each set. In the
example of Fig. 1, {((1,3),a,(2,3)),((1,3),¢,(1,4))} is one
such set of transitions enabled in the system’s start state.
By firing only one of these transitions, we represent only
one possible order of the two events, reducing the number
of states generated. See [19,20] for details.

D. Symbolic Model Checking

Another approach to making deadlock detection more
tractable 1s to use a different representation for M. State-
space searches typically generate the states of M explicitly
and store them in a hash table. The state space of real
systems is often very large, but also very regular. For ex-
ample, consider a simple system modeling an n-bit counter
with states 0,1,...,2” — 1 and a transition from each state
i to state (i + 1)mod 2". For n = 32, the size of a typi-
cal machine register, this system 1s far too large for state
enumeration techniques, yet the transition relation is given
“symbolically” by A = {(¢, a, (i + 1)mod 2™)}.

One way to represent A symbolically is to encode the
relation as a boolean function represented by an Ordered
Binary Decision Diagram (OBDD) [3]. OBDDs represent
many frequently occurring boolean functions very com-
pactly (e.g., symmetric functions, addition). An OBDD for
a function f(x1,...,2y,) and a total order < on the boolean
variables x1, ..., x, 1s a rooted directed acyclic graph with
the following properties. Each internal node v is labeled by
some variable var(v) € {x1,...,2,} and has exactly two
children, denoted lo(v) and hi(v). Each leaf node is labeled
by 0 or 1. For any internal node v, var(v) < var(lo(v)) and
var(v) < var(hi(v)) (i.e., along any path from the root,
variables appear in order). Finally, given an assignment of
values to x1,...,x,, the value of f is the label of the leaf
node reached by traversing a path from the root node, fol-
lowing the arc to lo(v) if var(v) = 0 and following the arc
to hi(v) if var(v) = 1. The OBDD for an example function
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z Y z f(wvyvz)
01010 0
01]0 1 1
0 1 0 0
0 1 1 1
1 010 0
1 0 1 0
1 1 0 0
1 1 1 0

Fig. 2. OBDD

f is given in Fig. 2. Dashed arcs are used to connect v to
lo(v), solid arcs to connect v to hi(v).

Any finite set S can be encoded as an OBDD over
[log, |S|] variables by assigning each element ¢ € S a
unique n-bit sequence o(e) and building the OBDD for
the characteristic function:

a={

Relations can be similarly encoded since they are simply
sets of tuples. The function f in Fig. 2 encodes the transi-
tion relation for M; in Fig. 1 where = represents the cur-
rent state, y represents the input, and z represents the next
state. The encodings for states 1 and 2 and symbols a and
bare 0, 1,0, 1, respectively.

deeS. ole)=wx1...2p
otherwise

f(l‘l,...

Given the transition relation A, the set of reachable
states R is the smallest set of states containing sy and
including any state that is reachable from a state in R via
A. The OBDD for R can be computed from the OBDD
of A with fixed-point techniques that manipulate sets us-
ing their characteristic functions encoded as OBDDs. The
OBDD for R can be used to check for reachable states with
certain properties (e.g., deadlock). In fact, model checking
of temporal logic formulas can be performed in this frame-
work without ever constructing an explicit representation

of M. See [4,32] for details.

E. Inequality Necessary Conditions

Yet another approach to making deadlock detection more
tractable is to forgo any representation of the state space.
To verify that a system has a property P, the technique
generates necessary conditions for the existence of a trace
of M violating P. If these conditions are not satisfiable,
then M must have property P. If the conditions are sat-
isfiable, however, then M may or may not satisfy P, since
the conditions are necessary but not sufficient. If the con-
ditions are strong (i.e., are rarely satisfiable if P holds)
and easy to check, then such a technique can be quite ef-
fective. Unlike the previous two techniques, however, this
kind of technique can yield an inconclusive result (of course,
for any technique, an intractable analysis is inconclusive).
Different kinds of necessary conditions have been used for
deadlock analysis in Ada tasking. Masticola and Ryder
[30] used dataflow techniques to search for potential cyclic
waits. Here, we consider a more general technique that
uses linear inequalities.

Flow: (state)

1 = 1 -|— o (1)

1 -|— o = 1 (2)

1 = T3 -|— T4 (3)

T3 -|— T4 = 1 (4)

Communication: (symbol)

o = T3 (b)

Hang: (symbol)

1 -|— T4 < 1 (b)

Require:
1 -|— T4 Z 1
Fig. 3. Inequality System

Necessary conditions in the form of linear inequalities
have been used to verify a variety of different properties of
concurrent system, including freedom from deadlock [1],
general safety and liveness properties [8], and real-time
properties [2,11]. The basic idea is to view each FSA M;
as a flowgraph and find a flow from the start state to some
final state. This flow represents the path M; takes in the
trace being sought (i.e., the trace violating P). The flow
through arc ¢ is represented by an integer variable z;. Flows
are found by generating a flow equation at each state equat-
ing the flow into the state with the flow out of the state.
There 1s an implicit flow of 1 into the start state, and an
implicit flow of 1 out of the final state. Additional inequal-
ities are generated to enforce some consistency among the
paths taken by the FSAs.

Consider the example in Fig. 1. Let action b represent a
synchronization between tasks 1 and 2. Let internal action
a represent task 1 becoming permanently blocked waiting
for task 2 to synchronize on b, and let internal action ¢
represent task 2 becoming permanently blocked waiting for
task 1 to synchronize on b. The inequalities representing
necessary conditions for the existence of a trace in which
some task becomes permanently blocked are given in Fig. 3.
The flow equations find flows in each FSA; the communica-
tion equation requires that the & communication occur the
same number of times in the two tasks; the hang inequality
prevents both tasks from becoming permanently blocked
waiting for the same communication action (i.e., events a
and ¢ cannot both occur); the requirement inequality re-
quires that one task become permanently blocked (i.e., one
of events a or ¢ must occur). Notice that the inequalities
have no integral solution, proving that deadlock 1s impos-

sible. See [1,12] for details.

IV. METHOD FOR COMPARISON

The performance of an analysis technique depends on
many different factors, including the examples to which
it is applied, the property to be verified, the quality of
the technique’s implementation, the way in which problems
are modeled /specified in the input language, and possibly
other parameters specific to the particular technique (e.g.,
the OBDD variable ordering for symbolic model checking).
A method for comparison must control all these factors
in such a way that the resulting performance data gath-
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ered may be meaningfully compared. In this section, we
describe a method for empirically evaluating deadlock de-
tection techniques for Ada tasking programs.

A. Selection of Framples

As noted in Section II, there are many different kinds of
concurrent systems. We restrict the scope of our evaluation
to one kind of concurrent system, Ada tasking programs,
for several reasons. First, this allows us to use a very simple
interleaving model of concurrency in which only one type
of communication must be represented. Asynchronous pro-
tocols are more naturally represented using a model with
explicit message buffers. Hardware circuits are more nat-
urally represented using models that allow the next state
of a component to depend on the states of many other
components and allow many components to change state
simultaneously. A model that could represent everything
would probably represent nothing well. Second, given our
limited resources, the results of an evaluation over a limited
class of systems is more meaningful since the range of ex-
amples provides a better coverage of that particular class.
Third, we are familiar with this class of systems and have a
collection of examples to use. Of course, this restriction in
the class of systems limits the scope of our results. The ex-
periments described in Section V must not be interpreted
as an evaluation of the techniques in general, but only as
an evaluation of the techniques as applied to Ada tasking
programs.

Given this restriction on the class of systems, the tech-
nique should be tried on as many examples as possible.
Many examples are scalable in some parameter and apply-
ing a technique to several sizes of such an example gives
some indication of the scalability of the technique. We col-
lected as many real Ada tasking programs as possible and
also used standard benchmark examples from the concur-
rency analysis literature. The examples analyzed are listed
in Section V-A. Our choice of Ada reflects a standard in
the field of concurrent software analysis [1,14,28,30,43,46].

B. Selecting a Property

We used the techniques to test for deadlock in the com-
munications protocol used by the tasks. We selected dead-
lock since it 1s almost always an undesirable property in
this setting and is essentially the same for all examples
(i.e., a program deadlocks if and only if its automaton con-
tains a deadlock state, as defined in Section II). More
complex properties, such as mutual exclusion or starvation,
are more system specific and often require more knowledge
of a program than is present in its source code. As with
the restriction to one class of systems, our restriction to
one particular property limits the scope of our results. We
note, however, that the verification of any safety property
can be reduced to a check for deadlock [21].

C. Implementation

The implementation of a technique can greatly affect its
performance. The developer of a technique has a strong

incentive to implement the technique as efficiently as pos-
sible in order to demonstrate the technique’s effectiveness.
Therefore, we decided to use tools written by the devel-
opers of the techniques to insure a good implementation
of the techniques evaluated. The only alternative to using
available implementations would have been to implement
the techniques ourselves, guided by technical reports de-
scribing their details. Besides requiring much more effort,
this approach would likely have produced implementations
significantly inferior to those crafted by experts with years
of experience with a particular technique.

Patrice Godefroid, Didier Pirottin and Pierre Wolper of
the University of Liege have implemented a partial order
technique [20] as an extension to a very fast protocol ana-
lyzer called SPIN, which was written by Gerard Holzmann
at AT&T Bell Labs [25]. We refer to SPIN with the Partial
Order package installed as SPIN+PO. Note that the latest
version of SPIN (version 2.0) supports a different partial or-
der technique which has significantly less memory overhead
than the Liege package; it does not yet include the partial
order reductions for synchronous communication, however,
and so was not used in this evaluation. Kenneth McMillan
of Cadence Systems has implemented the Symbolic Model
Verifier (SMV) [32]. Both of these tools are publicly avail-
able, stable, and reasonably robust. Unfortunately, the In-
equality Necessary Condition Analyzer (INCA), like many
research tools, has none of these desirable properties, but
since we constructed most of the components that are cur-
rently in use, this was not a problem. INCA is descended
from the constrained expression toolset [1], but it supports
more powerful analysis techniques [11,12] and is more effi-
cient.

D. Specifying the Fxamples

Given our decision to use existing implementations of
the techniques, we are faced with a problem: each anal-
ysis tool has its own unique specification language. We
see two solutions to this problem. We could specify each
example directly in each tool’s specification language, or
we could specify each example in some canonical form and
then generate the input for each tool automatically from
this canonical form. The first approach is technically sim-
pler since 1t avoids the tricky issues involved in automatic
generation of input. On the other hand, if we specify an
example in two different specification languages, on what
formal basis can we say that these specifications represent
the same system? This issue is more serious than it may
appear since specification languages can be very different
and slight changes in the way a system is specified can
produce large variations in the performance of a tool. We
must be sure that specifications of the same example in
different languages are formally equivalent before we can
meaningfully compare the performance of the techniques
on the example. We believe this requires using the second
approach.

The next step 1s to decide on a canonical form for the
examples. One possibility is to use the input language for
one of the tools as the canonical form. The problem with
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INCA front end

‘ SPIN Translator H FSAs ]—>{ SMV Translator

‘ SPIN(+PO) ‘ ‘INCA back end ‘ ‘ SMV verifier ‘

(o] (=) (o)

Fig. 4. Generation of Input

this approach is that the semantics of most specification
languages are sufficiently complex and varied that trans-
lating one into another is very difficult. Each language has
constructs that might be awkward to represent in another,
thus the tool whose input language is considered canonical
might enjoy an unfair advantage in the evaluation. Since
all of the tools, regardless of their input language, repre-
sent a concurrent system as a finite-state transition system,
we instead use the more abstract model of concurrent sys-
tems from Section II as the canonical form for all of the
examples. This model has simple semantics, thus it is rel-
atively straightforward to embed in the richer semantics of
the specification languages.

Given each example specified as a set of communicating
FSAs, we use translators to automatically generate seman-
tically equivalent input for the different tools. The transla-
tors for SPIN+PO and SMV are described in Sections IV-
F and TV-G, respectively. The back end of INCA (which
performs the analysis) accepts communicating FSAs di-
rectly, thus no translation is required. The communicating
FSAs representing each example are generated automat-
ically from an Ada-like specification by the front end of
the INCA tool. This aspect of the comparison method is
summarized in Fig. 4.

Although it may seem that we are using the input lan-
guage for INCA as the canonical form, we view the front
end of INCA only as a tool for constructing the canoni-
cal form. INCA constructs the FSA for each task using
standard techniques for constructing control flow graphs
[17]; these automata are very similar to those produced
(internally) by SPIN or any other tool that constructs a
finite-state representation of the control flow of imperative
code. Thus we do not believe that using the front end of
INCA to produce the communicating FSAs conveys any
advantage on the back end of INCA, which performs the
analysis. While it is true that the input for INCA does
not go through a translator, we could easily have written
an INCA translator that reversed the mapping performed
by the INCA front end (i.e., converted the communicat-

ing FSAs back to the original Ada-like specification) and
then applied the whole of INCA to this translated input.
Since the same communicating FSAs would be analyzed
in either case, however, the performance of INCA would
not have changed. The real issue is whether our choice of
canonical form introduces a bias; we discuss this issue in
Section IV-E.

A description of the algorithm used by the front end of
INCA to translate our Ada-like specification language into
communicating FSAs is given in [9]. Since the details of this
translation are extensive and probably beyond the scope of
this paper, here we give only an example of a sample spec-
ification and the FSAs generated from it. Fig. 5 shows
our Ada-like specification for the basic dining philosophers
problem and Fig. 6 shows two of the FSAs generated by
the INCA front end from this specification (we selected
this example because it has the smallest specification and
is probably the most familiar). The constant Problem Size
is set by the INCA front end so that varying sizes of the
example can be generated from the same source code. The
task discriminant I is set to the index in the array at which
the philosopher/fork task is placed. A rendezvous between
two tasks is modeled by a shared symbol that encodes the
caller, the acceptor, and the entry. For this example, the
FSA state encodes only the syntactic location within the
source code. For many examples, the values of a few small
ranged variables (e.g., flags or counters) must be encoded
into the task state for accurate modeling of the task’s syn-
chronization behavior; adding variables to the task specifi-
cations causes INCA to perform this encoding.

E. Identifying Potential Bias

Our model of concurrent systems may introduce a bias
against SPIN and SMV. While our model is very natu-
ral for representing Ada tasking programs, it is not par-
ticularly appropriate for representing asynchronous proto-
cols or hardware, the domains for which the other tools
were designed. We believe this bias is much worse for the
OBDD-based technique for two reasons. First, we use an
interleaving model of concurrency rather than a simulta-
neous model (in which multiple actions can occur simulta-
neously). OBDD-based techniques generally perform bet-
ter on simultaneous models, although this depends on the
communication structure of the system [32]. Second, the
encoding of task variable values within a monolithic task
state may increase the size of the OBDDs needed to repre-
sent the transition relation of the task’s FSA. We elaborate
on this second effect.

Large FSAs are generated by data intensive tasks con-
taining variables that must be encoded into the state of the
task for accurate modeling of the task’s synchronization
behavior. When a system is directly specified in the SMV
input language, SMV can encode the states more efficiently
for representation by OBDDs. For example, consider again
the n-bit counter with states 0,...,2" — 1, and transition
relation A = {(é, a, (¢4 1)mod 2")}. Since addition can be
represented very efficiently with OBDDs, the OBDD rep-
resenting this transition relation would be much smaller if
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-- Number of philosophers/forks
N : constant := Problem_Size;

type Fork_Range is range O .. N - 1;

task type Philosopher (I : Fork_Range);
task type Fork (I
entry Up;
entry Down;
end Fork;

: Fork_Range) is

Forks :
Phils :

array Fork_Range of Fork;
array Fork_Range of Philosopher;

task body Philosopher is
begin
loop
-- Pick up right, then left fork
Forks((I + 1) mod N).Up;
Forks(I) .Up;
-- Eat, put down forks
Forks((I + 1) mod N).Down;
Forks(I) .Down;
end loop;
end Philosopher;

-- Philosopher I

task body Fork is -- Fork I
begin
loop
accept Up; -- Fork picked up
accept Down; -- Fork put back down
end loop;
end Fork;

Fig. 5. Ada-like Source Code for Dining Philosophers Example

phil_0;fork_0.down,
phil_3;fork_0.down

phil_0;fork_O.up ,
phil_3;fork_O.up

Fork O

phil_0;fork_1.up

phil_0;fork_0.down phil_O;fork_0.up

phil_0;fork_1.down

Philosopher O

Fig. 6. Two FSAs for Dining Philosophers Example (N = 4)

the state’s number (in binary) were used by SMV as the
state’s encoding. INCA, however, might present the states
0,...,2" — 1 to SMV in an arbitrary order, resulting in an
arbitrary binary encoding for each state that does not ex-
pose the regularity of the transition relation. In practice,
if a task has only one variable and its FSA contains essen-
tially one state per value of this variable, then this type
of bias is not introduced since the states are presented to
SMYV in order. However, if the task has multiple variables,

/* Message type */
mtype = { synch };

/* Rendezvous channel b */
chan b = [0] of { byte };

proctype M1() /% FSA 1 */

{
statel:

if

/* internal action a */

:: skip -> goto endstate2

/* rendezvous on channel b */
:: b?synch -> goto endstate2

fi
endstate2:

0 ; /* halt */
¥

proctype M2()  /* FSA 2 */
{

state3:
if
/* rendezvous on channel b */
:: b!synch -> goto endstated
/* internal action c */
:: skip -> goto endstated
fi
endstated:
0 ; /* halt */
¥

init { atomic { run M1(); run M2() }}

Fig. 7. Promela Generated by Translator

then the position of a state in some ordering chosen by
the translator does not reveal the values of the variables
encoded in the state, and thus introduces the bias.

The model was chosen to match the domain of the ex-
amples, not the analysis tools. Since we are conducting the
evaluation over a domain for which SPIN and SMV were
not designed, the introduction of some bias seems unavoid-
able. INCA was built to analyze Ada tasking programs,
thus it does not suffer from this bias. In Section VI, we ex-
plore the extent of the bias by considering different models.

F. SPIN Translator

Here, we describe the how the communicating FSAs
representing a concurrent system were translated into
Promela, the input language for SPIN. Promela is a
guarded command language like CSP [24], with a C-like
syntax. It directly supports communicating processes, thus
the translation is relatively straightforward.

Each FSA is represented by a process created using the
proctype declaration. Each state of the FSA is represented
by a statement labeled with the name of the state. The
statement implements the transitions out of the state it
represents using goto statements guarded by the action
causing the transition. Fig. 1 shows a pair of communicat-
ing FSAs and Fig. 7 shows the Promela code generated for
these FSAs (with some comments added by hand).

The if statement in Promela is like the alternative com-
mand in CSP, allowing an arbitrary selection among alter-
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natives whose guards are true. There is one alternative for
each transition out of the state. If the state has no out
transitions, then the statement for that state is 0, which is
not executable, causing the process to halt. Each alterna-
tive representing a transition on action A to state ¢ consists
of a goto statement to state ¢’s label guarded by a state-
ment representing A. Internal actions are always enabled
and are represented by the statement skip. Communica-
tion actions are discussed below. If a state label begins
with the string “end”, then it is considered a final state of
the process for purposes of deadlock detection.

Promela supports communication between processes via
channels which are declared like ordinary variables having
type chan. Channel variables must be initialized, indicat-
ing the number of messages that the channel can buffer. We
use channels with zero capacity to implement synchronous
communication. We declare such a channel for each com-
munication action in the FSAs. Each communication ac-
tion is shared by two processes, one of which is designated
the sender, and the other, the receiver. The Promela state-
ments c¢'m and c¢?m are used to send and receive a message
of type m to/from a channel ¢, respectively. Since the chan-
nels have zero capacity, these statements are executable
(i.e., may be chosen in the if statement for a state) only
when both processes containing the corresponding commu-
nication action are in states in which they can take that
action. No information is passed in the messages, thus
we declare and use a single message type synch using the
mtype declaration.

Promela also supports the specification of safety and live-
ness properties. We do not generate such specifications in
our translation, causing SPIN (and SPIN+PO) to search
only for invalid endstates (i.e., deadlocks).

G. SMV Translator

We now describe how a set of communicating FSAs is
translated into the SMV input language. Unlike Promela
and Ada, the SMV input language was designed primarily
for hardware specification. In the SMV language, systems
are specified as a set of variables and a set of functions
that define the next value of those variables in terms of
the current values. Facilities for constructing, replicating,
and connecting components are also provided. While this
is convenient for specifying gate-level logic and even cer-
tain kinds of protocols, we found it awkward for specifying
communication between sequential processes. Fortunately,
the SMV language also provides an escape that allows the
transition relation to be specified directly. This was meant
specifically to facilitate writing translators from other lan-
guages into SMV and proved invaluable for this compari-
son.

The SMV specification we generate has four parts. The
VAR part declares the state variables. A stafe is an assign-
ment of values to the state variables. The INIT part is a
boolean function of the state variables. A state is a legal
initial state of the system if this function is true for that
state. The TRANS part allows any transition relation to be
specified. It 1s comprised of a single boolean function of

MODULE main

VAR
x1 : {1, 2 }; -- State of FSA 1
x2 : {3, 47}; -- State of FSA 2
INIT -- Initial state
(Cxt=1)&(x2=3))
TRANS
( -- Transition on ’a’
CCCx1=1)
&
( next(x1) =2 ))
&
( x2 = next(x2) ))
| == Transition on ’c’
( ( x1 = next(x1) )
&
((x2=3)
&
( next(x2) =4 )))
| == Transition on ’b’
C(CCCxt=1)
&
( next(x1) = 2 ))
&
((x2=3)
&
( next(x2) = 4 )))))
SPEC
AG -- On all paths globally:
( EX1 -- There is a next state

| -- OR all FSAs in final

(x1=2%& x2=4)) -- states

Fig. 8. SMV Generated by Translator

the values of the state variables in the current state and
their values in the next state. If this function returns true
for a pair of states (s,s’), then there is a transition from
state s to state s’. Finally, the SPEC part is a temporal
logic formula in the logic CTL [32] specifying a property
that the system must satisfy.

We represent a set of communicating FSAs as follows.
For each M;, we declare a state variable z; to hold its cur-
rent state. The INIT function A;(x; = s;,0) forces each M;
to begin in its start state. The TRANS function encodes the
transition relation of the entire system in one large boolean
formula; its construction is described below. Finally, the
SPEC formula AG ((EX 1) | FINAL) is used to search for
deadlocks, where FINAL is a formula that is true if the state
is a final state. In CTL, this translates as “Along all paths
always, either there exists some next state, or the current
state 1s final”. Formula FINAL is given by

AV o=

7 seF;

The main part of the translation is the construction of
the TRANS formula. We use an interleaving model in which
at most one transition can occur at a time. The TRANS
function will consist of a disjunction of all possible global
transitions the concurrent system can make. Global tran-
sitions are of two types: internal actions (in which one M;
changes state) and communication actions (in which two
M; change state). For each state variable x, next(x) repre-
sents the value of x in the next state, while x represents its
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value in the current state. The disjunct representing the
occurrence of internal action transition s—ss’ in M; is

r; = s Anext(z;) = s A /\ z; = next(z;)
ji

This requires that M; move from state s to state s’ while all
other M; remain in the same state. Similarly, the disjunct
representing the occurrence of communication action tran-
sition s—s’ in M; synchronously with the communication
action transition ¢—¢ in M; is

ri=s5 A next(z;) =5

A xj =qAnext(z;)=¢q

A /\ z = next(xy)
k#1,5

Each possible pairing of matching communication action
transitions produces a distinct global transition. The SMV
input generated for the system in Fig. 1 is shown in Fig. 8.
SMYV uses & and | for and and or, respectively.

V. EXPERIMENTS

This section presents the results of the experiments con-
ducted using the comparison method described in Sec-
tion TV. We applied the SPIN+PO, SMV, and INCA
to seventeen families of scalable examples and to several
non-scalable programs, measuring the amount of time and
memory used by the tools to check for deadlock. For each
scalable example, we applied each tool to several sizes of the
example to gauge the scalability of the technique. We also
applied SPIN, a straight reachability analyzer, to each ex-
ample to provide a baseline for measuring the effectiveness
of the other tools in curbing the state explosion problem.
From the raw performance data for the scalable examples,
we derived a numerical measure of how fast the resource re-
quirements grew with the problem size. Using these growth
rates and the raw data for the non-scalable examples, we
were able to correlate the scalability of each technique to
certain features of the examples and thus characterize the
kinds of programs to which each technique might best be
applied.

This section is organized as follows. Section V-A presents
a brief description of the examples used in the evaluation.
Section V-B discusses some issues that arose in modeling
these examples for analysis. Section V-C describes the
general approach we used (i.e., what analyses should be
run). Section V-D presents the raw data from the anal-
yses and the details of its collection. In Section V-E; we
develop a numerical measure for the rate of growth of the
time/memory required by the tools as an example is scaled
up. Finally, in Section V-F, we use these growth rates to
draw conclusions about the scalability of the various tech-
niques on different kinds of programs.

A. Framples

This section lists the examples analyzed. We use m as
the size parameter for scalable examples, and denote the

size m version of scalable example X as X(m). Space per-
mits only a brief description of each example. The Ada-
like specifications of these examples, the communicating
FSAs generated from them by the INCA front end, and
the Promela and SMV inputs generated by the translators
are available for anonymous FTP on ftp.ics.hawaii.edu
in /pub/corbett/eval.tar.Z.

Some raw characteristics of each example are summa-
rized in Table I, whose columns give the lines of code, the
number of tasks, the number of unique rendezvous, and
some additional features used in our analysis of the results
in Section V-F. The lines of code given is for the Ada-like
input to INCA; this is not an accurate measure of the size of
the resulting system since all the scalable examples use ar-
rays of tasks, and thus this measure does not vary with the
problem size. For specifications extracted from real pro-
grams, we give the size of our specification rather than the
size of the original program since the amount of unmod-
eled non-concurrent code is not relevant to our analyses.
We count each distinct shared symbol as a unique ren-
dezvous; this symbol encodes the caller, the acceptor, the
entry name, and any parameters passed in the rendezvous.

The examples analyzed were:

Alternating Bit Protocol (ABP) A simple but often an-
alyzed example modeled with 6 tasks representing two
users, a sender, a receiver, and two lossy channels.

Border Defense System (BDS) This example, analyzed
in [14,30], is the communication skeleton of a real Ada
tasking program that simulates a border defense sys-
tem. The original source code was written by T. Gri-
est of LabTek Corporation and comprised 11K lines of
Ada. We obtained the communication skeleton from
the Concurrent Systems Software Laboratory at the
University of Illinois at Chicago (as indicated in Ta-
ble I, the skeleton is only 247 lines). The example has
15 tasks, but the skeleton of each is relatively simple.

Cyclic scheduler (CYCLIC) Milner’s cyclic scheduler [7,
33] uses m scheduler tasks to keep m customer tasks
loosely synchronized.

Divide and Conquer (DAC) A program modeling a di-
vide and conquer computation by forking up to m
solver tasks that proceed in parallel [2,11].

Dartes Program (DARTES) The communication skele-
ton of a fairly complex Ada program with 32 tasks
[30].

Dining Philosophers (DP, DPH, DPD, DPFM)
Although not a very realistic problem, it does contain
a nontrivial deadlock and 1s probably the most com-
monly analyzed example [1,14,28,42 46]. We model
each of the m philosophers and m forks with a task.
These tasks synchronize to model forks being acquired
and released. In addition to the standard version
(DP), which can deadlock, we also analyzed several
versions of the problem where deadlock is prevented.
In the version with host (DPH), there is an additional
host task with which a philosopher must synchronize
before attempting to acquire her forks. This might
model a real-world situation in which a task wishing
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Communication Task Size/

Problem LOC Tasks Rends | Structure Structure
CYCLIC(m) 54 2m 3m | linear 2m small
DAC(m) 41 m 2m | linear m small
DP(m) 34 2m 4m | linear 2m small
DPD(m) 47 2m 5m | linear 2m small
DPFM(m) 50 m+ 1 2m | single star m small, 1 large
DPH(m) 62 2m + 1 6m linear 4+ single star | 2m small, 1 medium linear
ELEVATOR(m) 278 m+3 | 11m +9 | multiple stars m + 2 medium, 1 large
FURNACE(m) 196 | 2m + 6 8m + 6 | multiple stars 2m + 5 small, 1 medium
GASNQ(m) 98 m+3 | 12m + 2 | multiple stars m + 2 medium, 1 large
GASQ(m) 141 m+3 | 10m + 2 | multiple stars 2 small, m medium, 1 large
HARTSTONE(m) 55 m+ 1 2m | single star m small, 1 large linear
KEY(m) 388 m+5 | 13m + & | single star 3 small, m + 2 medium
MMGT(m) 202 m+ 4 5m + 4 | multiple stars 4 small, m medium
OVER(m) 79 | 2m+1 | 11m —4 | linear + single star | m + 1 small, m medium
RING(m) 60 2m 5m | linear m small, m medium
RW(m) 65 | 2m+1 4m | single star 2m small, 1 medium linear
SENTEST(m) 198 m+ 4 m +9 | single star m + 3 small, 1 large linear
ABP 166 6 18 | linear 5 small, 1 medium
BDS 247 15 25 | multiple stars 14 small, 1 medium
DARTES 1228 32 205 | multiple stars 25 small, 7 medium
FTP(1) 572 9 76 | multiple stars 3 small, 6 medium
FTP(2) 572 10 102 | multiple stars 3 small, 7 medium
Q 615 18 59 | multiple stars 10 small, 8 medium
SPEED 245 10 10 | multiple stars 10 small

TABLE I

CHARACTERISTICS OF EXAMPLES

to use a resource must first get permission from a cen-
tral server task. The host will allow at most n — 1
philosophers to hold forks at any one time. In the
dictionary version (DPD), the same effect is achieved
by having the philosophers pass a dictionary around
the table. The philosopher holding the dictionary can-
not hold any forks. Finally, in the version with a fork
manager (DPFM), philosophers pick up both forks si-
multaneously by rendezvous with a fork manager task,
which records the state of all forks in lieu of the fork
tasks.

Flevator(ELEVATOR) This program models a con-
troller for a building with m elevators, using tasks to
model the behavior of the elevators themselves. The
size m version has m + 3 tasks.

File Transfer Program(FTP) This program services re-
quests from m users to transfer files over a network.
Our version is an abstraction of the original program,
which was too complex to analyze. The size m version
has m + 8 tasks.

Remote Furnace Program(FURNACE) This
program manages temperature data collection for m
furnaces. We analyze the original design presented
in [45] abstracted slightly (e.g., we do not model the
temperature data using the furnace identifier since we
are only verifying freedom from deadlock, not proper
transmission of data). The size m version has 2m + 6
tasks.

Gas Station(GASNQ, GASQ) This example, which
models a self-service gas station, originated in [23] and
has been analyzed in [1, 14, 28,40]. Customers arrive
and pay the operator for gas. The operator activates a
pump, at which the customer then pumps gas. When

the customer is finished, the pump reports the amount
of gas actually pumped to the operator, who then gives
the customer her change. We analyzed versions with
one operator task, two pump tasks, and m customer
tasks. We analyzed two different versions of this ex-
ample. In the original version (GASQ) from [1,23],
the operator task queues customer requests and must
keep track of which customers are waiting for each
pump and in what order. In the non-queuing version
(GASNQ) from [14], the operator does not enforce a
first-come-first-serve order on the customers and must
only record the number of customers waiting for each
pump in order to activate the pump when any waiting
customers remain.

Hartstone Program (HARTSTONE) The
tion skeleton of an Ada program analyzed in [30] in
which one task starts and then stops m worker tasks.

Keyboard Program (KEY) The communication skeleton
of an Ada program analyzed in [30] that manages key-
board/screen interaction in a window manager. We
scaled the program by making the number of customer
tasks a parameter (m). The size m version has m + 5
tasks.

Distributed Memory Manager (MMGT) The communi-
cation skeleton of an Ada program implementing the
memory management scheme from [18] with m users.
The size m version has m + 4 tasks.

Overtake Protocol (OVER) An Ada version of an auto-
mated highway system overtake protocol in [22] for m
cars comprising 2m + 1 tasks.

Q) User Interface (@) The Ada skeleton of an RPC
client/server-based user interface with 18 tasks that
is used by several real applications.

communica-
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Token Ring Mutual Exclusion Protocol (RING) An
Ada implementation of a standard distributed mutual
exclusion algorithm in which m user tasks synchronize
access to a resource though m sever tasks that pass a
token around a ring.

Readers and Writers(RW) This example models
a database that may be simultaneously accessed by
any number of readers or a single writer. Each of the
m reader tasks and m writer tasks must synchronize
with a controller task before accessing and when fin-
ished accessing the database. This system has been
analyzed in [1,14,28].

Sensor Test Program (SENTEST) The communication
skeleton of an Ada program analyzed in [30] that starts
up m tasks to test sensors. The size m version has
m 4+ 4 tasks.

Speed Regulation Program (SPEED) The
munication skeleton of an Ada program analyzed in
[30] with 10 tasks that monitor and regulate the speed
of a car.

com-

B. Modeling Issues

For a few of the examples (DPFM, ELEVATOR,
GASNQ, GASQ), it is convenient for a task accepting an
entry to be able to test the value of a call parameter be-
fore deciding whether to accept the call. This function-
ality is absent from Ada 83, although the requeue state-
ment of Ada 95 effectively adds it. The same effect can be
achieved in Ada 83 by using a different entry for each value
of the critical parameter, though this often makes scaling
the specification cumbersome. In our specifications, we
employ a special assume statement for this purpose. For
example, the operator task in GASNQ should not accept
the CHARGE entry for a pump for which no customers are
currently waiting. This can be expressed as:

accept CHARGE ( P : PUMP) do
assume WAITING(P) > O;

end CHARGE;

The assume statement is modeled after the assuming
clause used by Yeh and Young in [44].

Although we believe all of our examples except the stan-
dard dining philosophers (DP) are free of deadlocks, our
models of the Ada programs DARTES, KEY, and SPEED
contain spurious deadlocks due to the presence of a global
variable used for synchronizing task termination. Cur-
rently, global variables are not processed by the INCA
front-end, although they can be represented in our model
of concurrent systems using an additional FSA for each
variable to hold the value of that variable, along with com-
munication actions for testing and setting the value of the
variable. Our model of the @ program also contains a spu-
rious deadlock due to the abstraction of timing information
(the program makes heavy use of conditional entry calls).
Since we had so few examples that contain deadlocks, we
chose to leave these spurious deadlocks in the models to
provide more data on how quickly the tools can find a dead-

lock when one exists. One drawback is that these deadlocks
are not subtle—unlike the deadlock in the dining philoso-
phers problem, these deadlocks would be likely be found
by random simulation.

Several of the examples (DAC, ELEVATOR, HART-
STONE, KEY, Q, SENTEST, SPEED) used the Ada
terminate alternative to synchronize the termination of
groups of tasks. In all of these examples, all tasks are
declared within a single package; thus a task will select
its terminate alternative exactly when all other tasks are
either terminated or similarly blocked on terminate alter-
natives. We represent this in our model by making a state
of a task FSA that can select a terminate alternative a
final state.

C. General Approach

We ran SPIN+PO, SMV, and INCA on the examples de-
scribed in Section V-A. We also ran SPIN, a straight reach-
ability analyzer, on each of the examples to give a baseline
for measuring the efficacy of the techniques in curbing the
state explosion problem. For all examples, we measure the
CPU time and memory consumed by the tools in perform-
ing the analysis.

For each scalable example, we selected four arithmeti-
cally increasing sizes ending near the maximum size that
could be handled by all of the tools. This facilitates com-
parison of the tools, although 1t makes most of the mea-
sured run times small since the maximum size is set by the
tool that performs worst on that example. The step value
for the size growth was chosen to magnify the variation in
the resource measurements. For most examples, this meant
dividing the size range into roughly equal pieces (e.g., if the
maximum size is 12, run sizes 3, 6, 9, 12). For a few exam-
ples, however, the resource requirements for one or more
tools increased very quickly with the size and were thus
very small until the size approached the maximum. For
such examples, we chose to use larger sizes to minimize the
number of small measurements, which are dominated by
fixed overhead.

Rather than finding the largest size each tool can handle
given certain resource constraints, as we did in the pre-
liminary version of this paper [10], we simply measure the
growth in the resources consumed as the example is scaled
up (the calculation of these growth rates is described in
Section V-E). We believe these growth rates are more
meaningful than the maximum sizes gathered in [10] for
several reasons. First, various kinds of constant overhead
in the implementations are factored out. Second, for some
of the examples, the use of translated input, not the tool
itself, imposes the maximum size (see the discussion of the
difficulty in scaling HARTSTONE and SENTEST in Sec-
tion V-D). TFor larger sizes of such examples, either the
INCA front end runs out of memory building the FSAs or
(more often) the translated input, being much larger than
a native specification, is too large for the tool. This is
a limitation of our comparison method, although a more
compact canonical model (e.g., the EFSAs of Section VI-
B) and better translators, which use language constructs
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like Promela arrays to replicate components, would largely
solve this problem. Third, the resource constraints, al-
though reasonable, are somewhat arbitrary, especially the
limit on CPU time. In [10] we used three hours, though
one could argue for a higher or lower limit.

In Section V-E; we will investigate the relationship be-
tween the size of the concurrent system and the resources
consumed by the tools to perform the analysis. Given a
concurrent system in the model of Section II, we must de-
fine exactly what the size of this system is. We might use
the number of reachable states in the model (].S]), but this
obscures the state explosion by making the size measure
itself explode as systems are scaled up. Also, it bears lit-
tle relation to the size of the Ada program from which the
model was derived. Alternatively, we might use the num-
ber of tasks (n). This is closer to the programmer’s view
of a program’s size, but does not take into account the size
of the tasks (e.g., the 2-state fork tasks in DP are counted
the same as the 1400-state operator task of GASQ(4)). To
account for task size, we might use the number of compo-
nent states (D, |Si|) as the measure, but this obscures the
state explosion that results from the use of data within a
component (as in the gas station and elevator examples).
Instead, we use the number of bits required to store the
state of the task as a measure of the task’s size, and the
sum of these measures (), log>|S;|) as a measure of the size
of the program. To avoid confusion, we call this measure of
size the scale of the example and continue using the word
“size” to denote the value of m in the scalable examples.
We note that, for all of our examples, the scale is a linear
function of the size, thus an arithmetic sequence of sizes of
an example will have an arithmetic sequence of scales.

D. Raw Data

In this section, we present the data from our experiments
along with various details of how they were collected.

All experiments were conducted on a SPARCstation 10
Model 51 with 96 MB of memory. Analysis times are re-
ported in user CPU seconds collected using the time com-
mand of tcsh and the (get-internal-run-time) function
of Allegro Common Lisp. Statistical analysis of the behav-
ior of these functions reveals that the time they report has a
near normal distribution with a standard deviation around
0.06. If a tool takes very little time on all sizes of an exam-
ple, these small variations can have a significant effect on
the growth rate we calculate in Section V-E. Therefore, if
the measured run times of a tool on all sizes of an example
are less than two seconds, then we run the tool 100 times
and use the average time as a point estimate. For the INCA
results, the analysis times reported include the translation
from an Ada-like source language to the FSAs. For the
other tools, the analysis times include only the actual run
times of those tools—mnot the time to translate the Ada-like
source to FSAs, nor the time to translate the FSAs into the
tool’s input language.

The tools themselves report the amount of memory they
used; we trust these figures, but regard them as approxima-
tions. Memory usage is very difficult to measure externally

since a tool will generally allocate more memory than it ac-
tually uses. Also, there is some variation among the tools
as to what memory (i.e., code, stack, heap) is counted in
the total reported. These differences are small constant
factors, however, and do not significantly affect the rate of
growth of memory usage as examples are scaled up.

For these experiments, we used version 1.5.10 of SPIN,
version 2.0 of the partial order package for SPIN, an unoffi-
cial version of SMV dated 8/6/93, and version 3.2 of INCA.
SPIN, SPIN+PO, and SMV are all written in C. INCA is
written in Common Lisp, with the integer programming
package written in FORTRAN.

SPIN+PO and SMYV take various command line param-
eters that can affect their performance. We used the pa-
rameters suggested by the authors of those tools, which
we found produced the best performance. SPIN+PO was
run with the “proviso” disabled (the -p flag). The pro-
viso causes SPIN+PO to generate more states than are
needed for deadlock detection in order to allow state asser-
tion checking. Since we are evaluating deadlock detection
only, this is not needed and removing it improves the per-
formance of the tool. SMV was run with the —f flag, which
calculates the reachable states of the system before check-
ing the CTL formula.

SPIN and SPIN+PO use arrays whose sizes are set by
various command line parameters, including: the maxi-
mum number of processes, the size of the state vector, and
the maximum search depth. While the default values for
these parameters sufficed for most of the examples, we had
to increase them to complete the analysis of some of the
examples. The maximum number of processes (default:
32) was raised to 34 for DARTES and RW, and to 110
on HARTSTONE and SENTEST. The state vector size
(default: 1024) was raised to 2048 on DARTES, HART-
STONE, and SENTEST. The maximum search depth (de-
fault: 10K) was raised to 100K on DP (for SPIN only).
Parameters were raised uniformly for all sizes of a scalable
example. This increased the memory usage unnecessar-
ily for smaller sizes of those examples, but we feel that
this i1s more consistent since we do not vary these param-
eters for the different sizes of the other scalable examples.
In our analysis of performance in Section V-E, we will be
concerned primarily with growth rates rather than magni-
tudes.

For SPIN and SPIN4PO, the analysis tool first gener-
ates C source code for an analyzer which is then compiled
and run to perform the analysis. We do not include the
generation and compilation times in our data. The trans-
lated input we generate is much larger than the equivalent
Promela code that would be used to specify the same sys-
tem, and takes much longer to generate and compile (e.g.,
for GASNQ(5), a native Promela specification takes 5 sec-
onds to generate and compile, compared to 62 seconds for
the translated input). Thus the real run times of these
tools would be slightly larger.

The HARTSTONE and SENTEST programs have a very
simple communication structure. Indeed, the number of
states in these examples grows linearly with the problem
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size (m). We had difficulty scaling these examples to the
limits of the tools, however, due to our use of translated
input for SPIN and SPIN4PO. As noted above, the trans-
lated input is usually much larger than the equivalent na-
tive Promela specification. For large sizes of HARTSTONE
and SENTEST, the generated analyzer was too big for our
C compiler, and thus could not be run.

For SMV, the order in which the state variables are de-
clared in the input file is the order in which they appear
in the OBDDs. Since this greatly impacts the performance
of the technique, we assisted the tool by providing a rea-
sonable ordering for each example based upon our knowl-
edge of OBDDs and some limited trials with different possi-
ble orderings. Unfortunately, there is no general algorithm
to determine the best order for a particular situation, al-
though heuristics exist. In general, the state variables for
tasks that communicate were placed as close together as
possible.

The examples DP, DARTES, KEY, Q, and SPEED con-
tain deadlocks. For these systems, SPIN, SPIN+PO, and
SMYV display the sequence of state changes leading up to
the deadlock state, and INCA finds a solution that is inter-
preted as a sequence of actions of each task. For all other
examples, the tools correctly declared that the system was
free of deadlocks.

The raw performance data are given in Tables IT-TII.
The columns of the table show the problem name and size
(if scalable), the scale (3, log2]S;]) rounded to the near-
est integer, the number of reachable states (|S|), and the
memory (in megabytes) and CPU time (in seconds) con-
sumed by the four tools to perform the analysis. A dash
indicates the analysis could not be completed with 96 MB
of memory and a day of CPU time. We used SPIN to
generate the number of reachable states for each example
except DARTES, DP(12), and KEY (5), on which SPIN ran
out of memory. Note that SPIN was able to complete the
analysis of these systems by finding a deadlock state before
generating the entire state space. Those comparing these
numbers with those in [10], which used INCA version 3.1,
may notice slight differences for some of the examples. The
front end of INCA has been extensively modified in version
3.2 to support the EFSAs described in Section VI-B.

E. Analysis

In this section, we consider what our data suggest about
the scalability of the evaluated techniques. In general, it is
difficult to characterize the scalability of an analysis tech-
nique. Complexity results indicate that there must exist
problems on which a technique will not scale. In practice,
we are more interested in the average case, but it is difficult
to know what an average program looks like. Techniques
may scale well on certain kinds of programs and poorly
on others. Furthermore, most techniques are sufficiently
complex that it is hard to estimate their cost on a partic-
ular problem a priori. The best we can do is examine the
performance of the technique on a nontrivial collection of
programs and try to determine the kinds of programs on
which the technique seems to scale well.

Table IIT gives performance data for seventeen scalable
examples. For each scalable example, tool, and resource,
we have a set of four points {(z;,y:)|? = 1,2,3,4} where
each x; is the scale of a different size of the example and
each y; 1s the the amount of the resource consumed by the
tool on that size. By looking down each column, we can get
an informal sense of how quickly the resource requirements
are growing with the scale of the problem. Such examina-
tion of the data is tedious, however, and makes compar-
isons difficult. We explored graphing the raw data, but the
range of the measured resource units is too great to plot
all the data for each example on a single graph, and using
many separate graphs with different scales does not facili-
tate comparison. We tried selectively plotting only certain
data or using mathematical transformations to make the
data fit (e.g., log-linear or log-log graphs), but we found
that the resulting graphs were at best difficult to interpret,
and at worst extremely misleading. In the end, we decided
to obtain a numerical measure of the rate of growth of each
resource of each tool on each example.

We want to measure how quickly the resource require-
ment (y;) is growing with the scale (z;) of the example.
At first, we considered fitting a curve of some kind to the
points {(z;,yi)|¢ = 1,2,3,4} and using a parameter of the
fitted curve to estimate the growth rate (e.g., we might use
a linear fit and take the slope, or fit the points to 22%+?
and use the parameter a). Unfortunately, the underlying
forms of the actual resource functions generating the data
are unknown. Furthermore, they are clearly not of a sin-
gle form; some of the data appear to be linear, while some
appear highly exponential. Rather than make unjustifi-
able assumptions about the form of the actual resource
functions, we simply estimate how much faster the func-
tion appears to be growing on the right side of the interval
[21, 24] than on the left size. Specifically, for each data set
{(zs,4:)|i = 1,2,3,4}, we calculate a growth rate for the
resource function by taking the ratio of the slope of the
line segment connecting {(x2, y2), (24, y4)} to the slope of
the line segment connecting {(z1,v1), (x3,y3)}. (We con-
sidered using the ratio of the slopes of the line segments
connecting {(z1,41), (z2,y2)} and {(x3,ys3), (z4,y4)}, but
in some data sets, consecutive resource measurements are
equal and thus the slopes of these segments is zero.) We
also determined the growth rate of the state space for
each example in a similar way (i.e., by using the points
{(zs,|Si))|i = 1,2,3,4} where S; is the set of global states
of the i size of the example). The growth rates obtained
are shown in Table TV.

This growth rate measures only the apparent curvature
of the actual resource function and factors out any fixed
overhead (e.g., the memory taken by the analyzer code)
or constant factors (e.g., the units in which the resources
are measured, the speed of the machine used to run the
tool). Consequently, we may not only compare the growth
rate of a single resource for different tools and examples,
but we may directly compare the growth rates of different
resources. On the other hand, our measure conceals the ac-
tual slope of the growth function over the interval [z, 24]
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SPIN SPIN+PO SMV INCA
Problem(size) ‘ Scale States ‘ Mem | Time H Mem | Time H Mem | Time Mem | Time
ABP 14 113 1.29 0.67 1.71 0.84 1.70 1.03 7.13 7.23
BDS 24 36097 8.67 22.03 3.74 11.41 1.97 2.60 7.14 4.40
DARTES 90 — 1.65 1.30 2.63 4.02 — — 15.41 26.46
FTP(l) 34 104911 49.07 133.32 33.67 202.15 3.93 18.39 14.29 206.44
FTP(2) 40 — — — — — 9.63 | 694.88 — —
Q 53 123597 1.31 0.87 1.82 0.98 27.92 536.50 10.13 13.09
SPEED 16 8690 1.32 0.82 1.66 0.76 1.84 2.79 6.79 4.39
TABLE II

Raw DATA FOR NON-SCALABLE EXAMPLES

(e.g., both f(z) = z and g(z) = 100z have a growth rate of
1.0). Although the growth rate is clearly more important
than such constant factors in the limit, in practice large
constant factors may have a significant impact on the scal-
ability of a technique over the range of sizes on which its
tool can be run. Thus, if the slope of a resource function
over the interval [#1, 4] is large, then this should be con-
sidered along with the function’s growth rate in estimating
the scalability of the technique on the example.

As discussed in Section V-C| we chose to measure growth
rates rather than determine the maximum sizes each tool
could handle given certain resource constraints. One con-
cern with this approach is that the behavior of the tool
on large sizes of an example may be dominated by differ-
ent factors than its behavior on the small sizes over which
we measure the growth rate. In other words, the measured
growth rate may not be an accurate characterization of the
scalability of a tool. We validate our scalability measure by
comparing the growth rates calculated here with the max-
imum sizes determined in [10] on a couple of examples.

First we consider DP, an example on which most of the
tools can be scaled to much larger sizes than those shown in
Table III. For this example, SPIN, SPIN+PO, and INCA
all exhausted the 64 MB limit imposed in [10], while SMV
exceeded the three hour time limit instead. The memory
growth rate was 5.9 for SPIN, 2.7 for SPIN+PO, 0.5 for
SMV, and 1.0 for INCA. From these rates, we would ex-
pect SPIN+PO to be able to handle significantly larger
sizes than SPIN, and INCA to be able to handle much
larger sizes. In fact, SPIN exhausted its memory at size
14, SPIN4-PO at size 22, and INCA around size 325. Note
that, while 1t would be difficult to predict the maximum
sizes without additional information, they are roughly con-
sistent with the growth rates.

We also consider the data intensive example GASNQ.

n [10], SPIN and SPIN+PO exhausted the memory limit,
while SMV and INCA exhausted the time limit. The mem-
ory growth rate is 9.1 for SPIN and 7.6 for SPIN4+PO. From
these rates, we might expect SPIN+PO to be able to scale
a bit farther than SPIN. In fact, both tools exhausted their
memory at size 6. Since the memory growth rate is high,
each additional customer adds a great deal of memory, and
SPIN+PO could not take the extra step without exceeding
the limit. The memory growth rates for SMV and INCA
are 1.5 and 1.8, respectively. As expected, memory is not a
problem for these tools on this example. The time growth

rate is 4.0 for SMV and 2.9 for INCA. From these rates,
we might expect INCA to be able to scale a bit farther
than SMV. In fact, both tools exhausted the time limit
at size 10. Examining the raw data reveals that the time
function for INCA has a much larger slope than the time
function for SMV, so again, the maximum sizes seem to
be consistent with the growth rates. We therefore believe
that our growth rates provide a useful characterization of
the behavior of the tools on larger sizes of the examples,
and thus that they are a reasonable measure of scalability.

F. Results

We now discuss the implications of our growth rates for
the scalability of the techniques on different kinds of pro-
grams. For convenience in our discussion below, we will
refer to rates below 2.0 as low, and rates above 5.0 as high,
and intermediate rates as moderate. We chose these bound-
aries such that rates near 1.0 (linear functions) would be
low, and such that most of the state growth rates would
be high, although we admit that this classification is some-
what arbitrary. A picture of the overall results is given in
Fig. 9, which plots the growth rates from Table IV for each
tool.

We were able to correlate the performance of the dif-
ferent tools to various features of the example programs,
principally:

Commainication structure. We may view the communica-
tion structure of a program as a graph in which each
task is represented by a node, and a (possible) ren-
dezvous between two tasks is represented by an edge
between the corresponding nodes. Our examples ex-
hibited several different communication structures. In
a linear communication structure, the tasks can be
arranged 1n a line or ring such that each task commu-
nicates primarily with its neighbors. In a single star
comminication structure, most communication is be-
tween one particular task and the other tasks. A cou-
ple of our examples exhibited a combination of these
two patterns (i.e., a line or ring of tasks communicat-
ing with their neighbors and one central task). Finally,
in a multiple star communication structure, several
tasks communicate with many other tasks.

Task size/structure. As discussed in Section IV-E, date
intensive tasks require that the values of certain task
variables be encoded into the state of the task’s FSA
for accurate modeling of the task’s synchronization be-
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SPIN SPIN+PO SMV INCA
Problem(size) ‘ Scale States Mem | Time H Mem | Time H Mem | Time ‘ Mem | Time
CYCLIC(S) 10 43 1.27 0.60 1.66 0.67 1.70 0.80 6.23 3.16
CYCLIC(6) 21 639 1.37 0.81 1.69 0.71 1.84 1.00 6.96 6.18
CYCLIC(9) 32 7423 2.96 3.81 1.73 0.81 1.90 1.79 7.70 28.36
CYCLIC(lZ) 43 74264 23.01 51.29 1.77 0.93 1.90 2.53 8.44 66.02
DAC(6) 18 222 1.29 0.82 1.67 0.68 1.70 0.72 6.51 3.92
DAC(9) 26 1790 1.54 1.10 1.70 0.71 1.84 0.93 7.02 4.95
DAC(lZ) 34 14334 4.07 5.97 1.74 0.76 1.84 1.35 7.52 5.99
DAC(lS) 43 114686 28.92 61.35 1.79 0.85 1.90 1.86 8.02 7.64
DP(G) 18 729 3.13 1.06 1.70 0.89 1.77 1.10 6.73 3.79
DP(S) 24 6555 3.39 2.12 1.75 1.05 1.84 1.92 7.14 4.32
DP(lO) 30 48897 6.03 9.06 1.88 1.73 1.90 3.13 7.55 5.01
DP(lZ) 36 — 20.50 41.20 2.24 3.56 1.90 8.78 7.96 5.74
DPD(4) 15 601 1.36 0.81 1.74 0.89 1.70 0.88 6.67 4.14
DPD(S) 19 3489 1.92 1.91 1.97 1.74 1.84 1.33 6.96 4.85
DPD(6) 23 19861 5.80 12.01 2.81 5.02 1.84 1.66 7.24 6.46
DPD(7) 27 109965 29.43 94.39 6.02 18.28 1.90 3.11 7.53 7.60
DPFM(4) 7 9 1.27 0.62 1.65 0.67 1.70 0.69 6.18 3.00
DPFM(6) 10 20 1.27 0.63 1.68 0.67 1.70 0.86 77 6.20
DPFM(S) 14 49 1.31 0.65 1.80 0.78 1.97 2.10 11.10 45.21
DPFM(lO) 18 125 1.46 0.74 2.25 1.13 2.69 9.18 27.45 156.90
DPH(4) 17 513 1.36 0.64 1.83 1.39 1.70 0.93 6.95 4.59
DPH(S) 21 3113 1.94 1.80 2.73 6.36 1.84 1.55 7.42 5.56
DPH(6) 25 16897 5.61 8.74 8.95 43.79 1.90 2.60 7.92 6.66
DPH(7) 28 79927 24.67 50.93 50.22 359.95 1.97 8.37 8.47 8.09
ELEVATOR(l) 15 158 1.30 0.68 1.71 0.73 1.84 1.16 7.59 8.61
ELEVATOR(Z) 20 1062 1.51 0.78 1.98 1.35 1.97 2.79 10.60 47.10
ELEVATOR(S) 26 7121 3.18 2.42 3.90 7.64 2.42 12.16 17.78 289.02
ELEVATOR(4) 31 43440 15.18 15.90 19.28 66.46 3.60 60.64 35.48 1265.02
FURNACE(l) 13 344 1.31 0.67 1.72 0.94 1.70 0.84 6.46 3.43
FURNACE(Z) 18 3778 1.92 2.42 2.40 4.34 1.84 1.29 6.93 4.27
FURNACE(S) 23 30861 8.30 29.65 8.48 43.28 1.90 2.68 7.49 5.40
FURNACE(4) 27 214757 59.93 302.94 53.42 446.60 2.03 12.03 8.10 7.03
GASNQ(Z) 18 193 1.31 0.66 1.74 0.92 1.84 1.29 7.70 14.20
GASNQ(S) 23 1770 1.72 1.09 2.15 1.71 2.16 4.04 10.55 76.99
GASNQ(4) 28 14847 6.01 5.74 5.14 9.88 2.82 16.47 16.03 259.01
GASNQ(S) 33 115184 44.26 63.40 28.05 76.76 3.67 65.33 25.47 779.06
GASQ(l) 11 19 1.27 0.58 1.66 0.64 1.70 0.82 6.36 3.67
GASQ(Z) 17 181 1.30 0.64 1.73 0.81 1.97 1.40 8.38 20.12
GASQ(S) 23 17056 1.68 1.15 2.10 1.39 2.36 7.60 21.55 320.46
GASQ(4) 29 15431 5.53 4.77 4.98 7.36 4.98 246.60 32.41 21580.88
HARTSTONE(25) 45 53 1.30 0.64 1.94 0.74 1.90 2.03 9.31 11.56
HARTSTONE(SO) 86 103 1.39 0.67 2.24 0.91 2.49 10.00 13.57 31.17
HARTSTONE(75) 126 153 1.54 0.72 2.58 1.14 3.60 31.72 18.29 56.20
HARTSTONE(lOO) 166 203 1.76 0.79 2.96 1.47 5.05 77.34 23.84 89.52
KEY(Z) 23 537 1.31 0.83 1.74 0.90 2.69 5.85 8.07 7.95
KEY(S) 29 4924 1.39 1.04 1.78 0.98 4.33 18.93 9.07 10.81
KEY(4) 34 44820 1.43 1.11 1.83 1.06 7.73 68.27 10.07 14.04
KEY(S) 39 — 1.49 1.19 1.87 1.15 12.91 221.55 11.09 17.47
MMGT(l) 13 73 1.28 0.63 1.67 0.65 1.70 0.88 6.98 4.94
MMGT(Z) 18 817 1.37 0.76 1.77 1.05 1.90 1.55 8.09 7.64
MMGT(S) 23 7703 2.38 3.14 2.54 4.13 1.97 2.77 9.23 10.28
MMGT(4) 29 66309 12.62 62.15 9.61 41.88 2.03 8.28 10.40 13.24
OVER(Z) 13 65 1.28 0.54 1.68 0.70 1.70 0.84 6.60 4.15
OVER(S) 20 519 1.38 0.73 1.73 0.81 1.84 1.37 7.29 7.46
OVER(4) 26 4175 2.35 2.12 1.89 1.30 1.84 3.19 8.02 13.30
OVER(S) 32 33460 12.71 19.11 2.67 4.51 2.16 14.24 8.81 23.84
RING(S) 15 87 1.28 0.68 1.68 0.74 1.70 0.77 6.86 4.93
RING(S) 25 1290 1.51 1.00 1.75 0.84 1.84 1.29 8.29 18.80
RING(7) 34 17000 5.63 8.09 2.04 1.68 1.90 2.91 10.40 99.39
RING(9) 44 211528 67.93 147.49 3.19 5.46 1.97 8.79 13.39 634.77
RW(G) 15 72 1.29 0.78 1.74 0.96 1.70 0.95 7.41 4.81
RW(9) 22 523 1.43 1.38 2.13 3.20 1.97 1.30 8.92 7.66
RW(lZ) 28 4110 2.84 9.02 5.96 32.66 2.03 2.25 10.85 11.29
RW(lS) 34 29642 14.82 79.10 44.66 413.99 2.10 3.05 13.22 16.02
SENTEST(ZS) 39 232 1.35 0.69 1.87 0.77 1.90 1.97 9.35 11.69
SENTEST(SO) 64 282 1.46 0.76 2.02 0.87 2.36 6.90 11.42 15.90
SENTEST(75) 90 332 1.57 0.83 2.19 1.01 2.88 21.60 13.82 21.57
SENTEST(lOO) 115 382 1.70 0.93 2.37 1.15 4.06 46.20 16.67 28.40
TABLE IIT

Raw DATA FOR SCALABLE EXAMPLES
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SPIN SPIN+PO SMV INCA
Problem ‘ States ‘ Mem | Time ‘ Mem | Time Mem | Time Mem | Time
CYCLIC 10.0 12.8 15.7 1.1 1.6 0.3 1.5 1.0 2.4
DAC 7.5 9.3 11.0 1.2 1.6 0.4 1.4 0.9 1.2
DP 7.3 5.9 4.9 2.7 3.0 0.5 3.4 1.0 1.2
DPD 5.5 6.2 83 3.8 4.0 0.4 2.3 1.0 1.2
DPFM 2.3 4.2 3.2 3.3 3.7 3.2 5.2 3.6 3.1
DPH 5.4 6.1 6.9 7.6 9.5 0.7 4.7 1.2 1.4
ELEVATOR 6.1 7.3 8.7 7.9 9.4 2.8 5.3 2.4 4.3
FURNACE o 9.2 11.5 8.4 11.6 1.1 6.5 1.3 1.6
GASNQ o 9.1 12.3 7.6 8.4 1.5 4.0 1.8 2.9
GASQ 9.0 10.3 7.2 7.4 8.7 4.6 36.2 1.6 68.1
HARTSTONE 1.0 1.6 1.5 1.1 1.4 1.5 2.3 1.2 1.3
KEY 10.9 0.9 0.6 1.1 1.2 1.9 3.6 1.1 1.2
MMGT 7.8 9.3 22.2 8.2 10.7 0.4 3.2 0.9 1.0
OVER 8.7 11.5 12.6 4.8 6.7 2.5 5.9 1.2 1.9
RING 12.4 15.3 19.8 4.0 4.9 0.7 3.5 1.4 6.5
RW 7.8 9.4 10.2 10.9 14.0 0.4 1.5 1.4 1.4
SENTEST 1.0 1.1 1.2 1.1 1.2 1.7 2.0 1.2 1.3
TABLE IV
TIME AND MEMORY GROWTH RATES FOR SCALABLE EXAMPLES
1 2 4 8 16 2292
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Fig. 9. Plot of Time Growth Rates (logarithmic scale)
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havior. Such tasks usually produce FSAs with many
states, while tasks that are not data intensive usually
produce FSAs with few states. We classify the size of
a task as small if its FSA has fewer than 10 states,
medium if 1ts FSA has between 10 and 99 states, and
large if its FSA has 100 or more states. Several of the
data intensive tasks in our examples exhibited a linear
structure—the states can be arranged in a line such
that all transitions are between adjacent states. Such
linear tasks result from modeling the value of a single
integer variable used as a counter.

In Table I, we characterize the communication structure
and task size/structure of each example. For the scalable
examples, the task size classification is determined by the
size of the tasks in the largest size of the example analyzed
(e.g., the fork manager task has only 3 states in DPFM(2),
but has 1025 states in DPFM(11) and is therefore classified
as large in the table).

Of the deadlock-free scalable examples, SPIN exhibited
low growth rates only for HARTSTONE and SENTEST,
examples on which the state spaces grow linearly with the
scale. Although the synchronization structure of these ex-
amples is very simple (a master task starts/stops m worker
tasks), such a structure may not be uncommon in software.
SPIN also exhibited low growth rates on KEY, an example
for which SPIN is able to find the deadlock state without
exploring a significant fraction of the state space.

SPIN+PO exhibited significantly lower memory growth
rates than SPIN for CYCLIC, DAC, DP, DPD, OVER,
and RING. The common feature of these six examples is
that their communication structure is linear. This struc-
ture creates the many commuting transitions that allows
the partial order technique used by SPIN+PO to achieve
significant reduction in the state space. Although the par-
tial order state space reduction helped in most cases (espe-
cially with the memory growth rate, which is generally the
limiting factor for the state space tools), SPIN+PO exhib-
ited somewhat higher growth rates than SPIN for DPH,
ELEVATOR, and RW. These examples contain a single
star communication structure. Unlike SPIN, SPIN+PO
creates a data structure for each possible pair of synchro-
nizing transitions, and thus performs poorly on examples
with this communication structure. This memory overhead
1s an artifact of the implementation, not of the technique
itself.

SMYV exhibited low time growth rates for CYCLIC, DAC,
and RW, and moderate time growth rates for DP, DPD,
DPH, GASNQ, HARTSTONE, KEY, MMGT, RING, and
SENTEST. Like SPIN+PO, SMV performed better on ex-
amples with linear communication patterns, although it
also performed reasonably well on examples with a sin-
gle star communication pattern. SMV performed worse on
ELEVATOR, FURNACE, GASNQ, GASQ, and DARTES,
examples whose communication patterns contained multi-
ple stars. This is not surprising since such a nonlinear
structure makes 1t difficult to find a good variable ordering
for the OBDDs. SMV also exhibited moderate/high growth

rates for programs with data intensive tasks. These pro-

grams include DPFM, which has a single star communica-
tion pattern, as well as ELEVATOR, GASNQ), and GASQ.
Although symbolic model checking has been used primar-
ily for the verification of hardware, our experience indicate
that it may also prove effective for verifying software. Note
that SMV performed better than SPIN on most of the scal-
able examples, exhibiting lower growth rates for time and
much lower growth rates for memory.

INCA performs worst on DPFM, ELEVATOR, GASNQ,
GASQ, and RING. Of these, DPFM, ELEVATOR,
GASNQ, and GASQ all contain one data intensive task
whose size grows rapidly as the example is scaled up. Un-
like the other tools, INCA is generally not sensitive to the
communication structure of the program, but rather to the
kind of tasks that comprise it. The time required to solve
the ILP problems INCA generates increases very rapidly
with the size of the task FSAs, unless they have a simple
linear structure, like those in DPH, HARTSTONE, RW,
and SENTEST. As mentioned in Section III-E, INCA uses
necessary conditions and thus its analysis can be inconclu-
sive 1f these conditions are not strong enough. We note,
however, that these conditions were strong enough for all
of the analyses in this paper.

Meaningful comparisons are more difficult for the non-
scalable examples. SMYV is clearly worse than the other
tools on Q and DARTES (large systems with simple dead-
locks), but was clearly better on FTP (a large system with
no deadlocks). This reflects a general trend in our exper-
iments: SMV tended to be slower than the other tools in
finding deadlocks. SPIN(4+PO) and INCA use techniques
that allow them to stop as soon as a deadlock state (or in-
tegral solution, in the case of INCA) is found. SMV must
construct the OBDD for the reachable states of the system
in its entirety before checking for deadlock states. We do
not draw any conclusions from these data, however, since
our sample contained too few programs with deadlocks, and
all but one of the deadlocks were trivial and would likely
have been found by random simulation. In general, it is
much more difficult to evaluate the performance of anal-
ysis tools when they are used to find errors rather than
prove their absence since the time it takes to find an error
1s very dependent on factors over which the analyst has lit-
tle control (e.g., the order in which a reachability analyzer
explores a state space). Note that SMV performed better
than SPIN in finding the obscure deadlock in the standard
dining philosophers (DP).

On each deadlock-free scalable example, SPIN exhibited
a memory growth rate similar to the growth rate of the
state space. SPIN4PO, SMV and INCA, however, each
exhibited significantly lower memory growth rates on sev-
eral examples, indicating that the techniques used by those
tools tend to require more time than memory as a prob-
lem is scaled. Since memory is usually the scarcer of the
two resources, this often allows these tools to tackle larger
problems.
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VI. ALTERNATIVE MODELS

In our experience, the most controversial aspect of our
comparison method is our choice of communicating FSAs
as the canonical model. Several people have questioned
whether the choice of this model and the use of translators
does not bias the evaluation against one or more of the tech-
niques. To address this issue, we explore alternative canon-
ical models. First, we consider using an informal model and
manually generated native specifications for each analysis
tool (thus avoiding the use of potentially biasing transla-
tors). Second, we consider using a more complex canonical
model in which data values are made explicit. Finally, we
consider a simultaneous model of concurrency. In the end,
we found that these alternative models either did not af-
fect or actually degraded the performance of the tools, thus
increasing our confidence in the validity of our results.

A. Natwve Specifications

Rather than use a formal canonical model, we might
have used an informal model of each example (e.g., a prose
description) and used this to specify the example in each
tool’s specification language directly. The SMV input lan-
guage 1s intended for describing systems much different
than the programs we analyze. As a result, we would have
had to convert the programs to some kind of state machine
just to encode them in the language. Thus we had little
choice but to use a more abstract model of the examples
to generate the input for SMV. Promela, however, can eas-
ily specify communicating processes. To determine what
effect using native Promela specification might have had
on the experiments, we selected two examples, coded them
directly in Promela, and used SPIN (a straight reachability
analyzer) to compare number of states in the native model
with the number of states in the translated model.

The first example we selected was a version of the stan-
dard dining philosophers problem in which deadlock is
avoided by having the first philosopher pick up her left
fork first while all other philosophers pick up their right
fork first. This example is representative of many of the
programs we analyzed in that no variables are modeled;
the states of the automata representing the program en-
code only the control location within each task. For this
example, the number of states in the native model was ex-
actly the same as the number of states in the translated
model—a reassuring result.

The second example we selected was the non-queuing
version of the common gas station problem (GASNQ).
This example is representative of the programs in which
the state of the task automata encode the values of task
variables as well as the control location within the task.
The story behind our selection of this example 1s interest-
ing. We sent a draft of the predecessor to this paper [10] to
Gerard Holzmann, the author of SPIN, to solicit comments
on our use of his tool. At his request, we also supplied the
generated Promela inputs. He was concerned that using
translated inputs would unduly bias the evaluation, and
gave us a version of GASNQ that he had directly coded
in Promela. While our translated Promela could be scaled

only to 5 customers, his native Promela could be scaled
up to 50 customers—a worrisome result, suggesting that
our translated Promela code was much inferior to a native
Promela specification.

Upon closer examination of his code, however, we noticed
that his version of GASNQ was not quite the same as ours.
For those familiar with the problem, the difference was that
our operator task allowed many customers to prepay and
kept a count of how many customers had prepaid at each
pump so that the pumps could be activated so long as any
waiting customers remained. This causes a state explosion
in the operator task as the number of customers is scaled
up. Holzmann, who worked directly from the translated
Promela without knowledge of the problem or reference
to our Ada-like specification, specified a system in which
the operator allows only one customer to prepay at each
pump. For this system, the size of the operator task does
not increase with the number of customers.

We pointed out this difference and wrote our own native
Promela version of GASNQ to illustrate the structure of
the program we intended to model. Being the first real
Promela specification we had ever written, it was quite
inefficient, and could be scaled only to 4 customers, one
size smaller than our translated model. Holzmann then
used our specification as a guide and modified his own ver-
sion to allow multiple customers to prepay. This version
could be scaled to 7 customers, two sizes larger than the
translated Promela. When we examined this new version,
however, we noticed that it too was not quite our GASNQ.
Promela allows multiple processes to read from the same
channel, while Ada allows only one task to accept an en-
try call. Holzmann’s Promela used the same channel to
represent several Ada entries, and achieved some reduction
in the state space as a result. In this example, at most
one task would call such an entry at any given time, thus
the behaviors generated were the same. Without knowing
that multiple entries sharing a channel would not be called
simultaneously (something that would have to be verified
independently), this reduction cannot be applied since it
would not correctly model the synchronization behavior of
the Ada tasks; in general, each entry must be modeled with
its own channel. When we modified Holzmann’s specifica-
tion to use one channel per entry, the resulting model could
be scaled to b customers, the same as the translated model,
and at this size had roughly three times as many states as
the translated model—again, a reassuring result.

This exchange gave us confidence that our Promela
translator is not introducing a significant bias into the eval-
uation. More importantly, it also convinced us that the use
of a canonical model is essential since seemingly small dif-
ferences in the specification of a problem can produce large
variations in the resulting model.

B. Eztended Model

The simple model of Section II is well suited for programs
in which little or no data must be represented. For data
intensive programs, however, that model may introduce a
bias, as discussed in Section IV-E. The hiding of variable
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SPIN SMV
Example Model States | Time | Trans | Time
DPH(5) FSA 3113 1.80 448 1.55
EFSA 3114 2.17 1403 2.95
GASNQ(2) FSA 193 0.66 1084 1.29
EFSA 5704 2.43 out of mem
TABLE V

EXPERIMENTS COMPARING EFSA AND FSA MODELS

values within a monolithic task state may hinder OBDD-
based technique on such problems. In this section, we con-
sider an alternative model in which variable values are ex-
plicitly represented in the state of the task automata. We
extend the model of Section II by adding a memory to each
FSA. A memory is an array of cells, each of which holds
an integer value from a finite subrange. Transitions may
be guarded with expressions over the memory values and
may transform the memory with assignments. This very
general model, which we call an EFSA (extended finite-
state automata), is capable of representing most uses of
data we have encountered in Ada tasking programs, includ-
ing rendezvous parameters, arrays and records (arbitrarily
nested), and reference parameters of inlined procedures.

We modified the INCA front end to build EFSAs from
Ada-like specifications. We then wrote new translators for
SPIN and SMV to generate input from this new canonical
form. Both SPIN and SMV support arrays of integers, thus
the translation was still relatively straightforward despite
the richer semantics of EFSAs. We omit the formal defi-
nition of EFSAs and the details of these translators since
both are extensive and are not used in the evaluation de-
scribed 1n Section V. Note that by encoding the memory
contents into the state of an automaton, INCA translates
EFSAs into FSAs for use by the inequality necessary con-
dition technique, which is thus not affected by the different
model.

We applied the new translators to two examples and
compared the performance of the tools on the inputs gener-
ated from EFSAs to their performance on the inputs gener-
ated from FSAs. The examples we used for this comparison
were the dining philosophers with host (DPH) with five
philosophers; and the non-queuing gas station (GASNQ)
with two customers. The DPH example has only one task
with data: the host task has a single variable, which is
used as a counter. The GASNQ example has several tasks
with data: the operator task has an array of two counters,
and the customer tasks each have a variable storing the
pump selected. The results of this experiment are shown
in Table V, the columns of which show: the example, the
model, the number of reachable states reported by SPIN,
the analysis time (in seconds) for SPIN, the number of
OBDD nodes in the transition relation generated by SMV,
and the analysis time for SMV. See Section V-D for de-
tails on how the analysis times were obtained in all of the
experiments reported in this paper.

Using a richer canonical model generally degraded the
performance of the tools reading the translated input. This

effect was greater for SMV, and for the more data intensive
example GASNQ. For SPIN, the EFSA model of DPH was
almost identical to the FSA model, but the EFSA model
was much worse for GASNQ. Most of the extra states in the
EFSA model result from the inability to express a certain
kind of atomicity in Promela. In the FSA model, the mem-
ory updates for both processes involved in a rendezvous
are performed atomically with the rendezvous (since the
memory is encoded in the state). The EFSA translator
employed the atomic sequence construct of Promela to sim-
ulate this, but the semantics are not quite the same. The
problem is that it is not possible to make the memory up-
dates in two processes part of the same atomic action, thus
the EFSA model generated by SPIN must have additional
states. The performance of SPIN+PO was similarly de-
graded using the EFSA model.

For SMV, the EFSA models for both examples required
much larger OBDDs to represent the transition relation.
We believe any benefit of representing the variable values
explicitly was overwhelmed by the significant increase in
the number of state variables required to store the task
memories. In the case of GASNQ), we believe that array in-
dexing caused the explosion in OBDD size that exhausted
the memory. The Ada version of this example 1s most nat-
urally coded by using an entry accepting the pump num-
ber as a parameter, which is then used as an index into
an array storing the number of customers waiting for each
pump. For comparison, we coded the example without the
array using a separate entry for each pump and using two
integer variables to hold the number of waiting customers.
SMYV was able to analyze the translated input generated
from these EFSAs in just about twice the time it took to
analyze the input generated from the FSAs—a slowdown
comparable to that obtained for DPH.

After some experience with the EFSA translators, we
were disappointed to find that they produced uniformly
worse performance than the FSA translators. We believe
it is possible that an improved EFSA translator might pro-
duce comparable or better performance for SMV. Hu et al
[27] have explored the verification of higher-level specifica-
tions with OBDDs and use techniques that we have not
attempted, such as interleaving the bits of memory cells
that are functionally related and partitioning the transi-
tion relation. We have decided not to pursue this matter
further at this time for several reasons. First, most of the
Ada tasking programs we have collected are not data inten-
sive, so this issue is not critical to our evaluation. Second,
even for data intensive examples, 1t is not clear that repre-
senting a task’s state symbolically with OBDDs, as is done
in the EFSA model, will produce better performance than
explicitly enumerating the task’s states, as in done in the
FSA model. Hu and Dill [26] report that state enumera-
tion 1s more efficient than their OBDD-based techniques on
most of the real-life protocols they have tried. Finally, we
have tried to avoid the use of special purpose techniques
for specific kinds of problems in favor of techniques that
are generally applicable. Fully automatic tools will have to
sacrifice some efficiency for generality and ease of use.
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C. Simultaneous Model

Another potential bias against the OBDD-based tech-
nique is the use of an interleaving model of concurrency
rather than a simultaneous one. In an interleaving model,
events are totally ordered, thus exactly one event occurs at
each step. In a simultaneous model, many events may oc-
cur simultaneously. OBDD-based techniques tend to per-
form better on simultaneous models [32], especially when
the number of asynchronous processes is large. In this sec-
tion, we convert the model of Section II into a simulta-
neous model, describe a translation scheme for this model
into the SMV language, and compare the performance of
SMYV on this simultaneous model to its performance on the
interleaving model.

We begin by redefining the composition of a set of FSAs
My, ..., M, to be an FSA M = (5,3, A, sq, F') where:

e S=51x...x S,

e u=2U=

. ((81,...,8n),A,(8/1,...

(AN =0As; =) \/(ANT: = {a} As; 5 s))

yshN eAIffYi=1,.. .

e Sp = (8071, ceey 50,n)

o« '=1 x...xF,
In this model, each M; can take at most one transition per
step, but many M; may take transitions simultaneously.

To translate this model into the SMV language, we use
a different approach than the one described in Section IV-
G. There, the transition relation of M was given as a
disjunction of the transitions of the M;. Here, we give the
transition relation of M as a conjunction of formulae, each
of which represents the legal behavior of one M;. Given an
action A of M, each M; either participates in this action
(AN X; # 0) or does nothing (A NY; = @). Thus, for
each M;, we declare a state variable o; of enumerated type
Y; U{skip} that stores the action M; took on the previous
step. These variables are necessary to insure that each M;
synchronizes with at most one other M; on each step. We
also declare a state variable z; of enumerated type S; for
each M; as before.

The INIT function is A,(x; = s;0) as before. The TRANS
function is constructed as follows. If § is an internal action
transition s—s’ in M;, then let TRAN S5 be

next(o;) = a Ax; = s Anext(z;) = s

If § is a communication action transition s—s' in M; syn-
chronizing with M; on action a, then let TRANSs be

next(o;) = aAz; = s Anext(z;) = s’ Anext(o;) = a

Finally, let IDLFE; be the function next(o;) = skipAx; =
next(z;). The TRANS function is then given by

/\ (IDLEZ»V \/ TRAN&;)

i=1,...,n SEA;

We ran several sizes of the standard dining philosophers
problem using the interleaving and simultaneous models.

[ Example | Model [ Trans | Time |
DP(5) Interleaving 204 0.84
Simultaneous 591 1.64
DP(10) Interleaving 439 3.13
Simultaneous 1311 18.71
DP(15) Interleaving 674 26.93
Simultaneous 2031 362.97
TABLE VI

EXPERIMENTS WITH SIMULTANEOUS MODEL

These results are shown in Table VI, the columns of which
show: the example (and size), the model, the number of
OBDD nodes in the transition relation generated by SMV,
and the analysis time for SMV. The dining philosophers
systems have a ring structure on which the simultaneous
model should perform well. Unfortunately, the addition of
the action state variables, which are unnecessary for the in-
terleaving model, makes the performance worse. We note
that our original translation scheme for the interleaving
model included action state variables and caused similar
performance problems for SMV. We conclude that an in-
terleaving model, like the one in Section II, is better than a
simultaneous model for representing Ada tasking programs.

VII. CONCLUSION

We have explored the methodological issues involved in
empirically evaluating deadlock detection techniques for
Ada tasking programs. Among these issues are the se-
lection of examples and implementations, the specification
of the examples, and the analysis of the resulting behavior
of the implementations. We chose to represent each pro-
gram in a canonical model and apply tools implementing
the techniques to inputs generated automatically from this
canonical representation. In our analysis, we calculated a
numerical measure for the rate of growth of the time and
memory required by the tools to complete the analysis as
the example is scaled up. We believe these issues are of
general significance in the empirical comparison of analysis
techniques.

We have conducted an empirical evaluation of three tech-
niques for deadlock detection in Ada tasking programs: a
partial order state space reduction, symbolic model check-
ing, and inequality necessary conditions. No technique was
clearly superior to the others, but rather each excelled
on certain kinds of programs. The state space reduction
and symbolic model checking techniques performed best
on programs with a linear communication structure. For
programs with a single star communication structure, sym-
bolic model checking generally performed better than the
state space reduction technique. Inequality necessary con-
ditions performed well on programs with small or linear
tasks, regardless of the communication structure.

While our evaluation gives some indication of the kinds
of programs to which the evaluated techniques might best
be applied, it is only the beginning. Considerable effort on
the part of many researchers will be required to fully char-
acterize the range of applicability of each technique. Such
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work will require a large collection of example programs,
a common model, and an agreed upon method for evalua-
tion. This paper takes an important first step towards such
a rigorous evaluation of concurrency analysis techniques.
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