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ANALYSIS OF INEXACT TRUST–REGION INTERIOR–POINT SQP
ALGORITHMS
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Abstract. In this paper we analyze inexact trust–region interior–point (TRIP) sequential quadra–

tic programming (SQP) algorithms for the solution of optimization problems with nonlinear equality constraints
and simple bound constraints on some of the variables. Such problems arise in many engineering applications,
in particular in optimal control problems with bounds on thecontrol. The nonlinear constraints often come from
the discretization of partial differential equations. In such cases the calculation of derivative information and the
solution of linearized equations is expensive. Often, the solution of linear systems and derivatives are computed
inexactly yielding nonzero residuals.

This paper analyzes the effect of the inexactness onto the convergence of TRIP SQP and gives practical rules
to control the size of the residuals of these inexact calculations. It is shown that if the size of the residuals is of the
order of both the size of the constraints and the trust–region radius, then the TRIP SQP algorithms are globally
convergent to a stationary point. Numerical experiments with two optimal control problems governed by nonlinear
partial differential equations are reported.

Keywords. nonlinear programming, trust–region methods, interior–point algorithms, Coleman and Li affine
scaling, simple bounds, inexact linear systems solvers, Krylov subspace methods, optimal control
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1. Introduction. In this paper we study a class of optimization algorithms that allow the
use of inexact information for the solution of minimizationproblems with nonlinear equality
constraints and simple bound constraints on some of the variables. More precisely, the prob-
lems we are interested in are of the form

minimize f(y; u)
subject to C(y; u) = 0;(1.1) u 2 B = fu : a � u � bg;

wherey 2 IRm, u 2 IRn�m, a 2 (IR [ f�1g)n�m, b 2 (IR [ f+1g)n�m, f : IRn �! IR,C : IRn �! IRm, m < n, andf andC are assumed to be at least twice continuously differ-
entiable functions. Applications include optimal controlproblems, parameter identification
problems and inverse problems, and design optimization.

The algorithms investigated in this paper are extensions ofthe trust–region interior–point
(TRIP) sequential quadratic programming (SQP) algorithmsintroduced and analyzed in [14].
The TRIP SQP algorithms are SQP methods that use trust regions as a strategy for globaliza-
tion and for regularization of the subproblems and that apply an affine scaling interior–point
approach to deal with the bounds on the variablesu. However, the analysis in this paper will
also be relevant for other SQP algorithms.

The minimization problem (1.1) often arises from the discretization of optimal control
problems. Herey are the state variables,u are the control variables, andC(y; u) = 0 is the� Department of Computational and Applied Mathematics Rice University, Houston, TX 77005–1892, USA.
E-Mail: heinken@caam.rice.edu. This author was supported by the NSF under Grant DMS–9403699, by
the DoE under Grant DE–FG03–95ER25257, and by the AFOSR under Grant F49620–93–1–0280.y Departamento de Matemática, Universidade de Coimbra, 3000 Coimbra, Portugal. This work was developed
while the author was a graduate student at the Department of Computational and Applied Mathematics of Rice
University. E-Mail:lvicente@mat.uc.pt. Support of this author has been provided by INVOTAN (NATO
scholarship), CCLA (Fulbright scholarship), FLAD, and NSFcooperative agreement CCR–9120008.
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discretized state equation. TRIP SQP algorithms utilize the structure of the problems induced
by the partitioning of the variables into states and controls. Subproblems in the TRIP SQP
algorithms are solved iteratively. As a consequence, only directional derivatives are needed
in the implementation of these algorithms. However, differentiability is required to guaran-
tee convergence. In [14] it is assumed that derivative information is available exactly and
that linearized equations can be solved exactly. In many applications these assumptions are
unrealistic. Derivative information may be approximated,for example, by finite differences.
Moreover, the linearized equations are often discretizations of partial differential equations
and iterative solvers are used for their solution. The purpose of this paper is to extend the
exact TRIP SQP algorithms to allow inexact calculations in tasks involving derivatives ofC(y; u). Inexactness in derivatives of the objective functionf also can be allowed, but it is
not done here to keep the presentation simpler. Since we treat states and controls as inde-
pendent variables, and since the objective functions are often rather simple, e.g. least squares
functionals, this does not present a severe restriction. One goal for our analysis is to derive
measures of inexactness and controls of inexactness that are simple to implement.

To explain how we deal with inexactness and to present the main results of this paper, we
need to introduce some of the structure of problem (1.1) (seealso references [24], [28], [29],
[30]). For convenience we write x =  yu ! :
Due to the partitioning of the variablex into y andu, the Jacobian matrix ofC(x) can be
written as J(x) = � Cy(x) Cu(x) � ;
whereCy(x) 2 IRm�m andCu(x) 2 IRm�(n�m).

In the exact TRIP SQP algorithms, we have to compute quantities of the formCu(x)du
andCTu (x)dy, and we have to solve linear systems of the formCy(xk)s = �bk and Cy(xk)T s = b̂k:(1.2)

Since these systems are solved inexactly, what is computed are �sk andŝk such thatCy(xk)�sk = �bk + �ek and Cy(xk)T ŝk = b̂k + êk;
where�ek and êk are residual vectors. In many iterative methods, like for instance Krylov
subspace methods, the normsk�ekk andkêkk can be computed efficiently with few extra oper-
ations. Such residuals are used to measure inexactness.

We give conditions on the amount of inexactness allowed in the inexact TRIP SQP al-
gorithms that guarantee global convergence to a point satisfying the first–order necessary
optimality conditions. In the case of the linear solvers, these conditions are the following:k�ekk = O�minf�k; kC(xk)kg� and kêkk = O�kC(xk)k�;(1.3)

where�k is the trust–region radius andkC(xk)k is the norm of the residual of the constraints.
Thus as the iterates approach feasibility the accuracy withwhich the linear systems are solved
has to increase. Moreover, the accuracy of the linear systemsolves has to increase if the region
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where the quadratic model is trusted becomes small. This also is reasonable since the trust
region should not be reduced unnecessarily. Similar results are derived for the inexactness
that arises in the computation of directional derivatives of C(x). The details are presented in
this paper.

The convergence results presented in this paper rely on the theory given in [13], [14]. A
comprehensive convergence theory is presented in [49].

We have applied the inexact TRIP SQP algorithms to the solution of two optimal control
problems, a boundary control problem for a nonlinear heat equation and a distributed control
problem for a semi–linear elliptic equation. Preconditioned Krylov subspace methods were
used to solve the linearized state and adjoint equations (1.2). The numerical results reported
in Section 9 confirm our analysis.

It should be pointed out that by inexactness we mean inexact derivative information and
inexact solution of linear systems. Trust–region methods allow another level of inexactness
that is also treated here and in most other papers on trust–region methods: in trust–region
methods the quadratic programming subproblems do not have to be solved exactly. It is suffi-
cient to compute steps that predict the so–called fraction of Cauchy decrease condition. This
allows the application of a variety of methods for the approximate solution of subproblems.

In the context of systems of nonlinear equations, inexact ortruncated Newton methods
have been proposed and analyzed by many authors. Some of the pioneer work in this area
can be found in [10], [47]. More recent references are [3], [4], [16], [17], [18], [27]. Most
of the recent papers investigate the use of Krylov subspace methods for the solution of linear
systems, like GMRES [44], in inexact Newton methods. These Krylov subspace methods
are attractive because they monitor the residual norm of thelinear system in an efficient way
and only require Jacobian times a vector, not the Jacobian inexplicit form. The results for
the solution of systems of nonlinear equations have been extended to analyze inexact Newton
methods for the solution of unconstrained minimization problems, e.g. [11], [37], [39]. In a
recent paper [52], the impact of inexactness in reduced gradient methods for design optimiza-
tion has been analyzed.

In nonlinear programming, inexactness has been studied by [2], [9], [12], [20], [32],
[38], [50] among others. The papers [12], [20], [32], [38] investigating SQP methods mostly
study the influence of inexactness on the local convergence rate. In [38] conditions on the
inexactness are given that guarantee descent in the merit function. In the papers mentioned
previously, the inexactness is often measured using the residual of the linearized system of
nonlinear equations arising from the first–order necessaryoptimality conditions, or some vari-
ation thereof. If globalizations are included in the investigations, then line–search strategies
are used. To our knowledge, inexactness for SQP methods withtrust–region globalizations
has not been studied in the literature. Due to the computation of the step in two stages, the
computation of the quasi–normal component and of the tangential component, the analysis
of inexactness in SQP methods with trust–region globalizations requires techniques different
from those that can be used for line search globalizations. Other papers which investigate
SQP methods for large scale problems, but without treatmentof inexact linear systems solves
and inexact derivative information include [1], [31], [36].

This paper is organized as follows. In Section 2, we state thefirst–order necessary opti-
mality conditions of problem (1.1). A review of the featuresof the exact TRIP SQP algorithms
necessary for the inexact analysis is given in Section 3. Theinexact TRIP SQP algorithms are
presented in Section 4. Here we also list the assumptions under which convergence can be
guaranteed. In Section 5, we prove global convergence. The remaining of the paper deals with
practical issues concerning the step and multipliers calculations. Each step is decomposed in
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two components: a quasi–normal component and a tangential component. In Section 6, we
present several techniques to compute quasi–normal components and show how they fit into
the theoretical framework given in Section 4. In Section 7, we discuss conjugate–gradient
methods to compute the tangential component and analyze theinfluence of the inexactness.
The inexact calculation of the multipliers is discussed in Section 8. In Section 9, we present
our numerical experiments. Section 10 reports on our conclusions and directions of future
work.

We use subscripted indices to represent the evaluation of a function at a particular point
of the sequencesfxkg andf�kg. For instance,fk representsf(xk). The vector and matrix
norms used are thè2 norms, andIl represents the identity matrix of orderl. Also (z)y
and (z)u represent the subvectors ofz 2 IRn corresponding to they andu components,
respectively.

2. First–order necessary optimality conditions. We say thats =  sysu !
satisfies the linearized state equations atx if J(x)s = �C(x) or equivalently ifCy(x)sy + Cu(x)su = �C(x):

From the previous equation we can see that the columns ofW (x) =  �Cy(x)�1Cu(x)In�m !
(2.1)

form a basis of the null space ofJ(x).
The structure of the Jacobian and the definition of its null space using the matrixW (x)

is important for the formulation of the first–order necessary optimality conditions. In the
following, we give a brief derivation of the form of the theseconditions used in this paper.
Further details can be found in [14]. For box constrained problems see also [8], [15].

We introduce the Lagrangian function`(x; �) = f(x) + �TC(x)
and we note that, due to the form of the bound constraints, theinvertibility of Cy(x) implies
the linear independence of the active constraints. Ifx� is a local solution of problem (1.1),
then it satisfies the first–order Karush–Kuhn–Tucker (KKT) conditions:C(x�) = 0; a � u� � b;�� = �Cy(x�)�Tryf(x�);ai < (u�)i < bi =) (ru`(x�; ��))i = 0;(u�)i = ai =) (ru`(x�; ��))i � 0;(u�)i = bi =) (ru`(x�; ��))i � 0:
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It is not difficult to show thatru`(x�; ��) = W (x�)Trf(x�). Thus, if we define the
diagonal matrixD(x) with diagonal elements given by(D(x))ii = 8>>>>>>>><>>>>>>>>:

(b� u) 12i if
�W (x)Trf(x)�i < 0 andbi < +1;1 if
�W (x)Trf(x)�i < 0 andbi = +1;(u� a) 12i if
�W (x)Trf(x)�i � 0 andai > �1;1 if
�W (x)Trf(x)�i � 0 andai = �1;i = 1; : : : ; n�m, then we can write the first–order KKT conditions in the formC(x�) = 0; a � u� � b;(2.2) D(x�)W (x�)Trf(x�) = 0:(2.3)

3. Exact TRIP SQP algorithms. The algorithms described in this section have been
proposed and analyzed in [14]. They use exact first–order derivative information and require
that the linear systems are solved exactly. The purpose of this section is to provide the frame-
work for this class of algorithms. The TRIP SQP algorithms are iterative algorithms. At a
given iteration, an approximationxk to the solution is given, and a stepsk =  (sk)y(sk)u ! ;
of the formsk = snk + stk is computed. The componentssnk andstk of the step are called the
quasi–normal component and the tangential component, respectively. If the step is accepted,
the process continues by settingxk+1, the new iterate, toxk + sk. Otherwise the step has to
be recomputed and tested again for acceptance.

The role of the quasi–normal componentsnk is to move towards feasibility of the equality
constraints. This component is of the formsnk =  (snk)y0 ! ;(3.1)

and it is computed as an approximate solution of the trust–region subproblem

minimize
12kJksn + Ckk2 = 12kCy(xk)sny + Ckk2

subject to ksnyk � �k;
where�k is the trust radius. This quasi–normal component must satisfyksnkk � �1kCkk(3.2)

and kCkk2 � kCy(xk)(snk)y + Ckk2 � �2kCkkminf�3kCkk; �kg;(3.3)

where�1, �2, and�3 are positive constants independent ofk. In Section 6, we describe several
practical ways to compute the quasi–normal component that satisfy conditions (3.1)–(3.3).
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The tangential component minimizes a quadratic model of theLagrangian function in the
null space of the linearized constraints and subject to a trust–region constraint. The tangential
component is of the formstk = Wk (sk)u, whereWk = W (xk) is the representation of the
null space ofJk defined in (2.1). The component(sk)u must satisfy the bound constraints�k(a� uk) � (sk)u � �k(b� uk);(3.4)

where�k 2 [�; 1) � (0; 1). This ensures thatuk+(sk)u remains strictly feasible with respect
to the bound constraintsa � u � b.

For further description on how(sk)u is computed, consider the quadratic model:	k(su) = qk(snk +Wksu) + 12sTu �Ek �D�2k � su= qk(snk) + (W Tk rqk(snk))T su + 12sTu �W Tk HkWk +Ek �D�2k � su;(3.5)

whereqk(s) is the quadratic approximation of the Lagrangian function`(xk + s; �k) given
by: qk(s) = `k +rx`(xk; �k)T s+ 12sTHks;
andW Tk rqk(snk) = W Tk (Hksnk+rfk). The matrixHk denotes an approximation tor2xx`(xk; �k),
and �Dk andEk are diagonal matrices whosei–th diagonal element is given by( �Dk)ii = 8>>>>>>>><>>>>>>>>:

(b� uk) 12i if
�W Tk rqk(snk)�i < 0 andbi < +1;1 if
�W Tk rqk(snk)�i < 0 andbi = +1;(uk � a) 12i if
�W Tk rqk(snk)�i � 0 andai > �1;1 if
�W Tk rqk(snk)�i � 0 andai = �1;(3.6)

and (Ek)ii = 8<: ����W Tk rfk�i��� if
�W Tk rfk�i 6= 0;0 otherwise,

respectively. The role of these matrices in the quadratic (3.5) is related to the application
of Newton’s method to the system of nonlinear equations arising from the first–order KKT
conditions. See [14] for more details.

Exact TRIP SQP algorithms include two approaches to compute(sk)u: a coupled ap-
proach and a decoupled approach.

The decoupled approach [14] is associated with the trust–region subproblem

minimize 	k(su)(3.7)

subject to kD�1k suk � �k:(3.8)

In this approach the tangential component(sk)u has to satisfy a fraction of Cauchy de-
crease condition associated with the trust–region subproblem (3.7)–(3.8). This condition
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requires(sk)u to give as much decrease on the quadratic (3.5) as the decrease given by� �D2kW Tk rqk(snk). It can be proved (see [14, Lemma 6.2]) that such a condition impliesqk(snk) � qk(snk +Wk(sk)u)� �4k �DkW Tk rqk(snk)kmin��5k �DkW Tk rqk(snk)k; �6�k�;(3.9)

where�4, �5, and�6 are positive constants independent ofk.
The use of conjugate gradients to solve trust–region subproblems in unconstrained mini-

mization has been suggested in [46], [48]. An adaptation of these algorithms to compute the
tangential component that takes into account the problem structure and the bound constraints
is presented in [14] and is given by:

ALGORITHM 3.1 (EXACT COMPUTATION OFsk = snk +Wk(sk)u USING THE DECOU-
PLED APPROACH).

1 Sets0u = 0, r0 = �W Tk rqk(snk), q0 = �D2kr0, d0 = q0, and� > 0.
2 Fori = 0; 1; 2; : : : do

2.1 Compute
i = (ri)T (qi)(di)T (WTk HkWk+Ek �D�2k )(di) .
2.2 Compute� i = max�� > 0 : k �D�1k (siu + �di)k � �k;�k(a� uk) � siu + �di � �k(b� uk)�:
2.3 If 
i � 0, or if 
i > � i, then set(sk)u = siu + � idi, where� i is given as in 2.2

and go to 3; otherwise setsi+1u = siu + 
idi.
2.4 Update the residualsri+1 = ri � 
i �W Tk HkWk +Ek �D�2k � di

andqi+1 = �D2kri+1.
2.5 Check truncation criteria: if

r (ri+1)T (qi+1)(r0)T (q0) � �, set(sk)u = si+1u and go to 3.

2.6 Compute�i = (ri+1)T (qi+1)(ri)T (qi) and setdi+1 = qi+1 + �idi.
3 Computesk = snk +Wk(sk)u and stop.

Step 2 iterates entirely in the space of theu variables. After theu component(sk)u of
the step has been computed, itsy component is calculated in Step 3.

The decoupled approach allows an efficient use of an approximation bHk to the reduced
HessianW Tk HkWk. In this case only two linear systems are required, one withCy(xk)T in
Step 1 and the other withCy(xk) in Step 3, cf. (2.1). If the full HessianHk is approximated,
then the total number of linear system solves is2I(k) + 2, whereI(k) is the number of
conjugate–gradient iterations. See Table 3.1.

In the decoupled approach only theu part of the tangential component is required to be
in the trust region. The coupled approach requires the wholetangential component to be in
the trust region. The trust–region subproblem is the following:

minimize 	k(su)(3.10)

subject to






 (snk)y � Cy(xk)�1Cu(xk)su�D�1k su !




 � �k:(3.11)

The tangential component(sk)u has to satisfy a fraction of Cauchy decrease condition associ-
ated with the trust–region subproblem (3.10)–(3.11). Thiscondition requires(sk)u to give as
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much decrease on the quadratic (3.5) as the decrease given by� �D2kW Tk rqk(snk). It is shown
in [14, Lemma 6.2] that this condition also implies (3.9). Again one can use a conjugate–
gradient method to compute the tangential component.

ALGORITHM 3.2 (EXACT COMPUTATION OFsk = snk+Wk(sk)u USING THE COUPLED

APPROACH).
1 Sets0 = snk, r0 = �W Tk rqk(snk), q0 = �D2kr0, d0 = Wkq0, and� > 0.
2 Fori = 0; 1; 2; : : : do

2.1 Compute
i = (ri)T (qi)(di)THk(di)+(di)TuEk �D�2k (di)u .

2.2 Compute� i = max�� > 0 : 




 (snk)y � �Cy(xk)�1Cu(xk)(di)u� �D�1k (di)u !




 � �k;�k(a� uk) � siu + �(di)u � �k(b� uk)�:
2.3 If 
i � 0, or if 
i > � i, then stop and setsk = si + � idi, where� i is given as

in 2.2; otherwise setsi+1 = si + 
idi.
2.4 Update the residualsri+1 = ri � 
i �W Tk Hkdi +Ek �D�2k (di)u� andqi+1 = �D2kri+1.
2.5 Check truncation criteria: if

r (ri+1)T (qi+1)(r0)T (q0) � �, setsk = si+1 and stop.

2.6 Compute�i = (ri+1)T (qi+1)(ri)T (qi) and setdi+1 = Wk(qi+1 + �idi).
Note that in Step 2 both they and theu components of the step are computed. The

coupled approach is particularly suitable when an approximation to the full HessianHk is
used. However, the coupled approach can also be used with an approximation bHk to the
reduced HessianW Tk HkWk. In this case we setHk =  0 00 bHk ! :(3.12)

If Hk is given by (3.12), then the definition ofWk implies the equalitiesHkd =  0bHkdu ! ; dTHkd = dTu bHkdu; and W Tk Hkd = bHkdu;(3.13)

and this shows that the reduced Hessian approximationbHk can be used in Algorithm 3.2. The
number of linear systems needed is given in Table 3.1.

TABLE 3.1
Number of linear solvers to compute the tangential component. HereI(k) denotes the number of conjugate

gradient iterations.

Linear Decoupled Coupled

solver ReducedbHk Full Hk ReducedbHk Full HkCy(xk) 1 I(k) + 1 I(k) + 1 I(k) + 1Cy(xk)T 1 I(k) + 1 1 I(k) + 1
While Table 3.1 indicates that the decoupled approach is more efficient in terms of lin-

ear system solves, in applications with ill–conditionedCy(x) the coupled approach may be
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favorable. The reason is that in this case the decoupled approach may underestimate the size
of Wk (sk)u vastly and, as a consequence, may require more unsuccessfuliterations. See also
[14, x5.2.2].

4. Inexact TRIP SQP algorithms. In this section, we assume that the terms involvingCy(xk) andCu(xk) are computed inexactly. This includes the solution of linear systems withCy(xk) andCy(xk)T and the matrix–vector products withCu(xk) andCu(xk)T . The inexact
analysis for the quasi–normal component is presented in Section 6 and does not interfere
with the analysis developed in this section. We assume that the quasi–normal componentsnk, no matter how it is computed, satisfies conditions (3.1), (3.2), and (3.3). We show in
Section 6 that this can be accomplished by a variety of techniques to compute quasi–normal
components.

4.1. Representation of the inexactness.The computation of the tangential component
requires the calculation of matrix–vector products of the formWkdu andW Tk d. Thus we need
to compute quantities like�Cy(xk)�1Cu(xk)du and � Cu(xk)TCy(xk)�Tdy:
As we have pointed out earlier, often these computations cannot be done exactly. Therefore
we have to incorporate errors originating perhaps from finite difference approximations ofCu(xk)du or from the iterative solution of the systemsCy(xk)dy = �Cu(xk)du.

In practice, the computation of they componentzy of z = Wkdu is done as follows:

Compute vy = �Cu(xk)du + eu:
Solve Cy(xk)zy = vy + ey:(4.1)

Theu component ofWkdu is equal todu. In (4.1),eu andey are the error terms accounting
for the inexactness in the computation ofCu(xk)du and the inexactness in the solution of the
linear systemCy(xk)zy = vy. Since theu component ofWk is the identity, we only have an
error in they componentzy of Wkdu computed via (4.1). It holds thatzy = �Cy(xk)�1Cu(xk)du + Cy(xk)�1 (eu + ey) :(4.2)

Of course, the errorseu andey depend in general ondu.
Similarly, for givend the matrix–vector productz = W Tk d is computed successively by

the following procedure:

Solve Cy(xk)T vy = �dy + ey:
Compute vu = Cu(xk)T vy + eu:
Compute z = vu + du:(4.3)

Again,eu andey are error terms accounting for the inexactness in the computation ofCu(xk)T vy
and the inexactness in the solution of the linear systemCy(xk)T vy = �dy. For simplicity we
use the same notation, but the error terms in (4.3) are different from those in (4.1). The errorseu andey depend in general ondy. The computed result can be related to the exact result via
the equationz = �Cu(xk)TCy(xk)�T dy + du + Cu(xk)TCy(xk)�T ey + eu:(4.4)
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These two sources of inexactness influence the computation of the following important
quantities: W Tk rqk(snk) = �Cu(xk)TCy(xk)�Tryqk(snk) +ruqk(snk);(4.5)

and sk = snk +Wk(sk)u = snk +  �Cy(xk)�1Cu(xk)(sk)u(sk)u ! :(4.6)

As we have seen in Section 3, these two calculations are the only ones that appear in the
decoupled approach involving derivatives ofC(y; u) if an approximationbHk to the reduced
HessianW Tk HkWk is used. This is not the case in all the other situations (see Table 3.1). If
an approximationHk to the full Hessian is used, then we have to account for the inexactness
in the calculation ofW Tk HkWk. Thus, there is no guarantee of monotonicity in the quadratic	k(su) in the conjugate–gradient method, and therefore there is noguarantee that a fraction of
Cauchy decrease condition of the form (3.9) would be satisfied. This raises some interesting
problems related to the computation of the tangential component that are addressed in Section
7. There we also show that, instead of (4.5) and (4.6), the inexact operations with derivatives
of C(y; u) lead to quantities in the formP Tk rqk(snk) = �Akryqk(snk) +ruqk(snk);(4.7)

and sk = snk +Qk(sk)u = snk +  �Bk(sk)u(sk)u ! ;(4.8)

whereAk andBk are linear operators representing the inexactness,Pk =  �ATkIn�m ! ; and Qk =  �BkIn�m ! :(4.9)

A detailed derivation and analysis of the linear operatorsAk andBk is given in Section 7
together with an extension of Algorithms 3.1 and 3.2 for the computation of the tangential
component.

As a consequence of assuming this inexactness, we no longer have condition (3.9). In-
stead, we have the following condition:qk(snk)� qk(snk +Qk(sk)u)� �4k �DPkP Tk rqk(snk)kmin��5k �DPkP Tk rqk(snk)k; �6�k�� �7kCkk;(4.10)

where once again�4, �5, �6, and�7 are positive and independent ofk. The matrix �DPk is a
diagonal matrix of ordern�m with diagonal elements given by:( �DPk )ii = 8>>>>>>>><>>>>>>>>:

(b� uk) 12i if
�P Tk rqk(snk)�i < 0 andbi < +1;1 if
�P Tk rqk(snk)�i < 0 andbi = +1;(uk � a) 12i if
�P Tk rqk(snk)�i � 0 andai > �1;1 if
�P Tk rqk(snk)�i � 0 andai = �1;
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This matrix is the inexact version of�Dk defined in (3.6). We show in Section 7 how (4.10) can
be satisfied. Of course, we still require the tangential component to be feasible with respect
to the trust region constraint (3.8) or (3.11) and to the bound constraints (3.4).

In the computation of the actual and predicted decreases, weneed to evaluateJksk after
the stepsk has been computed. Since we allow the derivatives ofC(y; u) to be approximated,
we do not haveJksk but rather Jksk + ek;(4.11)

whereek is an error term.

4.2. Inexact TRIP SQP algorithms and general assumptions.To decide whether to
accept or reject a stepsk, we evaluate the ratioared(sk; �k)=pred(sk; �k); where the actual
decreaseared(sk; �k) is given byared(sk; �k) = L(xk; �k; �k)� L(xk + sk; �k+1; �k);
and the predicted decreasepred(sk; �k) bypred(sk; �k) = L(xk; �k; �k)��qk(sk; ek) +��Tk (Jksk + ek + Ck) + �kkJksk + ek + Ckk2� :
Here��k = �k+1 � �k, L(x; �; �) is the augmented Lagrangian functionL(x; �; �) = f(x) + �TC(x) + �C(x)TC(x);
and the quadratic termqk(sk; ek) is given byqk(sk; ek) = `k +rfTk sk + �Tk (Jksk + ek) + 12sTkHksk= qk(sk) + �Tk ek:(4.12)

The update of the penalty parameter�k follows El–Alem [19].

ALGORITHM 4.1 (INEXACT TRIP SQPALGORITHMS).
1 Choosex0 such thata < u0 < b, pick �0 > 0, and calculate�0. Set��1 � 1

and�tol > 0. Choose�1, �1, �, �min, �max, and �� such that0 < �1; �1; � < 1,0 < �min � �max, and�� > 0.
2 Fork = 0; 1; 2; : : : do

2.1 If kCkk + k �DPkP Tk rqk(snk)k � �tol, stop and returnxk as an approximate
solution for problem (1.1).

2.2 Computesnk satisfying (3.1), (3.2), and (3.3). Then, computesk = snk + stk =snk +Qk(sk)u, where(sk)u satisfies (3.4), (3.8) or (3.11), and (4.10).
2.3 Compute�k+1 and set��k = �k+1 � �k.
2.4 Computepred(sk; �k�1).

If pred(sk; �k�1) � �k�12 �kCkk2 � kJksk + ek +Ckk2� then set�k = �k�1.
Otherwise set�k = 2�qk(sk; ek)� qk(0) + ��Tk (Jksk + ek + Ck)�kCkk2 � kJksk + ek + Ckk2 + ��:
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2.5 If ared(sk ;�k)pred(sk;�k) < �1, set�k+1 = �1maxnksnkk; k( �DPk )�1(sk)uko in the decoupled case or�k+1 = �1max(ksnkk; 




 �Cy(xk)�1Cu(xk)(sk)u( �DPk )�1(sk)u !




) in the

coupled case, and rejectsk.
Otherwise acceptsk and choose�k+1 such thatmaxf�min; �kg � �k+1 � �max:

2.6 If sk was rejected setxk+1 = xk and�k+1 = �k. Otherwise setxk+1 = xk+sk
and�k+1 = �k +��k.

Of course the rules to update the trust radius in the previousalgorithm can be much more
involved but the above suffices to prove convergence resultsand to understand the trust–region
mechanism. From these rules we have the following lemma (see[14, Lemma 6.1]).

LEMMA 4.1. Every step satisfieskskk � �8�k and �k+1 � �8kskk ;(4.13)

where�8 is a positive constant independent ofk.
For the convergence theory we need the following set of assumptions (see [14]). For all

iterationsk, we assume thatxk; xk + sk 2 
, where
 is an open subset ofIRn.

A.1 The functionsf , ci, i = 1; : : : ;m are twice continuously differentiable functions in
. Hereci(x) represents thei–th component ofC(x).
A.2 The partial JacobianCy(x) is nonsingular for allx 2 
.
A.3 The functionsf ,rf ,r2f ,C, J ,r2ci, i = 1; : : : ;m, are bounded in
. The matrixCy(x)�1 is uniformly bounded in
.
A.4 The sequencesfHkg, fWkg, andf�kg are bounded.
A.5 The sequencefukg is bounded.

Assumptions A.1–A.4 reduce to the weakest assumptions required to prove global con-
vergence for equality–constrained optimization (see [13]and the references therein). As-
sumption A.5 is used in [8], [15] for box–constrained optimization and is trivially satisfied ifa; b 2 IRn�m. We comment on possible relaxations of some of these conditions in Section
10.

Now we introduce the conditions on the inexact calculations. An important point here is
that Algorithms 4.1 can be particularized to satisfy these conditions. See Sections 6, 7, and 8.

IA.1 The sequencesfAkg andfBkg are bounded.

IA.2 k (�Cy(xk)Bk + Cu(xk)) (sk)uk � �minf�3kCkk; �kg; where� = minn 1�3 ; �24 o.

IA.3 The error termek given in (4.11) obeyskekk � �minn�3kCkk; 1�max�28 kskk2o,

where� is given in IA.2.
IA.4 limj k(�ATkj + Cu(xkj )TCy(xkj )�T )ryqkj (snkj )k = 0 for all index subsequencesfkjg such thatlimj kCkjk = 0.

The Assumption IA.2 imposes a bound on the distance ofQk(sk)u to the null space of
the linearized constraints. It is obvious that IA.2 is satisfied whenBk = Cy(xk)�1Cu(xk).
The Assumption IA.4 is only needed to derive Theorem 5.1 and restricts the accuracy of the
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reduced gradient calculation. We will be more precise later. This assumption is satisfied ifAk = Cu(xk)TCy(xk)�T .
For the rest of this paper we suppose that Assumptions A.1–A.5 and Conditions IA.1–

IA.4 on the inexactness are always satisfied.

5. Global convergence.For the global convergence of the inexact TRIP SQP Algo-
rithms 4.1 we need conditions (3.1), (3.2), and (3.3) on the quasi–normal componentsnk and
condition (4.10) on the tangential component(sk)u. The following lemma states a lower
bound on the decrease given bysk on the linearized constraints. The need for this lemma is
the fact that, due to the inexactness assumption,stk might not lie in the null space ofJk.

LEMMA 5.1. The stepsk satisfieskCkk2 � kJksk + ek + Ckk2 � �22 kCkkminf�3kCkk; �kg:(5.1)

Proof. From IA.2 we getk (�Cy(xk)Bk + Cu(xk)) (sk)uk2 � 1�3�3kCkk�24 minf�3kCkk; �kg:
From IA.3, (4.13), and�k � �max we obtainkekk2 � 1�3�3kCkk�24 minf�3kCkk; �kg:
Using these inequalities, (3.3),sk = snk +Qk(sk)u, and the form (4.9) ofQk, we havekCkk2 � kJksk + ek + Ckk2 � kCkk2 � kCy(xk)(snk)y + Ckk2� k (�Cy(xk)Bk + Cu(xk)) (sk)uk2 � kekk2� �22 kCkkminf�3kCkk; �kg:

We also need the following three inequalities.
LEMMA 5.2. There exist positive constants�9, �10, and�11 independent ofk such thatqk(0) � qk(snk)���Tk (Jksk + ek + Ck) � ��9kCkk;(5.2) jared(sk; �k)� pred(sk; �k)j � �10�kskk2 + �kkskk3 + �kkCkk kskk2�(5.3)

and jared(sk; �k)� pred(sk; �k)j � �11�kkskk2:(5.4)

Proof. For the proof of the first inequality, we haveqk(0) � qk(snk) = �(rx`k)T snk � 12snkTHksnk � ��krx`kk+ 12kHkk ksnkk� ksnkk:
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Also, sincekCy(xk)(snk)y +Ckk � kCkk, we use IA.2 and IA.3,sk = snk +Qk(sk)u and the
form (4.9) ofQk and get���Tk (Jksk + ek + Ck) � � k��kk�kCy(xk)(snk)y + Ckk+ k (�Cy(xk)Bk + Cu(xk)) (sk)uk+ kekk�� �3 k��kk kCkk:
Using (3.2), the fact thatksnkk � �max, and Assumptions A.3 and A.4, we obtain the desired
inequality (5.2).

Now we prove the other two inequalities. If we add and subtract `(xk+1; �k) toared(sk; �k)�pred(sk; �k) and expand̀(�; �k) aroundxk, we getared(sk; �k)� pred(sk; �k) = 12sTk �Hk �r2x`(xk + �1ksk; �k)� sk+ ��Tk (�Ck+1 + Ck + Jksk) +O(kskk2)� �k�kCk+1k2 � kJksk + Ckk2 �O(kskk3)�
for some�1k 2 (0; 1). The termsO(kskk2) andO(kskk3) come from IA.3. The rest of the
proof follows from [14, Lemma 6.5].

The following four lemmas bound the predicted decrease.
LEMMA 5.3. If (sk)u satisfies (4.10), then the predicted decrease in the merit function

satisfiespred(sk; �) � �4k �DPkP Tk rqk(snk)kminn�5k �DPkP Tk rqk(snk)k; �6�ko�(�7 + �9 + �)kCkk+ ��kCkk2 � kJksk + ek + Ckk2�;(5.5)

for every� > 0, where from Assumption A.4,� is a uniform bound fork�kk.
Proof. The inequality (5.5) follows from a direct application of the form (4.12) ofqk(sk; ek) followed by (4.10), (5.2), A.4, and IA.3.
LEMMA 5.4. Assume that(sk)u satisfies (4.10) and thatk �DPkP Tk rqk(snk)k + kCkk >�tol. There exists a positive constant� independent ofk such that, ifkCkk � ��k thenpred(sk; �) � �42 k �DPkP Tk rqk(snk)kmin��5k �DPkP Tk rqk(snk)k; �6�k�+ ��kCkk2 � kJksk + ek +Ckk2�;(5.6)

for every� > 0.
Proof. The proof is the same as the proof of Lemma 7.2 in [14].
We can use Lemma 5.4 with� = �k�1, and conclude that ifk �DPkP Tk rqk(snk)k+kCkk >�tol andkCkk � ��k, then the penalty parameter at the current iterate does not need to be

increased. This is equivalent to Lemma 7.7 in [13]. The next lemma states an equivalent
result to Lemma 7.8 in [13].

LEMMA 5.5. Let (sk)u satisfy (4.10) andk �DPkP Tk rqk(snk)k+ kCkk > �tol. There exists
a positive constant� such that, ifkCkk � ��k thenpred(sk; �k) � �12�k;(5.7)
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where�12 is positive and does not depend onk.
Proof. See [14, Lemma 7.3].
LEMMA 5.6. The predicted decrease satisfiespred(sk; �k) � �k2 �kCkk2 � kJksk + ek + Ckk2� ;(5.8)

for all k.
Proof. It follows directly from the Scheme 2.4 that updates�k.
Now we use the theory given in [13], [14] to state the following result. This result shows

that for a subsequence of the iterates, the first–order KKT conditions (2.2)–(2.3) of problem
(1.1) are satisfied in the limit.

THEOREM 5.1. The sequences of iterates generated by the inexact TRIP SQP Algorithms
4.1 satisfy lim infk!1 �kDkW Tk rfkk+ kCkk� = 0:(5.9)

Proof. First, we use the theory given in [13] to show that:lim infk!1 �k �DPkP Tk rqk(snk)k+ kCkk� = 0:
In fact, Lemmas 7.9–7.13 and 8.2 as well as Theorems 8.1, 8.3,and 8.4 in [13] can be applied
based on (3.2), (4.10), (4.13), (5.1), (5.2), (5.3), (5.4),(5.7), (5.8) and on the fact that ifk �DPkP Tk rqk(snk)k + kCkk > �tol andkCkk � ��k, then the penalty parameter at the current
iterate does not need to be increased. Thus this result is just a restating of Theorem 8.4 of
[13]. So, there exists an index subsequencefkig such thatlimi!1 �k �DPkiP Tkirqki(snki)k+ kCkik� = 0:
Now we apply Assumption IA.4 and the forms (2.1) and (4.9) ofWk = W (xk) andPk, to
obtain limi!1�Pki �Wki�Trqki(snki) = 0:
Using this and the continuity ofD(x)W (x)Trf(x) we getlimi!1 �k �DkiW Tkirqki(snki)k+ kCkik� = 0:

The rest of the proof is given in the last paragraph of the proof of Theorem 7.1 in [14].
The condition imposed in IA.4 is related to the computation of the reduced gradient. If

the adjoint multipliers are used, then this condition can beinterpreted as a restriction on how
accurate these multipliers have to be computed. We comment on this again in Sections 7 and
8.
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6. Computation of the quasi–normal component.The quasi–normal componentsnk is
an approximate solution of the trust–region subproblem

minimize 12kCy(xk)(sn)y + Ckk2
subject to k(sn)yk � �k;(6.1)

and it is required to satisfy the conditions (3.1), (3.2), and (3.3). The property (3.2) is a
consequence of (3.3). In fact, usingkCy(xk)(snk)y + Ckk � kCkk and the boundedness offCy(xk)�1g we find thatksnkk � kCy(xk)�1k �kCy(xk)(snk)y + Ckk+ kCkk� � 2kCy(xk)�1k kCkk :
Whether the property (3.3) holds depends on the way in which the quasi–normal component
is computed. We show below that (3.3) is satisfied for a variety of techniques to computesnk.
We concentrate on methods that are suitable for the large scale case and do not require the
matrixCy(xk) in explicit form. The first two groups of methods tackle the trust–region sub-
problem (6.1) directly. The first group of methods are Krylovsubspace methods that require
the computation of matrix–vector productsCy(xk)sy andCy(xk)T sy, while the second group
of methods only requireCy(xk)sy. The third group of methods compute steps by solving the
linear systemCy(xk)(sn)y = �Ck approximately. The trust–region constraint is enforced by
scaling the solution.

6.1. Subspace methods.There are various ways to compute the quasi–normal compo-
nentsnk for large scale problems based on Krylov subspace methods. For example, one can
use the conjugate–gradient method applied to the normal equation as suggested for the general
quadratic case in [46], [48], or one can use the Lanczos bidiagonalization as described in [23].
Both methods compute an approximate solution of (6.1) from asubspace that contains the
negative gradient�Cy(xk)TCk of the least squares functional. Thus, the stepssnk generated
by these methods satisfyksnkk � �k and12kCy(xk)(snk)y + Ckk2� minn12kCy(xk)s+ Ckk2 : s = �tCy(xk)TCk ; ksk � �ko :(6.2)

We can appeal to a classical result due to Powell, see [42, Theorem 4], [35, Lemma 4.8], to
prove the following result:

LEMMA 6.1. If (snk)y satisfies (6.2), then there exist positive constants�2 and�3, inde-
pendent ofk, such thatkCkk2 � kCy(xk)(snk)y + Ckk2 � �2kCkkminf�3kCkk; �kg:

Another method to solve large scale trust–region subproblems is analyzed in [45]. In this
approach the trust–region subproblem (6.1) is reformulated as an eigenvalue problem which is
then solved by the implicitly restarted Lanczos method. This method and the method in [23]
compute a step that satisfies the fraction of optimal decrease condition, i.e. these methods
compute steps(snk)y satisfyingkCkk2 � kCy(xk)(snk)y + Ckk2 � ��kCkk2 � kCy(xk)(sn�)y + Ckk2�;
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where(sn�)y is the solution of (6.1). Thus, the method in [45] yields a step satisfying (3.3).
The previous approaches require the evaluation ofCy(xk)v andCy(xk)Tu for given v

andu. For some applications, the evaluation ofCy(xk)Tu is more expensive than the appli-
cation ofCy(xk)v, and therefore it may be more efficient to use methods that avoid the use
of Cy(xk)Tu. In this case one can apply nonsymmetric Krylov subspace methods based on
minimum residual approximations, such as GMRES [44]. In thecontext of nonlinear system
solving the use of such methods is described e.g. in [4].

If GMRES is used and if12CTk �Cy(xk)T +Cy(xk)�Ck � �kCkk2(6.3)

holds with� > 0, thenkCkk2 � kCy(xk)(snk)y + Ckk2 � �2kCkkminf�3kCkk; �kg;
where�2 and�3 are positive constants that do not depend onk. The condition (6.3) is implied
by the positive definiteness of the symmetric part ofCy(xk), a condition also important for
the convergence of nonsymmetric Krylov subspace methods. Aproof of this result and more
details concerning the use of these methods can be found in [49].

6.2. Scaled approximate solutions.An alternative to the previous procedures is to com-
pute an approximate solution̂snk of the linear systemCy(xk)s = �Ck and to scale this step
back into the trust region, i.e. to setsnk =  �kŝnk0 ! ; where �k = 8<: 1 if kŝnkk � �k;�kkŝnkk otherwise.
(6.4)

We assume that the linear systemCy(xk)s = �Ck is solved inexactly and that the resid-
ual vector satisfieskCy(xk)ŝnk+Ckk � �kCkk with � < 1. Then we have the following result
(the proof can be found in [49]).

LEMMA 6.2. If kCy(xk)ŝnk + Ckk � �kCkk with � < 1 for all k, then the quasi–normal
component (3.1) satisfieskCkk2 � kCy(xk)(snk)y + Ckk2 � �2kCkkminf�3kCkk; �kg;
where�2 and�3 are positive constants independent ofk.

7. Computation of the tangential component. Ideally, the tangential component min-
imizes the quadratic model	k(su) in the null space of the linearized constraints subject to
the trust region and the bound constraints. Since the null space of the linearized constraints is
characterized byWk, the exact tangential component has the formstk = Wk(sk)u. Theu part
of the tangential component is computed by a conjugate–gradient method and its computation
requires the calculation of matrix–vector productsWkdu andW Tk d. We assume that these
calculations are inexact.

7.1. Reduced gradient calculation.For the computation of the tangential component
we first have to compute the reduced gradientW Tk rqk(snk) of the quadratic model	k(su). If
this is done using (4.3), then we have an approximation to thereduced gradientW Tk rqk(snk)
of the form: W Tk rqk(snk) + eA;(7.1)
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where the error termeA depends onW Tk rqk(snk). By using the error term in (4.4), we find
that keAk � kCu(xk)TCy(xk)�T k k(eA)yk+ k(eA)uk:(7.2)

We can interpret the inexact computation ofW Tk rqk(snk) as the exact solution of a per-
turbed equation. If we setEA = 1kryqk(snk)k2 eA (ryqk(snk))T ;
then�� Cu(xk)TCy(xk)�T +EA�ryqk(snk) = �Cu(xk)TCy(xk)�Tryqk(snk) + eA:
Thus we can defineAk = Cy(xk)�1Cu(xk)�ETA andPk =  �ATkIn�m ! =  �Cy(xk)�1Cu(xk) +ETAIn�m ! :(7.3)

With this definition we can writeW Tk rqk(snk) + eA = P Tk rqk(snk). The linear operatorAk
satisfies k �Ak + Cu(xk)TCy(xk)�T k = kETAk � keAk=kryqk(snk)k� �kCu(xk)TCy(xk)�T k k(eA)yk+ k(eA)uk�=kryqk(snk)k(7.4)

and 


��Ak + Cu(xk)TCy(xk)�T�ryqk(snk)


 = kETAryqk(snk)k = keAk� �kCu(xk)TCy(xk)�T k k(eA)yk+ k(eA)uk�:(7.5)

If for given ryqk(snk), the error terms in the computation of the reduced gradient via (4.3)
obey max�k(eA)yk; k(eA)uk� � � kCkk;(7.6)

then (7.5) and Assumptions A.3–A.4 imply the Condition IA.4. Moreover, ifmax�k(eA)yk; k(eA)uk� � � kryqk(snk)k;(7.7)

then (7.4) and Assumptions A.3–A.4 imply the boundedness offAkg. This gives the first part
of Condition IA.1.
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7.2. Conjugate–gradient algorithms. In the following, we formulate extensions of the
conjugate–gradient Algorithms 3.1 and 3.2 for the computation of the tangential component.
To keep the presentation simple, we continue to use the notation Wk andW Tk . However,
whenever matrix–vector products withWk orW Tk are computed, we assume that this is done
using (4.1) or (4.3). The degree of inexactness, i.e. the size of the error termsey andeu, is
specified later. The reduced gradientW Tk rqk(snk) of the quadratic model	k(su) is assumed
to be computed by (7.1) with errors(eA)y, (eA)u satisfying (7.6) and (7.7).

In the case where an approximationbHk to the reduced HessianW Tk HkWk is used, the
quadratic ��P Tk rqk(snk)�T su � 12sTu � bHk +Ek( �DPk )�2� su
is reduced at every iteration of the conjugate–gradient algorithm. If we use an approximationHk to the full Hessian we have to compute matrix–vector multiplications withW Tk HkWk.
One of the consequences of the inexactness is that the quadratic evaluated at the iterates of
the conjugate–gradient algorithms is not guaranteed to decrease. For instance, the inexact
application ofWk andW Tk may causeW Tk HkWk to be nonsymmetric. Hence we need to
measure the Cauchy decrease at Step 3 of the algorithm. The extension of the conjugate–
gradient Algorithm 3.1 is given below.

ALGORITHM 7.1 (INEXACT COMPUTATION OF sk = snk + Wk(sk)u (DECOUPLED

CASE)).
1 Sets0u = 0, r0 = �P Tk rqk(snk), q0 = ( �DPk )2r0, d0 = q0, and� > 0.
2 Fori = 0; 1; 2; : : : do

2.1 Compute
i = 8><>: (ri)T (qi)(di)T � bHk+Ek( �DPk)�2�(di) (reduced Hessian);(ri)T (qi)(di)T (WTk HkWk+Ek( �DPk)�2)(di) (full Hessian):
2.2 Compute� i = max�� > 0 : k( �DPk )�1(siu + �di)k � �k;�k(a� uk) � siu + �di � �k(b� uk)�:
2.3 If 
i � 0, or if 
i > � i, then sets�u = siu + � idi, where� i is given as in 2.2

and go to 3; otherwise setsi+1u = siu + 
idi.
2.4 Update the residuals:ri+1 = 8<: ri � 
i � bHk +Ek( �DPk )�2� di (reduced Hessian);ri � 
i �W Tk HkWk +Ek( �DPk )�2� di (full Hessian);

andqi+1 = ( �DPk )2ri+1.
2.5 Check truncation criteria: if

r (ri+1)T (qi+1)(r0)T (q0) � �, sets�u = si+1u and go to 3.

2.6 Compute�i = (ri+1)T (qi+1)(ri)T (qi) and setdi+1 = qi+1 + �idi.
3 ComputeWks�u.

If a reduced Hessian approximation is used, set(sk)u = s�u andsk = snk +Wks�u.
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If a full Hessian approximation is used and if� �P Tk rqk(snk)�T s�u � 12(Wks�u)THk(Wks�u)< � �W Tk rqk(snk)�T s1u � 12s1uTW Tk HkWks1u;
then set(sk)u = s1u and sk = snk + Wks1u. Otherwise(sk)u = s�u and sk =snk +Wks�u.

The extension for the coupled approach is analogous and is omitted.

7.3. Distance to the null space of the linearized constraints. Let (stk)y and(stk)u =(sk)u be the quantities computed by Algorithm 7.1. SinceWk(sk)u is not computed exactly
in Step 3, it holds that(stk)y = �Cy(xk)�1Cu(xk)(sk)u + Cy(xk)�1 ((eB)u + (eB)y)= �Cy(xk)�1Cu(xk)(sk)u + eB ;
where the error termeB depends on(sk)u and satisfieskeBk � kCy(xk)�1k�k(eB)uk+ k(eB)yk�;(7.8)

cf. (4.2). As before, we can interpret the inexact computation (stk)y of stk = Wk(sk)u as the
exact solution of a perturbed equation. IfEB = 1k(sk)uk2 eB (sk)Tu ;
then �� Cy(xk)�1Cu(xk) +EB�(sk)u = �Cy(xk)�1Cu(xk)(sk)u + eB = (stk)y:
We defineBk = Cy(xk)�1Cu(xk)�EB andQk =  �BkIn�m ! =  �Cy(xk)�1Cu(xk) +EBIn�m ! :(7.9)

With this definition, we can write stk = Qk(sk)u:
The linear operatorBk satisfiesk �Bk + Cy(xk)�1Cu(xk)k = kEBk � keBk=k(sk)uk� �kCy(xk)�1k (k(eB)uk+ k(eB)yk)�=k(sk)uk
and 


�� Cy(xk)Bk + Cu(xk)�(sk)u


 = kCy(xk)EB(sk)uk = kCy(xk)eBk� k(eB)uk+ k(eB)yk:(7.10)
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If the error terms in the computation of(stk)y using (4.1) obeymax�k(eB)yk; k(eB)uk� � �2 minf�3kCkk; �kg;(7.11)

where� and�3 are defined as in IA.2, then one can see from (7.10) thatBk satisfies Condition
IA.2. Moreover, sincefCy(xk)�1g is bounded, ifmax�keyk; keuk� � � k(sk)uk;
then (7.3) implies the boundedness offBkg, cf. IA.1.

7.4. Cauchy decrease condition.Now we establish the decrease condition (4.10). We
analyze reduced and full Hessians approximations separately.

In the reduced Hessian approximation case, an approximation bHk for W Tk HkWk is used
and all the calculations of Step 2 of Algorithm 7.1 are performed exactly. In this case(sk)u
satisfies the following condition��P Tk rqk(snk)�T (sk)u � 12(sk)Tu bHk(sk)u� �4k �DPkP Tk rqk(snk)kmin��5k �DPkP Tk rqk(snk)k; �6�k�:(7.12)

This is just a consequence of Powell’s classical result ([42, Theorem 4], [35, Lemma 4.8])
adapted to the current context [14, Lemma 6.2].

Now recall that we need to establish (4.10), where the left hand side is given by��QTkrqk(snk)�T (sk)u � 12(sk)TuQTkHkQk(sk)u:
However, in (7.12) the left hand side is��P Tk rqk(snk)�T (sk)u � 12(sk)Tu bHk(sk)u:
First we use (3.12) and (7.9) to write12 (sk)Tu bHk(sk)u = 12(sk)TuQTkHkQk(sk)u: Then we
relate the inexactness represented byPk andQk with the constraint residualkCkk. In fact, by
using (7.3) and (7.9), we write�P Tk rqk(snk)�T (sk)u= �rqk(snk)TQk(sk)u �rqk(snk)T  ETA0 ! (sk)u +rqk(snk)T  EB0 ! (sk)u= � �QTkrqk(snk)�T (sk)u � eTA(sk)u + eTBryqk(snk):
The error bounds (7.2), (7.6), (7.8), (7.11), and Assumptions A.3–A.4 giveeTA(sk)u � eTBryqk(snk) � keAk k(sk)uk+ keBk kryqk(snk)k � �7kCkk;
where�7 is a positive constant independent ofk. Hence we have proved (4.10). The analysis
for the full Hessian is given in [49].
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8. Computation of the Lagrange multiplier estimates. Note that the only assumption
on�k required to prove the global convergence result (5.9) is theboundedness of the sequencef�kg (see Assumption A.4).

A choice of�k that is available from the reduced gradient calculation ofqk(s) is �k =�Cy(xk)�Tryqk(snk). Due to inexactness�k actually satisfies�Cy(xk)T�k = ryqk(snk) + e�k ;
wheree�k is the corresponding residual vector. From Assumptions A.3–A.4, if fe�kg is bounded,
thenf�kg is also bounded.

Another choice for�k is �k = �Cy(xk)�Tryfk. We refer the reader to Section 10.3 of
[14] for a discussion on these choices of�k.

9. Numerical experiments. We implemented the inexact TRIP SQP Algorithms 4.1
and compared them with the exact TRIP SQP Algorithms proposed in [14]. The numerical
test computations were done on a Sun Sparcstation 10 in double precisionFortran 77.
We tested our algorithms on examples that have the structuredescribed in this paper. The
numerical results are satisfactory and revealed interesting properties of the algorithms. Two
examples are described in this section. Numerical results with two other examples are are
documented in [7], [25].

We use the formula (6.4) to compute the quasi–normal component, and conjugate-gradients
to calculate the tangential component. The scheme used to update the trust radius and the in-
exact form of diagonal scaling matricesDk and �Dk are the same as in [14]. We have used�k = � = 0:99995 for all k; �0 = 1 as initial trust radius;��1 = 1 and �� = 10�2 in the
penalty scheme. The tolerances used were�tol = 10�8 for the main iteration, Algorithm 4.1,
and� = 10�4 for the conjugate–gradient Algorithm 7.1 and the corresponding coupled ver-
sion.

The tolerance for inexact solvers withCy(xk) was set tominn10�2; 10�2minfkCkk; �kgo ;(9.1)

and for inexact solvers withCy(xk)T tomin�10�2; 10�2kCkk�:(9.2)

This scheme for setting the tolerances satisfies (1.3).
For both, the decoupled and the coupled approaches, we used approximations to reduced

and to full Hessians. We approximate these matrices using the limited memory BFGS repre-
sentations given in [6] with a memory size of5 pairs of vectors. For the reduced Hessian we
use a null–space secant update (see [41], [51]). The initialHessian approximation is
In�m
for the reduced Hessian and
In for the full Hessian, where
 is the regularization parameter
in the objective function, set in both examples to10�3.

In both examples the starting vector isx0 = 0.
Since our algorithms are tailored for problems originally governed by infinite dimensional

equations, our implementation allows the use of weighted scalar products. In particular, we
use scalar productshu1; u2iU andhy1; y2iY instead of(u1)Tu2 and(y1)T y2. The scalar prod-
uct for the unknownx is given byhx1; x2iX = hu1; u2iU + hy1; y2iY . For most applications
these scalar products are defined by appropriate discretizations of the inner products in the
infinite dimensional control space and the state space, respectively. This feature is important
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for the correct computation of the adjoint and the appropriate scaling of the problem. More-
over, in many cases, we could observe a mesh independent behavior of our algorithms. These
scalar products are used in the conjugate–gradient algorithms, see e.g. Algorithm 7.1, and in
the quasi–Newton updates.

It is not the purpose of this paper to explore and analyze thisfeature of our algorithms.
We refer to [7] for the detailed study of one application and the exposition of the importance
of the scalar product. For a detailed description of how the scalar products are used and for a
comprehensive description of the implementation we refer to [26].

9.1. Boundary control of a nonlinear heat equation.The first example is the boundary
control of a nonlinear heat equation. This and similar control problems are discussed e.g. in
[5], [30], [33], [40].

The goal is to control the heating process in such a way that the temperature at the bound-
ary x = 1 follows a certain desired temperature profileyd(t). The controlu(t) acts on the
boundaryx = 0. The problem can be formulated as follows:

minimize
12 Z T0 [(y(1; t) � yd(t))2 + 
u2(t)]dt

subject to�(y(x; t))@y@t (x; t)� @x(�(y(x; t))@xy(x; t)) = q(x; t); (x; t) 2 (0; 1) � (0; T );�(y(0; t))@xy(0; t) = g[y(0; t) � u(t)]; t 2 (0; T );�(y(1; t))@xy(1; t) = 0; t 2 (0; T );y(x; 0) = y0(x); x 2 (0; 1);ulow � u � uupp;
wherey 2 L2(0; T ;H1(0; 1)), andu 2 L2(0; T ). The functions�; � 2 C1(IR) denote
the specific heat capacity and the heat conduction, respectively. y0 2 H1(0; 1) is the initial
temperature distribution,q 2 L2(0; T ;H1(0; 1)) is the source term,g is a given scalar, and

is a positive regularization parameter. Hereulow; uupp 2 L1(0; T ) are given functions.

If the partial differential equation and the integral are discretized we obtain an optimiza-
tion problem of the form (1.1). The discretization uses finite elements and is discussed in [5]
(see also [24], [30]). The spatial discretization is done using piecewise linear finite elements
with Nx subintervals of equidistant length in(0; 1). The time discretization is performed
by partitioning the interval[0; T ] into Nt equidistant subintervals. Then the backward Euler
method is used to approximate the state space in time, and piecewise constant functions are
used to approximate the control space.

With this discretization scheme,Cy(x) is a block bidiagonal matrix with nonsymmetric
tridiagonal blocks. In the exact implementation we use theLINPACK subroutineDGTSL to
solve the tridiagonal systems. These calculations are reported in [14]. We introduce inex-
actness into this problem by solving these tridiagonal systems inexactly. For this purpose
we tested several iterative methods like GMRES, QMR, and BiCGSTAB. The results were
quite similar and we report here those obtained with GMRES(10). Since we have to solve a
nonsymmetric tridiagonal system at each time step, we require the residual norms for these
systems to be smaller than the tolerances given in (9.1) and (9.2) divided byNt.

For this example, the inner productshu1; u2iU andhy1; y2iY are chosen to be discretiza-
tions of theL2(0; T ) andL2(0; T ;H1(0; 1)) scalar products of the control and the state spaces
respectively.
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If spatial and time discretization are chosen properly, thepartial JacobianCy(x) is invert-
ible with uniformly bounded inverse. This follows from the ellipticity of the problems that
have to be solved in every time step. See [5], [30]. Due to the simple structure of the objec-
tive function, derivatives off are bounded. Since we use the adjoint multiplier, the previous
results imply the boundedness of the Lagrange multiplier estimates.

The functions in this example are those used in [30, Example 4.1], [14]. The size of the
problem tested isn = 2100, m = 2000 corresponding to the valuesNt = 100, Nx = 20. The
upper and lower bounds arebi = 0:01, ai = �1000, i = 1; : : : ; n�m.

We ran the exact and inexact TRIP SQP algorithms using decoupled and coupled ap-
proaches and reduced and full Hessians. The total number of iterations for each case is given
in Table 9.1. The quantitiesf(x), kC(x)k, andkD(x)W (x)Trf(x)k are plotted in Figure
9.1. There were no rejected steps. In all the cases the algorithms took less than fifty iterations
to attain the convergence criteria. The coupled approach did not perform as well as the de-
coupled approach. This is explained by the accumulation of errors due to inexactness. In fact,
if the decoupled approach is used, they component of the tangentialstk is computed only in
Step 3 of Algorithm 7.1, and although this computation is inexact, there is no accumulation
of errors. In the coupled approach, they part of the tangential componentstk of the step is
updated at every conjugate–gradient iteration through an inexact linearized state solver. This
destroys the symmetry of the subproblem and the conjugate–gradient method requires more
iterations. As the number of conjugate–gradient iterations increases, this error propagates, and
the steps that are computed are farther away from the null space of the linearized constraints.

We illustrate this situation in Figure 9.2, where we show howfar kJksnkk andkJk(snk +stk)k are from each other. The dotted line shows the size of the residual of the linearized state
equation after the computation of the quasi–normal component. If the tangential component
is in the null–space of the Jacobian, then this would be the size of the residual of the linearized
state equation for the whole step. In other words, we would have kJksnkk = kJk(snk + stk)k.
However, due to the inexactness in the application ofWk andW Tk , the size of the residual of
the linearized state equation for the whole step is larger and is given by the solid line. It can be
seen that the difference grows asWk orW Tk are applied more often in the computation of the
tangential component. In particular, the difference is larger if the coupled approach is used.

TABLE 9.1
Number of iterations to solve the optimal control problems.

Optimal control Decoupled Coupled

problem governed by ReducedbHk Full Hk ReducedbHk Full Hk
heat equation (exact solvers) 16 18 17 19

heat equation (inexact solvers) 16 18 29 48
semi-linear elliptic equation 18 20 27 36(39)

9.2. Distributed control of a semi–linear elliptic equation. The second example is the
distributed control of a semi–linear elliptic equation. The control problem is given by

minimize
12 Z
[(y � yd)2 + 
u2]dx(9.3)
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FIG. 9.1. Performance of the inexact TRIP SQP algorithms applied to a boundary control prob-
lem of a nonlinear heat equation. Herelog10f(xk) (dotted line), log10kC(xk)k (dashed line), andlog10kD(xk)W (xk)Trf(xk)k (solid line) are plotted as a function ofk.

over ally andu satisfying the state equation��y + g(y) = u; in 
;y = d; on@
 ;(9.4)

and the control constraints ulow � u � uupp;(9.5)

wherey 2 H1(
), u 2 L2(
), ulow; uupp 2 L1(
) are given functions, and
 is a bounded
domain ofIR2, with boundary@
. In our examples we choose
 = (0; 1)2, d = 0, g(y) = ey,
andyd = sin(2�x1) sin(2�x2). In this case the state equation (9.4) is a particular Bratu prob-
lem. Solvability and applications of the state equation arediscussed e.g. in [21, Section IV.2],
[22]. For the discretization of the problem, we use piecewise linear finite elements with a
uniform triangulation obtained by first subdividing thex and they subinterval into a sam-
ple of subintervals and then cutting each resulting subsquare into two triangles. The same
discretization was used for the states and the controls.

Since the linearizations of the infinite dimensional state equation is elliptic and is dis-
cretized by conforming finite elements, the matricesCy(x)�1 are uniformly bounded. As in
the previous example, the simple structure of the objectivefunction implies that the derivatives
of f are bounded. This also implies the boundedness of the adjoint multiplier estimates.
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FIG. 9.2. Illustration of the performance of the inexact TRIP SQP algorithms applied to a boundary con-
trol problem of a nonlinear heat equation. These plots show the residuals of the linearized state equationslog10kJksnkk in dashed line andlog10kJk(snk + stk)k in solid line.

The norms used for the states and controls are the discretizations of theH1(
) andL2(
)
norms. The linearized state equation and the adjoint equation are solved using GMRES(20)
preconditioned from the left with the inverse Laplacian. Toapply this preconditioner, one
has to compute the solution of the discrete Laplace equationwith different right hand sides.
This was done using multilevel preconditioned conjugate gradients. Note that forg(y) = ey,
the problem is self–adjoint. Therefore a conjugate–gradient algorithm could have been used
instead of GMRES. However, the implementation was done for the more general problem
with state equation��y + g(y;ry) = u, which in general is not self–adjoint.

In this example, the number of controls is equal to the numberof states. In the computa-
tions reported below we usem = n = 289 which corresponds to a uniform triangulation with
512 triangles. The upper and lower bounds arebi = 5, ai = �1000, i = 1; : : : ; n�m.

The total number of iterations needed by the inexact TRIP SQPalgorithms to solve this
problem are presented in Table 9.1. In all situations but one, all the steps were accepted.
(The situation we refer to is the coupled approach with full Hessian approximation where
there were36 accepted steps among the39 computed.) The quantitiesf(x), kC(x)k, andkD(x)W (x)Trf(x)k are plotted in Figure 9.3. The convergence behavior of the inexact
TRIP SQP algorithms is similar to the convergence behavior for the other example. Again the
decoupled approach performs better than the coupled one dueto the fact that less errors are
accumulated. See Figure 9.4.



ANALYSIS OF INEXACT TRIP SQP ALGORITHMS 27

0 5 10 15 20
−15

−10

−5

0
Decoupled with reduced Hessian

0 5 10 15 20
−15

−10

−5

0
Decoupled with full Hessian

0 10 20 30
−15

−10

−5

0
Coupled with reduced Hessian

0 10 20 30 40
−10

−8

−6

−4

−2

0
Coupled with full Hessian

FIG. 9.3. Performance of the inexact TRIP SQP algorithms applied to a distributed control prob-
lem of a semi–linear elliptic equation. Herelog10f(xk) (dotted line), log10kC(xk)k (dashed line), andlog10kD(xk)W (xk)Trf(xk)k (solid line) are plotted as a function ofk.

The last experiment that we report consisted of applying theinexact TRIP SQP Algo-
rithms 4.1 to solve large instances of the distributed semi–linear control problem. In this
experiment, we used the decoupled approach with a limited memory BFGS update to approx-
imate the reduced Hessian matrix as described above. The number of iterations corresponding
to four instances of this control problem are given in Table 9.2. These instances were gener-
ated by decreasing the mesh size, i.e. by increasing the number of triangles in the discretiza-
tion. In this table we include the number of linearized stateand adjoint equations of the form
(1.2) solved by the algorithms.

We point out that in this example the control is distributed in
 and the number of compo-
nents inu is n2 . For the valuesbi = 5, ai = �1000, i = 1; : : : ; n�m of the upper and lower
bounds that we chose, the number of control variablesu active at the solution is roughly equal
to n10 . These observations are important for the conclusions we draw in the next paragraph.

It is well known that in many interior–point algorithms for linear and convex program-
ming problems the number of iterations is a polynomial function of the size of the problem.
On the other hand, most active set methods have a exponentialworst–case complexity. In
interior–point algorithms, as we increase the dimension ofthe problem we should observe
at most a polynomial increase in the number of the iterations. We can see from Table 9.2
that this is clearly the case for the TRIP SQP algorithms. These results once more show the
effectiveness of these algorithms for optimal control problems with bound constraints on the
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FIG. 9.4. Illustration of the performance of the inexact TRIP SQP algorithms applied to a distributed con-
trol problem of a semi–linear elliptic equation. These plots show the residuals of the linearized state equationslog10kJksnkk in dashed line andlog10kJk(snk + stk)k in solid line.

controls. (If there are rejected steps, then the number of iterations in brackets corresponds to
all the accepted and rejected iterations.)

TABLE 9.2
Number of iterations to solve large distributed semi–linear control problems.

variables (n) constraints (m) iterations Cy(xk) solvers Cy(xk)T solvers

578 289 18 54 37

2178 1089 22 66 45

8450 4225 26 (31) 83 58

33282 16641 49 147 99

10. Conclusions and future work. In this paper we have investigated the theoretical
and numerical behavior of a class of trust–region interior–point SQP algorithms under the
presence of inexactness. These algorithms have been proposed in [14] for problems of the type
(1.1), where the equality constraints often come from the discretization of partial differential
equations. We have generalized the global convergence result given in [14] to the case where
linear solvers and directional derivatives associated with these constraints are inexact. We



ANALYSIS OF INEXACT TRIP SQP ALGORITHMS 29

proved that global convergence to a point that satisfies the first–order KKT conditions (2.2)–
(2.3) can be guaranteed if the absolute error in the solutionof linear systems withCy(xk) andCy(xk)T and in the calculation of directional derivatives ofC at xk is O (minf�k; kCkkg).
Numerical experiments with two optimal control problems has confirmed our analysis and
showed how the inexact calculation of the quantitiesWkdu andW Tk d can affect the use of
conjugate gradients to compute the tangential component ofthe step and the overall perfor-
mance of the algorithms.

The conditions on the inexactness described in this paper, summarized in (1.3), are suf-
ficient to guarantee global convergence to a stationary point. However, as it is the case for
systems of nonlinear equations, the practical implementation of conditions greatly influences
the performance of the algorithm. Issues like oversolving and forcing faster rates of local
convergence are of importance and will be the subject of future investigations. Since the
quasi–normal component can be viewed as one step of Newton’smethod (with a trust–region
globalization) towards feasibility for givenu, there is a close relationship with the studies of
inexact Newton methods for systems of nonlinear equations [17], [18].

The computation of the tangential component using the coupled approach is another is-
sue that will be investigated further. In particular the loss of symmetry due the inexactness
deserves attention and the use of nonsymmetric methods for the solution of these subproblems
will be investigated. See also [34].

In our applications the uniform boundedness ofCy(x)�1 can be shown. However, the
uniform boundedness ofCy(x)�1, or even the global invertibility is not guaranteed in other
important applications. Possible relaxations of this condition will be investigated along with
relaxations of other assumptions. For example, the requirement of the boundedness offHkg
might be relaxed using the ideas in [43] for trust–region methods for unconstrained optimiza-
tion.
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