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Abstract. In this paper we analyze inexact trust—region interiorapdiTRIP) sequential quadra—
tic programming (SQP) algorithms for the solution of optzation problems with nonlinear equality constraints
and simple bound constraints on some of the variables. Stathigms arise in many engineering applications,
in particular in optimal control problems with bounds on ttwatrol. The nonlinear constraints often come from
the discretization of partial differential equations. lrck cases the calculation of derivative information and the
solution of linearized equations is expensive. Often, thet®n of linear systems and derivatives are computed
inexactly yielding nonzero residuals.

This paper analyzes the effect of the inexactness onto theogence of TRIP SQP and gives practical rules
to control the size of the residuals of these inexact calimria. It is shown that if the size of the residuals is of the
order of both the size of the constraints and the trust-regadius, then the TRIP SQP algorithms are globally
convergent to a stationary point. Numerical experimenth two optimal control problems governed by nonlinear
partial differential equations are reported.

Keywords. nonlinear programming, trust-region methods, interioirpalgorithms, Coleman and Li affine
scaling, simple bounds, inexact linear systems solverdoi{isubspace methods, optimal control
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1. Introduction. In this paper we study a class of optimization algorithms #tlaw the
use of inexact information for the solution of minimizatiproblems with nonlinear equality
constraints and simple bound constraints on some of thablag. More precisely, the prob-
lems we are interested in are of the form

minimize  f(y,u)
(1.2) subjectto  C(y,u) =0,

ueB={u: a<u<b},

wherey e R™,u € R" ™, a € (RU{—cc})" ™, b€ (RU{+oc})" ™, f: R" — R,
C:R" — R™,m < n,andf andC are assumed to be at least twice continuously differ-
entiable functions. Applications include optimal contpsbblems, parameter identification
problems and inverse problems, and design optimization.

The algorithms investigated in this paper are extensiornieofrust—region interior—point
(TRIP) sequential quadratic programming (SQP) algoritimreduced and analyzed in [14].
The TRIP SQP algorithms are SQP methods that use trust seg®a strategy for globaliza-
tion and for regularization of the subproblems and thatppl affine scaling interior—point
approach to deal with the bounds on the varialleklowever, the analysis in this paper will
also be relevant for other SQP algorithms.

The minimization problem (1.1) often arises from the ditigedion of optimal control
problems. Hergs are the state variables,are the control variables, ar@(y, u) = 0 is the
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discretized state equation. TRIP SQP algorithms utilieestiucture of the problems induced
by the patrtitioning of the variables into states and costr@ubproblems in the TRIP SQP
algorithms are solved iteratively. As a consequence, oimgctional derivatives are needed
in the implementation of these algorithms. However, difgiability is required to guaran-
tee convergence. In [14] it is assumed that derivative médron is available exactly and
that linearized equations can be solved exactly. In manjicgtipns these assumptions are
unrealistic. Derivative information may be approximatémt,example, by finite differences.
Moreover, the linearized equations are often discretiratiof partial differential equations
and iterative solvers are used for their solution. The psepof this paper is to extend the
exact TRIP SQP algorithms to allow inexact calculationsaisks involving derivatives of
C(y,u). Inexactness in derivatives of the objective functjoalso can be allowed, but it is
not done here to keep the presentation simpler. Since wedtai@s and controls as inde-
pendent variables, and since the objective functions aes ohther simple, e.g. least squares
functionals, this does not present a severe restrictiore goal for our analysis is to derive
measures of inexactness and controls of inexactness thaimaple to implement.

To explain how we deal with inexactness and to present tha meaults of this paper, we
need to introduce some of the structure of problem (1.1) &sereferences [24], [28], [29],
[30]). For convenience we write

(7

Due to the partitioning of the variable into y and«, the Jacobian matrix of’(x) can be
written as

J(@) = Cylz) Cula) ),

whereC, (z) € R™*™ andC,(z) € R™*(m=m),
In the exact TRIP SQP algorithms, we have to compute quesiiti the formC, (x)d,
andC[ (z)d,, and we have to solve linear systems of the form

(1.2) Cy(zr)s = by and C,(z)"s = by.
Since these systems are solved inexactly, what is compueg ands; such that
Oy(.’l?k)Ek = Bk + ¢, and Cy(’l‘k)T§k = i)k + ép,

wheree, andé, are residual vectors. In many iterative methods, like fatance Krylov
subspace methods, the norffeg || and||é,|| can be computed efficiently with few extra oper-
ations. Such residuals are used to measure inexactness.

We give conditions on the amount of inexactness allowed énitlexact TRIP SQP al-
gorithms that guarantee global convergence to a pointfgatisthe first—order necessary
optimality conditions. In the case of the linear solvergsth conditions are the following:

1.3) lexll = O(min{ak,m(xk)u) and [|é)| = 0(|c(xk>|),

wheredy, is the trust—region radius and’(z)|| is the norm of the residual of the constraints.
Thus as the iterates approach feasibility the accuracywliich the linear systems are solved
has to increase. Moreover, the accuracy of the linear systdvas has to increase if the region
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where the quadratic model is trusted becomes small. Thisisleeasonable since the trust
region should not be reduced unnecessarily. Similar resuk derived for the inexactness
that arises in the computation of directional derivative€'¢z). The details are presented in
this paper.

The convergence results presented in this paper rely oh#wyt given in [13], [14]. A
comprehensive convergence theory is presented in [49].

We have applied the inexact TRIP SQP algorithms to the solwf two optimal control
problems, a boundary control problem for a nonlinear heaaiggn and a distributed control
problem for a semi-linear elliptic equation. Precondi&édrKrylov subspace methods were
used to solve the linearized state and adjoint equatio23. (The numerical results reported
in Section 9 confirm our analysis.

It should be pointed out that by inexactness we mean inexaitative information and
inexact solution of linear systems. Trust—region methdidsvaanother level of inexactness
that is also treated here and in most other papers on trggparenethods: in trust-region
methods the quadratic programming subproblems do not loave solved exactly. It is suffi-
cient to compute steps that predict the so—called fractfd@anichy decrease condition. This
allows the application of a variety of methods for the apprate solution of subproblems.

In the context of systems of nonlinear equations, inexac¢tumcated Newton methods
have been proposed and analyzed by many authors. Some abtleepwork in this area
can be found in [10], [47]. More recent references are [3], [46], [17], [18], [27]. Most
of the recent papers investigate the use of Krylov subspaathaus for the solution of linear
systems, like GMRES [44], in inexact Newton methods. Thesdo¥ subspace methods
are attractive because they monitor the residual norm ofirtear system in an efficient way
and only require Jacobian times a vector, not the Jacobiaxpficit form. The results for
the solution of systems of nonlinear equations have be@mdgtl to analyze inexact Newton
methods for the solution of unconstrained minimizationbpems, e.g. [11], [37], [39]. In a
recent paper [52], the impact of inexactness in reducedgmnaichethods for design optimiza-
tion has been analyzed.

In nonlinear programming, inexactness has been studie®bhyq], [12], [20], [32],
[38], [50] among others. The papers [12], [20], [32], [38}astigating SQP methods mostly
study the influence of inexactness on the local convergesige in [38] conditions on the
inexactness are given that guarantee descent in the meciida. In the papers mentioned
previously, the inexactness is often measured using theéuadsof the linearized system of
nonlinear equations arising from the first—order necessptynality conditions, or some vari-
ation thereof. If globalizations are included in the inigations, then line—search strategies
are used. To our knowledge, inexactness for SQP methodstnwgt-region globalizations
has not been studied in the literature. Due to the computatiadhe step in two stages, the
computation of the quasi—-normal component and of the taiaeomponent, the analysis
of inexactness in SQP methods with trust—region globatimatrequires techniques different
from those that can be used for line search globalizationtheiapers which investigate
SQP methods for large scale problems, but without treatimiinexact linear systems solves
and inexact derivative information include [1], [31], [36]

This paper is organized as follows. In Section 2, we statditsie-order necessary opti-
mality conditions of problem (1.1). A review of the featudghe exact TRIP SQP algorithms
necessary for the inexact analysis is given in Section 3.iffdwact TRIP SQP algorithms are
presented in Section 4. Here we also list the assumptionsrumdich convergence can be
guaranteed. In Section 5, we prove global convergence. dhaining of the paper deals with
practical issues concerning the step and multipliers ¢aticms. Each step is decomposed in
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two components: a quasi—-normal component and a tangetigbanent. In Section 6, we
present several techniques to compute quasi—hormal campoand show how they fit into
the theoretical framework given in Section 4. In Section &, discuss conjugate—gradient
methods to compute the tangential component and analyzefthence of the inexactness.
The inexact calculation of the multipliers is discussed éct®n 8. In Section 9, we present
our numerical experiments. Section 10 reports on our caimhs and directions of future
work.

We use subscripted indices to represent the evaluationwifi@ibn at a particular point
of the sequence§r,} and{\;}. For instancef; represents(x;). The vector and matrix
norms used are thé, norms, and/; represents the identity matrix of ordér Also (z),
and (z), represent the subvectors of € IR™ corresponding to thg and« components,
respectively.

2. First—order necessary optimality conditions. We say that

satisfies the linearized state equations t.J(z)s = —C(x) or equivalently if
Cy(x)sy + Cy(z)s, = —C(x).

From the previous equation we can see that the columns of

(2.1) W(z) = ( —Cy(2) ' Cul2) )

Infm

form a basis of the null space dfx).

The structure of the Jacobian and the definition of its nulicgpusing the matrikV (z)
is important for the formulation of the first—order necegsaptimality conditions. In the
following, we give a brief derivation of the form of the thesenditions used in this paper.
Further details can be found in [14]. For box constrainedams see also [8], [15].

We introduce the Lagrangian function

Uz, ) = f(z) + ATC(x)

and we note that, due to the form of the bound constraintsintiegtibility of C, (x) implies
the linear independence of the active constraintsz, Ifs a local solution of problem (1.1),
then it satisfies the first—order Karush—Kuhn—Tucker (KKdnditions:

C(ry) =0, a<u, <bh,

A = _Cy(x*)iTvyf(fﬂ*)v

a; < (U*)z <b, = (Vug(.’ﬂ*, )\*))Z 0
(uy); = a; = (Vul(z4, \)); >0,
(uy); = b; = (Vul(z4,A)); <0



ANALYSIS OF INEXACT TRIP SQP ALGORITHMS 5

It is not difficult to show thatV, 4(z., \,) = W (z,)TVf(x.). Thus, if we define the
diagonal matrixD () with diagonal elements given by

[ ((b-w; it (W()"Vf(z)) <0andb; < +oc,

(2)'Vf(z)).

1 it (W(2)"Vf(z)). <0andb; = +oc,
(2)'Vf(z)).
( (

i

(w-a)? it (W)Vf > 0anda; > oo,

1 if (W 2)IVf x))i > 0 anda; = —oo,
1=1,...,n —m, then we can write the first-order KKT conditions in the form
(2.2) Clz.) =0, a<u. <bh,

(2.3) D(a,) W(2.)"V f(2.) =

3. Exact TRIP SQP algorithms. The algorithms described in this section have been
proposed and analyzed in [14]. They use exact first-ordévaie information and require
that the linear systems are solved exactly. The purposasoééction is to provide the frame-
work for this class of algorithms. The TRIP SQP algorithme irative algorithms. At a
given iteration, an approximatiary, to the solution is given, and a step

P (sk)y
k (s1)u )’

of the forms;, = s}, + s}, is computed. The component® ands}, of the step are called the
guasi—normal component and the tangential componentectgply. If the step is accepted,
the process continues by setting, 1, the new iterate, ta;, + s,. Otherwise the step has to
be recomputed and tested again for acceptance.

The role of the quasi—normal componeifitis to move towards feasibility of the equality
constraints. This component is of the form

(3.1) 5= ( (Ey ) ,

and it is computed as an approximate solution of the trugienesubproblem
o 1 n 5 1 N 9
minimize §||Jks + Cill” = §||Cy(xk)sy + Ckl
subjectto  [|sp]| < 4,

wheredy, is the trust radius. This quasi—-normal component mustfgatis

(3.2) [sp]l < w1]|Cyl
and
(3.3) 1Cell” = ICy (mk) (sh)y + Cill” > k2| Ckl| min{rs||Cll, 6k},

wherek 1, k9, andkg are positive constants independentofn Section 6, we describe several
practical ways to compute the quasi—normal component #ietfg conditions (3.1)—(3.3).
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The tangential component minimizes a quadratic model of #yggangian function in the
null space of the linearized constraints and subject tosttragion constraint. The tangential
component is of the form} = Wy (sk)u, WhereW), = W (zy) is the representation of the
null space ofJ;, defined in (2.1). The componefty ), must satisfy the bound constraints

(3.4) or(a —ug) < (sk)u < op(b—ug),

whereoy, € [0, 1) C (0,1). This ensures that;, + (sx). remains strictly feasible with respect
to the bound constraints < u < b.

For further description on howsy ), is computed, consider the quadratic model:
Wi(su) = ails)+ Wisa) + 5sT (BxDp?) s

(3.5) _
:qm”mﬁwmm%+%ﬁﬁmm+mmﬁ%

whereg(s) is the quadratic approximation of the Lagrangian functi¢én, + s, \x) given
by:

1
qk(S) = gk + me(’l‘k, )\k)TS + ESTH]CS,

andvy,jvqk(s;;) = W, (Hy.s2+V f1.). The matrixH, denotes an approximation Xe2,.4(zy, Ax),
and D, and E;, are diagonal matrices whoseth diagonal element is given by

1

[ (b—wup)? if (Wi'Vai(sp)), < 0 andb; < +oo,
- 1 if  (W!Va(s?)) <0andb; = +oo,
(3.6) (Dk)ii = i ( )Z
(u —a); if (WkTqu(QZ)) > 0 anda; > —oo,
|1 it (WIVa(sp)) > 0anda; = —c,
and

0 otherwise,
respectively. The role of these matrices in the quadrati) (% related to the application
of Newton’s method to the system of nonlinear equationdgrarif'om the first—order KKT
conditions. See [14] for more detalils.
Exact TRIP SQP algorithms include two approaches to comfuytg,: a coupled ap-
proach and a decoupled approach.
The decoupled approach [14] is associated with the trugibmesubproblem

(3.7) minimize  Wg(s,)
(3.8) subjectto  ||D, s, < d.

In this approach the tangential componégf), has to satisfy a fraction of Cauchy de-
crease condition associated with the trust—region sulgmol{3.7)—(3.8). This condition
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requires(sg), to give as much decrease on the quadratic (3.5) as the decgdan by
—D2WI'Vqk(s}). It can be proved (see [14, Lemma 6.2]) that such a conditigplies

ae(sy) —  ar(sp + Wi(sk)u)
(39) N T n : N T n
> kgl | DWWy Vi (sp) || min S 55| DeW, Vg (sp)l, k6dk ¢,

whereky, k5, andkg are positive constants independentof

The use of conjugate gradients to solve trust—region sigmas in unconstrained mini-
mization has been suggested in [46], [48]. An adaptatiomedé algorithms to compute the
tangential component that takes into account the problemtste and the bound constraints
is presented in [14] and is given by:

ALGORITHM 3.1 (EXACT COMPUTATION OF s, = s} + Wy (si)y, USING THE DECOU
PLED APPROACH.
1 Setsg =0, = —W,CTqu(s,';), ¢ = D]%TU, d’ = ¢°, ande > 0.
2 Fori=0,1,2,...do

2.1 Computey’ = ()
' (d)T (W, H Wy +Ep D, %) (d)

2.2 Compute
Ti—max{wo ;D (s, + 7d)| < 6y

opla —uy) < st +7d < op(b— uk)}.

2.3 Ify* <0, orify* > 7%, then se(sy), = s, + 7'd’, wherer’ is given as in 2.2
and go to 3; otherwise sef'! = s’ + y'd'.

2.4 Update the residuatd™! = " — ~ (W,;fHka + Eka*Q) d'
andg’t! = D2ritL,

2.5 Check truncation criteria: i\f/% < e, set(sy), = siT! and go to 3.

2.6 Computey’ = (’":;;78;” and setl't! = ¢t + ald'.
3 Computes;, = s + Wy (sx). and stop.

Step 2 iterates entirely in the space of theariables. After the. component(sy), of
the step has been computed,gitsomponent is calculated in Step 3.

The decoupled approach allows an efficient use of an appzau'bde,C to the reduced
HessianW;! H,,W}.. In this case only two linear systems are required, one @itfr,)” in
Step 1 and the other witfi, () in Step 3, cf. (2.1). If the full HessiaA, is approximated,
then the total number of linear system solve1i$k) + 2, whereI(k) is the number of
conjugate—gradient iterations. See Table 3.1.

In the decoupled approach only thepart of the tangential component is required to be
in the trust region. The coupled approach requires the wtawigential component to be in
the trust region. The trust-region subproblem is the foltauy

(3.10) minimize  Wy(s,)

(3.11) subject to H( (%), — Cyﬂxkl)flcu(ivk)su )

o < 6.
Dk Su

The tangential componefi,),, has to satisfy a fraction of Cauchy decrease condition assoc
ated with the trust—region subproblem (3.10)—(3.11). Thisdition requiregsy),, to give as
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much decrease on the quadratic (3.5) as the decrease giveDPW,” Vgy.(s}). It is shown
in [14, Lemma 6.2] that this condition also implies (3.9). alig one can use a conjugate—
gradient method to compute the tangential component.

ALGORITHM 3.2 (EXACT COMPUTATION OF s, = S} + Wj(sg)y USING THE COUPLED
APPROACH).
1 Sets’ = sy, V= fW,;Fqu(sz), @ = D,%ro, d’ = W,q°, ande > 0.
2 Fori=0,1,2,...do

P ()" (a)
2.1 Computey’ = Gy @ @)L Fe b, @)

2.2 Compute '
_maX{T S0 . H( (s8), = TCy k) Culwn) (d')u )

. <9
TD];](dZ)u > Ok,

op(a —ug) < st +7(d"), < op(b— uk)}

2.3 Ify* <0, orif 4* > 77, then stop and set, = s’ + 7'd’, wherer’ is given as
in 2.2; otherwise set’*! = s’ 4 id’.

2.4 Update the residualét! = r? — 4 (W,;Fdei + EkD,;Q(di)u) and
g+l = D2pitl,

2.5 Check truncation criteria: i\f/% < ¢, sets, = s'T! and stop.

2.6 Computey’ = % and setd’t! = Wy (¢! + o'd").

Note that in Step 2 both thg and theu components of the step are computed. The
coupled approach is particularly suitable when an appration to the full HessiarfH, is
used. However, the coupled approach can also be used witppoxémation H), to the
reduced HessiaWkT H,W,. In this case we set

- (00

If Hy is given by (3.12), then the definition @, implies the equalities

0

(3.13) Hyd = ( fd ) d"Hyd = d" Hyd,, and W/ Hyd = Hyd,,,
kUy

and this shows that the reduced Hessian approximafipnan be used in Algorithm 3.2. The
number of linear systems needed is given in Table 3.1.

TaBLE 3.1
Number of linear solvers to compute the tangential compori¢ere I (k) denotes the number of conjugate
gradient iterations.

Linear Decoupled Coupled

solver | Reducedd,. | Full H, | Reducedd, | Full H
C, () 1 k) +1] 1(k)+1 | 1(k)+1
Cy ()t 1 I(k)+1 1 I(k)+1

While Table 3.1 indicates that the decoupled approach i®nafficient in terms of lin-
ear system solves, in applications with ill-condition€glx) the coupled approach may be
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favorable. The reason is that in this case the decoupledagipmay underestimate the size
of Wy, (s), vastly and, as a consequence, may require more unsucciéssitions. See also
[14,55.2.2].

4. Inexact TRIP SQP algorithms. In this section, we assume that the terms involving
Cy(zy) andCy(xy) are computed inexactly. This includes the solution of lir@etems with
Cy(zx) andC,y (zx)" and the matrix—vector products with, (=) andC,,(zx)". The inexact
analysis for the quasi—normal component is presented itidhe6 and does not interfere
with the analysis developed in this section. We assume keagtiasi-normal component
sy, no matter how it is computed, satisfies conditions (3.12)(3and (3.3). We show in
Section 6 that this can be accomplished by a variety of tegtas to compute quasi—normal
components.

4.1. Representation of the inexactnessThe computation of the tangential component
requires the calculation of matrix—vector products of terfW.d,, andW,! d. Thus we need
to compute quantities like

—Cy(z) 'Culzp)dy, and — Cy(zp)" Cylar) " dy.

As we have pointed out earlier, often these computationaatdme done exactly. Therefore
we have to incorporate errors originating perhaps fromdiniifference approximations of
Cu(z)d, or from the iterative solution of the systert$(zy)d, = —C,(zk)dy.

In practice, the computation of thecomponent, of z = W,.d,, is done as follows:

Compute vy = —Cy(zp)dy + ey.
(4.2) g ! o)
Solve Cy(m)zy = vy +ey.

Theu component ofV;.d,, is equal tod,,. In (4.1),e, ande, are the error terms accounting
for the inexactness in the computation@f(z)d,, and the inexactness in the solution of the
linear systenC (z)z, = v,. Since theu component ofV}, is the identity, we only have an
error in they component, of W;.d,, computed via (4.1). It holds that

(42) Zy = _Cy(xk)ilcu(xk)du + Cy(xk)il (eu + ey) :

Of course, the errors, ande, depend in general og,.
Similarly, for givend the matrix—vector product = W,'d is computed successively by
the following procedure:

Solve Cylzp) vy = —dy+ey.
(4.3) Compute Uy = Cu(ivk)TUy + €y
Compute z = vy +dy

Again, e, ande, are error terms accounting for the inexactness in the coalliputofOu(rz;k)Tvy
and the inexactness in the solution of the linear systgir;)* v, = —d,,. For simplicity we

use the same notation, but the error terms in (4.3) are diffédrom those in (4.1). The errors

e, ande, depend in general a#h,. The computed result can be related to the exact result via
the equation

(44) z = *Ou('rl"k)TOy('rI”k)dey +dy + Cu(mk)TCy(-Tk)iTey + ey.
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These two sources of inexactness influence the computatithre dollowing important
guantities:

(4.5) Wi Vai(sh) = —Culzr)" Cy(zr) " Vyar(sh) + Vuar(sh),
and
- -1
(4.6) sk = Sp + Wi(sk)u = s + ( Cy (1) (SC)Y"(mk)(Sk)” > :
k)u

As we have seen in Section 3, these two calculations are tlyeooes that appear in the
decoupled approach involving derivatives©@fy, «) if an approximationf[k to the reduced
HessianW,[ H, W}, is used. This is not the case in all the other situations (sbteT3.1). If
an approximatiorH, to the full Hessian is used, then we have to account for theataess

in the calculation of¥,” H,Wj. Thus, there is no guarantee of monotonicity in the quadrati
U, (sy) in the conjugate—gradient method, and therefore there gaiaantee that a fraction of
Cauchy decrease condition of the form (3.9) would be satisfldis raises some interesting
problems related to the computation of the tangential camapbthat are addressed in Section
7. There we also show that, instead of (4.5) and (4.6), theaitteoperations with derivatives
of C(y, u) lead to quantities in the form

(47) PkTVQk(SZ) = _AkVka(SZ) + quk(SZ),

and

(4.8) Sk = 312 + Qk(sk)u _ 312 + *Bk(Sk)u :
(Sk)u

where A, and By, are linear operators representing the inexactness,

(4.9) Pk:(;;‘%), and Qk:<1.;B:l>.

A detailed derivation and analysis of the linear operatégsand By, is given in Section 7
together with an extension of Algorithms 3.1 and 3.2 for tbenputation of the tangential
component.

As a consequence of assuming this inexactness, we no loagercendition (3.9). In-
stead, we have the following condition:

qk(sh) — ar(sg + Qr(sk)u)

(4.10) > w4 DEF Var(sh)] min{ffsllDEPkTVQk(SZ)ll, ffs%} — 7] Gl

where once agaiRry, 5, kg, andkx; are positive and independent lof The matrixD,': is a
diagonal matrix of orden — m with diagonal elements given by:

1
(b —w)? i (PEVar(sp)), < 0 andb; < +oo,
o) 1 if (P,quk(s,';)) < 0 andb; = +oo,
Dk i — 1 !
(up —a); if (PkTqu(SZ))i > 0 anda; > —oo,
\ 1 if (PkTqu(S,';)) > 0 anda; = —oo,
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This matrix is the inexact version @, defined in (3.6). We show in Section 7 how (4.10) can
be satisfied. Of course, we still require the tangential comet to be feasible with respect
to the trust region constraint (3.8) or (3.11) and to the labconstraints (3.4).

In the computation of the actual and predicted decreaseace to evaluatd, s, after
the steps;, has been computed. Since we allow the derivatives (of «) to be approximated,
we do not haveJy, s, but rather

(4.12) Jr sk + ek,

whereey, is an error term.

4.2. Inexact TRIP SQP algorithms and general assumptionsTo decide whether to
accept or reject a stefy,, we evaluate the ratiored(sy; pi) /pred(sk; px), where the actual
decreasered(sy; px) is given by

ared(sg; pr) = L(zg, Ak pr) — L(wk + Sk, Akt 0k)

and the predicted decreagecd(sy; px) by

pred(si;pr) = L(zg, Ak; pk)
- (Qk(Sk; er) + AN (Jgsk + e + Ck) + pil| Jesk + e + Ck||2) :

HereAX, = \x11 — A, L(z, A; p) is the augmented Lagrangian function
L(z, X p) = f(2) + A C(z) + pC(2)" O(x),
and the quadratic term (sx; ex) is given by

ar(skier) = b+ Vs + ML (Jese +ex) + 551 Hysy,

(4.12)
= qr(sk) + M ek

The update of the penalty paramegerfollows El-Alem [19].

ALGORITHM 4.1 (INEXACT TRIP SQPALGORITHMS).

1 Chooser, such thate < ug < b, pick §o > 0, and calculate\,. Setp 1 > 1
ande;,; > 0. Choosexy, 11, 0, dmin, Omaz, @Ndp such thatd < ay,m1,0 < 1,
0< 5mm < 6mazv andﬁ > 0.

2 Fork=0,1,2,...do

2.1 If [|Ck|l + ||DY PEVar(s")|| < €01, Stop and returnc, as an approximate
solution for problem (1.1).

2.2 Computes}, satisfying (3.1), (3.2), and (3.3). Then, compufe= s + s}, =
sp 4+ Qr(sk)u, Where(sy), satisfies (3.4), (3.8) or (3.11), and (4.10).

2.3 Compute\,; and setA , = g1 — Ak

2.4 Computerred(sg; pr_1)-

f pred(sus pe-1) > 5 (I Cul = [Tk + ex + Cil?) then sep = pr1.
Otherwise set

2 (Qk(sk; er) — qe(0) + AX] (Jgsy + ex, + Ck)) N
p.

|CklI? = || Trsk + ex + Ck||?

Pk =
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ared(sg;pk)
2.5 Istz,pz) < m, set

Spp1 = @y max {||s,g|\, ||(D,F;)*1(sk)u|\} in the decoupled case or
_ n —Cy () ' Culwr) (5k)u ,
Ok+1 = 1 max {HSkHv H < DP) " (s1)u in the

coupled case, and rejegt.
Otherwise accept;, and chooséy . such that

max{(smina (Sk} < (5k+1 < dmaz-

2.6 If s, was rejected sety, | = z; andA;y 1 = Agx. Otherwise set; 1 = xx+sk
andX;1 = Mg + AN

Of course the rules to update the trust radius in the prevadgrithm can be much more
involved but the above suffices to prove convergence regattdo understand the trust—region
mechanism. From these rules we have the following lemma[{ged.emma 6.1]).

LEMMA 4.1. Every step satisfies

(413) H?kH < K/g(sk and 5k+1 > HgHSkH,

wherekg is a positive constant independentiof
For the convergence theory we need the following set of agsans (see [14]). For all
iterationsk, we assume that,, =, + s, € €2, wheref) is an open subset @".

A.1 The functionsf, ¢;, i = 1,...,m are twice continuously differentiable functions in
Q. Herec;(x) represents thé-th component of’(x).

A.2 The partial Jacobiat, () is nonsingular for alk: € €.

A.3 The functionsf, Vf, V2f,C, J, V¢, i = 1,...,m, are bounded if2. The matrix
Cy(z)~! is uniformly bounded irf.

A.4 The sequencefH}, {Wy}, and{ )} are bounded.

A.5 The sequencéuy} is bounded.

Assumptions A.1-A.4 reduce to the weakest assumptionsregfjto prove global con-
vergence for equality—constrained optimization (see @3 the references therein). As-
sumption A.5 is used in [8], [15] for box—constrained optation and is trivially satisfied if
a,b € IR"™. We comment on possible relaxations of some of these condiin Section
10.

Now we introduce the conditions on the inexact calculatighis important point here is
that Algorithms 4.1 can be particularized to satisfy theseditions. See Sections 6, 7, and 8.

IA.1 The sequence§A;} and{ B} are bounded.
A2 || (=Cy(ax) Bk + Cu(k)) (si)ull < O min{ss|Ck], o}, whered = min {1, 521,

IA.3 The error terme;, given in (4.11) obeygle;| < Qmin{ﬁ;,»HC’kH, 51—K2Hskll2},
mazx 8
wheref is given in |A.2.
IA.4 lim; H(—A;{j + Cu(;vkj)TC’y(;vkj)*T)qukj(s,';j)|| = 0 for all index subsequences
{k‘J} such thathmj HCk] H = 0.
The Assumption IA.2 imposes a bound on the distanc@ fs; )., to the null space of

the linearized constraints. It is obvious that I1A.2 is d&tswhenBy, = Cy(zx) ' Cy(z).
The Assumption IA.4 is only needed to derive Theorem 5.1 astticts the accuracy of the
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reduced gradient calculation. We will be more precise laféhis assumption is satisfied if
Ap = Cylap) ' Cylap) .

For the rest of this paper we suppose that Assumptions ASLaAd Conditions IA.1-
IA.4 on the inexactness are always satisfied.

5. Global convergence.For the global convergence of the inexact TRIP SQP Algo-
rithms 4.1 we need conditions (3.1), (3.2), and (3.3) on t&esg-normal componenf, and
condition (4.10) on the tangential componé€rt),. The following lemma states a lower
bound on the decrease given fyon the linearized constraints. The need for this lemma is
the fact that, due to the inexactness assumptipmight not lie in the null space of;.

LEMMA 5.1. The steps;, satisfies

K .
(5.1) |Cll? = ks + ex + Cull® > ZIICxl| min{ss || Cill, 61 }-

Proof. From IA.2 we get

| (=Cy(wk) Bk + Cu(zr)) (sk)ul?

IN

1 K .
— i3] O | =2 min{ ks || Ok, x }-
From 1A.3, (4.13), and;, < §,q, We Obtain
1 K .
lex]? < —r3]|Cr |~ min{rs|Cyl, 8 }.
K3 4

Using these inequalities, (3.3) = s} + Qk(sx)u, and the form (4.9) o)., we have

ICEII> = ks +ex + Cill*> = NCklI? = [|Cy (k) (s])y + Cill?
— | (—=Cy(zk) Bk + Culzk)) (sk)ull* — llex]?
2| Crll min{ s3] Cr |, 0x }-

v

0
We also need the following three inequalities.
LEMMA 5.2. There exist positive constantg, 1, andxy; independent of such that

(5.2) ak(0) — qr(sh) — AN (Jrsk + ex + Cx) > —kgl|Cil,

(5.3)  lared(sy; pi) — pred(sy; pi)| < k1o (’%HQ + ol sk ll” + okl Crll ’3k||2>
and

(5.4) |ared(sy; pi) — pred(sk; pi)| < K11kl skl|.

Proof. For the proof of the first inequality, we have

1 1
0:0) ~ ai(sh) = —~(Vat)sp — oot sl = — (Vo] + 5 IHl ) st
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Also, since||Cy (zx)(sh)y + Ckl| < ||Ck|l, we use IA.2 and IA.3s;, = s} + Qi (sk). and the
form (4.9) of Q;, and get

AN (st er +Cr) > - ||mk|(|cy<xk>(sz>y+ck|

11 (—Cy () Be + Cua)) (58)ull + ||ekr)
EYINWITeA]

Y

Using (3.2), the fact thats? | < dma., and Assumptions A.3 and A.4, we obtain the desired
inequality (5.2).

Now we prove the other two inequalities. If we add and sub#@g; 1, \r) toared(sk; pr)—
pred(sy; pr) and expand(-, A\;) aroundzy, we get

ared(sg; pr) — pred(sp; pp) = 551 (Hi — Val(zp + mpsk, Ak)) s
+ AN (—Chqr + Cr + Jisi) + O(|se]?)

- pk(ncmn? [ Jese + Call? — 0<||sk|3>)

for somer} € (0,1). The termsO(||s¢||?) andO(||sk|®*) come from IA.3. The rest of the
proof follows from [14, Lemma 6.5]. 0
The following four lemmas bound the predicted decrease.
LEMMA 5.3. If (sx), satisfies (4.10), then the predicted decrease in the meritifan
satisfies

pred(s;p) > ral D PEVay(s)lmin {ss]| Df P Vai ()], s |
(5.5)
(w7 + mg + )G +p(|ck||2 — [ Jesk + ex + cu?),

for everyp > 0, where from Assumption A.4,is a uniform bound fof| A ||.
Proof The inequality (5.5) follows from a direct application dfet form (4.12) of
qr(sk; ex) followed by (4.10), (5.2), A.4, and 1A.3. 0
LEMMA 5.4. Assume thatsy), satisfies (4.10) and thatD} P/ Vi (s?)|| + || Ck|| >
€101- There exists a positive constanindependent of such that, if|Cy| < adx then

g Pl 2 1107 PY Va5 [ min { ]| DL P Ve (). i |
5.6
+p(ICuI? = st +ex + Cul?).

for everyp > 0.

Proof. The proof is the same as the proof of Lemma 7.2 in [14]. O

We can use Lemma 5.4 with= p; 1, and conclude that if D} P Vg, (s?) || + || Ck|| >
€ror @and||Cy|| < «ady, then the penalty parameter at the current iterate doeseet to be
increased. This is equivalent to Lemma 7.7 in [13]. The newrirha states an equivalent
result to Lemma 7.8 in [13].

LEMMA 5.5. Let(sy), satisfy (4.10) and D} P/ Vi (s}) | + [|Ck|l > €101 There exists
a positive constant: such that, if| Cx|| < adj then

(5.7) pred(sk; pr) > K120k,
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wherek 4 is positive and does not depend fon
Proof. See [14, Lemma 7.3]. O
LEMMA 5.6. The predicted decrease satisfies

(5.8) pred(si; pr) = B (ICkI? = | Jusi + ex + Cil?)
for all k.
Proof. It follows directly from the Scheme 2.4 that updates O

Now we use the theory given in [13], [14] to state the follogviresult. This result shows
that for a subsequence of the iterates, the first—order KKiblitions (2.2)—(2.3) of problem
(1.1) are satisfied in the limit.

THEOREMb. 1. The sequences of iterates generated by the inexact TRIP ®QftAms
4.1 satisfy

(5.9) lim inf <|DkaTka| + |Ck||> =0.

Proof. First, we use the theory given in [13] to show that:

twint (11D PE Va(s)l + Gl ) = 0.
In fact, Lemmas 7.9—7.13 and 8.2 as well as Theorems 8.1a8d33.4 in [13] can be applied
based on (3.2), (4.10), (4.13), (5.1), (5.2), (5.3), (5(8)7), (5.8) and on the fact that if

| DY PIV (st + |Crll > €1 @and||Cy|| < ady, then the penalty parameter at the current
iterate does not need to be increased. Thus this resulttis juestating of Theorem 8.4 of
[13]. So, there exists an index subsequeficg such that

s (IDF, 2L ai, 611+ 165,1) = .
Now we apply Assumption IA.4 and the forms (2.1) and (4.9)1gf = W (z;) and P, to
obtain

T
lim (P,ﬁ — Wk,) Vay,(si,) = 0.

1—>00

Using this and the continuity ab (z)W (z)*'V f () we get

tim (11071 Vas (s5)] + G ) =0.
71— 00

The rest of the proof is given in the last paragraph of the jpobd@ heorem 7.1 in [14]D

The condition imposed in 1A.4 is related to the computatiéthe reduced gradient. If
the adjoint multipliers are used, then this condition camberpreted as a restriction on how
accurate these multipliers have to be computed. We commmethiiagain in Sections 7 and
8.
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6. Computation of the quasi—-normal component.The quasi—normal componesi is
an approximate solution of the trust—region subproblem

minimize 3| C, (z)(s")y + Ckl?

(6.1) _
subject to ||(s")y | < 0,

and it is required to satisfy the conditions (3.1), (3.2)d 4B.3). The property (3.2) is a
consequence of (3.3). In fact, usifg, (zx)(s;)y + Ckll < ||Ck|| and the boundedness of
{Cy(zx) '} we find that

sl < 1Gy(ex) | (ICy @x) o)y + Cull+ 16l ) < 216, @) 16l

Whether the property (3.3) holds depends on the way in wiielguiasi—-normal component
is computed. We show below that (3.3) is satisfied for a waétechniques to compute.

We concentrate on methods that are suitable for the larde sage and do not require the
matrix Cy () in explicit form. The first two groups of methods tackle thest—region sub-
problem (6.1) directly. The first group of methods are Krykmubspace methods that require
the computation of matrix-vector product§(zy)s, andC, (zx)*'s,, while the second group
of methods only requir€’, (z)s,. The third group of methods compute steps by solving the
linear systenC, (z)(s"), = —C}, approximately. The trust-region constraint is enforced by
scaling the solution.

6.1. Subspace methodsThere are various ways to compute the quasi—normal compo-
nents; for large scale problems based on Krylov subspace methauisexample, one can
use the conjugate—gradient method applied to the normatiequas suggested for the general
quadratic case in [46], [48], or one can use the Lanczosduaialization as described in [23].
Both methods compute an approximate solution of (6.1) frosutzspace that contains the
negative gradient-C, (z))” Cy. of the least squares functional. Thus, the st€pgenerated
by these methods satisfy} || < d; and

1 n
§||Oy(-7?k)(5k)y + Ci|?

62) < min{3lC,(@)s+ il : 5= 4Cy(e) Cr, 15| <0k} -

We can appeal to a classical result due to Powell, see [4Qr&he4], [35, Lemma 4.8], to
prove the following result:

LEMMA 6.1. If (s}), satisfies (6.2), then there exist positive constaatand 3, inde-
pendent of, such that

ICkIZ = 1Cy (k) (sR)y + Crll* > w2l Cyl| min{rs| O, 0k }-

Another method to solve large scale trust—region subpreblis analyzed in [45]. In this
approach the trust-region subproblem (6.1) is reformdlatean eigenvalue problem which is
then solved by the implicitly restarted Lanczos method.sThethod and the method in [23]
compute a step that satisfies the fraction of optimal deereasdition, i.e. these methods
compute stepss}), satisfying

ICI? = 16, ) 5y + Cul® = B(ICIE ~ 16, m) (52, + Cul? ).
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where(s]), is the solution of (6.1). Thus, the method in [45] yields gstatisfying (3.3).
The previous approaches require the evaluatiotgfr;)v and Cy (zx)” u for given v
andu. For some applications, the evaluation@f(xx)” u is more expensive than the appli-
cation of C, (21 )v, and therefore it may be more efficient to use methods that dlie use
of Cy(zx)Tu. In this case one can apply nonsymmetric Krylov subspacéatdstbased on
minimum residual approximations, such as GMRES [44]. Inabietext of nonlinear system

solving the use of such methods is described e.g. in [4].
If GMRES is used and if

1
63) 30F (G + 6ytaw) ) Ci > sl
holds withs > 0, then
ICEII® = ICy (k) (s7)y + Cill” > ko[ Cy || min{rsz||C |, 6},

whereky andkg are positive constants that do not depend:ofhe condition (6.3) is implied
by the positive definiteness of the symmetric parthfz;), a condition also important for
the convergence of nonsymmetric Krylov subspace methogsoéf of this result and more
details concerning the use of these methods can be foun@Jin [4

6.2. Scaled approximate solutions An alternative to the previous procedures is to com-

pute an approximate solutio#} of the linear systen®’, (z;)s = —C}, and to scale this step
back into the trust region, i.e. to set
an it |8 < 6,
6.4 o [ Sk . Where &, =
(6.4) k ( 0 S II?"CII otherwise.
k

We assume that the linear systém(z,)s = —C}, is solved inexactly and that the resid-
ual vector satisfie§Cy (z) 3} + Ci|| < €||Cy || with € < 1. Then we have the following result
(the proof can be found in [49]).

LEMMA 6.2.If ||Cy(z)3; + Ck|| < €||Ck|| withe < 1 for all £, then the quasi—normal
component (3.1) satisfies

1CKI? = N1Cy (1) (s7)y + Ckll* > wal| Crll min{ws )| Cx I, 0k },

wherer, and k3 are positive constants independent:of

7. Computation of the tangential component. Ideally, the tangential component min-
imizes the quadratic moddi(s,,) in the null space of the linearized constraints subject to
the trust region and the bound constraints. Since the natlespf the linearized constraints is
characterized byV},, the exact tangential component has the fefra= Wy (s),. Theu part
of the tangential component is computed by a conjugateiggrathethod and its computation
requires the calculation of matrix-vector produégd, and W, d. We assume that these
calculations are inexact.

7.1. Reduced gradient calculation.For the computation of the tangential component
we first have to compute the reduced gradiént Vg, (s?) of the quadratic modeb(s,,). If
this is done using (4.3), then we have an approximation teetieced gradientV,! Vgy(s})
of the form:

(7.1) WLV (sh) + ea,
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where the error terna4 depends o,/ Vg, (s?). By using the error term in (4.4), we find
that

(7.2) lleall < [1Cu(@x)" Cylz) " [ I (ea)yll + lI(ea)ull

We can interpret the inexact computation®f’ Vg, (s?) as the exact solution of a per-
turbed equation. If we set

1 n
EA )||2 €A (quk(sk))Ta

~ IVya(sy

then
< - Cu(xk)TCy(xk)iT + EA) Vka(SZ) = _Cu(xk)TCy(xk)iTvak(Sz) +ea.

Thus we can defind, = C, (zx) ' Cy(zx) — E’; and

I, m Inm

With this definition we can writdV,! Vg, (s) + ea = P Vqi(s}). The linear operato,
satisfies

| =4k + Cula)"Cylan) I = IEX < lleal/IVyar(sp)]
(7.4) < (1Cu@n) Cylaw) T el + leal ) /19 ax(s3)]
and
(4 + @ Cya) ") Vyarlsh)| = IEAV a6l = Jeal
(7.5 < (1Cu@n)Cylaw) M el + lealul))

If for given V¢ (s}), the error terms in the computation of the reduced gradieni4.3)
obey

(7.6) max {r(eA>y||, r(eAm} < )Gl
then (7.5) and Assumptions A.3—-A.4 imply the Condition |AMloreover, if
7.7) max{n(eA)yr, ||<eA>ur} <0 VgD

then (7.4) and Assumptions A.3—A.4 imply the boundednegsigt. This gives the first part
of Condition IA.1.
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7.2. Conjugate—gradient algorithms. In the following, we formulate extensions of the
conjugate—gradient Algorithms 3.1 and 3.2 for the companiadf the tangential component.
To keep the presentation simple, we continue to use theiowtlt, and W,”. However,
whenever matrix—vector products withi, or W' are computed, we assume that this is done
using (4.1) or (4.3). The degree of inexactness, i.e. theafizhe error termsg, ande,, is
specified later. The reduced gradiéfif. Vgy(s}) of the quadratic model(s,) is assumed
to be computed by (7.1) with erro(s),, (ea), satisfying (7.6) and (7.7).

In the case where an approximatitﬁ?)C to the reduced Hessidrv,;f H, W, is used, the
guadratic

— (P,;Fqu(SZ))Tsu — %sz (H,yC + Ek(D,':)fz) Su
is reduced at every iteration of the conjugate—gradientralym. If we use an approximation
Hy, to the full Hessian we have to compute matrix—vector mudgalons withW,f H,W,.
One of the consequences of the inexactness is that the tjoaglraluated at the iterates of
the conjugate—gradient algorithms is not guaranteed toedse. For instance, the inexact
application of W, and W;!' may cause¥,! H, W) to be nonsymmetric. Hence we need to
measure the Cauchy decrease at Step 3 of the algorithm. Téesen of the conjugate—
gradient Algorithm 3.1 is given below.

ALGORITHM 7.1 (INEXACT COMPUTATION OF s, = s; + Wj(sg)u (DECOUPLED
CASE)).
1 Sets) = 0,70 = —PI'Vqr(s}), ¢° = (DL)*rY, d° = ¢°, ande > 0.
2 Fori=0,1,2,...do

2.1 Compute
(r)"(g") i
,-),i _ (di)T(ﬁk+E‘k(.I?,£)*‘2)(di) (reduced HeSS|an)
(r)” (¢") '
@ (W H Wit B (D7) ) (@) (full Hessian)
2.2 Compute
= HlaX{T >0 ¢ |[(DP)71(sh 4+ 7d)|| < 6,

opla —uy) < st +7d < op(b— uk)}.

2.3 Ify' <0, orif4* > 77, then sets¥ = s, + 7'd’, wherer' is given as in 2.2
and go to 3; otherwise seft! = s, + ~d'.
2.4 Update the residuals:

o ri— (Hk + Ek(D,':)*Q) d (reduced Hessian)
T‘ - . . _ .
= (W;?Hka + Ek(D,':)*Q) d"  (full Hessian)

andg'*t! = (DF)?ritl,

2.5 Check truncation criteria: i\f/% <, sets’ = sit! and go to 3.

i _ (O T (gt i+l _ il igi
2.6 Computey’ = T and set'™ = ¢'™ 4+ o'd".
3 ComputeWys: .
If a reduced Hessian approximation is used,(sgl, = s; ands;, = s} + Wys;.
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If a full Hessian approximation is used and if

T
~ (PIVar(sp)) si — S(Wisi) Hy(Wisy)
T T
< f(W,;Fqu(sz)) s — 28l WIH Wys!,

then set(sy), = s. ands, = s} + Wisl. Otherwise(sg), = s; andsy =
sp + Wysy,.
The extension for the coupled approach is analogous anditgedm

7.3. Distance to the null space of the linearized constraist Let (s},), and(s}), =
(sk). be the quantities computed by Algorithm 7.1. Sin&g(sy ), is not computed exactly
in Step 3, it holds that

(sh)y = —Cylzr) " Cular)(sk)u + Cy(zr) " ((eB)u + (en)y)
= —Oy(.’l,‘k)ilcu(mk)(sk)u +eB;

where the error termg depends ottsy ), and satisfies

(7.8) llesll < 11Cy ()~ <|(€B)u| + ||(6B)y||>,

cf. (4.2). As before, we can interpret the inexact compatetk} ), of s}, = Wj(sx), as the
exact solution of a perturbed equation. If

1
Ep = ——— ep(sk),
(s )ull? “

then
( — Cylan) Culer) + EB) (56)u = —Cylan) " Culan) (s1)u + e = (5.

We defineBy, = Cy(zx) ' Cu(zx) — Ep and

(7.9) 04 — ( —By ) __( —Cy(xx) " Culax) + Es )_

I m In-m
With this definition, we can write
55: = Qk(sk)u-
The linear operatoB), satisfies
| = B+ Cylar) 'Culzi)l = IEsl < lesll/ll(sk)ul

(1€ 01 U emball + eyl ) /l(s0)a]

VAN

and
|(= Cylon)Be+ Culan) ) s1)u| = 1Cy @) Epsi)ull = [1Cy(ai)en]

(7.10) < lles)ull + li(en)yll-
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If the error terms in the computation ¢f},), using (4.1) obey

(7.1) s { ey [emhall} < 3 mingral Gl 0}

wherefl andx3 are defined as in 1A.2, then one can see from (7.10)Bheatisfies Condition
IA.2. Moreover, sincg C, (zx) '} is bounded, if

max{|ey||7|eu|} < nllse)all

then (7.3) implies the boundedness{df; }, cf. IA.1.

7.4. Cauchy decrease conditionNow we establish the decrease condition (4.10). We
analyze reduced and full Hessians approximations separate

In the reduced Hessian approximation case, an approximatjofor W' H,W} is used
and all the calculations of Step 2 of Algorithm 7.1 are perfed exactly. In this casgsy),,
satisfies the following condition

T 1 ~
— (PIVae(s0) (s1)u = 5 (1) Hilsia
(7.12) > sl D P ax(s) | min { )| DF P V(5D s |-

This is just a consequence of Powell’s classical result, ([4#orem 4], [35, Lemma 4.8])
adapted to the current context [14, Lemma 6.2].
Now recall that we need to establish (4.10), where the lefdrsde is given by

(@Vas) " (s~ 50T QL 58)u

However, in (7.12) the left hand side is

-~

n T 1
~(PEVa(sD) " (sedu— 5 ()0 Hi(s0)a

First we use (3.12) and (7.9) to Wri%a(sk)fﬁk(sk)u = 2(sx) L QF HyQp(sx)u. Then we
relate the inexactness representeddpyand@;, with the constraint residudiCy||. In fact, by
using (7.3) and (7.9), we write

(PEVar(sD) (s

T

= —Var(sp)  Qr(sk)u — Var(sp)" ( EOA > (sk)u + Var(s)" ( EOB ) (8K)u

T
= — (QEVar(s))) " (st)u — €hlsk)u + 5 Vyan(sh).
The error bounds (7.2), (7.6), (7.8), (7.11), and Assummgtid.3—A.4 give

eh(sk)u = epVyar(sh) < lleallll(s)ull + lenl Vyar(shI < wellCrll,

wherex7 is a positive constant independentiofHence we have proved (4.10). The analysis
for the full Hessian is given in [49].
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8. Computation of the Lagrange multiplier estimates. Note that the only assumption
on A, required to prove the global convergence result (5.9) ibthendedness of the sequence
{Ar} (see Assumption A.4).

A choice of \; that is available from the reduced gradient calculatiom@k) is A\, =
—Cy(7k) " TVyqk(s}). Due to inexactnessy, actually satisfies

—Cy(mr)" M = Vyar(s) + ep,

wheree; is the corresponding residual vector. From Assumptions-A.3, if {e} } is bounded,
then{\.} is also bounded.

Another choice for\; is \;, = —Cy(xk)*TVyfk. We refer the reader to Section 10.3 of
[14] for a discussion on these choices)\gt

9. Numerical experiments. We implemented the inexact TRIP SQP Algorithms 4.1
and compared them with the exact TRIP SQP Algorithms prapas¢l4]. The numerical
test computations were done on a Sun Sparcstation 10 in @quibtisionFortran 77.
We tested our algorithms on examples that have the strudieseribed in this paper. The
numerical results are satisfactory and revealed interggiroperties of the algorithms. Two
examples are described in this section. Numerical resutts two other examples are are
documented in [7], [25].

We use the formula (6.4) to compute the quasi—normal comypard conjugate-gradients
to calculate the tangential component. The scheme usediteithe trust radius and the in-
exact form of diagonal scaling matricé, and D,, are the same as in [14]. We have used
o = o = 0.99995 for all k; 5o = 1 as initial trust radiusp_; = 1 andp = 10~2 in the
penalty scheme. The tolerances used wgge= 10~2 for the main iteration, Algorithm 4.1,
ande = 10~* for the conjugate—gradient Algorithm 7.1 and the corres{ian coupled ver-
sion.

The tolerance for inexact solvers widh, (=) was set to

(9.1) min{l(r?, 102 min{||Cy ||, 5k}},
and for inexact solvers with, (z;)" to
(9.2) min {102, 10210ky}.

This scheme for setting the tolerances satisfies (1.3).

For both, the decoupled and the coupled approaches, we ppeakanations to reduced
and to full Hessians. We approximate these matrices usmgjrttited memory BFGS repre-
sentations given in [6] with a memory size ®pairs of vectors. For the reduced Hessian we
use a null-space secant update (see [41], [51]). The ihltakian approximation igl,, ,,
for the reduced Hessian and,, for the full Hessian, wherg is the regularization parameter
in the objective function, set in both examples @ 3.

In both examples the starting vectorig = 0.

Since our algorithms are tailored for problems originalbvgrned by infinite dimensional
equations, our implementation allows the use of weightedas@roducts. In particular, we
use scalar producta', u?)y and(y', y?)y instead ofu!)” w2 and(y')”y?. The scalar prod-
uct for the unknown is given by(z!, 2) x = (u',u?)y + (y', y?)y. For most applications
these scalar products are defined by appropriate disdietizaof the inner products in the
infinite dimensional control space and the state spaceectgply. This feature is important



ANALYSIS OF INEXACT TRIP SQP ALGORITHMS 23

for the correct computation of the adjoint and the apprdersxaling of the problem. More-
over, in many cases, we could observe a mesh independentidretiour algorithms. These
scalar products are used in the conjugate—gradient digusitsee e.g. Algorithm 7.1, and in
the quasi—-Newton updates.

It is not the purpose of this paper to explore and analyzeféfaitire of our algorithms.
We refer to [7] for the detailed study of one application alnel €xposition of the importance
of the scalar product. For a detailed description of how tte#as products are used and for a
comprehensive description of the implementation we ref¢26].

9.1. Boundary control of a nonlinear heat equation. The first example is the boundary
control of a nonlinear heat equation. This and similar cdriproblems are discussed e.g. in
[5], [30], [33], [40].

The goal is to control the heating process in such a way tleattmperature at the bound-
ary z = 1 follows a certain desired temperature profilg¢). The controlu(¢) acts on the
boundaryz = 0. The problem can be formulated as follows:

e 1 (T
minimize 5/0 (1, ) = ya(t))? + yu?(1))dt

subject to
T(y(z, 1) G (2, 1) — Ou(k(y(z, 1)) Dy (2, 1)) = qla,t), (z,t) € (0,1) x (0,T),
5(y(0,8))0:y(0,8) = g[y(0,t) —u(t)], t€(0,7T),
s(y(1,8)0.y(1,t) = 0, t€(0,7),
( 0) = yO(x)v € (071)7
Ulow < U < Uypp,

wherey € L*(0,7;H'(0,1)), andu € L*(0,T). The functionsr, x € C'(IR) denote
the specific heat capacity and the heat conduction, resplctiy, € H'(0, 1) is the initial
temperature distributiony € L(0,7; H'(0, 1)) is the source terny is a given scalar, angl
is a positive regularization parameter. Hefg,, u,,, € L>(0,7T) are given functions.

If the partial differential equation and the integral arsadetized we obtain an optimiza-
tion problem of the form (1.1). The discretization uses éirditements and is discussed in [5]
(see also [24], [30]). The spatial discretization is donegipiecewise linear finite elements
with N, subintervals of equidistant length (%, 1). The time discretization is performed
by partitioning the interval0, T'] into V; equidistant subintervals. Then the backward Euler
method is used to approximate the state space in time, andvgige constant functions are
used to approximate the control space.

With this discretization schemé;, () is a block bidiagonal matrix with nonsymmetric
tridiagonal blocks. In the exact implementation we uselth&IPACK subroutineDGTSL to
solve the tridiagonal systems. These calculations arertesppan [14]. We introduce inex-
actness into this problem by solving these tridiagonalesystinexactly. For this purpose
we tested several iterative methods like GMRES, QMR, andd3BTAB. The results were
quite similar and we report here those obtained with GMRBE(Eince we have to solve a
nonsymmetric tridiagonal system at each time step, we redbe residual norms for these
systems to be smaller than the tolerances given in (9.1)@%&j divided byN;.

For this example, the inner produdts', u?);; and(y', y*)y are chosen to be discretiza-
tions of theL?(0, ') andL?(0, T'; H' (0, 1)) scalar products of the control and the state spaces
respectively.
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If spatial and time discretization are chosen properlypidwtial Jacobiait, () is invert-
ible with uniformly bounded inverse. This follows from théigticity of the problems that
have to be solved in every time step. See [5], [30]. Due to itmgle structure of the objec-
tive function, derivatives of are bounded. Since we use the adjoint multiplier, the presio
results imply the boundedness of the Lagrange multipliemedes.

The functions in this example are those used in [30, Examfle 4]. The size of the
problem tested ia = 2100, m = 2000 corresponding to the value$, = 100, N, = 20. The
upper and lower bounds abe= 0.01, a; = —1000,i=1,...,n — m.

We ran the exact and inexact TRIP SQP algorithms using désdwmd coupled ap-
proaches and reduced and full Hessians. The total numbtrafions for each case is given
in Table 9.1. The quantitieg(x), |C ()|, and||D(z)W ()’ V f(z)| are plotted in Figure
9.1. There were no rejected steps. In all the cases the tigwritook less than fifty iterations
to attain the convergence criteria. The coupled approagmdi perform as well as the de-
coupled approach. This is explained by the accumulatiomrof®due to inexactness. In fact,
if the decoupled approach is used, theomponent of the tangentia), is computed only in
Step 3 of Algorithm 7.1, and although this computation iscaet, there is no accumulation
of errors. In the coupled approach, thepart of the tangential componesi; of the step is
updated at every conjugate—gradient iteration throughmexaict linearized state solver. This
destroys the symmetry of the subproblem and the conjugediemt method requires more
iterations. As the number of conjugate—gradient iteratiocreases, this error propagates, and
the steps that are computed are farther away from the nutkespithe linearized constraints.

We illustrate this situation in Figure 9.2, where we show Hawi| J; s7|| and||.Jx (s} +
s.)|| are from each other. The dotted line shows the size of thduabkof the linearized state
equation after the computation of the quasi—normal compiriéthe tangential component
is in the null-space of the Jacobian, then this would be tteecdithe residual of the linearized
state equation for the whole step. In other words, we woule ey s} || = || Ji (s) + s})]|-
However, due to the inexactness in the applicatioWQfandW[ , the size of the residual of
the linearized state equation for the whole step is largdiisgiven by the solid line. It can be
seen that the difference grows¥ s or W, are applied more often in the computation of the
tangential component. In particular, the difference igéaiif the coupled approach is used.

TABLE 9.1
Number of iterations to solve the optimal control problems.

Optimal control Decoupled Coupled
problem governed by | ReducedH;, | Full H, | Reducedd, | Full Hy,
heat equation (exact solvers 16 18 17 19
heat equation (inexact solvers) 16 18 29 48
semi-linear elliptic equation 18 20 27 36(39)

9.2. Distributed control of a semi—linear elliptic equatian. The second example is the
distributed control of a semi—linear elliptic equation.€T¢tontrol problem is given by

(9.3) minimize% /Q[(y —ya)? +yu?)dzx
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Fic. 9.1. Performance of the inexact TRIP SQP algorithms applied tooandary control prob-
lem of a nonlinear heat equation. Hemg,of(z) (dotted line), logio||C(zr)|| (dashed line), and
loguo||D(zx)W (z1)TV £ (z1)|| (solid line) are plotted as a function &f

over ally andu satisfying the state equation

—Ay+gly) = u, in Q,
©.4) y+9(y)
y = d, onof,
and the control constraints
(95) Ulow < U < Uypp,

wherey € HY(Q), u € L%(2), tjou, uupy € L>($2) are given functions, ang is a bounded
domain oflR?, with boundaryd2. In our examples we choo$e= (0,1)2,d =0,g(y) = €Y,
andy, = sin(27z1) sin(27x2). In this case the state equation (9.4) is a particular Bragh-p
lem. Solvability and applications of the state equationdiseussed e.g. in [21, Section IV.2],
[22]. For the discretization of the problem, we use piecewisear finite elements with a
uniform triangulation obtained by first subdividing theand they subinterval into a sam-
ple of subintervals and then cutting each resulting subrequmo two triangles. The same
discretization was used for the states and the controls.

Since the linearizations of the infinite dimensional stajaation is elliptic and is dis-
cretized by conforming finite elements, the matricggz) ' are uniformly bounded. As in
the previous example, the simple structure of the objeétimetion implies that the derivatives
of f are bounded. This also implies the boundedness of the adjaittiplier estimates.
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FiG. 9.2. lllustration of the performance of the inexact TRIP SQP &thms applied to a boundary con-
trol problem of a nonlinear heat equation. These plots shbe residuals of the linearized state equations
logio||Jx s} || in dashed line andogio|| Jx (sh, + s%)]| in solid line.

The norms used for the states and controls are the disdretigaf theH/ ! (©2) and L2 (Q2)
norms. The linearized state equation and the adjoint emquatie solved using GMRES(20)
preconditioned from the left with the inverse Laplacian. apply this preconditioner, one
has to compute the solution of the discrete Laplace equatiimdifferent right hand sides.
This was done using multilevel preconditioned conjugatelgmts. Note that fog(y) = €Y,
the problem is self-adjoint. Therefore a conjugate—gradigorithm could have been used
instead of GMRES. However, the implementation was donetfermore general problem
with state equation- Ay + g(y, Vy) = u, which in general is not self-adjoint.

In this example, the number of controls is equal to the nurobstates. In the computa-
tions reported below we use = n = 289 which corresponds to a uniform triangulation with
512 triangles. The upper and lower boundstgre 5, a; = —1000,7 = 1,...,n — m.

The total number of iterations needed by the inexact TRIP 8i@&rithms to solve this
problem are presented in Table 9.1. In all situations but afiethe steps were accepted.
(The situation we refer to is the coupled approach with fullseian approximation where
there were36 accepted steps among the¢ computed.) The quantities(z), ||C(z)|, and
|D(z)W (z)T'V f(x)| are plotted in Figure 9.3. The convergence behavior of tleaot
TRIP SQP algorithms is similar to the convergence behawiottfe other example. Again the
decoupled approach performs better than the coupled onédbhe fact that less errors are
accumulated. See Figure 9.4.
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Fic. 9.3. Performance of the inexact TRIP SQP algorithms applied toistriduted control prob-
lem of a semi-linear elliptic equation. Heiegiof(zx) (dotted line), logio||C(zk)|| (dashed line), and
loguo||D(zx)W (z1)TV £ (z1)|| (solid line) are plotted as a function &f

The last experiment that we report consisted of applyingirtegact TRIP SQP Algo-
rithms 4.1 to solve large instances of the distributed séndar control problem. In this
experiment, we used the decoupled approach with a limitedangBFGS update to approx-
imate the reduced Hessian matrix as described above. Thieanahiterations corresponding
to four instances of this control problem are given in Tablz These instances were gener-
ated by decreasing the mesh size, i.e. by increasing theewohlriangles in the discretiza-
tion. In this table we include the number of linearized statd adjoint equations of the form
(1.2) solved by the algorithms.

We point out that in this example the control is distributeéliand the number of compo-
nents inu is 5. For the value$; = 5, a; = —1000, 7 = 1,...,n — m of the upper and lower
bounds that we chose, the number of control variablastive at the solution is roughly equal
to {5. These observations are important for the conclusions @ dr the next paragraph.

It is well known that in many interior—point algorithms fdanéar and convex program-
ming problems the number of iterations is a polynomial fiorcof the size of the problem.
On the other hand, most active set methods have a exponemtiat—case complexity. In
interior—point algorithms, as we increase the dimensiothefproblem we should observe
at most a polynomial increase in the number of the iteratiode can see from Table 9.2
that this is clearly the case for the TRIP SQP algorithms.s€hesults once more show the
effectiveness of these algorithms for optimal control peofs with bound constraints on the
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Decoupled with reduced Hessian Decoupled with full Hessian
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FiG. 9.4. lllustration of the performance of the inexact TRIP SQP athons applied to a distributed con-
trol problem of a semi-linear elliptic equation. These pleshow the residuals of the linearized state equations
logio||Jx s} || in dashed line andogio|| Jx (sh, + s%)]| in solid line.

controls. (If there are rejected steps, then the numbeeddtions in brackets corresponds to
all the accepted and rejected iterations.)

TABLE 9.2
Number of iterations to solve large distributed semi-lineantrol problems.

variables {) | constraints+#) | iterations| C,(zy) solvers| C,(zx)? solvers
578 289 18 54 37
2178 1089 22 66 45
8450 4225 26 (31) 83 58
33282 16641 49 147 99

10. Conclusions and future work. In this paper we have investigated the theoretical
and numerical behavior of a class of trust-region intepormt SQP algorithms under the
presence of inexactness. These algorithms have been pobjpdd.4] for problems of the type
(1.1), where the equality constraints often come from tiserétization of partial differential
equations. We have generalized the global convergenct gbgn in [14] to the case where
linear solvers and directional derivatives associatedh Wiese constraints are inexact. We
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proved that global convergence to a point that satisfies tsie-dirder KKT conditions (2.2)—
(2.3) can be guaranteed if the absolute error in the solafdinear systems witl®, (z;) and
Cy(z)" and in the calculation of directional derivatives @fat zy is O (min{dy, || Ck|}).
Numerical experiments with two optimal control problems leanfirmed our analysis and
showed how the inexact calculation of the quantiti&gd, and W,;F d can affect the use of
conjugate gradients to compute the tangential componetiteo$tep and the overall perfor-
mance of the algorithms.

The conditions on the inexactness described in this papenrarized in (1.3), are suf-
ficient to guarantee global convergence to a stationarytpdiowever, as it is the case for
systems of nonlinear equations, the practical implemiemtatf conditions greatly influences
the performance of the algorithm. Issues like oversolving forcing faster rates of local
convergence are of importance and will be the subject ofréutnvestigations. Since the
guasi—normal component can be viewed as one step of Newtmilsod (with a trust—region
globalization) towards feasibility for given, there is a close relationship with the studies of
inexact Newton methods for systems of nonlinear equatib@l [18].

The computation of the tangential component using the ealigpproach is another is-
sue that will be investigated further. In particular thesla§ symmetry due the inexactness
deserves attention and the use of nonsymmetric methodsgfaolution of these subproblems
will be investigated. See also [34].

In our applications the uniform boundedness(yf(z) ' can be shown. However, the
uniform boundedness @f, (z) !, or even the global invertibility is not guaranteed in other
important applications. Possible relaxations of this déooa will be investigated along with
relaxations of other assumptions. For example, the reopgrg of the boundedness Qff; }
might be relaxed using the ideas in [43] for trust—regionhods for unconstrained optimiza-
tion.
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