
E�cient parallel algorithms for tree accumulationsJeremy Gibbons, Wentong Cai and David B. SkillicornAbstract. Accumulations are higher-order operations on structured objects; they leave theshape of an object unchanged, but replace elements of that object with accumulated informationabout other elements. Upwards and downwards accumulations on trees are two such operations;they form the basis of many tree algorithms. We present two Erew Pram algorithms for com-puting accumulations on trees taking O(logn) time on O(n= logn) processors, which is optimal.Keywords. Tree contraction, upwards accumulations, downwards accumulations,Erew Pram,data parallel programming.1 IntroductionAccumulations are higher-order operations on structured objects that leave theshape of an object unchanged, but replace every element of that object with someaccumulated information about other elements. For example, the pre�x sums orscan operation (Blelloch, 1989) on lists that, for an associative operator - , mapsthe list [a1, : : : , an] to the list of `partial sums' [a1, a1 - a2, : : : , a1 - a2 - � � �- an]is an accumulation: it replaces each element of the list with the `sum' of the elementsto its left. Another way of saying this is that information is `passed along the list',from left to right.This paper concerns two kinds of accumulation on binary trees, upwards anddownwards accumulation. Upwards accumulation passes information up through atree, from the leaves towards the root; each element is replaced by some functionof its descendants, that is, of the elements below it in the tree. Symmetrically,downwards accumulation passes information downwards, from the root towards theleaves; each element is replaced by some function of its ancestors, that is, of theelements above it in the tree.Upwards and downwards accumulations form the basis of many important algo-rithms, and so are a useful idiom to add to the programmer's toolbox. For example,computing the sizes of subtrees and the depths of nodes are natural applications ofCopyright c1994 Elsevier Science B.V. Authors' addresses: Dept of Computer Science,University of Auckland, Private Bag 92019, Auckland, New Zealand, emailjeremy@cs.aukuni.ac.nz (JG); School of Applied Science, Nanyang Technological University,Singapore 2263, email aswtcai@ntu.ac.sg (WC); Dept of Computing and Information Science,Queen's University, Kingston, Ontario K7L 3N6, Canada, email skill@qucis.queensu.ca(DBS). Accepted for publication in Science of Computer Programming.

E�cient parallel algorithms for tree accumulations 2upwards and downwards accumulation, respectively. The parallel pre�x algorithm(Ladner and Fischer, 1980) for computing the pre�x sums of a list in logarithmictime on linearly many processors involves building a tree with the list elementsas leaves, then performing an upwards and downwards accumulation on the tree(Gibbons, 1993); the pre�x sums problem in turn has applications in the evaluationof polynomials, compiler design, and numerous graph problems including minimumspanning tree and strongly connected components (Akl, 1989). Upwards accumu-lation can be used to solve some optimization problems on trees, such as minimumcovering set and maximal independent set (He, 1986). Other algorithms such asReingold and Tilford's algorithm (Reingold and Tilford, 1981) for drawing treesand a two-pass algorithm for completely labelling a tree according to an attributegrammar (Gibbons, 1991) also consist of an upwards followed by a downwardsaccumulation.For a tree with n elements, these accumulations can be computed naively ona sequential machine in time proportional to n , and on a parallel machine withn processors in time proportional to the depth of the tree. We show here how toadapt Abrahamson et al.'s parallel tree contraction algorithm (1989) for computingtree reductions to allow the accumulations to be computed in logarithmic time onan n -processor Erew Pram, even if the tree has greater than logarithmic depth.Straightforward application of Brent's Theorem (Brent, 1974) reduces the processorusage to n= log n , which gives optimal algorithms.The remainder of this paper is organized as follows. In Section 2 we give thede�nitions of tree reductions and of upwards and downwards accumulations. InSection 3 we review parallel tree contraction. In Sections 4 and 5 we adapt thecontraction algorithm to computing upwards and downwards accumulations, re-spectively.2 Upwards and Downwards AccumulationsOur binary trees have labels drawn from two sets: leaf labels are drawn from a setA and junction labels from a set B . A binary tree is either a leaf, labelled withan element of A , or a junction with two children, labelled with an element of B .Thus, we have no empty tree and every parent has exactly two children.The P-reduction of a tree for a ternary operator P from A� B � A to A reducesa binary tree to a single value in A . For example, the P-reduction of the tree inFigure 1, where a, c 2 B and b, d, e 2 A , is the single value b Pa (d Pc e) in A .Note that the ternary operator is written with its middle argument as a subscript.(A more general form of reduction|in fact, a homomorphism|can be obtained by�rst mapping a function f of type A ! C for some third type C over the leaves,and returning a single value in C ; the discussion in the rest of this paper can easilybe generalized to such homomorphisms.)Tree reductions can be computed naively on a sequential machine in time pro-

E�cient parallel algorithms for tree accumulations 3b ad c e�Figure 1: A binary treebbPa (dPc e)ddPc ee�Figure 2: The P-upwards accumulation of the tree in Figure 1portional to the size of the tree and on a parallel machine with n processors in timeproportional to the depth of the tree, if the operator P takes constant sequentialtime. (For the rest of the paper, we assume that `component' operators like P takeconstant time.) Under certain conditions on P , the parallel contraction algorithmreviewed in the next section reduces this to logarithmic parallel time even if thetree has greater than logarithmic depth.Upwards accumulations generalize reductions; instead of computing a singlevalue, an upwards accumulation computes a tree of partial results with the sameshape as its argument|each node is labelled with the reduction of the subtree orig-inally rooted at that node. For example, the P-upwards accumulation of the treein Figure 1 is shown in Figure 2. Notice that an upwards accumulation returnsa homogeneous tree, that is, one in which leaf and junction labels have the sametype.Upwards accumulations can be computed naively with the same amount of workas reductions, since the partial results must be computed anyway. It is signi�cant,though, that an upwards accumulation consists of applying a reduction, as opposedto just any function, to all subtrees. Were this not the case, it would not be possibleto compute the value for a parent from the values for its children|put another way,the required `partial results' would not be byproducts of the naive computation ofthe reduction.A downwards accumulation also computes a tree of values with the same shape

E�cient parallel algorithms for tree accumulations 4a cd�Figure 3: The path to the element d in the tree in Figure 1a (b aa) c(da) ca) c) e�Figure 4: The ((,))-downwards accumulation of the tree in Figure 1as its argument; each node is labelled with a path reduction of the elements on thepath from the root of the tree to that node. For two binary operators (and)which cooperate (Gibbons, 1993), that is, which satisfy the four lawsa((b(c) = (a (b)(ca((b) c) = (a (b)) ca) (b(c) = (a) b)(ca) (b) c) = (a) b)) cthe ((,))-path reduction consists of replacing all `left turns' with (and all `rightturns' with) . For example, Figure 3 shows the path to the element labelled d inthe tree in Figure 1; the reduction of this path is a) c(d . Because of coopera-tivity, no parentheses are needed in this expression. Note also that a consequenceof cooperativity is that (and) must each have type A � A ! A ; downwardsaccumulations can only be performed on homogeneous trees.The ((,))-downwards accumulation of a tree consists of replacing every elementwith the ((,))-path reduction of the path to that element. For example, Figure 4shows the accumulation of the tree in Figure 1. Again, the result is a homogeneoustree.3 Parallel Tree ContractionOur algorithms for computing accumulations on trees are modi�cations of paralleltree contraction algorithms (Miller and Reif, 1985; Abrahamson et al., 1989), whichreduce a tree to a single value. We present here a description of parallel tree

E�cient parallel algorithms for tree accumulations 5contraction which we generalize later to the algorithms for accumulation.We suppose that a binary tree with n nodes is represented as a collection of nprocessors. Each processor u maintains a number of variables: u.j is a boolean,and is true i� u is a junction; u.p is a pointer to the parent of u ; u.s is a boolean,and is true i� u is the left child of its parent (the ` s ' stands for `side'). We supposethat root is a pointer to the root of the tree, and to avoid special cases we supposethat root.p points somewhere, and that root.p.l = root and root.s is true, so thatthe root is `the left child of its parent'. If u.j is false, u has the variable u.a 2 A ,a `leaf label'; otherwise, u has the variable u.b 2 B , a `junction label'. If u.j istrue, u also has the extra variables u.l and u.r , being pointers to its left and rightchildren. Finally, every processor u has a variable u.g , an `auxiliary function' fromA to A . This auxiliary function can be thought of as labelling the edge between uand u.p and a�ecting the computation of the tree reduction in the obvious way; it isinitially the identity function, but we make use of it in the parallel tree contractionalgorithm, to record the `postprocessing' that has to be done at a node as the treegets rearranged.The purpose of tree reduction is to compute the value naivered(root) , wherenaivered(u) = u.g(naivered(u.l)Pu.b naivered(u.r)), if u.j= u.g(u.a), otherwisefor some ternary operator P . The problem is that although the reductions ofthe two children can be computed in parallel, this naive formulation still requiresparallel time proportional to the depth of the tree|the length of the critical path|which is linear in the worst case. Parallel tree contraction reduces the complexity tologarithmic parallel time in the worst case by allowing processors to do useful workbefore they receive their inputs. The tree is gradually contracted, halving in sizeat each step, while maintaining the value of naivered(root) ; after dlog ne steps, thetree has collapsed to a single leaf, root , and its reduction is simply root.g(root.a) .Contraction is performed locally by the operations contractl and contractr , which`bypass' nodes of the tree. These two operations are symmetric, so we discuss onlycontractl here; the duality is straightforward. The operation contractl is performedon a node u when u is a junction and u.l is a leaf; nodes u and u.l are removedfrom the tree. This is illustrated in Figure 5.The operation contractl(u) that does this is:contractl(u):u.r.g := �x� u.g(u.l.g(u.l.a)Pu.b u.r.g(x));u.r.p := u.p;if u.s then u.p.l := u.r else u.p.r := u.r;u.r.s := u.s;if root = u then root := u.rThe �rst assignment records the deleted nodes in the auxiliary function for u.r , sothat naivered(u.r) has the value after the operation that naivered(u) did before-

E�cient parallel algorithms for tree accumulations 6u.l uX u.r Y� contractl������! u.l uX u.r Y�Figure 5: The operation contractl(u)hand; together with the pointer manipulations, this maintains naivered(root) . Thefollowing three assignments update the pointers, e�ectively deleting u and u.l fromthe tree. The �nal assignment is to ensure that we still know where the root is:in our formulation of the algorithm, in contrast to others', the original root of thetree may be bypassed.These contraction operations each remove two nodes, at least one of which isa leaf. Abrahamson et al. (1989) present a simple scheme by which many suchcontraction operations|in fact, half as many as there are leaves|can be performedin just two steps, without mutual interference. Their scheme is as follows:(i) Assume all leaves are numbered from left to right, starting with zero. Thisnumbering is easily computed in O(log n) time on O(n= log n) processors (Coleand Vishkin, 1986).(ii) Mark all even-numbered leaves.(iii) For every junction u such that u.l is a marked leaf, perform contractl(u) .(iv) For every junction u not involved in the previous step such that u.r is a markedleaf, perform contractr(u) .(v) Renumber the leaves by halving their numbers.Actually, Abrahamson et al. mark the odd-numbered leaves; marking the even-numbered leaves instead sometimes reduces the size of the tree by an extra ele-ment. Note also that the operations contractl and contractr are never performedconcurrently; the reason for this is explained later.Clearly, this scheme deletes at least half of the leaves, but we must show that noconcurrent contraction operations interfere.Note that the operation contractl(u) involves nodes on three consecutive levels,u.p , u and u.r ; however, the �elds of u.p and u.r that are involved are disjoint, socontractions involving nodes two (or more) levels apart do not interfere. Contrac-tions involving two nodes on the same level do not interfere: the children of the twonodes are disjoint, and the nodes can at worst be left and right children of the sameparent. Only nodes on adjacent levels remain to be considered. If neither of the two

E�cient parallel algorithms for tree accumulations 7nodes is the parent of the other, they do not interfere, so suppose that one is theparent of the other. The two will only be contracted simultaneously if they bothhave marked leaves as (without loss of generality) left children|but such leavesare adjacent in left-to-right order, and so cannot both be even-numbered. Hence,a node and its parent will not be simultaneously contracted, and consequently noconcurrent contraction operations interfere.Only one aspect is left to consider: the contraction steps must take constanttime, but the contraction operations assign lambda expressions of increasing sizeto the auxiliary functions. We must ensure that the time taken to compute newlambda expressions from old remains constant no matter what lambda expressionsare generated at intermediate steps, and despite the fact that they appear to growin size (and might therefore require longer times to access and manipulate). Oneway to ensure this is to use indices into a set of lambda expressions in place of thelambda expressions themselves. Then the requirement that each contraction steptakes constant time is met if the indexed sets meet the following conditions:� for every u , the `sectioned' binary operator Pu.b from A � A to A and thefunction u.g are drawn from indexed sets of functions F and G (which containsthe identity function) respectively;� functions in F and G can be applied in constant time;� for all - 2 F , g 2 G and a 2 A , the functions �x� g(x) - a and �x� a - g(x)are both in G , and their indices can be computed from a and from the indicesof - and g in constant time;� for all gi, gj 2 G , the composition gi � gj is in G , and its index can be computedfrom the indices i and j in constant time.These conditions are stronger than required here, but we need the extra strength forthe upwards accumulation algorithm. Note that these conditions are satis�ed if Ais �nite: the functions can be modelled by matrices. Alternatively, these conditionsare satis�ed if there exist associative commutative operators (and) such that) distributes over (, such that each - in F can be written x - y = a) (x (y)for some a , and each g in G can be written g(x) = b ((c) x) for some b andc , and such that G contains the identity; this allows us to compute, among otherthings, the heights and sizes of all subtrees in logarithmic time. Either way, theseconditions ensure that functions in F and G can be represented by variables ofconstant size, and can be combined and applied in constant time.An example of the tree contraction procedure is given in Figure 6. For simplicity,we set a Pb c = a + c , ignoring the junction labels; the contraction computesthe sum of the leaves. We set ui.a = i for every leaf ui . Every node u hasauxiliary function u.g = id unless otherwise noted, and we write ` c+' for thefunction �x� c + x ; nodes are `marked' for deletion by underlining. The result is29 , being i8.g(u8.a) ; indeed, 2+ 4 + 6+ 8 + 9 = 29 .The �rst iteration illustrates the need to contract left and right children sepa-

E�cient parallel algorithms for tree accumulations 8u1u2 u3u4 u5u6 u7u8 u9
�rst��! u3 : g = 2+u4 u8 : g = 15+� second����! u8 : g = 21+Figure 6: An illustration of tree contractionu1u2 u3u4 u5u6 u7u8 u9
left�! u3 : g = 2+u4 u7 : g = 6+u8 u9� right��! u3 : g = 2+u4 u8 : g = 15+�Figure 7: The �rst step in Figure 6, split in tworately. In Figure 7, we split this step in two, contracting �rst u1 and u5 , whoseleft children are marked, and then u7 , whose right child is marked. The function15+ assigned to u8.g in the second half is (6 + 9)+ , and depends on the function6+ assigned to u7.g in the �rst half.Thus, in constant time on an n processor Erew Pram we can delete half ofthe leaves while maintaining naivered(root) , so in O(log n) time we can reduce thetree to a single leaf and thereby compute the tree reduction. A straightforwardapplication of Brent's Theorem reduces the number of processors to O(n= log n) ,which gives optimal e�ciency.4 Parallel Upwards AccumulationThe parallel tree contraction algorithm can be used to compute the upwards ac-cumulation, in which not only the �nal result but also all intermediate results arecomputed. In essence, whenever a node u is deleted from the tree, it is placed on

E�cient parallel algorithms for tree accumulations 9a stack maintained by its remaining child; after this child receives its �nal value, itunstacks u and computes the �nal value of u too.We assume that every node u has an extra variable, u.val ; the purpose of theupwards accumulation is to compute u.val for every u , the required values beingthose given by the sequenceinitialize; naiveua(root)where initialize:for each node u do in parallel u.g := id;for each node u do in parallel if :u.j then u.val := u.aand naiveua(u):if u.j then begindo in parallel beginnaiveua(u.l) 8 naiveua(u.r)end;u.val := u.l.g(u.l.val)Pu.b u.r.g(u.r.val)end(The ` 8 ' is parallel, as opposed to sequential, composition.) The problem is that,as for reduction, naiveua has a critical path as long as the tree is deep.To get around this problem, we use tree contraction as before. Each contractionbypasses two nodes in the tree, one a leaf and one a junction. The �nal value tobe assigned to the junction is not yet known, but it is some known function of the�nal value to be assigned to its remaining child. The bypassed junction, togetherwith this function, is put aside on a stack belonging to this child; when the �nalvalue to be assigned to this child is computed, the value for the bypassed junctioncan in turn be computed. Every node u has yet another variable, u.st , which is astack to contain nodes awaiting their �nal values.Thus, the upwards accumulation algorithm operates in two phases, a `collection'phase in which the tree is reduced to a single leaf and some nodes are put asideon stacks, and a `distribution' phase in which the stacked nodes receive their �nalvalues.4.1 The collection phaseThe invariant for the collection phase consists of two parts. Firstly, every node usatis�es exactly one of the following three conditions:� node u is awake: u is still in the tree (reachable from the root), and if it is aleaf then u.val has been computed, or� node u is asleep: for some function h , the pair (u, h) is in v.st for exactlyone node v (a descendant of u in the original tree); the correct �nal value foru is h(x) where x is the �nal value assigned to v , or

E�cient parallel algorithms for tree accumulations 10� node u is dead: u is in neither the tree nor any stack, and u.val is computed.Secondly, performing a naive accumulation on the remaining tree assigns the correctvalues to nodes that are awake.Initially, all stacks are empty and all nodes are awake; by de�nition, the naiveaccumulation completes the computation correctly. On completion of the collectionphase, exactly one node is awake: it is a leaf, and so its �nal value is alreadycomputed. Moreover, the naive accumulation does nothing on a single leaf, and thedistribution phase has simply to assign the correct values to all sleeping nodes.The same tree contraction scheme is used for the collection phase as for com-puting reductions, although the individual contractions are di�erent. As they areindependent we again need only show that each in isolation maintains the invariant.The operation contractl(u) is only called when u is a junction and u.l a leaf,as before. Both u and u.l are bypassed; u is put to sleep and u.l is killed. Theoperation is:contractl(u):push(u.r.st, (u,�x�u.l.g(u.l.val) Pu.b u.r.g(x)));u.r.g := �x� u.g(u.l.g(u.l.val)Pu.b u.r.g(x));u.r.p := u.p;if u.s then u.p.l := u.r else u.p.r := u.r;u.r.s := u.s;if root = u then root := u.rApart from the addition of the �rst line, the only change to the contraction op-eration for tree reduction is that u.l.val , rather than u.l.a , is used in the secondline.We must now show that contractl(u) maintains the invariant. Node u.l is killed;it is a leaf, so its value is already computed. Node u is put to sleep, on u.r.st ,and the �nal value it will receive is u.l.g(u.l.val) Pu.b u.r.g(x) , where x is the �nalvalue received by u.r ; clearly, this value is what the naive accumulation would havegiven it. The assignment to u.r.g thus ensures that the values given by the naiveaccumulation to the ancestors of u remain unchanged, as are the values given todescendants of u.r and all unrelated nodes. Hence the invariant is maintained.Because the same contraction scheme is used as for tree reduction, the collectionphase takes O(log n) steps.To illustrate the process, consider the example of tree contraction given earlier.The corresponding accumulation computes for each node u the sum of the leaves ofthe subtree rooted at u . At each contraction operation, one leaf is killed|being aleaf, its �nal value is already computed|and one junction is put to sleep. After the�rst iteration, u3.st contains (u1, 2+) , u7.st contains (u5, 6+) and u8.st contains(u7, 9+) ; after the second iteration, u8.st grows to contain (u3, 4+ � 15+ = 19+) .Thus, on completion of the collection phase, the status of the stacks is

E�cient parallel algorithms for tree accumulations 11u3.st(u1, 2+) u7.st(u5, 6+) u8.st(u3, 19+)(u7, 9+)so u1 , u3 , u5 and u7 (the junctions) are sleeping, u8 is still awake, and theremaining leaves are dead; all the leaves, of course, already have their �nal values.4.2 The distribution phaseEvery node u has a stack u.st of (node, function) pairs; if (v, h) is in u.st thenv.val should be set to h(u.val) , once u.val has been computed. The distributionphase is simply:for each node u do in parallel beginwait until u.val is computed;while u.st not empty do begin(v, h) := pop(u.st);v.val := h(u.val)endendClearly this terminates: there are no circular dependencies, because all dependen-cies run from parents to children. Clearly, also, when it terminates every node hasthe correct value assigned to it, by virtue of the invariant for the collection phase.We show now that the distribution phase also terminates in O(log n) steps.De�ne dep(v) for a node v that has been put to sleep to be the node whosestack contains v|that is, v is in dep(v).st . During the collection phase, dep(v)may itself be put to sleep, as may dep(dep(v)) , and so on. De�ne the dependencychain of v at a particular point during the collection phase to be the sequencev0, v1, : : : , vk such that v0 = v , vi = dep(vi�1) for 1 � i � k , and dep(vk) is notasleep. Write ld(v) for vk , the last sleeping node on whose �nal value v depends,and src(v) for dep(ld(v)) , the non-sleeping node on whose �nal value v depends.Write sd(v) for the depth of v in dep(v).st , counting the top of the stack as depth1 .For every node v , de�ne the dependency depth dd(v) of v at a particular pointduring collection as sd(v) + sd(dep(v)) + � � � + sd(ld(v)) , the sum of the stackdepths of all nodes in the dependency chain of v . (If v is not asleep, sd(v) = 0 .)For example, after the �rst iteration of the collection phase in the example, u7 isat the top of u8.st and u5 is at the top of u7.st , so sd(u7) = 1 and sd(u5) = 1 ,and dd(u5) = 2 . We claim that at all points during the collection phase, dd(v) isbounded above by twice the number of iterations that have been made, and afterdd(v) steps of the distribution phase v will receive its �nal value. Hence, dd(v) isbounded above overall by 2 log n , and the distribution phase takes at most 2 log nsteps.

E�cient parallel algorithms for tree accumulations 12Consider a node v and the contraction of left children during one iteration ofthe collection phase. The node src(v) is either awake or dead. If src(v) is dead,the dependency depth of v doesn't change. If src(v) is awake, it may be put tosleep, in which case the dependency chain of v grows by one element, and dd(v)increases by one. Alternatively, the parent of src(v) may be put to sleep, in whichcase src(v).st grows by one element, and sd(ld(v)) and hence dd(v) increase by one.Otherwise, dd(v) does not change. Thus, dd(v) increases by at most one duringthe contraction of left children in one iteration of the collection phase. Similarly,dd(v) increases by at most one during the contraction of right children. Thus, dd(v)increases by at most two on each iteration of the collection phase.During the distribution phase, src(v).val has been computed for every sleepingnode v . On each iteration of the distribution phase, the top node in src(v).st ispopped and its �nal value computed, and so sd(ld(v)) and hence dd(v) decrease byone. If ld(v) was at the top of src(v).st , that is, sd(ld(v)) = 1 , then this computesld(v).val , at which point the dependency chain for v shortens by one element; src(v)becomes what ld(v) used to be. (No assignments are involved; the names ld(v) andsrc(v) are purely for expository purposes.) When dd(v) reaches one, ld(v) = v andv is the top element in src(v).st , and v.val can be computed. Hence, v.val iscomputed after exactly dd(v) iterations of the distribution phase; �nal values ofnodes are `�lled in' in the reverse of the order in which those nodes were stacked.Returning to our example, u8.val = 8 is known immediately on completion of thecollection phase, so u8.st is popped and u3.val = 19 + 8 = 27 is computed. Next,u3.st and again u8.st are popped, and u1.val = 2 + 27 = 29 and u7.val = 9+ 8 = 17are computed. Finally, u7.st is popped and u5.val = 6 + 17 = 23 computed.5 Parallel Downwards AccumulationThe downwards accumulation likewise operates in two phases, collection and dis-tribution. However, it is more natural to express the contraction operations fordownwards accumulation in terms of parents bypassing children, rather than chil-dren bypassing parents. To this end we reformulate the parallel tree contractionalgorithm to use this method, before adapting the algorithm to downwards accu-mulation. Then the major change is that the two children of a junction, at leastone of which is a leaf, are bypassed simultaneously, and both must be placed onthe parent's stack, because the �nal values of both depend on the �nal value of theparent.The purpose of downwards accumulation is to compute u.val for every u , therequired values being those given byinitialize; naiveda(id, root)where initialize:for each node u do in parallel u.g := id

E�cient parallel algorithms for tree accumulations 13u.l uX u.r Y� contractl������! u.l uX u.rY�Figure 8: The operation contractl(u) , with parents bypassing childrenu.l u u.r� contractb������! u.l u u.r	Figure 9: The operation contractb(u)and naiveda(h, u):u.val := h(u.a);if u.j then do in parallel beginnaiveda(�x� u.g(u.val) (x, u.l) 8naiveda(�x� u.g(u.val)) x, u.r)endAs with tree reduction and upwards accumulation, the naive downwards accumu-lation algorithm has a critical path as long as the tree is deep, and the point ofthe exercise is to compute the accumulation in logarithmic time regardless of thedepth.5.1 Tree contraction, revisitedReexpressed so that parents bypass children, tree contraction involves three kindsof local operation. The operation contractl(u) is performed on a node u when uis a junction, u.l a leaf and u.r a junction; its e�ect is to remove both u.l and u.rfrom the tree. This is illustrated in Figure 8.Symmetrically, contractr(u) is performed when u is a junction, u.l a junction andu.r a leaf, and again removes both u.l and u.r from the tree. Finally, the operationcontractb(u) is performed when u is a junction and both u.l and u.r , which areagain both removed, are leaves. This is illustrated in Figure 9. A consequence ofthis reexpression is that we have special cases at the leaves of the tree, rather than

E�cient parallel algorithms for tree accumulations 14u1u2 u3u4 u5u6 u7u8 u9
�rst��! u1 : g = 2+u4 u5 : g = 6+, a = 17� second����! u1 : g = 2+, a = 27�Figure 10: An illustration of revised tree contractionat the root.The operation contractl(u) is simplycontractl(u):u.g := �x� u.g(u.l.g(u.l.a)Pu.b u.r.g(x));u.b := u.r.b;u.l, u.r := u.r.l, u.r.r(Note that the parent pointers are no longer needed.) This dualizes in the obviousway to contractr .The operation contractb operates similarly; node u is changed from a junctionto a leaf, so we must construct a �eld u.a for it.contractb(u):u.a := u.l.g(u.l.a)Pu.b u.r.g(u.r.a);u.j := falseAs before, both contraction operations maintain naivered(root) . Moreover thesame scheduling of local contractions ensures that conicting contractions are notconcurrent.On our example tree, this modi�ed contraction procedure acts as in Figure 10.The result is again 29, being u1.g(u1.a) . In Figure 11, the �rst iteration of thisprocess is split in two. Note that with this reformulation, junctions may becomeleaves and so gain a values|for example, u5 gains u5.a = 17 on the �rst iteration,when its children u8 and u9 are removed.We show next how to adapt this tree contraction algorithm to compute down-wards accumulation e�ciently.5.2 The collection phaseAs we observed above, under the contraction regime by which a parent bypassesits children, two children|at least one of which is a leaf|are removed from the

E�cient parallel algorithms for tree accumulations 15u1u2 u3u4 u5u6 u7u8 u9
left�! u1 : g = 2+u4 u5 : g = 6+u8 u9� right��! u1 : g = 2+u4 u5 : g = 6+, a = 17�Figure 11: The �rst step in Figure 10, split in twotree simultaneously. When junction u is contracted, that is, its children u.l andu.r are removed, the �nal values to be assigned to u.l and u.r are not yet known,but they are known functions of the �nal value to be assigned to their parent u .Hence, the two children should be put to sleep on the parent's stack.Because information ows down through the tree rather than up, during thedownwards accumulation the auxiliary function u.g represents an edge label forthe edges between u and its children, rather than its parent; it turns out that,because siblings are always bypassed together, the same edge label always appliesto both children.The invariant for the collection phase of the downwards accumulation algorithmis similar to that for upwards accumulation. Firstly, every node satis�es exactlyone of the following two conditions:� node u is awake: u is still in the tree (reachable from the root), or� node u is asleep: assuming without loss of generality that u is a left childwith right sibling v , then for some function h , the triple (u, v, h) is in w.st forexactly one node w (an ancestor of u and v in the original tree); the correct�nal values for u and v are h(x) (u.a and h(x)) v.a , respectively, where xis the �nal value assigned to w .(There are no `dead' nodes; no node's �nal value is known until the distributionphase. Secondly, performing a naive downwards accumulation on the remainingtree assigns the correct values to nodes that are awake.Initially, all stacks are empty and all nodes awake; by de�nition, the naive ac-cumulation computes the correct values. On completion of the collection phase,exactly one node|the root|is awake, and its �nal value is just its label; the dis-tribution phase need only assign the correct values to the sleeping nodes.The junction contraction operations take the form

E�cient parallel algorithms for tree accumulations 16contractl(u):push(u.st, (u.l, u.r, u.g));u.g := �x� u.r.g(u.g(x)) u.r.a);u.l, u.r := u.r.l, u.r.rTo show that this maintains the invariant, we must show that the triple pushed ontou.st provides the correct �nal values for u.l and u.r , the two nodes put to sleep, andthat the contraction does not change the values assigned by the naive accumulationto the nodes remaining awake. The �rst requirement is met by virtue of the invariantfor the collection phase. For the second, we note that only descendants of u maybe a�ected by the contraction, because the naive accumulation passes informationdownwards. The value given to u itself is una�ected. The assignment to u.gensures that the values given to the (new) children of u are una�ected, and henceso are the values given to all further descendants of u .Leaf contraction is simpler:contractb(u):push(u.st, (u.l, u.r, u.g));u.j := falseThe argument for the maintenance of the invariant is correspondingly simpler. Thetwo children of u are put to sleep with the correct function, for the same reason asfor junction contraction, and the values given to the remaining awake nodes are alluna�ected, because none are descendants of u .Using the same global scheduling scheme, the collection phase takes O(log n)steps.Again, we have to show that as the auxiliary functions `grow' to record moredeleted nodes, they do not take longer to apply. This is the case if the followingconditions are satis�ed:� the auxiliary functions are drawn from an indexed set G of functions, contain-ing the identity function;� functions in G can be applied in constant time;� for all functions gi, gj 2 G and labels a 2 A , the two functions gi � (�x� x (a) � gj and gi � (�x� x) a) � gj are in G , with indices that can be computedfrom i , j and a in constant time.This in turn is satis�ed if the set G consists of the identity function and all functionsof the form (�x� x(a) and (�x� x) a) , and A is �nite. Alternatively, the �nitenessof A can be replaced by the condition that the operators (and) cooperate; thisallows us to compute the depth of every node, among other things, in logarithmictime.To illustrate this, consider the downwards accumulation in which (=) = +on a tree of the same shape as before, but in which both leaves and junctionshave a values; again, ui.a = i for each i . The accumulation computes for each

E�cient parallel algorithms for tree accumulations 17u1u2 u3u4 u5u6 u7u8 u9
�rst��! u1 : g = +3u4 u5 : g = +7� second����! u1 : g = +3�Figure 12: An illustration of computing a downwards accumulationu1u2 u3u4 u5u6 u7u8 u9
left�! u1 : g = +3u4 u5 : g = +7u8 u9� right��! u1 : g = +3u4 u5 : g = +7�Figure 13: The �rst step in Figure 12, split in twonode u the sum of the values on the path from the root of the tree to u . Thetwo iterations are illustrated in Figure 12. Figure 13 dissects the �rst iterationto reveal the intermediate step. After the �rst half of the �rst iteration, u1.stcontains (u2, u3, id) and u5.st contains (u6, u7, id) ; after the second half, the extratriple (u8, u9,+7) is pushed onto u5.st . After the second and �nal iteration, u1.stgains (u4, u5,+3) . Thus, the status of the stacks on completion of the collectionphase is u1.st(u4, u5,+3)(u2, u3, id) u5.st(u8, u9,+7)(u6, u7, id)5.3 The distribution phaseEvery junction u has a stack u.st of (node, node, function) triples; if (v, w, h) is inu.st then v.val should be set to h(u.val) (v.a and w.val to h(u.val)) w.a , once

E�cient parallel algorithms for tree accumulations 18u.val has been computed. The distribution phase is simplyfor each node u do in parallel beginwait until u.val is computed;while u.st not empty do begin(v, w, h) := pop(u.st);v.val, w.val := h(u.val) (v.a, h(u.val)) w.aendendThe argument about dependency depths remains the same; the dependency depthdd(v) for each node v is bounded above by twice the number of iterations of thecollection phase, and hence by 2 log n , and each sleeping node v receives its �nalvalue after dd(v) steps of the distribution phase.In our example, initially u1.val = u1.a = 1 is computed. Then u1.st is poppedand u4.val = 1 + 3 + 4 = 8 and u5.val = 1 + 3 + 5 = 9 are computed. Then u5.stand again u1.st are popped, and u8.val = 9 + 7+ 8 = 24 , u9.val = 9+ 7 + 9 = 25 ,u2.val = 1 + 2 = 3 and u3.val = 1 + 3 = 4 computed. Finally, u5.st is poppedagain and u6.val = 9+ 6 = 15 and u7.val = 9+ 7 = 16 are computed.6 DiscussionWe have presented algorithms for the Erew Pram for computing upwards anddownwards accumulations that take O(log n) time on O(n= log n) processors, whichis optimal. This answers positively one of the questions posed in the conclusions of(Gibbons, 1991). These algorithms are adaptations of Abrahamson et al.'s (1989)parallel tree contraction algorithm for computing tree reductions, which is in turna simpli�cation of Miller and Reif's (1985) algorithm. In essence, our adaptationsconsist of stacking nodes that are deleted during tree contraction, and using asecond `distribution' phase to unstack the deleted nodes and compute their �nalvalues. Abrahamson et al. hint at this adaptation to their algorithm.Previous tree contraction algorithms have all involved children bypassing parents;we found that downwards accumulations are more naturally computed by a contrac-tion algorithm in which parents bypass children, presumably because informationis owing in the opposite direction.We also give invariants and informal proofs of correctness for our algorithms.Gibbons (1993) has presented a di�erent algorithm for computing downwardsaccumulations, based on pointer doubling rather than on tree contraction. It runsin time proportional to the logarithm of the depth|as opposed to the size|of thetree, so is faster, but it requires the more powerful Crew Pram model.ReferencesK. Abrahamson, N. Dadoun, D. G. Kirkpatrick, and T. Przytycka (1989). A simpleparallel tree contraction algorithm. Journal of Algorithms, 10:287{302.Selim G. Akl (1989). Design and Analysis of Parallel Algorithms. Prentice-Hall.

E�cient parallel algorithms for tree accumulations 19Guy E. Blelloch (1989). Scans as primitive parallel operations. IEEE Transactionson Computers, 38(11):1526{1538.R. P. Brent (1974). The parallel evaluation of general arithmetic expressions. Com-munications of the ACM, 21(2):201{206.R. Cole and U. Vishkin (1986). Approximate and exact parallel scheduling withapplications to list, tree and graph problems. In 27th IEEE Symposium onFoundations of Computer Science, pages 478{491.JeremyGibbons (1991). Algebras for Tree Algorithms. D. Phil. thesis, ProgrammingResearch Group, Oxford University. Available as Technical Monograph PRG-94.Jeremy Gibbons (1993). Upwards and downwards accumulations on trees. InLNCS 669: Mathematics of Program Construction. Springer-Verlag. A revisedversion appears in the Proceedings of the Massey Functional ProgrammingWorkshop, 1992.Jeremy Gibbons (1993). Computing downwards accumulations on trees quickly.In Proceedings of the 16th Australian Computer Science Conference, pages685{691.X. He (1986). E�cient parallel algorithms for solving some tree problems. In24th Allerton Conference on Communication, Control and Computing, pages777{786.Richard E. Ladner and Michael J. Fischer (1980). Parallel pre�x computation.Journal of the ACM, 27(4):831{838.Gary L. Miller and John H. Reif (1985). Parallel tree contraction and its application.In 26th IEEE Symposium on the Foundations of Computer Science, pages 478{489.Edward M. Reingold and John S. Tilford (1981). Tidier drawings of trees. IEEETransactions on Software Engineering, 7(2):223{228.

