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ABSTRACT. Accumulations are higher-order operations on structured objects; they leave the
shape of an object unchanged, but replace elements of that object with accumulated information
about other elements. Upwards and downwards accumulations on trees are two such operations;
they form the basis of many tree algorithms. We present two EREW PrAM algorithms for com-
puting accumulations on trees taking O(logn) time on O(n/logn) processors, which is optimal.
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1 Introduction

Accumulations are higher-order operations on structured objects that leave the
shape of an object unchanged, but replace every element of that object with some
accumulated information about other elements. For example, the prefix sums or
scan operation (Blelloch, 1989) on lists that, for an associative operator ®, maps
the list [ag,...,a,] to the list of ‘partial sums’ [a;, a1 ® ay, ..., a1 O a, ® -+ © a,]
is an accumulation: it replaces each element of the list with the ‘sum’ of the elements
to its left. Another way of saying this is that information is ‘passed along the list’,
from left to right.

This paper concerns two kinds of accumulation on binary trees, upwards and
downwards accumulation. Upwards accumulation passes information up through a
tree, from the leaves towards the root; each element is replaced by some function
of its descendants, that is, of the elements below it in the tree. Symmetrically,
downwards accumulation passes information downwards, from the root towards the
leaves; each element is replaced by some function of its ancestors, that is, of the
elements above it in the tree.

Upwards and downwards accumulations form the basis of many important algo-
rithms, and so are a useful idiom to add to the programmer’s toolbox. For example,
computing the sizes of subtrees and the depths of nodes are natural applications of
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upwards and downwards accumulation, respectively. The parallel prefix algorithm
(Ladner and Fischer, 1980) for computing the prefix sums of a list in logarithmic
time on linearly many processors involves building a tree with the list elements
as leaves, then performing an upwards and downwards accumulation on the tree
(Gibbons, 1993); the prefix sums problem in turn has applications in the evaluation
of polynomials, compiler design, and numerous graph problems including minimum
spanning tree and strongly connected components (Akl, 1989). Upwards accumu-
lation can be used to solve some optimization problems on trees, such as minimum
covering set and maximal independent set (He, 1986). Other algorithms such as
Reingold and Tilford’s algorithm (Reingold and Tilford, 1981) for drawing trees
and a two-pass algorithm for completely labelling a tree according to an attribute
grammar (Gibbons, 1991) also consist of an upwards followed by a downwards
accumulation.

For a tree with n elements, these accumulations can be computed naively on
a sequential machine in time proportional to n, and on a parallel machine with
n processors in time proportional to the depth of the tree. We show here how to
adapt Abrahamson et al.’s parallel tree contraction algorithm (1989) for computing
tree reductions to allow the accumulations to be computed in logarithmic time on
an n-processor EREW PRAM, even if the tree has greater than logarithmic depth.
Straightforward application of Brent’s Theorem (Brent, 1974) reduces the processor
usage to n/logn, which gives optimal algorithms.

The remainder of this paper is organized as follows. In Section 2 we give the
definitions of tree reductions and of upwards and downwards accumulations. In
Section 3 we review parallel tree contraction. In Sections 4 and 5 we adapt the
contraction algorithm to computing upwards and downwards accumulations, re-
spectively.

2 Upwards and Downwards Accumulations

Our binary trees have labels drawn from two sets: leaf labels are drawn from a set
A and junction labels from a set B. A binary tree is either a leaf, labelled with
an element of A, or a junction with two children, labelled with an element of B.
Thus, we have no empty tree and every parent has exactly two children.

The ®@-reduction of a tree for a ternary operator ® from A x B x A to A reduces
a binary tree to a single value in A. For example, the ®-reduction of the tree in
Figure 1, where a,c € B and b,d,e € A, is the single value b ®, (d ®.e) in A.
Note that the ternary operator is written with its middle argument as a subscript.
(A more general form of reduction—in fact, a homomorphism—can be obtained by
first mapping a function f of type A — C for some third type C over the leaves,
and returning a single value in C; the discussion in the rest of this paper can easily
be generalized to such homomorphisms.)

Tree reductions can be computed naively on a sequential machine in time pro-
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Figure 1: A binary tree

Figure 2: The ®-upwards accumulation of the tree in Figure 1

portional to the size of the tree and on a parallel machine with n processors in time
proportional to the depth of the tree, if the operator ® takes constant sequential
time. (For the rest of the paper, we assume that ‘component’ operators like ® take
constant time.) Under certain conditions on @, the parallel contraction algorithm
reviewed in the next section reduces this to logarithmic parallel time even if the
tree has greater than logarithmic depth.

Upwards accumulations generalize reductions; instead of computing a single
value, an upwards accumulation computes a tree of partial results with the same
shape as its argument—each node is labelled with the reduction of the subtree orig-
inally rooted at that node. For example, the ®-upwards accumulation of the tree
in Figure 1 is shown in Figure 2. Notice that an upwards accumulation returns
a homogeneous tree, that is, one in which leaf and junction labels have the same
type.

Upwards accumulations can be computed naively with the same amount of work
as reductions, since the partial results must be computed anyway. It is significant,
though, that an upwards accumulation consists of applying a reduction, as opposed
to just any function, to all subtrees. Were this not the case, it would not be possible
to compute the value for a parent from the values for its children—put another way,
the required ‘partial results’ would not be byproducts of the naive computation of
the reduction.

A downwards accumulation also computes a tree of values with the same shape
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Figure 3: The path to the element d in the tree in Figure 1

Figure 4: The (@, ® )-downwards accumulation of the tree in Figure 1

as its argument; each node is labelled with a path reduction of the elements on the
path from the root of the tree to that node. For two binary operators @& and ®
which cooperate (Gibbons, 1993), that is, which satisfy the four laws

ad(bdc) = (adb)dcC

ad(b®c) = (adb)®c

a®@(bedc) = (a®@b)dc

a®(b®c) = (a®b)®c
the (@, ®)-path reduction consists of replacing all ‘left turns’ with @ and all ‘right
turns” with ® . For example, Figure 3 shows the path to the element labelled d in
the tree in Figure 1; the reduction of this path is a ® ¢ @ d. Because of coopera-
tivity, no parentheses are needed in this expression. Note also that a consequence
of cooperativity is that @& and ® must each have type A x A — A; downwards
accumulations can only be performed on homogeneous trees.

The (@, ®)-downwards accumulation of a tree consists of replacing every element
with the (@, ®)-path reduction of the path to that element. For example, Figure 4
shows the accumulation of the tree in Figure 1. Again, the result is a homogeneous
tree.

3 Parallel Tree Contraction

Our algorithms for computing accumulations on trees are modifications of parallel
tree contraction algorithms (Miller and Reif, 1985; Abrahamson et al., 1989), which
reduce a tree to a single value. We present here a description of parallel tree
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contraction which we generalize later to the algorithms for accumulation.

We suppose that a binary tree with n nodes is represented as a collection of n
processors. Fach processor u maintains a number of variables: u.j is a boolean,
and is true iff u is a junction; u.p is a pointer to the parent of u; u.s is a boolean,
and is true iff u is the left child of its parent (the ‘s’ stands for ‘side’). We suppose
that root is a pointer to the root of the tree, and to avoid special cases we suppose
that root.p points somewhere, and that root.p.| = root and root.s is true, so that
the root is ‘the left child of its parent’. If u.j is false, u has the variable u.a € A,
a ‘leaf label’; otherwise, u has the variable u.b € B, a ‘junction label’. If u. is
true, u also has the extra variables u.l and u.r, being pointers to its left and right
children. Finally, every processor u has a variable u.g, an ‘auxiliary function’ from
A to A. This auxiliary function can be thought of as labelling the edge between u
and u.p and affecting the computation of the tree reduction in the obvious way; it is
initially the identity function, but we make use of it in the parallel tree contraction
algorithm, to record the ‘postprocessing’ that has to be done at a node as the tree
gets rearranged.

The purpose of tree reduction is to compute the value naivered(root), where

naivered(u) = u.g(naivered(u.l) ®, naivered(u.r)), if u.
= u.g(u.a), otherwise
for some ternary operator ®. The problem is that although the reductions of
the two children can be computed in parallel, this naive formulation still requires
parallel time proportional to the depth of the tree—the length of the critical path—
which is linear in the worst case. Parallel tree contraction reduces the complexity to
logarithmic parallel time in the worst case by allowing processors to do usetul work
before they receive their inputs. The tree is gradually contracted, halving in size
at each step, while maintaining the value of naivered(root); after [logn] steps, the
tree has collapsed to a single leaf, root, and its reduction is simply root.g(root.a).
Contraction is performed locally by the operations contractl and contractr, which
‘bypass’ nodes of the tree. These two operations are symmetric, so we discuss only
contractl here; the duality is straightforward. The operation contractl is performed
on a node u when u is a junction and u.l is a leaf; nodes u and u.l are removed
from the tree. This is illustrated in Figure 5.
The operation contractl(u) that does this is:

contractl(u):
u.r.g := Ax u.g(ulg(ula) @, u.rg(x));

u.r.p:=u.p;
if u.s then u.p.l:= u.r else u.p.r:=u.r;
u.r.s:= u.s;

if root = u then root := u.r

The first assignment records the deleted nodes in the auxiliary function for u.r, so
that naivered(u.r) has the value after the operation that naivered(u) did before-
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contract|
(u) (ur) (oD

Figure 5: The operation contractl(u)

hand; together with the pointer manipulations, this maintains naivered(root). The
following three assignments update the pointers, effectively deleting u and u.l from
the tree. The final assignment is to ensure that we still know where the root is:
in our formulation of the algorithm, in contrast to others’, the original root of the
tree may be bypassed.

These contraction operations each remove two nodes, at least one of which is
a leaf. Abrahamson et al. (1989) present a simple scheme by which many such
contraction operations—in fact, half as many as there are leaves—can be performed
in just two steps, without mutual interference. Their scheme is as follows:

(i) Assume all leaves are numbered from left to right, starting with zero. This
numbering is easily computed in O(logn) time on O(n/logn) processors (Cole
and Vishkin, 1986).

(ii) Mark all even-numbered leaves.

(iii) For every junction u such that u.l is a marked leaf, perform contractl(u).

(iv) For every junction u not involved in the previous step such that u.r is a marked
leaf, perform contractr(u).

(v) Renumber the leaves by halving their numbers.

Actually, Abrahamson et al. mark the odd-numbered leaves; marking the even-
numbered leaves instead sometimes reduces the size of the tree by an extra ele-
ment. Note also that the operations contractl and contractr are never performed
concurrently; the reason for this is explained later.

Clearly, this scheme deletes at least half of the leaves, but we must show that no
concurrent contraction operations interfere.

Note that the operation contractl(u) involves nodes on three consecutive levels,
u.p, u and u.r; however, the fields of u.p and u.r that are involved are disjoint, so
contractions involving nodes two (or more) levels apart do not interfere. Contrac-
tions involving two nodes on the same level do not interfere: the children of the two
nodes are disjoint, and the nodes can at worst be left and right children of the same
parent. Only nodes on adjacent levels remain to be considered. If neither of the two
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nodes is the parent of the other, they do not interfere, so suppose that one is the
parent of the other. The two will only be contracted simultaneously if they both
have marked leaves as (without loss of generality) left children—but such leaves
are adjacent in left-to-right order, and so cannot both be even-numbered. Hence,
a node and its parent will not be simultaneously contracted, and consequently no
concurrent contraction operations interfere.

Only one aspect is left to consider: the contraction steps must take constant
time, but the contraction operations assign lambda expressions of increasing size
to the auxiliary functions. We must ensure that the time taken to compute new
lambda expressions from old remains constant no matter what lambda expressions
are generated at intermediate steps, and despite the fact that they appear to grow
in size (and might therefore require longer times to access and manipulate). One
way to ensure this is to use indices into a set of lambda expressions in place of the
lambda expressions themselves. Then the requirement that each contraction step
takes constant time is met if the indexed sets meet the following conditions:

e for every u, the ‘sectioned’ binary operator ®,, from A x A to A and the
function u.g are drawn from indexed sets of functions F and G (which contains
the identity function) respectively;

e functions in F and G can be applied in constant time;

o forall ®€ F, g€ G and a € A, the functions Ax-g(x) ®a and Ax-a ® g(x)
are both in G, and their indices can be computed from a and from the indices
of ® and g in constant time;

o forall g, g € G, the composition gjogj isin G, and its index can be computed
from the indices 1| and j in constant time.

These conditions are stronger than required here, but we need the extra strength for
the upwards accumulation algorithm. Note that these conditions are satisfied if A
is finite: the functions can be modelled by matrices. Alternatively, these conditions
are satisfied if there exist associative commutative operators @ and ® such that
® distributes over @, such that each ® in F can be written x Oy =a® (x®y)
for some a, and each g in G can be written g(x) =b ® (c ® x) for some b and
¢, and such that G contains the identity; this allows us to compute, among other
things, the heights and sizes of all subtrees in logarithmic time. Either way, these
conditions ensure that functions in F and G can be represented by variables of
constant size, and can be combined and applied in constant time.

An example of the tree contraction procedure is given in Figure 6. For simplicity,
we set a ®, ¢ = a + ¢, ignoring the junction labels; the contraction computes
the sum of the leaves. We set uj.a = 1 for every leat uj. Every node u has
auxiliary function u.g = id unless otherwise noted, and we write ‘c+’ for the
function Ax-c¢ + x; nodes are ‘marked’ for deletion by underlining. The result is
29, being i5.g(ug.a); indeed, 24+ 4 +6+8+9 =29.

The first iteration illustrates the need to contract left and right children sepa-
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Figure 7: The first step in Figure 6, split in two

rately. In Figure 7, we split this step in two, contracting first u; and us, whose
left children are marked, and then u7, whose right child is marked. The function
15+ assigned to ug.g in the second half is (6 4+ 9)+, and depends on the function
64 assigned to u;z.g in the first half.

Thus, in constant time on an n processor EREW PRAM we can delete half of
the leaves while maintaining naivered(root), so in O(logn) time we can reduce the
tree to a single leat and thereby compute the tree reduction. A straightforward
application of Brent’s Theorem reduces the number of processors to O(n/logn),
which gives optimal efficiency.

4 Parallel Upwards Accumulation

The parallel tree contraction algorithm can be used to compute the upwards ac-
cumulation, in which not only the final result but also all intermediate results are
computed. In essence, whenever a node u is deleted from the tree, it is placed on
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a stack maintained by its remaining child; after this child receives its final value, it
unstacks u and computes the final value of u too.

We assume that every node u has an extra variable, u.val; the purpose of the
upwards accumulation is to compute u.val for every u, the required values being
those given by the sequence

initialize; naiveua(root)

where
initialize:
for each node u do in parallel u.g := id;
for each node u do in parallel if —u.j then u.val := u.a
and
naiveua(u):

if u.j then begin
do in parallel begin
naiveua(u.l) O naiveua(u.r)
end;
u.val := u.l.g(u.l.val) ®,p u.r.g(u.r.val)
end

(The * O’ is parallel, as opposed to sequential, composition.) The problem is that,
as for reduction, naiveua has a critical path as long as the tree is deep.

To get around this problem, we use tree contraction as before. Fach contraction
bypasses two nodes in the tree, one a leaf and one a junction. The final value to
be assigned to the junction is not yet known, but it is some known function of the
final value to be assigned to its remaining child. The bypassed junction, together
with this function, is put aside on a stack belonging to this child; when the final
value to be assigned to this child is computed, the value for the bypassed junction
can in turn be computed. Every node u has yet another variable, u.st, which is a
stack to contain nodes awaiting their final values.

Thus, the upwards accumulation algorithm operates in two phases, a ‘collection’
phase in which the tree is reduced to a single leat and some nodes are put aside
on stacks, and a ‘distribution’ phase in which the stacked nodes receive their final
values.

4.1 The collection phase
The invariant for the collection phase consists of two parts. Firstly, every node u
satisfies exactly one of the following three conditions:

e node u is awake: u is still in the tree (reachable from the root), and if it is a
leaf then u.val has been computed, or

e node u is asleep: for some function h, the pair (u,h) is in v.st for exactly
one node v (a descendant of u in the original tree); the correct final value for
u is h(x) where x is the final value assigned to v, or
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e node u is dead: u is in neither the tree nor any stack, and u.val is computed.

Secondly, performing a naive accumulation on the remaining tree assigns the correct
values to nodes that are awake.

Initially, all stacks are empty and all nodes are awake; by definition, the naive
accumulation completes the computation correctly. On completion of the collection
phase, exactly one node is awake: it is a leaf, and so its final value is already
computed. Moreover, the naive accumulation does nothing on a single leaf, and the
distribution phase has simply to assign the correct values to all sleeping nodes.

The same tree contraction scheme is used for the collection phase as for com-
puting reductions, although the individual contractions are different. As they are
independent we again need only show that each in isolation maintains the invariant.

The operation contractl(u) is only called when u is a junction and u.l a leaf,
as before. Both u and u.l are bypassed; u is put to sleep and u.l is killed. The
operation is:

contractl(u):
push(u.r.st, (u, Ax-u.l.g(u.l.val) ®,p u.r.g(x)));
u.r.g := Ax-u.g(u.l.g(ulval) ®,p u.r.g(x));

u.r.p:=u.p;
if u.s then u.p.l:= u.r else u.p.r:=u.r;
u.r.s:= u.s;

if root = u then root := u.r

Apart from the addition of the first line, the only change to the contraction op-
eration for tree reduction is that u.l.val, rather than u.l.a, is used in the second
line.

We must now show that contractl(u) maintains the invariant. Node u.l is killed;
it is a leaf, so its value is already computed. Node u is put to sleep, on u.r.st,
and the final value it will receive is u.l.g(u.l.val) ®,p u.r.g(x), where x is the final
value received by u.r; clearly, this value is what the naive accumulation would have
given it. The assignment to u.r.g thus ensures that the values given by the naive
accumulation to the ancestors of u remain unchanged, as are the values given to
descendants of u.r and all unrelated nodes. Hence the invariant is maintained.

Because the same contraction scheme is used as for tree reduction, the collection
phase takes O(logn) steps.

To illustrate the process, consider the example of tree contraction given earlier.
The corresponding accumulation computes for each node u the sum of the leaves of
the subtree rooted at u. At each contraction operation, one leaf is killed—being a
leaf, its final value is already computed-—and one junction is put to sleep. After the
first iteration, us.st contains (uy,24), uz.st contains (us,6+) and ug.st contains
(u7,9+); after the second iteration, ug.st grows to contain (us, 4+ o 15+ = 19+4).
Thus, on completion of the collection phase, the status of the stacks is
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us.st uz.st ug.st
(U1,2—|—) (U5,6—|—) (U3,19—|-)
(u7,94)

so up, uz, us and uy (the junctions) are sleeping, ug is still awake, and the
remaining leaves are dead; all the leaves, of course, already have their final values.

4.2 The distribution phase
Every node u has a stack u.st of (node, function) pairs; if (v,h) is in u.st then
v.val should be set to h(u.val), once u.val has been computed. The distribution
phase is simply:
for each node u do in parallel begin
wait until u.val is computed;
while u.st not empty do begin
(v,h) := pop(u.st);
v.val := h(u.val)
end
end

Clearly this terminates: there are no circular dependencies, because all dependen-
cies run from parents to children. Clearly, also, when it terminates every node has
the correct value assigned to it, by virtue of the invariant for the collection phase.
We show now that the distribution phase also terminates in O(logn) steps.

Define dep(v) for a node v that has been put to sleep to be the node whose
stack contains v—that is, v is in dep(v).st. During the collection phase, dep(v)
may itself be put to sleep, as may dep(dep(v)), and so on. Define the dependency
chain of v at a particular point during the collection phase to be the sequence
Vo, V1, ...,k such that vo = v, vi = dep(vi_y) for 1 <i <k, and dep(vg) is not
asleep. Write Id(v) for vi, the last sleeping node on whose final value v depends,
and src(v) for dep(ld(v)), the non-sleeping node on whose final value v depends.
Write sd(v) for the depth of v in dep(v).st, counting the top of the stack as depth
1.

For every node v, define the dependency depth dd(v) of v at a particular point
during collection as sd(v) 4 sd(dep(v)) + --- 4 sd(Ild(v)), the sum of the stack
depths of all nodes in the dependency chain of v. (If v is not asleep, sd(v) =0.)
For example, after the first iteration of the collection phase in the example, u7 is
at the top of ug.st and us is at the top of uz.st, so sd(u7) =1 and sd(us) =1,
and dd(us) = 2. We claim that at all points during the collection phase, dd(v) is
bounded above by twice the number of iterations that have been made, and after
dd(v) steps of the distribution phase v will receive its final value. Hence, dd(v) is
bounded above overall by 2logn, and the distribution phase takes at most 2logn
steps.
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Consider a node v and the contraction of left children during one iteration of
the collection phase. The node src(v) is either awake or dead. If src(v) is dead,
the dependency depth of v doesn’t change. If src(v) is awake, it may be put to
sleep, in which case the dependency chain of v grows by one element, and dd(v)
increases by one. Alternatively, the parent of src(v) may be put to sleep, in which
case src(v).st grows by one element, and sd(ld(v)) and hence dd(v) increase by one.
Otherwise, dd(v) does not change. Thus, dd(v) increases by at most one during
the contraction of left children in one iteration of the collection phase. Similarly,
dd(v) increases by at most one during the contraction of right children. Thus, dd(v)
increases by at most two on each iteration of the collection phase.

During the distribution phase, src(v).val has been computed for every sleeping
node v. On each iteration of the distribution phase, the top node in src(v).st is
popped and its final value computed, and so sd(ld(v)) and hence dd(v) decrease by
one. If Id(v) was at the top of src(v).st, that is, sd(ld(v)) = 1, then this computes
Id(v).val, at which point the dependency chain for v shortens by one element; src(v)
becomes what Id(v) used to be. (No assignments are involved; the names Id(v) and
src(v) are purely for expository purposes.) When dd(v) reaches one, ld(v) = v and
v is the top element in src(v).st, and v.val can be computed. Hence, v.val is
computed after exactly dd(v) iterations of the distribution phase; final values of
nodes are ‘filled in’ in the reverse of the order in which those nodes were stacked.

Returning to our example, ug.val = 8 is known immediately on completion of the
collection phase, so ug.st is popped and ujz.val = 19 + 8 = 27 is computed. Next,
us.st and again ug.st are popped, and uy.val =2 4+ 27 =29 and u;.val =948 =17
are computed. Finally, uz.st is popped and us.val = 6 4+ 17 = 23 computed.

5 Parallel Downwards Accumulation

The downwards accumulation likewise operates in two phases, collection and dis-
tribution. However, it is more natural to express the contraction operations for
downwards accumulation in terms of parents bypassing children, rather than chil-
dren bypassing parents. To this end we reformulate the parallel tree contraction
algorithm to use this method, before adapting the algorithm to downwards accu-
mulation. Then the major change is that the two children of a junction, at least
one of which is a leaf, are bypassed simultaneously, and both must be placed on
the parent’s stack, because the final values of both depend on the final value of the
parent.
The purpose of downwards accumulation is to compute u.val for every u, the

required values being those given by

initialize; naiveda(id, root)
where

initialize:

for each node u do in parallel u.g :=id
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Figure 8: The operation contractl(u), with parents bypassing children

contractb
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Figure 9: The operation contractb(u)

and
naiveda(h, u):
u.val := h(u.a);
if u.j then do in parallel begin
naiveda(Ax- u.g(u.val) @ x,u.l) O
naiveda(Ax- u.g(u.val) ® x, u.r)
end
As with tree reduction and upwards accumulation, the naive downwards accumu-
lation algorithm has a critical path as long as the tree is deep, and the point of
the exercise is to compute the accumulation in logarithmic time regardless of the

depth.

5.1 'Tree contraction, revisited

Reexpressed so that parents bypass children, tree contraction involves three kinds
of local operation. The operation contractl(u) is performed on a node u when u
is a junction, u.l a leaf and u.r a junction; its effect is to remove both u.l and u.r
from the tree. This is illustrated in Figure 8.

Symmetrically, contractr(u) is performed when u is a junction, u.l a junction and
u.r a leaf, and again removes both u.l and u.r from the tree. Finally, the operation
contractb(u) is performed when u is a junction and both u.l and u.r, which are
again both removed, are leaves. This is illustrated in Figure 9. A consequence of
this reexpression is that we have special cases at the leaves of the tree, rather than
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second
_— Ul:g:2+,a:27
us : g =6+4,a =17

Figure 10: An illustration of revised tree contraction

at the root.
The operation contractl(u) is simply
contractl(u):
u.g:= Ax-u.g(u.lg(u.la)®,p u.r.g(x));
u.b:=u.r.b;
ul,ur:=u.rl urr

(Note that the parent pointers are no longer needed.) This dualizes in the obvious
way to contractr.

The operation contractb operates similarly; node u is changed from a junction
to a leaf, so we must construct a field u.a for it.

contractb(u):
u.a:=u.lg(ula)®,pu.r.glura);
u.j := false

As before, both contraction operations maintain naivered(root). Moreover the
same scheduling of local contractions ensures that conflicting contractions are not
concurrent.

On our example tree, this modified contraction procedure acts as in Figure 10.
The result is again 29, being uj.g(uj.a). In Figure 11, the first iteration of this
process is split in two. Note that with this reformulation, junctions may become
leaves and so gain a values—for example, us gains us.a = 17 on the first iteration,
when its children ug and ug are removed.

We show next how to adapt this tree contraction algorithm to compute down-
wards accumulation efficiently.

5.2 'The collection phase
As we observed above, under the contraction regime by which a parent bypasses
its children, two children—at least one of which is a leaf——are removed from the



Efficient parallel algorithms for tree accumulations 15

us : g =6+4,a=17

Figure 11: The first step in Figure 10, split in two

tree simultaneously. When junction u is contracted, that is, its children u.l and
u.r are removed, the final values to be assigned to u.l and u.r are not yet known,
but they are known functions of the final value to be assigned to their parent u.
Hence, the two children should be put to sleep on the parent’s stack.

Because information flows down through the tree rather than up, during the
downwards accumulation the auxiliary function u.g represents an edge label for
the edges between u and its children, rather than its parent; it turns out that,
because siblings are always bypassed together, the same edge label always applies
to both children.

The invariant for the collection phase of the downwards accumulation algorithm
is similar to that for upwards accumulation. Firstly, every node satisfies exactly
one of the following two conditions:

e node u is awake: u is still in the tree (reachable from the root), or

e node u is asleep: assuming without loss of generality that u is a left child
with right sibling v, then for some function h, the triple (u,v, h) isin w.st for
exactly one node w (an ancestor of u and v in the original tree); the correct
final values for u and v are h(x) @ u.a and h(x) ® v.a, respectively, where x
is the final value assigned to w.

(There are no ‘dead’ nodes; no node’s final value is known until the distribution
phase. Secondly, performing a naive downwards accumulation on the remaining
tree assigns the correct values to nodes that are awake.

Initially, all stacks are empty and all nodes awake; by definition, the naive ac-
cumulation computes the correct values. On completion of the collection phase,
exactly one node—the root—is awake, and its final value is just its label; the dis-
tribution phase need only assign the correct values to the sleeping nodes.

The junction contraction operations take the form
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contractl(u):
push(u.st, (u.l,u.r,u.g));
u.g:= Ax-u.r.g(u.g(x)®@u.ra);
ul,ur:=urlurr
To show that this maintains the invariant, we must show that the triple pushed onto
u.st provides the correct final values for u.l and u.r, the two nodes put to sleep, and
that the contraction does not change the values assigned by the naive accumulation
to the nodes remaining awake. The first requirement is met by virtue of the invariant
for the collection phase. For the second, we note that only descendants of u may
be affected by the contraction, because the naive accumulation passes information
downwards. The value given to u itself is unaffected. The assignment to u.g
ensures that the values given to the (new) children of u are unaffected, and hence
so are the values given to all further descendants of u.
Leaf contraction is simpler:
contractb(u):
push(u.st, (u.l,u.r,u.g));
u.j := false
The argument for the maintenance of the invariant is correspondingly simpler. The
two children of u are put to sleep with the correct function, for the same reason as
for junction contraction, and the values given to the remaining awake nodes are all
unaffected, because none are descendants of u.
Using the same global scheduling scheme, the collection phase takes O(logn)
steps.
Again, we have to show that as the auxiliary functions ‘grow’ to record more
deleted nodes, they do not take longer to apply. This is the case if the following
conditions are satisfied:

e the auxiliary functions are drawn from an indexed set G of functions, contain-
ing the identity function;

e functions in G can be applied in constant time;

e for all functions gj, g € G and labels a € A, the two functions gj o (Ax-x &
a)og; and gio (MAx-x® a)ogj are in G, with indices that can be computed
from 1, j and a in constant time.

This in turn is satisfied if the set G consists of the identity function and all functions
of the form (Ax-x @ a) and (Ax-x® a), and A is finite. Alternatively, the finiteness
of A can be replaced by the condition that the operators @ and ® cooperate; this
allows us to compute the depth of every node, among other things, in logarithmic
time.

To illustrate this, consider the downwards accumulation in which & = @ = +
on a tree of the same shape as before, but in which both leaves and junctions
have a values; again, uj.a =1 for each i. The accumulation computes for each
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Figure 13: The first step in Figure 12, split in two

node u the sum of the values on the path from the root of the tree to u. The
two iterations are illustrated in Figure 12. Figure 13 dissects the first iteration
to reveal the intermediate step. After the first half of the first iteration, uj.st
contains (ug,us,id) and us.st contains (ue, uz,id); after the second half, the extra
triple (us, ug, +7) is pushed onto us.st. After the second and final iteration, uj.st
gains (ug, us, +3). Thus, the status of the stacks on completion of the collection
phase is

uj.st Us.st
(U4,U5,—|—3) (Ug,Ug,—|—7)
(UQ,U3,id) (U6,U7,id)

5.3 The distribution phase
Every junction u has a stack u.st of (node, node, function) triples; if (v,w,h) isin
u.st then v.val should be set to h(u.val) ® v.a and w.val to h(u.val) ® w.a, once
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u.val has been computed. The distribution phase is simply
for each node u do in parallel begin
wait until u.val is computed;
while u.st not empty do begin
(v,w, h) := pop(u.st);
v.val, w.val := h(u.val) ® v.a, h(u.val) ® w.a
end
end
The argument about dependency depths remains the same; the dependency depth
dd(v) for each node v is bounded above by twice the number of iterations of the
collection phase, and hence by 2logn, and each sleeping node v receives its final
value after dd(v) steps of the distribution phase.

In our example, initially uj.val = uj.a = 1 is computed. Then uj.st is popped
and ugval=143+4=8 and us.val=14+3+5 =9 are computed. Then us.st
and again uj.st are popped, and ug.val =947 +8 =24, ugval =947 49 =25,
up.val =14+ 2 =3 and uzval =1+ 3 =4 computed. Finally, us.st is popped
again and ug.val =9+ 6 =15 and u;.val =9 4+ 7 = 16 are computed.

6 Discussion

We have presented algorithms for the EREW PRAM for computing upwards and
downwards accumulations that take O(logn) timeon O(n/logn) processors, which
is optimal. This answers positively one of the questions posed in the conclusions of
(Gibbons, 1991). These algorithms are adaptations of Abrahamson et al.’s (1989)
parallel tree contraction algorithm for computing tree reductions, which is in turn
a simplification of Miller and Reif’s (1985) algorithm. In essence, our adaptations
consist of stacking nodes that are deleted during tree contraction, and using a
second ‘distribution’ phase to unstack the deleted nodes and compute their final
values. Abrahamson et al. hint at this adaptation to their algorithm.

Previous tree contraction algorithms have all involved children bypassing parents;
we found that downwards accumulations are more naturally computed by a contrac-
tion algorithm in which parents bypass children, presumably because information
is flowing in the opposite direction.

We also give invariants and informal proofs of correctness for our algorithms.

Gibbons (1993) has presented a different algorithm for computing downwards
accumulations, based on pointer doubling rather than on tree contraction. It runs
in time proportional to the logarithm of the depth—as opposed to the size—of the
tree, so is faster, but it requires the more powerful CREW PRAM model.
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