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AbstractSince colour characterizes local surface properties and is largely viewpoint insensitiveit is a useful cue for object recognition. Indeed, Swain and Ballard have developeda simple scheme, called colour-indexing, which identi�es objects by matching colour-space histograms. Their approach is remarkably robust in that variations such as ashift in viewing position, a change in the scene background or even object deformationdegrade recognition only slightly. Colour-indexing fails, however, if the intensity orspectral characteristics of the incident illuminant varies. This thesis examines twodi�erent strategies for rectifying this failure.Firstly we consider applying a colour constancy transform to each image priorto colour-indexing (colours are mapped to their appearance under canonical lightingconditions). To solve for the colour constancy transform assumptions must be madeabout the world. These assumptions dictate the types of objects which can be recog-nized by colour-indexing + colour constancy preprocessing. We review several colourconstancy algorithms and in almost all cases conclude that their assumptions are toolimiting. The exception, a discrete implementation of Forsyth's CRULE, successfullysolves the colour constancy problem for sets of simple objects viewed under constantillumination.To circumvent the need for colour constancy preprocessing and to recognize morecomplex object sets we consider indexing on illuminant invariants. Three illuminantinvariants|volumetric, opponent and ratio|are examined. Each characterizes lo-cal surface properties, is largely viewpoint insensitive and is independent of boththe intensity and spectral characteristics of the incident illuminant. We develop analgorithm, called Colour constant colour-indexing, which identi�es objects by match-ing colour ratio-space histograms. In general our algorithm performs comparablyiii



with colour-indexing under �xed illumination, but substantially better than colour-indexing under varying illumination.
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Chapter 1IntroductionColour plays an important role in object identi�cation. For example an apple can bedistinguished from an orange solely on the basis of colour. In this thesis we developa machine vision system which can robustly identify colourful objects. Identi�cationtakes place in real time and as such would be be a useful part of an active visionsystem.Machine vision systems can recognize objects only when certain assumptions aresatis�ed. The weakest assumption, common to all model-based vision approaches, isthat objects can only be identi�ed if they have been seen before. Further model-basedvision systems are usually told, by a system designer, to remember particular objects.This implies there are two stages to identi�cation. In the learning stage the visionsystem views the objects which it must identify. The images of objects are analysed,features extracted, and these features are grouped to form canonical models; the setof all canonical models is called the model database. In the active stage an objectis presented to the vision system; again its image is analysed and an image modelis built. The image model is then matched against the model database. The bestcanonical match identi�es the image model.Ideally the success of object identi�cation should not require strong constraints onthe world. For example, if objects are always presented to the vision system in thesame orientation and at the same relative position then this contextual informationcan be exploited in designing a model representation. However strong constraints will1



CHAPTER 1. INTRODUCTION 2limit the utility of the vision system. It is desirable that identi�cation performancebe una�ected by the visual context in which an object is viewed. For the purposes ofthis thesis changes in visual context refer to:1. changes in the background of an object.2. occlusion of the object.3. changing relative position of the object.4. the lighting conditions:(a) changing light intensity.(b) varying spectral characteristics of the light.Traditional approaches to object identi�cation are based on single-channel in-tensity images and rely on geometric descriptions of objects. For example, the 3-dimensional shape of an object would obviously serve as a good key for identi�cation.However, for unconstrained scenes, it is di�cult to to extract this 3-dimensional in-formation. Lower level geometric cues are often used: these include looking at edgeintersections or at relative edge orientations[31]. Unfortunately there are few geomet-ric cues which are invariant to changes in viewing context.Swain[28] departs from the geometric approach and instead develops a simplescheme which identi�es objects entirely on the basis of colour. His method, calledColour-indexing, is extremely successful at identifying objects and is largely unaf-fected by the �rst three changes in viewing context.1.1 Swain's Colour-indexingSwain's colour-indexing algorithm identi�es an object by comparing its colours to thecolours of each object in the model database (a colour refers to a response 3-vectorregistered by three sensor channels). The area of a particular colour is calculated andis stored as the bin-count of a 3-Dimensional histogram (the model), appropriately



CHAPTER 1. INTRODUCTION 3called the colour histogram. Similar 3-vectors are mapped to the same histogrambins. Speci�cally each colour channel is discretised into 16 intervals; hence, eachcolour histogram has 16 � 16 � 16 = 4096 bins.Objects are presegmented from the images when calculating canonical models.This prevents background colours a�ecting object identi�cation. In the active stageobjects are not segmented from their backgrounds (as such segmentation necessarilyimplies knowledge of the object in the image!).Histograms are matched by comparing the counts, or areas, in corresponding binsvia a technique called Histogram intersection. The intersection of histograms H1 andH2 is de�ned as: H1\H2 = Xi Xj Xk min(H1(i; j; k);H2(i; j; k)) (1:1)Since canonical histograms contain no background colours, intersection (or match)values are normalized by the number of pixels in the model histogram, thus matchesare between 0 and 1. Histogram intersection is very fast requiring time proportionalto the number of histogram bins. More sophisticated correlation measures could beused, but the success of colour indexing implies that they may not be necessary.Let us examine the performance of colour-indexing with respect to the 4 changesin visual context:1. Changing the background in which an object is imaged will only add to thematch value of the histogram intersection if:(a) the pixel has the same colour as one of the colours in the model.(b) the number of pixels of that colour in the model is less than the numberof pixels of that colour in the image.Thus the correct match will always be found unless the two objects are verysimilar or the background is speci�cally designed to confound matching.2. Experimentally Swain demonstrates that histogram intersection continues towork well even when an object is partially occluded. This is to be expected as



CHAPTER 1. INTRODUCTION 4a colour histogram is an accumulation of global evidence. The coloured areasnot occluded should still be su�ciently discriminatory to allow correct objectidenti�cation.3. As the viewer alters position (or the object is rotated) some colours may comeinto view and others disappear. In this case the colour histograms can changequite signi�cantly. Swain's solution to this problem is to store histograms foreach model as seen from di�ering viewpoints.Another problem can occur as the viewing position changes. In a world oflambertian surfaces with point source illumination, the brightness of a surfacechanges as the angle between the lluminant vector and the surface normal varies.If v denotes the illuminant direction and n represents the surface normal then thebrightness of the re
ected light is proportional to v:n (the vector dot-product).This relationship accounts for the shading �eld in an image. By implicationthe brightness, or magnitude, of colours in an image will change as an object isrotated relative to the illuminant. Again storing multiple colour histograms foreach model viewed under varying conditions may help here.Normalizing the lengths of sensor response vectors, by dividing by a linear com-bination of the responses (the vector components), gives intensity-independentcolours. Such a normalization results in 2-dimensional information (the nor-malized blue response can be generated given the normalized red and greenresponses). Swain[29] histograms response vectors normalized with respect tothe sum of the red, green and blue responses. Color-indexing continues to per-form relatively well despite this shift from a 3-dimensional to a 2-dimensionalindex. However a signi�cant number of test images (� 25%) are poorly matched.In section 3 we readdress this problem when designing an illuminant invariantfeature space for object identi�cation.4. Altering the intensity of the light e�ectively alters the length of the colour tuples.That is every pixel in the image will be multiplied by a constant factor k. Swainpresents experimental results for such intensity changes and concludes that evenfor values of k fairly close to 1 object identi�cation is impaired. Changing the



CHAPTER 1. INTRODUCTION 5spectral characteristics of the illuminant hamper Swain's algorithm to a greaterdegree|both the length and direction of colour vectors will change.1.2 Extending Colour-indexingSwain's Colour-indexing fails since the colours registered by a vision system are depen-dent on the relative position of the object (the shading �eld) and, more importantly,on the spectral characteristics of the illuminant. Swain proposes applying a colourconstancy algorithm[10, 21, 12, 11] to the registered colours thereby removing thee�ects of a varying illuminant. Each registered colour is mapped to its appearanceunder canonical lighting conditions.Unfortunately, even for fairly simple worlds, the general colour constancy prob-lem is as yet unsolved. However the model-based identi�cation problem imposes con-straints on the world. In particular, since the model database contains a �nite numberof models, this implies that the world contains a �nite set of surfaces. This constraintcan be exploited in a discrete version of Forsyth's[10] CRULE algorithm. For simpleworlds, where objects are 2-dimensional and where illumination is everywhere uni-form, CRULE successfully solves the colour constancy problem and facilitates objectidenti�cation.In more complex worlds, where objects are 3-dimensional and illumination is al-lowed to vary, CRULE cannot solve the colour constancy problem. For this rea-son we develop a new approach to object identi�cation called Colour constantcolour indexing1. This scheme indexes not on colour triples but on illuminantinvariants. In particular the ratio of two neighbouring colours is, more or less, il-lumination independent; colour ratios form the backbone of colour constant colourindexing.1Colour constant colour indexing was jointly developed in collaboration with Dr. Brian V. Funt.



CHAPTER 1. INTRODUCTION 61.3 Thesis OverviewIn chapter 2 we examine, in detail, the colour constancy problem. Many compu-tational theories have been proposed; each of which places restrictions on the typeof object for which Swain's colour indexing can work. In almost all cases these re-strictions are not satis�ed by any plausible object set. However we conclude chapter2 by presenting a discrete version of Forsyth's CRULE colour constancy algorithm;CRULE can successfully solve the colour constancy problem for simple sets of objects.Unfortunately for most realistic object sets the colour constancy problem cannot(as yet) be solved. To circumvent the need for colour constancy preprocessing weconsider, in Chapter 3, identi�cation based on illuminant invariants. Three typesof invariants are considered: volumetric, opponent and ratio. Colour ratios havefavourable error and computational properties. Consequently colour ratios form thebackbone of a new identi�cation algorithm| colour constant colour indexing.Various representational issues result from the switch from colours to colour ratios.These are addressed in chapter 4. In particular we show that the distribution of colourratios is non-uniform; this implies the bins of the ratio histograms should be of di�erentsize. Issues related to ratio error are also explored.Chapter 5 presents experimental data contrasting the performance of colour in-dexing and colour constant colour indexing under illumination change. For sets ofsynthetic and real images, colour constant colour indexing is extremely successfulat identifying objects; this contrasts with the poor identi�cation success of colourindexing.



Chapter 2Colour ConstancyThe perceived colour of an object is, more or less, independent of the illuminantunder which it is observed. Thus colour is a quality not of the re
ected light but ofthe object's surface. The ability to label objects with colour names, that refer onlyto surface re
ectance properties, is called colour constancy[2].Humans have 3 types of colour receptors: long-, medium-, and short-wave sensitivecones. Hence the eye measures, at most, 3 properties of surface re
ectances. Thereforecolour constancy requires that the initial 3-vector of cone responses be transformedinto a 3-parameter surface descriptor. The colour constancy problem in machinevision is similar; though, there is no restriction on the number of receptors.Various algorithms have been proposed for solving the colour constancy problem.Each algorithm places restrictions on the types of surfaces and illuminants in theworld. If the set of objects we wish to identify satis�es these restrictions then ColourIndexing+colour constancy preprocessing will successfully identify objects under vary-ing lighting conditions.In this section we review several existing colour constancy algorithms. In all casestheir world restrictions are very strong; indeed these restrictions cannot be satis�ed byany plausible object set. However consideration of the object identi�cation problemyields new constraints and these are elegantly incorporated into a discrete version ofForsyth's CRULE algorithm. CRULE e�ectively solves the colour constancy problemfor a set of 2-dimensional objects, where the total number of distinct colours is small,7



CHAPTER 2. COLOUR CONSTANCY 8viewed under constant illumination.2.1 PreliminariesThe light re
ected from a surface depends not only on the spectral properties of illu-mination and surface re
ectance, but also on other confounding factors; these includespecularities and mutual illumination. For this reason computational theories forcolour constancy are often developed for the simpli�ed Mondriaan world; a Mondri-aan is a planar surface composed of several, overlapping, matte (lambertian) patches.The light striking the Mondriaan is assumed locally constant, i.e the intensity andspectral characteristics of the light varies slowly. In this world the only confoundingprocess to retrieving surface descriptors is illumination. Almost all colour constancyalgorithms are designed for the Mondriaan world.A priori to examining any colour constancy algorithm, the Mondriaan assumptionhas severely restricted the types of objects which can be recognized. In particular,objects are constrained to be planar. There are no colour constancy algorithms whichwork in an unconstrained 3-dimensional world.2.1.1 Sensor ResponsesLight re
ected from a Mondriaan falls onto a planar array of sensors, analogous to theretina. At each location x in the sensor array there are s di�erent classes of sensors.The value registered by the kth sensor (a scalar), pxk, is equal to the integral of itsresponse function multiplied by the incoming colour signal. Each pxk corresponds to aunique surface re
ectance. pxk = Z! Cx(�)Rk(�) d� (2:1)where � is wavelength, Rk(�) is the response function of the kth sensor, Cx(�) is thecolour signal at x and the integral is taken over the visible spectrum !. The coloursignal is the product of a single surface re
ectance S(�) multiplied by the ambientillumination E(�), C(�) = E(�)S(�).



CHAPTER 2. COLOUR CONSTANCY 92.1.2 Surface DescriptorsThe goal of colour constancy is to transform the sensor response vector px (hence-forth underscoring denotes vector quantities) to its descriptor dx, where dx encodes 3properties of the surface re
ectance and is invariant to E(�). Of course surfaces withdi�erent spectral re
ectance functions should have di�erent invariant descriptions.Formally: dx = T (E(�); px) (2:2)That is dx is a illuminant dependent transformation of px. In a Mondriaan world,under uniform illumination, a single transformation will apply throughout the im-age. The transform T is often considered to be linear. In this case T (E(�); px) =T (E(�))px. So if the number of sensor classes is 3, s = 3, then T (E(�)) is a 3 � 3matrix.2.1.3 Continuous functions as VectorsA 1-dimensional function F (�) which varies slowly with respect to � can, in a closedinterval of �, be approximated by a vector. Thus the functions of lambda introducedin the preceding section can be described by their values at a discrete number ofwavelengths over the visible spectrum. We use spectra where � is sampled at 10nmintervals from 400 thru 650 nm (vectors then have 26 components). Hence we canrewrite the R(�), C(�), E(�) and S(�) in terms of there corresponding vectors: R,C, E and S.Let us group the s sensors in the 26 � s matrix R. The kth column of R is thekth receptor vector. We can now rewrite the integral of equation (2.1) in terms ofsummations: pxk = 26Xi=1RikC i (2:3)Equation (2.3) is exactly the vector dot-product of the kth sensor with the colour-signal. Hence we can calculate the s sensor responses via equation (2.4) (the k index



CHAPTER 2. COLOUR CONSTANCY 10is dropped): px = RtC (2:4)where t denotes matrix transpose. Thus we can think of a sensor response as theprojection of a colour signal onto the sensor axis. The vector representation is usefulfor analysis since it is impossible to measure precisely complete spectral functions. Inaddition the techniques of vector algebra are employed in many of the computationalstrategies for colour constancy.2.1.4 Finite-dimensional ModelsColour vision can be modelled using a �nite dimensional linear model for surfacere
ectance and illuminant spectra[27]. Let S be a matrix of dS (dimension of S)refelectance basis vectors; S is 26�dS . Thus a surface re
ectance vector S is approx-imated as: S � S� (2:5)where � is a dS component column vector of weights. Maloney[22] presents evidencewhich suggests surface re
ectances can be well modelled by a set of between 3 and 6basis vectors. Similarly illuminants are often modelled by a small set of basis vectors.Let E be the matrix of dE basis vectors, then:E � E� (2:6)� is an dE dimensional vector of weights. Judd[18] measured 605 daylight illuminantsand showed they are well modelled by a set of three basis functions. However manyarti�cial illuminants are poorly approximated using this basis. This is especially truefor the spiky illuminant spectra generated by 
uorescent lighting.



CHAPTER 2. COLOUR CONSTANCY 112.2 General Linear TransformsIn section 2.1.1. we introduced the colour constancy transform T . Almost all authorsconsider T to be a linear map (i.e. a 3 � 3 matrix). If the descriptor for a surface Sis de�ned to be its response vector under a canonical illuminant EC then Forsyth[10]has shown that T must be linear. In this section we consider colour constancyalgorithms which assume a general linear map. Those algorithms which restrict T tobeing diagonal are discussed in section 2.3.2.2.1 Experimental PerformanceWe begin by considering the theoretical constancy of a linear transform T . If goodconstancy is possible then this validates Swain's idea of colour constancy preprocess-ing. Good theoretical constancy performance is also required in developing illuminantinvariants|discussed in chapter 3.To my knowledge, the theoretical bounds on colour constancy have not been pub-lished in the colour constancy literature. Previous studies have estimated how wellparticular algorithms solve for colour constancy. Thus the results presented here, areby themselves, of considerable interest.We consider two sets of sensor sensitivities: the cone fundamentals derived byVos and Walraven[33] and a set of camera sensitivities. The camera sensitivities werederived by multiplying the spectral sensitivity function of our CCD camera by theKodak Wratten �lters #25 (red), #58 (green) and #47B (blue). The sensor sets areshown in Figures 2.1 and 2.2.We use a set of 7 illuminants: 5 Judd daylight spectra [18], CIE standard il-luminant A [33] and a black-body radiator with colour temperature 3600K. Theseilluminants are applied to a set of 40 surface re
ectances consisting of 12 ceramic tiles[3], the 24 Macbeth colour checker [25] patches and 4 of the natural surfaces mea-sured by Krinov[19]. Since the Krinov, ceramic and Macbeth spectra are measuredin di�erent units, all surface re
ectances are normalized|they are scaled such thattheir squared area is equal to one. This normalization has little e�ect on the resultspresented in this section.
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Figure 2.1: Vos Walraven Fundamentals
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Figure 2.2: Camera Sensitivities



CHAPTER 2. COLOUR CONSTANCY 13We consider colour constancy to be achieved if response vectors are mapped totheir appearance under a canonical illuminant. In these experiments we chose Judd'sD55 (55 stands for 5500K) as the canonical illuminant. This implies that descriptorsare response vectors for surfaces viewed under D55.Let V be a 3 � 40 matrix of sensor-response vectors generated for the 40 surfacesobserved under D55. Similarly, letW be the matrix of response vectors of the surfacesimaged under another arbitrary illuminant E. To the extent that linear transformssu�ce for colour constancy, V and W should be approximately equivalent under amatrix transform: V � T W (2:7)We solve for the non-zero T which minimises the sum of the squared error inequation (2.8): minimize Xi;j ( [V]ij � [T W ]ij )2 (2:8)The solution for T is given by the Moore-Penrose inverse T = T V(W)+, whereW+ =W t[WW t]�1. Given a �xed set of sensor functions, the solution of equation (2.8) yieldsthe best transformation that takes observations under one illuminant into observationsunder another.For both the Vos Walraven and camera sensor sensitivities, we generate experi-mental data to test how well linear-transform algorithms can possibly perform. Foreach illuminant, we �nd the optimal linear transform (by solving equation 2.8) map-ping the sensor response vectors for the surface re
ectance set to their appearanceunder the canonical illuminant D55.Since sensor responses are 3-vectors any metric for evaluating colour constancyshould compare �tted vectors (the ith column of T W) with their corresponding de-scriptors (the ith column vector V). The euclidean distance between �tted vector anddescriptor, normalized with respect to the descriptor length, is a reasonable choice ofmetric and we will denote this normalized �tted distance as NFD.
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Figure 2.3: Cumulative NFD histogram for Vos Walraven fundamentalsCumulative NFD histograms for the Vos Walraven and camera sensors are gener-ated for each illuminant, see solid lines in Figures 2.3 and 2.4. In all cases responsevectors are mapped to within 10% of their descriptors. These experiments demon-strate that a linear transform is a suitable mechanism for colour constancy. In thefollowing 3 sections we consider computational approaches to �nding T .2.2.2 Gershon's algorithmGershon[13] developed an algorithm to solve for T by making 3 assumptions aboutthe Mondriaan world:
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Figure 2.4: Cumulative NFD histogram for Camera Sensors1. Illumination and surface re
ectance spectra are well modelled by small dimen-sional basis sets. Speci�cally if there are s sensors then dE; dS � s. We willassume s = 32. The average of all the distinct surface re
ectances in every Mondriaan is thesame. We denote the average re
ectance vector as A.3. Illumination is everywhere constant.The algorithm proceeds in two stages: �rstly assumption 3 is exploited to solvefor the illuminant; thereafter T can be constructed. Let �(A) be the 26 � 3 matrix



CHAPTER 2. COLOUR CONSTANCY 16constructed by multiplying each column of E by A. The illuminant is de�ned by E�.Thus the average response vector recorded for a Mondriaan can be written as:pav = Rt�(A)� (2:9)Since Rt�(A) can be precalculated, (�(A) is the same for all Mondriaans) and pavcan be derived from the image, we can solve for the weight vector �:� = [Rt�(A)]�1pav (2:10)The illuminant vector is calculated as E = E�. Let Q denote the 26 � 3 matrixconstructed by multiplying each column of S by E. The response vector correspondingto a surface re
ectance de�ned by the weights � satis�es the following relationship:p = RtQ� (2:11)Both p and RtQ in equation (2.11) are known. Hence we can solve for � (the surfacedescriptor) by calculating:� = [RtQ]�1p ) T = [RtQ]�1 (2:12)For general Mondriaans Gershon's algorithm exhibits poor colour constancy sincethe average re
ectance spectra can vary signi�cantly. Further constraining the illu-minant to being everywhere uniform is an unrealistic restriction. Regarding colourindexing, it is highly unlikely that every object will have the same average colour.2.2.3 Maloney's algorithmMaloney's algorithm, like Gershon's, proceeds in two stages: �rstly the illuminant isestimated, thereafter the constancy transform T is constructed. However Maloneymakes di�erent, weaker, assumptions about the world:1. If there are s sensors then dE � s and dS < s. We will assume s = 3 hencedS � 2.



CHAPTER 2. COLOUR CONSTANCY 172. Illumination is locally constant.Given the illuminant vector E then T is calculated by equation (2.12). However,because surface re
ectances have dimension 2, T will be a 2 � 3 matrix (this alsoimplies the inverse of equation (2.12) is a pseudo-inverse). Thus T �1 is an injectivemapping taking 2-dimensional surface weight vectors onto 3-dimensional sensor re-sponses. Alternately a response vector can be thought of as the sum of the 2 columnsof T �1 from which it follows that sensor response vectors lie on a plane. Maloneyuses this plane constraint to solve for the illuminant.At this point it is useful to count the number of equations and unknowns. Thiswill lead to a statement about the number of sensor responses needed to solve for E.Given a single response vector we have 3 knowns and 5 parameters to solve for: �and �. Adding a second response vector increases the knowns to 6. However, sincethe illumination is locally constant, the unknowns increase by 2 to 7. By initializing�1 = 1 we reduce the number of unknowns to 6 and hence have enough knowns tosolve for the two surface re
ectances and the illuminant1. Theoretically this implieswe can solve for colour descriptors at the edge of two coloured regions.To solve for � we must �rst �nd the normal to the response plane. The normalcorresponds to the vector orthogonal to the 2 response vectors and is de�ned by theirvector cross product2. We denote the plane normal as �. The responses of any twosurfaces, S1 and S2, (which are linear combinations of the 2 basis vectors) must lie onthe response plane. This implies: �tRt�(S1)� = 0 (2:13)�tRt�(S2)� = 0 (2:14)The left-hand sides of equations (2.13) and (2.14) are 3 � 1 row vectors. Since�1 = 1 there are exactly 2 equations and 2 unknowns. Thus we can solve for theilluminant; thereafter T is calculated by equation (2.12).1Setting �1 = 1 �xes the length of the � vector but does not change its direction.2The plane normal calculated as the cross product of two vectors is susceptible to image noise.More robust estimates of the plane normal can be made by accumulating evidence from manyresponse vectors.



CHAPTER 2. COLOUR CONSTANCY 18A standard colour vision system, with three sensors, can only achieve colour con-stancy using Maloney's algorithm if surface re
ectances are 2-dimensional. Unfor-tunately surface re
ectances are higher dimensional (between 3 and 6 [22]). Theo-retically Maloney's algorithm will perform better if the vision system has more than3 distinct sensors (there is no published work evaluating this hypothesis). In thecase however, more distinct response vectors (of di�erent surfaces) are required touniquely determine the plane normal � (n � 1 response vectors are required given nsensor classes). Thus assuming the illumination is only locally constant, Maloney'salgorithm can solve the colour constancy problem if there is su�cient, local, colourcomplexity; where this complexity is de�ned by the number of sensor classes.2.2.4 Forsyth's MWEXTForsyth develops an algorithm for colour constancy called MWEXT using weak as-sumptions about the world. In particular surface re
ectances and illuminants are notconstrained to being �nite dimensional. However the illumination is still constrainedto being everywhere uniform.The descriptor for a surface is de�ned to be its sensor response vector generatedunder a canonical illuminant. The set of all descriptors, C, is used as a constraint insolving for T . All the response vectors in an image must be mapped into C by T . IfI is the set of image descriptors then:8p 2 I ;T p 2 C (2:15)There may be many linear transforms which satisfy the above constraint; MWEXT(Maloney-Wandell extension) parameterizes the set of candidate transforms. Forsythsuggests that the set of candidates for T would be diminished by examining otherinformation, for example specularities and mutual illumination. The problem of enu-merating the candidate transforms is non-trivial but would certainly be computation-ally laborious.Integral to the implementation of MWEXT is the assumption that all colours inthe world have been seen. Under this assumption the canonical set is a bounded convex



CHAPTER 2. COLOUR CONSTANCY 19region, or gamut, in receptor space. In this framework, canonical set membership isdetermined by examining only the boundary, or hull, of the canonical gamut; thissigni�cantly reduces computational costs.The fact that MWEXT returns a set of possible linear transforms, as opposedto a unique answer, has serious implications for Colour-indexing. In particular,MWEXT's multiple solutions suggests that colour constancy is a di�cult problem.Thus MWEXT preprocessing will rarely increase the performance of colour indexingwith respect to illumination change.2.3 Diagonal Linear TransformsMany theories[10, 21, 15] of colour constancy propose that the e�ect of the illuminantcan be discounted by applying a diagonal matrix transform (DMT) to each sensor re-sponse vector. In this case colour constancy is achieved by scaling each sensor channelindependently. For example the e�ect of a red illuminant would be discounted by scal-ing the red sensor catches by a fractional coe�cient; thus reducing the magnitude ofthe red responses. dkx = ckpkx (2:16)Recently Forsyth[10] proved that, if surface re
ectances are unconstrained, perfectcolour constancy can only be achieved via a diagonal matrix transform (and narrow-band sensors. This observation underlines the importance of DMT theories of colourconstancy.2.3.1 Experimental PerformanceIn this section we consider the theoretical performance of a diagonal transform D.We follow the same experimental procedure discussed in section 2.2.1. In this case wewish to optimize the equality: V � DW (2:17)



CHAPTER 2. COLOUR CONSTANCY 20We solve for each row of V independently, using the Moore-Penrose inverse:Dii = ViW ti [WiW ti ]�1 (2:18)For each illuminant we calculate the cumulative NFD histograms for the Vos Wal-raven and camera sensors, the dotted lines in Figures 2.3 and 2.4. Compared withgeneral linear transform behaviour (solid lines) a diagonal transform, for the Vos Wal-raven sensors, achieves lower constancy performance. However, a diagonal transformappears an exceptionally good model for the camera sensors. In both cases a diagonaltransform achieves good constancy performance.2.3.2 A Note on the Experimental resultsThe constancy results for general linear and diagonal transforms, shown in Figures 2.3and 2.4, are of considerable interest. They bound the performance of all colour con-stancy algorithms (for the sets of re
ectance and illuminant spectra described in2.2.1). Without considering a particular algorithm we know perfect colour constancyperformance is impossible. However, none of the algorithms presented in this chapterformally addresses the question of error in their models. This is a serious short-comingand serves to weaken the applicability of these algorithms.Also, for the camera sensors, it appears that the best diagonal transform achievescomparable constancy to the best non-diagonal transform. Reconciling this observa-tion with non-diagonal theories of colour constancy would be an interesting line ofresearch.2.3.3 Sensors and the Diagonal TransformBy examining Figure 2.4, it is clear that the narrow band camera sensors can achievegood colour constancy. In general, narrower sensors imply improved (theoretical)colour constancy. In the limiting case, sensors which are sensitive to single wavelengthscan achieve perfect colour constancy. Consider that only the jth component of thekth sensor is non-zero. Then the summation in equation (2.3) can be written as:



CHAPTER 2. COLOUR CONSTANCY 21pxk = RjkSjEj (2:19)The e�ect of the illumination, in the kth channel, is a simple scalar multiplication;which is the same for all surfaces. If all sensors are sensitive to single wavelengthsthen a diagonal matrix transformation will facilitate colour constancy in an otherwiseunrestricted world. In fact since re
ectance and illumination spectra tend to varyslowly, a diagonal matrix transformation will work even when the receptors are onlyrelatively narrow band. This explains the constancy success for the camera sensors.2.4 Von-kries adaptationOne of the earliest models for (human) colour constancy assumes a diagonal matrixtransformation. Von Kries [32] hypothesised that chromatic adaptation is a centralmechanism for colour constancy. The idea is that over time the eye would adapt tothe ambient illumination. Any colour signals are seen relative to this adapted state.More speci�cally the Von Kries adapted responses to a surface S(�) in sensorchannel k can be written as: dxk = R Sx(�)E(�)Rk(�)d�R E(�)Rk(�)d� (2:20)Von Kries conjectures that for any given illuminant E, dxk will remain constant.To determine E(�) some authors assume that there is a white (uniform) re
ector inevery scene. This white patch assumption is common to several algorithms for colourconstancy, including Land's retinex theory which is discussed in the next section.In reality surfaces under varying illuminants are only approximately von Kriesinvariant. West and Brill[32] derive the conditions surfaces must satisfy for von Kriesinvariance. Of course all surface re
ectances are von Kries invariant if narrow bandsensors are employed.Von Kries invariance is simply a diagonal matrix transformation where the coe�-cient in each channel is equal to:



CHAPTER 2. COLOUR CONSTANCY 22ck = 1R E(�)Rk(�)d� (2:21)2.5 Land's AlgorithmLand's retinex algorithm[20, 21] solves for the coe�cients of the diagonal matrixtransform by assuming that every scene in the world contains a uniform re
ector (withrespect to each sensor channel). However, unlike Von Kries invariance, chromaticadaptation is not assumed - that is the eye does not explicitly measure (adapt to)the illuminant. Hence the retinex algorithm addresses the problem of how to relatesensor responses to the white patch. Computation is carried out independently ineach sensor channel.Consider the ratio of the sensor responses at locations x1 and x2 i.e. px1k =px2k .Clearly if x1 is �xed then this ratio will be smallest when x2 corresponds to the whitepatch (re
ectances are between 0 and 1). Further consider a random continuous pathwhich visits x1; x2; x3 � � �xN . The ratio px1k =pxNk can be calculated incrementally asthe path is swept out by multiplying local ratios. For examplepx4kpx1k = px4kpx3k px3kpx2k px2kpx1k (2:22)Land calls a ratio calculated in this incremental manner a designator. The retinexalgorithm assumes many random paths are generated. At each location the smallestdesignator value is recorded. If su�cient random paths are generated then the des-ignator at all locations will be relative to the white patch. Thus the illuminant isdiscounted and colour constant designators derived.To deal with slowly varying illumination intensity, the local ratios are thresholded.Thus if px1k =px2k is approximately equal to one then the sensor responses are considereddue to the same surface re
ectance. Accordingly this ratio is set (thresholded) to one.The white patch assumption is a very strong constraint on the world. ThusLand[21] modi�es the retinex algorithm by assuming that the average of all desig-nators at each image location is constant. Brainard[5] shows that if many random



CHAPTER 2. COLOUR CONSTANCY 23paths of reasonable length are generated then the average designator at xa is equalto: (n� 1)pxakPN�1i=1 pxik (2:23)where i indexes all other pixels in the image. Note the illumination terms still can-cel and as such that the average designator is constant under changing illumination.However the designator at x will vary as its background changes. For example if thebackground is predominantly red then px will be normalized to a red patch chang-ing the background to blue will yield (unsurprisingly) a radically di�erent designator.Brainard[5] demonstrates that less drastic changes in context can signi�cantly alter re-
ectance designators. We conclude, therefore, that the average designator assumptionis at least as strong an assumption as Land's original white patch assumption.In terms of object identi�cation if an object can be segmented from an imagethen the average designator will be illuminant invariant and could be used in Swain'salgorithm. There are 2 
aws in this reasoning1. Segmenting an object in an image often requires identifying the object. (Thissuggests more expensive computation and would not be suitable in an activevision system.)2. If the object is occluded then the colour designators will change.2.6 Horn's algorithmHorn casts Land's retinex in a more rigorous framework. In particular Land's notionof random path is no longer employed. Instead images are normalized to their ap-pearance under a single, uniform illuminant. This allows the responses at any twoimage locations to be compared directly.The computational process is summarized below:1. The logarithm of the colour image (the log-colour image) is calculated; thise�ectively separates the re
ectance and illumination components. Taking thelogarithm of both sides of equation (2.16) implies log(dxk) = log(ck) + log(pxk).



CHAPTER 2. COLOUR CONSTANCY 242. Re
ectance changes are distinguished from illuminant variation by examiningthe Laplacian of the log-colour image. Small Laplacian values are due to illumi-nation gradients; whereas, large values indicate a re
ectance edge. Thresholdingthe Laplacian of the log-colour image e�ectively removes the spatial variationof the illuminant.3. Performing the inverse Laplacian gives a new log-colour image. The antilog ofthis results in an image taken under a single (unknown) illuminant.Note the above is the essence of the computational process; Horn presents, in detail,the mathematical analysis necessary for its implementation. Horn goes on to suggesta possible biological implementation. However, there are several problems with Horn'salgorithm:1. To solve the inverse Laplacian requires boundary constraints on the Mondriaan(and its image). Namely the Mondriaan must lie completely within an area ofconstant re
ectance. This implies the sensor responses on the boundary of allimages must be due to the same surface re
ectance.2. Colour constant descriptors still require a reference patch. Lands white patchor average patch schemes could be used; however, this implies descriptors stilldepend on the other colours in the scene.Horn's boundary assumptions are not satis�ed even in the simpleMondriaan world.Blake[4] demonstrates that the strong boundary constraints are necessary only be-cause the illuminant component is removed by thresholding the Laplacian of thelog-colour image. By applying the threshold on the gradient of the log-colour im-age Blake develops a computational process which calculates surface lightnesses withweaker boundary constraints.2.7 Discrete CRULEAll of the colour constancy algorithms, discussed so far, place unrealistic constraintson the world; and as such cannot be used to extend colour-indexing. However we



CHAPTER 2. COLOUR CONSTANCY 25need not employ a general algorithm for colour constancy. The problem of objectidenti�cation places constraints on the world; speci�cally since our goal is to identifyan image as being one of a �nite set of objects then this implies our world contains a�nite, or canonical, set of colours. Thus the colours generated by a colour constancyalgorithm must belong to the canonical set.Solving for the colour constancy transform by enforcing canonical set member-ship, suggests Forsyth's MWEXT algorithm (2.2.4). However restricting constancytransforms to diagonal matrices leads to Forsyth's second algorithm|CRULE. LikeMWEXT, knowledge of all colours in the world is an essential component of CRULE'simplementation. In this section we consider a discrete implementation of CRULE.2.7.1 Colour constraintsThe set containing descriptors for all surfaces (of all objects) viewed under the canon-ical illuminant is called the canonical set, C = fd1; d2; � � � ; dmg. An arbitrary scenecontaining (n � m) distinct surfaces under a single illuminant l generates n image3-vectors ,I = fp1; p2; � � � ; png. Colour constancy is achieved if we can match eachpi to its corresponding canonical descriptor dj . The set of all matched canonical de-scriptors is called a canonical labelling and is denoted L (L is a subset of C). Colourconstancy can be considered as a mapping D of I to C, i.e. D : I ! C.Since we are assuming a diagonal matrix model of colour constancy then dj = Dpi.For each pi there are m possible candidates for D; each image descriptor can bemapped to every member of the canonical set. However each candidate illuminanttransform D must map all image descriptors onto the canonical set.2.7.2 The AlgorithmLet the set of possible illuminants (diagonal matrices) which map the ith image re-sponse vector onto the canonical set be denoted Di (The sets Di are easily constructedfrom equation (2.16)). A diagonal matrix, D0, which maps all elements of I into Cmust be a member of every Di. We can enumerate the set of possible transforms byevaluating:



CHAPTER 2. COLOUR CONSTANCY 26D0 2 n\j=1Dj (2:24)Given a validD it is straightforward to �nd the canonical descriptors which correspondto each image descriptor.A diagonal transform is an approximate model of colour constancy. Hence theintersection of equation (2.24) must deal with the model error; two transforms areconsidered equivalent if their di�erence is within model error limits. In section 5, fora set of synthetic Mondriaans and the camera sensors, we use the discrete CRULE asa preprocessing stage for Colour-indexing. Good results are reported.2.7.3 DiscussionThere may be su�ciently restricted identi�cation domains where CRULE can be used.For example consider the object set containing only cereal boxes. If these are alwaysfrontally placed with respect to the camera then the discrete CRULE algorithm mightwork. Unfortunately, for most real sets of objects CRULE algorithm is unlikely towork. A summary of the main reasons for failure (and of the problems to be overcome)are given below:1. Most objects are 3-dimensional and as such violate the Mondriaan world as-sumptions.2. Response vectors can be the result of many confounding processes: includingmutual illumination and specularities. These processes acting in local regionsof the image have a global e�ect. Information from all image locations is usedas a constraint in CRULE.3. Background colours may not be in the canonical set.4. The size of the canonical set can be very large. A larger set implies that therewill be a greater number of possible constancy transforms. (As the numberof colours becomes large it is pertinent to switch from the discrete CRULEdescribed above to Forsyth's in�nite colour CRULE.)



CHAPTER 2. COLOUR CONSTANCY 27The discrete CRULE can also be used if every image contains a set of referencecolours at a known location. In this case the cardinality of C and I are the same (thenumber of reference colours), and hence equation (2.24) returns a unique diagonaltransform. Unfortunately, placing known reference colours in every scene imposes astrong constraint on the world; this limits the usefulness of colour indexing.Swain also suggests using this reference colour constraint. In particular he proposesto solve for the constancy transform with Novak and Shafer's [26] \Supervised colourconstancy" algorithm. Unlike CRULE, this algorithm has not been shown to work onreal images.



Chapter 3Robust Object Identi�cationSwain's Colour-indexing algorithm is remarkably robust to many changes in visualcontext: including object deformation and occlusion. However, if the colour or inten-sity of the illuminant changes then Colour-indexing performs poorly. Theoretically thee�ect of the illuminant can be discounted by applying a colour constancy algorithmto each image. Unfortunately, the colour constancy problem is underconstrained.To solve for the constancy transform assumptions are made about the world.These assumptions dictate the types of objects which can be identi�ed with Colour-indexing + colour constancy preprocessing. Almost all colour constancy algorithmsplace strong constraints on the world; these constraints are not satis�ed by realisticobject sets. Weakening these assumptions, as in Forsyth's MWEXT and CRULE,leads to many candidate constancy transforms. There appears no way to �nd thecorrect transform from this candidate set. Further there, is as yet, no colour con-stancy algorithm which can work in an unconstrained 3-dimensional world. Thus weconclude that colour-indexing cannot reasonably be extended with a colour constancypreprocessing stage.The failure of colour constancy algorithms leads to a new approach for robustobject identi�cation. We propose indexing, not on colours, but rather on illuminant-invariant, or colour constant, image features. The new approach is called Colourconstant colour indexing and is the major contribution of this thesis. For the rest ofthis section we assume that a diagonal matrix transform is a reasonable model for28



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 29colour constancy. This is clearly true for the camera sensors.3.1 Opponent InvariantsHering(1878)[14] proposed that \opponent" combinations of the cone responses arethe basis for colour perception. These opponent combinations are named red-green,blue-yellow and white-black (r-g,b-y,w-bl). The idea is that the two colours in eachopponent channel compete against each other. For example if the red cone is stronglystimulated and the green cone is weakly stimulated then the r-g opponent channel willgive a strong response. The w-bl channel encodes brightness information. Faugeras[9]proposes that the opponent channels are implemented as linear combinations of thelogarithm of trichromatic responses:r � g = log(r)� log(g) ) r � g = log(r=g)y � b = log(r)� log(b) ) y � b = log(r=b)w � bl = � log(r) + � log(g) + 
 log(b) (3:1)One of the advantages of this formalism is that the r-g and y-b channels areindependent of the intensity of the illumination. An intensity change k correspondsto a scalar multiplication of the original trichromatic sensor channels: kr,kg and kb.Hence in the r-g and y-b channels the k component cancels; since multiplication isaddition under the logarithm operator. Faugeras hypothesises that, in the biologicalsetting, the the w�bl channel is also illuminant invariant via lateral inhibition betweenretinal responses. This refers to the idea that the di�erence of the w�bl at two di�erentretinal locations is independent of the illuminant intensity.If changing the colour of the illuminant is modelled well by a diagonal matrixtransform then all three opponent channels with lateral inhibition are colour constant.To illustrate this consider the r�g channel when the colour of the illuminant changes.The change is modelled by multiplying the r channel by k1 and the g channel by k2.The di�erence in the r � g channel at two retinal locations, a and b, is written as:



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 30log(rak1)� log(gak2)� (log(rbk1)� log(gbk2))= log(ra)� log(ga)� log(rb) + log(gb) = log(ragbrbga ) (3:2)Faugeras' opponent channels, with lateral inhibition, are invariant to a changingilluminant. Hence this opponent model performs a partial form of colour constancy;colour constant descriptors encode information of one colour relative to another. Nev-ertheless these illuminant invariant features provide a rich source of colour constantinformation. As such they are candidate features for object recognition.Swain[28] investigated an opponent transform for Colour Indexing. However, hisopponents are linear combinations of the sensor channels (no logarithms are taken) atunique image locations. In this framework the opponents are not independent of theilluminant. Unsurprisingly Swain's opponent transform does not signi�cantly alterthe performance of colour indexing with respect to illuminant change.3.1.1 Double Opponent CellsFaugeras proposes that lateral inhibition is implemented as a low frequency atten-uating �lter. More recently Hurlbert[17] has investigated opponent invariants. Hermodel is also based on a low frequency attenuating �lter|the Laplacian of the Gaus-sian (LOG). She proposes that this �lter is implemented, in humans, by the double-opponent cells.At an early stage of post-retinal computation, area V1 in the visual cortex,double-opponent (DO) cells have been identi�ed[16]. These cells have spatially- andchromatically-opponent concentric �elds, the centre and surround, each fed by twocone types. For example, the R+G�=G+R� cell has a centre which is excited bylong-wavelength light and is inhibited by medium-wavelength light. Its surround hasan inverse excitation and inhibition.Hurlbert[17] analyses the operation of the R+G�=G+R� cell as:O = G ?52 log(RG) = G ?52 log(R) � G ?52 log(G) (3:3)



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 31G is a Gaussian (smoothing) �lter; ? denotes convolution; 52 is the Laplacianoperator and O is its output. Equation (3.3) calculates the Laplacian of log(RG),log(RG) = log(R)� log(G), at each point in the visual �eld. LOG �ltering removes thezero frequency component, which in this case is the illuminant, and returns illuminantinvariant descriptors. Assuming a spatially varying illuminant the LOG operatormust have a small support. The Faugeras y-b and w-bl channels are also illuminationinvariant under LOG �ltering.3.2 Ratio InvariantsColour ratios are approximately illuminant invariant; this is implicit in the derivationof the opponent invariants but follows immediately from the diagonal transform modelof colour constancy. Consider the ratio of responses in a single colour channel atpositions x1 and x2: dx1k = ckpx1k dx2k = ckpx2k) dx1kdx2k = px1kpx2k (3:4)Ratios of 3-vectors are illumination invariant and form the backbone of colourconstant colour indexing. Ratios have a number of favourable properties:1. ratios can be calculated locally.2. illumination is only constrained to be locally constant.3. surfaces in a local neighbourhood will tend to be at similar orientation withrespect to viewer and illuminant. Thus ratios will tend to be view point inde-pendent.4. ratios encode spatial and colour relationships.Simple colour ratios also have favourable error properties; especially when com-pared with the opponent invariants. The question of error is considered in the nexttwo sections.



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 32% range of �tted relative errorred green blueCIE A [-1.2,1.2] [-7.3,13.9] [-3.1,4.4]36K [-0.6,0.6] [-3.5,6.8] [-0.2,0.7]D48 [-0.3,0.2] [-1.1,1.6] [-1.3,1.3]D65 [-0.2,0.3] [-1.8,1.3] [-1.2,1.3]D75 [-0.4,0.4] [-3.1,2.2] [-2.0,2.1]D100 [-0.5,0.6] [-5.3,3.9] [-3.1,3.3]Table 3.1: Range �tted relative error in the red, green and blue channels for thecamera sensors3.2.1 Ratios and errorSince a DMT is an approximate model for colour constancy each colour ratio will beconstant only within certain error bounds. There is an important connection betweenrelative error of �tted responses and the error in colour ratios which will allow us touse the experiments of chapter 2 to estimate the error in colour ratios.First we should distinguish between the notions of absolute and relative error. Letus consider the 3-vectors p and q where p � q. There are two methods to determinehow closely p and q match. Absolute error is concerned with the distance between pand q. Suitable distance measures (or metrics) includeP3i=1 jpi�qij andP3i=1(pi�qi)2.The �tting experiments of section 2.3.1 minimise the sum of absolute errors in thebest diagonal �t.However when we compute the ratio of two response vectors we are more interestedin the relative error of the result. Relative error compares the ratios of �tted responsesp and q to the unit vector (vector components are divided). Suppose sensor responseslie in the range [0; 100] then the absolute error between responses 0:5 and 0:2 is small.However, the relative error is very large|more than 100%. Relative error between�tted variables can be large only if the variables have small values. In Tables 3.1and 3.2 we show the maximum �tted relative error for the camera and Vos Walravensensor sets, for each illuminant.The maximum relative error shown in Tables 3.1 and 3.2 refers to single surfacere
ectances and corresponds to the ratio of a �tted 3-vector with its corresponding



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 33% range of �tted relative errorred green blueCIE A [-19.3,25] [-17,19.2] [-6.5,22.6]36K [-10.1,12.1] [-9.1,9.8] [-1.5,7.9]48K [-3.1,4] [-3.1,2.6] [-1.9,3.9]D65 [-3.9,3.3] [-2.8,3.6] [-3.7,1.8]D75 [-6.4,5.8] [-4.8,6.4] [-6,3.1]D100 [-10.2,9.9] [-8.1,11.3] [-9.2,4.9]Table 3.2: Range of �tted relative error in the red, green and blue channels for theVos Walraven Fundamentals % range of ratio errorred green blueCIE A [-2.3,2.4] [-18.7,22.9] [-7.1,7.7]36K [-1.2,1.2] [-9.7,10.7] [-0.9,0.9]D48 [-0.5,0.5] [-2.6,2.7] [-2.53,2.59]D65 [-0.5,0.5] [-3.0,3.1] [-2.5,2.53]D75 [-0.8,0.8] [-5.2,5.5] [-4.1,4.2]D100 [-1.1,1.2] [-8.9,9.7] [-6.2,6.6]Table 3.3: Range of errors for ratios in the red, green and blue channels for the camerasensorsdescriptor. Let px1 and px2 denote responses in a single sensor channel correspondingto two surfaces viewed under some illuminant and dx1 and dx2 are their canonicaldescriptors. Let � be the coe�cient which best maps px1; px2 to dx1; dx2 :�px1 � dx1 ; �px2 � dx2 (3:5)Without loss of generality assume �px1 = (1+"x1)dx1 and �px2 = (1�"x2)dx2 where"x1 is the maximumpositive �tted relative error and "x2 is the minimumnegative �ttedrelative error. We can write the ratio px1px2 in terms of dx1 and dx2 and thereby make astatement about ratio constancy relative to dx1dx2 :dx1dx2 � (1 + "x1)dx1(1 � "x2)dx2 (3:6)



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 34% range of ratio errorred green blueCIE A [-35.4,54.8] [-30.4,43.7] [-23.8,31.2]36K [-19.8,24.7] [-17.3,20.9] [-8.7,9.5]48K [-6.8,7.3] [-5.6,5.9] [-5.6,5.9]D65 [-7.0,7.5] [-6.2,6.6] [-5.4,5.7]D75 [-11.5,13.0] [-10.6,11.8] [-8.9,9.7]D100 [-18.3,22.4] [-17.5,21.2] [-13.5,15.5]Table 3.4: Range of errors for ratios in the red, green and blue channels for the VosWalraven FundamentalsIt is clear that this ratio has a higher relative error than �px1 . During a least-squares �t there will be at least one response �tted above (greater than) its de-scriptor and one response �tted below. Choosing the maximum positive and themaximum negative �tted errors,"M and "m, we can bound the errors of colour ratios:[�"M�"m1+"M ; "M+"m1�"m ]. See Tables 3.3 and 3.4.3.2.2 Relative error of the Faugeras invariantFrom the discussion in the last section it follows that the Faugeras opponent invariant,introduced in equations (3.1), can have higher relative error than single channel ratios.Let us consider the r�g channel response at adjacent retinal locations x1 and x2. Wedenote the error in the red and green channels at x1 as "x1r and "x1g . Similarly at x2the error is "x2r and "x2g . Rewriting the Faugeras r � g invariant making error termsexplicit (where r and g denote descriptors in the red and green channels):rx1gx2rx2gx1 (1 + "x1r )(1 + "x2g )(1 + "x2r )(1 + "x1g ) (3:7)Clearly if "x1r and "x2g are both positive and, "x2r and "x1g are both negative theFaugeras invariant has a positive error larger than either "x1r or "x2g . A similar argumentholds for an increasing negative error. Clearly the error performance of the Faugerasinvariants is linked to the correlation of errors in di�erent sensor classes.Table 3.51 shows the minimum and maximum errors for the r � g and y � b1the error data in Tables 3.5 and 3.6 refer to the exponent of the Faugeras channels. This ensures



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 35% range of opponent errorr � g y � bCIE A [-18.6,22.9] [-8,8.7]36K [-9.7,10.7] [-1.5,1.6]48K [-2.7,2.7] [-2.6,2.7]D65 [-3,3.1] [-2.5,2.6]D75 [-5.2,5.5] [-4.1,4.3]D100 [-8.9,9.8] [-6.3,6.7]Table 3.5: Range of error in the r � g and y � b channels for the camera sensors% range of opponent errorw � bl r � g y � bCIE A [-32.4,47.8] [-15.1,17.9] [-37,58.7]36K [-17.7,21.6] [-8.2,9] [-20.2,25.2]48K [-6.0,6.4] [-3.1,3.2] [-7.7,8.3]D65 [-6.3,-6.37] [-3.3,3.4] [-7.86,8.53]D75 [-10.6,11.8] [-5.5,5.8] [-13,14.9]D100 [-17.0,-20.5] [-8.9,9.8] [-20.3,25.5]Table 3.6: Range of errors for the Faugeras opponent invariants for the Vos WalravenFundamentalsinvariants for the camera sensors. The y � b invariant performs signi�cantly worsethan both the red and blue ratios; the r � g invariant performs worse than all threecolour ratios. Thus, for the camera sensors, we conclude colour ratios are a morestable index than opponent invariants.In Table 3.6 the errors in each of the Vos Walraven opponent channels are shown2.Clearly both the y� b and w� bl invariants exhibit poorer performance compared tocolour ratios. In contrast the r� g channel is less a�ected by error than all the colourratios and can be considered as a possible index. However taken together the set ofFaugeras opponents are not a suitable basis for colour constant colour indexing withthe Vos Walraven sensors.a fair comparison to the errors present in simple ratios2The coe�cients of �, � and 
 de�ning the w � bl channel of equation (3.1) are set to 0:612,0:369 and 0:019. This linear combination best matches the performance of the relative luminancee�ciency function|V �(�).



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 363.3 Volumetric InvariantsBrill[6] develops a theory of colour constancy based on volumetric invariants. Letp1; p2; p3; p4 denote the response vectors of 4 distinct surfaces viewed under the sameilluminant;Mijk denotes the matrix whose columns are pi,pj and pk. The volume ofthe parallelepiped bounded by the columns of Mijk is equal to:vijk = Det(Mijk) (3:8)where Det denotes the determinant function. The volumetric invariant is the ratioof two such volumes: vijkvijl . To illustrate lluminant independence consider applying alinear transform T to the original sensor responses. Under T the volumetric ratio iswritten as: vijkvijl = Det(TMijk)Det(TMijl) = Det(T )Det(Mijk)Det(T )Det(Mijl) (3:9)Clearly Det(T ) cancels from top and bottom implying illuminant invariance.A general linear transform always performs at least as well as a diagonal transformin solving for colour constancy. This is especially true for the extremes in illuminantcolour|CIE A and D100. Thus while colour ratios calculated under D55 di�er fromthose calculated under D100, volumetric ratios remain unchanged.Unfortunately to calculate volumetric ratios there must be at least 4 distinctcolours falling in a small neighborhood of the image. Such colour complexity is un-likely; as such we predict that volumetric ratios, used by themselves, would yield pooridenti�cation success. However they do provide useful extra information; in particularvolumetric ratios encode the interrelationships of 4 surface colours.3.4 Colour Constant Colour IndexingAll three invariants: ratio, opponent and volumetric are candidate indices for objectidenti�cation. However, because opponent invariants have poor error properties andvolumetric invariants require high colour complexity, we propose indexing only withcolour ratios.



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 37Ratios are e�ciently calculated in log space via a simple di�erencing convolu-tion operator. This di�erencing is, in e�ect, the derivative of the log-colour image.Unfortunately the �rst directional derivative is non-isotropic and this could lead toorientation a�ecting object recognition. Natural choices of isotropic operators includethe magnitude of the gradient or the Laplacian. We choose the Laplacian, or moreprecisely the Laplacian of the gaussian (LOG) so as to include smoothing, becauseit is simpler to compute and it has a theoretical relationship to the centre surroundcells of the human visual system[24].The LOG operator calculates a weighted average of log di�erences occurring in acircular �eld about each image point. Since addition and subtraction in log space cor-responds to multiplication and division in non-log space the LOG operator e�ectivelycalculates a product of ratios, where each ratio is raised to the power of its weightingcoe�cient. Each ratio in this product factors out illumination and hence we are as-sured of the illuminant invariance of the LOG index. Moreover close to the boundarybetween two coloured regions the LOG operator calculates the weighted product of asingle ratio. As such we consider the LOG operator to calculate information similarto explicit ratios.The simplest Laplacian �lter can be written as (�40;0; 1�1;0; 10;�1; 10;1; 11;0), where�40;0 denotes a weight of �4 at mask location (0; 0). If ixk denotes the logarithm of pxkthen the Laplacian at image location (x; y) is calculated as �4ix;yk + ix�1;yk + ix;y�1k +ix;y+1k + ix+1;yk . In non-log space this is equal to:px�1;ykpx;yk px;y�1kpx;yk px;y+1kpx;yk px+1;ykpx;ykColour-constant Colour indexing proceeds in three stages:I. Logarithm step ixk ( log(pxk)) k = 1:::3II. Laplacian convolution stepdxk ( r2G ? ixk k = 1:::3



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 38III. Histogram stepSteps I and II represent the only additional computation required to obtain il-lumination independence. The logarithm in Step I can be done by table lookup inhardware and the Laplacian in step II is a separable convolution. As for Hurlbert'sopponent invariant, the LOG operator must have a small support so as not to violatethe assumption of constant illumination.We call the histograms of LOG triples ratio-histograms. The count in a ratio-histogram bin conveys information, not about colour areas, but about colour bound-aries. There are various representational issues resulting from the switch from coloursto ratios. These are discussed in Chapter 4. In a number of di�erent experimen-tal conditions colour constant colour indexing performs well. The experiments andresults are presented in Chapter 5.3.5 Colour Constancy by Object Identi�cationAlgorithms which solve the colour constancy problem all make assumptions about theworld: retinex assumes that each scene contains a uniform re
ector and CRULE haspreviously seen all surfaces which make up the world. If every world scene contains amodel object, at a known location, then colour constant colour-indexing can be usedas a preprocessing step for colour constancy. Consider the following algorithm:1. Focus attention at a known location.2. Identify object at this location using colour constant colour-indexing.3. Solve for the constancy transform.4. Apply this transform to the image thereby generating colour constant descrip-tors.Although we do not propose the above as a model for colour constancy, it isinteresting to note that Swain requires colour constancy to achieve object identi�-cation whereas we can obtain colour constancy as a result of object identi�cation.



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 39The psychophysical experiments of Arend and Reeves and of Craven and Foster, bothimplicitly address these computational issues in the framework of human vision. Weprovide a summary of their results in the next section.3.5.1 Psychophysical ExperimentsMachine and human vision share many common goals. As such, studies of the humanvisual system are often of consequence to machine vision. This is true in the �eld ofactive vision|where the goal is to solve speci�c problems quickly. Colour indexingand colour constant colour indexing both solve the active vision task of identifyinga known object (the object is assumed to belong to the set of model objects) ata known location.. Both algorithms address the colour constancy problem. Herewe report on psychophysical experiments which partially address identi�cation andcolour constancy in the framework of human vision.Arend and Reeves[1] conducted experiments investigating simultaneous colour con-stancy. They wished to determine if the human visual system solved the colour con-stancy problem via simultaneous mechanisms|that is primarily in terms of the spatialinteractions among cone responses at di�erent retinal locations, where the eye does nottemporally adapt3. In their experiments an observer is shown two Mondriaans. The�rst Mondriaan, the standard, contains n surface re
ectances, S1(�); S2(�); � � � ; Sn(�),illuminanted under E65(�) (correlated colour temperature of 6500K). The secondMondriaan, the test, is identical to the �rst except that the incident illuminant isE100(�) (correlated colour temperature of 10000K) and the ith patch, the match, isinitialized to Si(�) E65(�)E100(�); the ith patch in both Mondriaans re
ect the same coloursignal. (Changing the match re
ectance to Si(�) should render both Mondriaansidentical).Two matching experiments are carried out: chromaticity matching and papermatching. During chromaticity matching the observer is instructed to adjust thechromaticity of the match colour signal such that the ith patch in the test Mondriaan3Land's retinex algorithm is an example of a simultaneous colour constancy algorithm



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 40appears the same as the ith patch in the standard. Colour constancy in this experi-ment is poor: the observers do not, signi�cantly, alter the chromaticity of the matchcolour signals. This suggests observers see colour signals not surface re
ectances.In the paper-matching experiment the observer is instructed to alter the chro-maticity of the match colour signal such that the ith patch in the test Mondriaanlooks as if it were cut from the same piece of paper as the corresponding patch in thestandard Mondriaan. To aid this matching the observer is encouraged to examine therelationship between colours. Here colour constancy is good.These matching experiments have two implications:1. The human vision system does not exhibit simultaneous colour constancy2. Surface re
ectances (or materials) can be correctly identi�ed by examining theirrelationship with other surfaces.Both these observations favour Colour constant colour indexing. We abandoned colourconstancy preprocessing as we judged it to be unattainable. Further colour ratiosencode colour relationships between surface re
ectances.Craven and Foster[7] have investigated the problem of operational colour con-stancy; they pose the question \Can a human observer distinguish between illuminantand re
ectance changes?" Their experimental setup is similar to Arend and Reeves.A standard Mondriaan, under a �xed illuminant, is a constant in all experiments. Forbrief time periods the observer is shown a test which is either:1. the same Mondriaan under a second illuminant.2. a Mondriaan with the same spatial pattern but where re
ectances are altered.The observer is asked whether the test and standard Mondriaans di�er because ofan illuminant or surface change. In all cases observers correctly distinguish betweenilluminant and surface changes.This experiment serves to strengthen the work of Arend and Reeves|a changingilluminant is identi�ed, and hence colour constancy is not an instantaneous e�ect.



CHAPTER 3. ROBUST OBJECT IDENTIFICATION 41Moreover the whole test Mondriaan is rapidly matched to the standard suggesting aninternal colour constant representation. The LOG of the log colour image, or Faugerasopponent channels, are suitable vehicles for explaining this experiment.



Chapter 4The Ratio RepresentationSwitching from colour triples to colour ratios raises several representational issues.Firstly if all colours appear in the world with equal likelihood then this implies thedistribution of colour ratios is non-uniform. This is clear from the following simpleexample. Imagine that colours, in a single sensor class, are integers in the interval[1; 3]. Since all colours are equally likely the following ratios will occur with equalprobability: 11 ; 12; 13 ; 21 ; 22 ; 23 ; 31; 32 ; 33. It follows that ratios close to 1 are more likely thanratios close to 3. This simple illustration implies that the ratio histogram shouldsample ratio space non-uniformly.We begin this chapter by formalizing the intuition given above. A simple proba-bility model is developed which allows us to solve analytically for the distribution ofcolour ratios. Thereafter we design a ratio histogram which is optimally sensitive toratio space: that is, under the assumptions of the model, a randomly generated ratiowill fall in each bin with equal probability.The experiments of section 3.2.1 indicate that colour ratios are only constant(illumination invariant) within certain error bounds. This implies that under twoilluminants the same colour ratio may fall in di�erent histogram bins; we call thisshifting ratio migration. Including ratio error bounds into our probability model allowsus to examine ratio migration in detail. In particular, we estimate the probability ofratio migration for di�erent bin distributions.The chapter concludes by discussing the implications that the nonuniform ratio42



CHAPTER 4. THE RATIO REPRESENTATION 43distribution and ratio migration have for Colour constant colour indexing.Note Colour Constant colour indexing indexes not on colour ratios but rather onthe LOG of the log-colour image. Clearly these two indices are related. The LOGoperator calculates a weighted average of log di�erences (or ratios). Thus althoughthis chapter deals explicitly with ratios, we expect our results to apply to the LOGindex.4.1 The Probability Model: for ColoursLet us assume that all colours (sensor catches) appear with equal likelihood; that iscolours belong to a uniform probability distribution. Formally we write:pk 2 U(1; V ) (4:1)which reads, the sensor catch pk is a random variable belonging to the uniform distri-bution de�ned over the interval [1; V ]. In simpler language an arbitrary sensor catchwill have each value between 1 and V with equal probability. The probability that acolour less than X is recorded is equal to:Pr(pk < X) = X � 1V � 1 (4:2)Since all colours are equally likely each sensor channel must be independent.Therefore the probability of the response vector p being less than (X;Y;Z)t (wherecorresponding vector components are compared) is calculated as:Pr(p < (X;Y;Z)t)) = (X � 1)(Y � 1)(Z � 1)(V � 1)3 (4:3)A cautionary remark should, at the outset, be added to the above model: theassumption of a uniform distribution of colour-vectors is strong and is, in reality,unlikely. Consider the domain of consumer products|cereal boxes etc.|then brighthigh contrast colours, reds and yellows, are more likely to occurs than browns andmauves. Further the responses in di�erent sensor channels are likely to be correlated.However, Swain's colour histogram uniformly samples colour space; this coupled with



CHAPTER 4. THE RATIO REPRESENTATION 44the success of colour indexing makes a uniform colour space a reasonable assumptionfor analysis.4.2 The Ratio DistributionThe ratios AB and BA contain the same information; hence we de�ne the ratio indexto be max(AB ; BA ). Under this de�nition ratios of sensor catches will also fall in theinterval [1; V ] but the corresponding probability distribution is non-uniform. What isthe probability that max(AB ; BA ) is less than R?Pr(max(AB ; BA) < R) (4:4)Let R0 = 1R (R0 2 [ 1V ; 1]) then we calculate the probability of 4.4 as:2 � Pr(AB > R0 ^ A < B) = 2 � (12 � Pr(AB < R0 ^ A < B)) (4:5)Pr(AB < R0 ^ A < B) = Pr(A < R0B) (4:6)Assuming that A and B belong to the uniform distribution U(m;M):Pr(A < R0B) = 1(M �m)2 Z MR0m (M � �R0 )d� (4:7)Pr(A < R0B) = 1(M �m)2 (M2R02 �Mm + m22R0 ) (4:8)SubstitutingM = V , m = 1 and R0 = 1R into equation (4.8) and substituting (4.8)into equation (4.5):Pr(max(AB; BA ) < R) = 1(V � 1)2 [V 2 + 1 �R� V 2R ] (4:9)We can solve for the density function, d(R), of ratios by di�erentiating equa-tion (4.9) with respect to R. d(R) = 1(V � 1)2 [V 2R2 � 1] (4:10)



CHAPTER 4. THE RATIO REPRESENTATION 454.3 Optimal Bin DistributionEquipped with the cumulative ratio distribution, equation (4.9), we can calculate theoptimal distribution of histogram bins: ratios should fall in each histogram bin withequal probability. Intuitively this de�nition of optimality appears reasonable since ifmost ratios were mapped to a small subset of the histogram bins then this impliesdi�erent objects would yield similar ratio histograms. However we strengthen thisintuition by appealing to the information theoretic notion of entropy.Let the histogram H contain n bins in each dimension (or sensor channel) giving atotal of n3 bins. The event hijk, that a ratio is mapped to the histogram bin H(i; j; k)occurs with probability Pijk, where Pni;j;k Pijk = 1. Since we know the distributionof ratios, we can calculate the probability of a ratio sequence and thus a particularhistogram. Here we are assuming that we know the number of distinct edges whichcontribute to a particular bin1 The information contained in a histogram representingm distinct ratios is equal to m�entropy(h), where h is a random variable de�ned overthe set of events hijk. entropy(h) = nXi;j;k�Pijk log2(Pijk) (4:11)Entropy is a measure of the average cost of (optimally) encoding each event. Thusm � entropy(h) is the least number of bits required to encode a histogram with mratios. If 8(i; j; k) Pijk = 1n3 then entropy(h) is maximum[23], and hence the ratiohistogram conveys the most information. Thus an equi-probability partitioning ofratio space is optimal.Let there be n bins per sensor channel, where the ith bin is sensitive to ratios inthe interval [xi�1; xi] (x0 = 1 and xn = V ). For each xi we must satisfyPr(max(AB; BA)) 2 [1; xi] = in (4:12)1In reality we cannot distinguish between coloured edges with the same ratio triple. However,during histogram matching, this information is partially known. If a histogram bin in one histogramrepresents 3 edges and has a count of 100 then the corresponding canonical histogram will have asimilar bin count in the same bin!.



CHAPTER 4. THE RATIO REPRESENTATION 46which implies 1(V � 1)2 (V 2 + 1� xi � V 2xi ) = in (4:13)Equation (4.13) can be written as a quadratic in xi. Thus by �nding the roots ofequation (4.13) we solve for the bin boundaries xi.The above analysis is su�cient for images with only two colours and hence asingle edge. If however we introduce a third colour C then the ratios AB and BC cannotstrictly be considered independent. Incorporating this dependency into the model isnon-trivial and will not be considered further here. This dependency disappears ifwe restrict our attention to the subset of image ratios where all denominators andnumerators are unique sensor catches.4.3.1 Optimal Bin Distribution for Camera SensorsIn real images under di�erent illuminants the largest ratio is around 4:5. Assumingthat sensor catches fall in the range [1; 4:5] (which could be forced via appropriate scal-ing) we can solve for the ratio distribution by substituting 4:5 for V in equation (4.9).This distribution is graphed in Figure 4.1. Using equation (4.13) we now solve for theoptimal distribution of histogram bins, where like Swain, we divide each ratio channelinto 16 bins. The character \O" demarcates bin boundaries in Figure 4.1; the bindistribution is clearly non-uniform.4.4 Ratio MigrationSensor ratios are illuminant invariant within certain error bounds. Hence ratios canmigrate across bin boundaries as the illumination changes. We wish to incorporatethis ratio migration into our probability model. This will allow us to examine theprobability of ratio migration for di�erent bin boundaries.
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E Experimental DistributionFigure 4.1: Cumulative Probability distribution for colour ratios. Bin boundaries forthe optimal, uniform and experimental distributions are denoted by \O",\U" and\E".4.4.1 The Distribution of the Migration TermIn section 3.1.2 we examined the connection between the relative error of �tted re-sponses and the error in colour ratios (�tting refers to the optimal constancy transformwhich maps sensor values under one illuminant to their appearance under canonicallighting conditions). The relationship between �tted response and standard descriptoris captured below: d1 � (1 + ")d1 (4:14)The constancy of equation (4.14) (the variance of the right hand side) is governedby the migration term 1 + ". Henceforth we assume the migration term of a sensorcatch, ms is a random variable belonging to the unifom distribution U(m;M) (m <1,M > 1 and m;M > 0. (In reality the migration term will be peaked around one:small errors are more likely than large errors. As such, assuming the migration termbelongs to a uniform distribution implies an overestimate of the error. This implies



CHAPTER 4. THE RATIO REPRESENTATION 48the following is a worst case analysis).Given a ratio index R = max(AB ; BA ) we assume the migration term of A (mA) isindependent of the migration term of B (mB). Hence the combined migration termfor R (mR) falls in the interval [mM ; Mm ]. We would like to know the probability that mRis less than equal to some R0, Pr(mR < R0). Assuming mR < 1 then this distributionis given in equation (4.8).4.4.2 The Probability of Ratio MigrationGiven the density function, d(R), of the ratio index, equation (4.10), coupled with thedistribution of the ratio migration term allows us to estimate the probability that aratio will migrate between histogram bins. We split this analysis into two parts: �rstwe determine the probability that a ratio shifts to a higher bin (positive migration);thereafter we estimate the probability of a downward shift (negative migration).Let us consider the positive migration of the ith bin (receptive to the interval[xi�1; xi]). The minimum ratio, lying in this interval which can migrate upwards isdenoted R0 and is de�ned as follows:R0 = 8<: xi mM if xi mM > xi�1xi�1 otherwise (4:15)A ratio R drawn falling in the interval [R0; xi] can migrate upwards if and only if:mRR � xi ) mR � xiRSince Pr(mR � xiR ) = Pr(mR < Rxi ) the probability of positive migration in the ithbin is de�ned by the integral:Pr(r 2 [xi�1; xi]^ rmr > xi) = Z xiR0 d(R) Pr(mR < Rxi )dR (4:16)Let us now calculate the probability of negative migration for the same interval[xi�1; xi]. Firstly we calculate the maximum ratio in this interval which can migratedownwards. This is de�ned as:



CHAPTER 4. THE RATIO REPRESENTATION 49R1 = 8<: xi�1Mm if xi Mm < xixi otherwise (4:17)A ratio R falling in the interval [xi�1; R1] will migrate downward if and only if:mRR � xi�1 ) mR � xi�1RThus the probability of negative migration in the ith bin is de�ned by:Pr(r 2 [xi�1; xi]^ rmr < xi�1) = Z R1xi�1 d(R)Pr(mR < xi�1R )dR (4:18)Assuming that there is no positive migration from the nth bin and no negativemigration from the 1st bin, the total migration probability is calculated as:Pr(migration) = n�1Xi=1 Pr(R 2 [xi�1; xi]^RmR > xi) + nXi=2 Pr(R 2 [xi�1; xi]^RmR < xi�1)(4:19)The probability that a sensor catch does not migrate is Pr(no migration) = 1 �Pr(migration). Since the three sensor channels are assumed independent, the probabil-ity that a colour ratio vector will notmigrate, Pr(R unchanged), is (1�Pr(migration))3.4.5 Experimental ResultsIntuitively the analysis of 4.4 implies that the smaller the bin size the greater the e�ectof ratio migration. Thus a ratio histogram robust to ratio migration should have asmall number of large bins. However the optimal bin distribution (4.3) is uneven andincludes many small bins| see Figure 4.1. Thus in designing a ratio histogram weneed to �nd a compromise between two con
icting goals:1. partitioning ratio space into equi-probability regions.2. minimising the problem of ratio migration.



CHAPTER 4. THE RATIO REPRESENTATION 50distribution entropy Pr(R unchanged)optimal 12 0.43uniform 9.34 0.689experimental 11.742 0.483Table 4.1: Entropy versus Ratio MigrationFor the camera sensors we calculated 3 di�erent bin distributions: optimal, uni-form and experimental. Each is graphed in Figure 4.1. (Note the same cumulativeprobability distribution is graphed 3 times. For display purposes the uniform and ex-perimental distributions are vertically displaced. This prevents bin boundaries fromoccluding each other). Like Swain's colour histogram each ratio histogram is par-titioned into 16 bins in each sensor channel yielding a total bincount of 4096. Theoptimal bin distribution refers to the equi-probability partitioning of ratio space de-�ned in equation (4.13). By contrast, the uniform distribution is an equi-volumepartitioning of ratio space, where each bin is a cube. The last distribution, the ex-perimental, is implemented in Colour constant colour indexing. (The experimentaldistribution achieved good match success for all our test images).Table 4.1 tabulates Pr(R unchanged) for each distribution, where migration termsare drawn from [3941; 4139] (this corresponds to a colour constancy �tting error of 2:5%and correlates well with the experiments of 3.2.1). The second column of 4.1 displaysthe entropy of each bin distribution. This table clearly illustrates the trade-o� be-tween discriminatory power (maximising entropy) and robustness to ratio migration.The uniform distribution is the most robust to ratio migration but conveys least in-formation. In contrast the optimal distribution, while maximising entropy, is leastresilient to ratio migration. The experimental distribution, implemented in colourconstant colour indexing, compromises between entropy and robustness. This com-promise is clearly illustrated in Figure 4.1. Where the optimal bin distribution hasmany small bins|and is especially susceptible to ratio migration|the experimentaldistribution has fewer bins. In contrast, where the optimal distribution has few largebins the experimental distribution samples ratio space more �nely.



CHAPTER 4. THE RATIO REPRESENTATION 51The colour constancy �tting error for the Vos Walraven fundamentals is higherthan those for the camera sensors. Given �tting errors of 2:5%, 5% and 10%, Pr(R unchanged)for the experimental distribution is 0:483,0:213 and 0:056. Given the decrease in ratiostability with larger �tting errors, we predict that the Vos Walraven fundamentalswill perform poorly for extremes in illuminant colour (CIE A and D100).4.6 Advantages of the Ratio RepresentationHistograming colour ratios has several other advantages:1. In a world of lambertian surfaces with point source illumination, the ratio ofresponse vectors, corresponding to two surfaces at the same orientation, is view-point independent. This is easily demonstrated. Let v denote the illuminantdirection and n the surface normal. The the magnitude of the denominator andnumerator responses is proportional to v:n (the vector dot-product). This termclearly cancels under the ratio operation.2. Ratios provide more information than colours because a single surface can con-tribute to many ratios. Consider a n�n grid of coloured patches. If each colouris unique then the grid contains n2 distinct colours. However, counting onlyhorizontal and vertical edges, there are 2(n2 � n) colour ratio vectors; all ofwhich can be distinct.3. Ratio histograms, compared to colour histograms, are less a�ected by changesin view depth (the distance between object and camera). Since the count ina ratio-histogram bin is a measure of edge length and it is linearly dependenton view depth. This compares favourably with a colour histogram bin whichmeasures area and is therefore proportional to the view depth squared.4.7 Ratios and Histogram IntersectionEach bin in the ratio histogram is a measure of the length of a particular colourboundary. However the �rst histogram bin, H(1; 1; 1), is sensitive to trivial colour



CHAPTER 4. THE RATIO REPRESENTATION 52ratios|those close to (1; 1; 1)t. Trivial colour ratios correspond to regions where thecolour stays the same and are therefore a measure of area. This implies that two smallobjects, seen on a large uniform background, will have a large intersection (in bothcases there are many trivial ratio vectors). This problem is prevented by removingthe �rst bin from the ratio histogram.Ignoring trivial ratios implies di�erent ratio histograms will have di�erent totalbin counts. Thus care must be taken when normalizing histogram match values.Swain normalizes to the total count in the model histogram. This normalization, forratio histograms, can result in highly colourful images being falsely matched to a lesscolourful model. A similar problem occurs if we normalize to the total count in theimage histogram. Hence we choose to normalize on the maximum of the image andmodel bin counts. This ensures a good match occurs only when the intersection islarge and both histograms are of similar size. Of course if we presegmented the modelimages and removed information contributed at an objects boundary we could resortto Swain's model normalization.4.8 Ratios and 3D geometrySo far we have assumed that the numerator and denominator responses of each colourratio are drawn from surfaces with the same orientation i.e. we have ignored ratioswhich occur in tandem with a changing surface normal. Consider two surfaces withnormals n1 and n2, where the light is in direction v. The corresponding sensor responsevectors are written as (n1:v)p1 and (n2:v)p2. Their ratio vector is equal to:(n1:v)p1(n2:v)p2 (4:20)Since n1:vn2:v is a scalar, the ratio vector normalized to unit length is invariant tothe underlying 3D geometry. Under this normalization the ratio histogram encodes2-dimensional information.In real objects sharp changes in surface normal often do not coincide with sharpchanges in surface colour. For example, close to an orientation boundary, the front



CHAPTER 4. THE RATIO REPRESENTATION 53and side of a cereal packet may be the same colour. In this case only trivial ratios(1; 1; 1)t will be scaled. If the objects in our database have many orientation edgesthen the trivial axis, H(i; i; i), can dominate histogram intersection. In this case thetrivial axis should be removed.



Chapter 5Test ResultsThe colour constant colour indexing algorithm performs well on a variety of real andsynthetic images. Objects are correctly identi�ed despite substantial changes in thespectral power distribution of the illuminant. Unsurprisingly, Swain's colour-indexingperforms poorly when the illumination changes. It should be noted that in the testsof colour-indexing we use RGB histograms, not opponent-colour histograms (he testsboth) and prior background segmentation is not performed on the model images.To evaluate colour constant colour indexing we �rst consider whether or not ratiossu�ce for Swain's original problem under controlled illumination. Second, on syn-thetic images for which the surface re
ectances, illuminants and camera parameterscan be completely controlled, we test how the two methods compare. Using theseimages we go on to evaluate the performance of colour-indexing + colour constancypreprocessing. Finally, we test both methods on real images.5.1 Tests of the Ratio RepresentationEven if colour ratios are independent of illumination, this says little about ratios asa representation for colour indexing. Are ratio histograms su�cient to discriminatebetween a large number of objects?To answer this question, we ran the colour constant colour indexing algorithm on54



CHAPTER 5. TEST RESULTS 55the database of images Swain1 used in his experiments. First, however, we eliminated11 of Swain's 66 model images having saturated responses, because ratios relative tosaturated pixels cannot be expected to be constant. For our test, then, the modeldatabase contains 55 histograms and a second set of 24 di�erent images of the sameobjects is matched against this database.Each algorithm's match performance is assessed with reference to three indicators:match rankings, percentile match and match tolerance. The position of the correctmatch in the sorted list of match values is called its rank, so an image is correctlyidenti�ed if it has rank 1. The match percentile for each image is de�ned as N�rN�1,where r is a rank and N is the number of models. Each image is also matched witha certain tolerance relative to the next best matching model. If the correct matchhas rank i then the match tolerance is mi�mi�1, where m denotes match value. Analgorithm that correctly identi�es images most of the time, but with high averagetolerance, may be preferable to one that correctly identi�es images more often, butwith lower average tolerance. For each experiment we also calculated the variance ofthe tolerances. In all cases the variance is small with respect to the average value.Table 5.1 illustrates the match performance for four algorithms. Swain's, ourswith some Gaussian smoothing (LOG indexing), ours with no smoothing (simpleLaplacian indexing) and ours where we histogram explicit ratios. Firstly, as Swainreports, colour-indexing works well. The second algorithm, colour constant indexingwith smoothing, shows reasonable performance|19 of the 24 images have 1st placerankings. However, match tolerance is much reduced and, more importantly, two ofthe images are very poorly matched|ranks of 18 and 27.The poorer performance can in large part be attributed to the e�ects of too muchsmoothing. Swain used reduced images of resolution 128 � 90, which is quite smallrelative to the 9 � 9 Laplacian of Gaussian mask. Under these circumstances, colourboundaries will not necessarily be examined in isolation, since the Laplacian operatormay straddle more than one edge at at time. To circumvent this problem, we evaluatedtwo further index sets: simple Laplacian �ltering (no Gaussian smoothing) and vectorsof explicit ratios.1The author is grateful to Michael Swain for providing his images.



CHAPTER 5. TEST RESULTS 56Algorithm 1st Rank Other ranks Av. Perc. Av. Tol. Var. Tol.Colour Indexing 23 2 0.999 0.1212 0.005LOG Indexing 19 3,5,18,27 0.961 0.0613 0.004Simple Laplacian 21 2,3 0.997 0.0986 0.004Explicit Ratios 22 2 0.998 0.1023 0.005Table 5.1: Algorithm Performance : Swain's ImagesHistograms of the simple Laplacian of the log-colour image yield the results shownin the third row of Table 5.1. We conclude that the simple Laplacian provides arich representation for colour constant colour indexing since performance is similar toSwain's colour-indexing.For the ratio test adjacent pixels in 8 directions are ratioed. Of course, this ratioingcan be implemented by a series of directional �rst-derivative convolutions on the log-colour images. The performance for explicit ratios is similar to that achieved with thesimple Laplacian index|see the last row of Table 5.1.5.2 Tests on Synthetic ImagesTo the extent that changes in the spectral power distribution of the illuminationare modelled by a single scalar multiplication in each sensor channel, the ratio his-tograms should be relatively illumination independent. To test whether the coe�cientrule approximation holds su�ciently for colour ratio indexing, we constructed syn-thetic images using the measured spectra described in 2.2.1. These images are freefrom noise, specularities and other confounding processes that could confuse objectidenti�cation. As such, they represent a minimal world for object identi�cation.Thirty synthetic Mondriaan objects were generated. Each Mondriaan has the sameoverall size but contains between 4 and 10 (randomly selected) surface re
ectances.If a Mondriaan has m patches, then these are distributed according to the formula:patches in x direction = dpm e and patches in y direction = d mpme. Patches are, asfar as possible, of uniform size. For example if m = 7 then the Mondriaan has 3patches in the �rst row, 3 in the second, and 1 in the third.For each illuminant, images of the 30 Mondriaans were generated. To separate the



CHAPTER 5. TEST RESULTS 57Algorithm No. 1st Rank Failures Av. Perc. Av. Tol. Var. Tol.Swain Colour Indexing 20 155 N/A N/A N/AColour Constant Indexing 180 0 1.000 .568997 0.039Table 5.2: Algorithm performance : Synthetic imagesissue of brightness change from that of hue change in the illumination, the illuminantspectra were normalized such that their squared area is one. Without loss of generality,the Mondriaans imaged under D55 are used as the model set. Match results for Swain'salgorithm and for colour constant colour indexing are given in Table 5.2. Note thesecond column displays the number of match failures. An algorithm fails to identifyan image if the intersection with the correct model is zero. If this is the case thematch rank is unde�ned.As expected, Swain's algorithm performs badly|155 of the 180 Mondriaans havea zero intersection with the correct model. Indeed, colour indexing performs so badlythat it is not meaningful to discuss average percentile match or average tolerance.The need for some from of colour constancy is readily apparent.Colour constant colour indexing performs extremely well. All 180 Mondriaans arecorrectly identi�ed and with high tolerances.5.2.1 Biological PlausibilityUsing the Vos and Walraven[33] estimate of human cone sensitivities as sensors, we cangenerate synthetic images and examine to what extent colour constant colour indexingis a�ected by the choice of cones as sensors. In Table 5.3 we present the theoreticalperformance results using the cones. The �rst row contains the match statistics forall 6 test illuminants|i.e. 180 Mondriaans (set1). The second row contains statisticsfor the test illuminants excluding CIE A and D100 (set2)|120 Mondriaans. CIE Aand D100 represent the extremes in the spectral variation of the illuminants.A comparison of Tables 5.2 and 5.3 reveals that the broad-band nature of the conesdoes impair the algorithm's performance, but not by too much. Match performanceis increased when CIE A and D100|the two extremes of the spectral variation in theillumination|are factored out. Lower rankings result and both the average match



CHAPTER 5. TEST RESULTS 58Images No. 1st Rank Other Ranks Failures Av. Perc. Av. Tol. Var Tol.Set1 135 2-5,7,9,10,14,21 10 0.97 0.194 0.033Set2 108 2,3,4,5,9,10 3 0.99 0.256 0.034Table 5.3: Human Cone PerformanceSensors No. 1st Rank Other Ranks Failures Av. Perc. Av. Tol. Var. Tol.camera 180 0 1.00 0.416275 0.019Vos Walraven 158 2,3,4,6,11,12,14 3 0.998 0.317 0.025Table 5.4: Performance for colour-indexing + colour constancy preprocessing.tolerance and average percentile match increase.5.2.2 Colour Constancy PreprocessingThe total number of colours appearing in all the Mondriaans is small|exactly 40.Further each Mondriaan has a simple geometric shape. Thus, from our discussionof 2.7. the image of a Mondriaan taken under an arbitrary (but spatially constant)illuminant can be transformed to its appearance relative to a canonical light. Thatis, we can solve the colour constancy problem for the Mondriaan object set.We experimentally examine the match performance of colour-indexing + colourconstancy (CRULE) preprocessing. The images are created as before: there are 30canonical models and 180 test images. The match statistics for the camera and VosWalraven sensors are shown in Table 5.4.With respect to the camera sensors, colour constancy preprocessing has a dramaticimpact on the performance of colour-indexing. Like colour constant colour-indexing,all images are now correctly identi�ed (this is in stark contrast to the �gures ofTable 5.2). However on closer inspection of the data we see that colour constantcolour-indexing matches objects with higher average tolerance|0:569 as opposed to0:416. This disparity suggests that ratio histograms convey more information thancolour histograms. Indeed this was predicted in 4.6.Match performance with respect to the Vos Walraven sensors compares favourablywith that obtained by colour constant colour-indexing (see Table 5.3). More Mondri-aans are matched at 1st rank, there are less failures and both the percentile match



CHAPTER 5. TEST RESULTS 59Database No. 1st Rank Other Ranks Av. Perc. Av. Tol. Var. Tol.3600K 21 2 0.995 0.165 0.0084200K 22 1.000 0.145 0.0055400K 22 1.000 0.137 0.008Table 5.5: Real Images with Varying Illumination: Colour Constant Indexingand average tolerance have increased. This success relative to colour constant colourindexing is probably due to the small number of total colours. Consider that thetotal number of colours were much larger. This implies there will be many candi-date transforms which can map image colours onto the canonical set. Since there isno e�ective means for choosing the correct transform, many false transforms will bechosen adversely a�ecting match performance. This contrasts with colour constantcolour-indexing whose performance is independent of the total number of colours.5.3 Tests on Real ImagesUnder three di�erent colour temperatures (3600K,4200K and 5400K) pictures weretaken of 11 objects comprised of 3 T-shirts, 3 cereal/detergent boxes, 3 sweaters, aSun User's manual and a child's toy, for a total of 33 images. When the illuminationwas changed, so were other viewing conditions; shirts and sweaters were deformed,objects were rotated and occluded. The camera responds linearly with intensity andits spectral response functions are as plotted in Figure 2.2.Table 5.5 summarizes the match statistics for colour constant colour indexing.A model database was constructed using the 11 images taken under one illuminantand then the other 22 images were matched against it. This was repeated for eachilluminant. In the table, each row corresponds to a di�erent choice of model database.Performance is good and is independent of the illuminant.Table 5.6 tabulates the results for Swain's algorithm. While its performance ispoor under varying illumination, it is better than it might have been. This is partlydue to the experimental conditions under which the pictures were taken. The colourtemperature of the illuminant was changed by placing �lters in front of the light



CHAPTER 5. TEST RESULTS 60Database No. 1st Rank Other Ranks Av. Perc. Av. Tol. Var. Tol.3600K 14 2,5,7 0.90 0.08 0.0084200K 10 2,3,6,7,8,11 0.768 0.066 0.0075400K 10 2,3,4,8,11 0.80 0.071 0.008Table 5.6: Real Images with Varying Illumination: Swain's Algorithmsource. Unfortunately, these �lters also diminished the intensity of the light. Tocompensate for this, camera gain and aperture were adjusted. All pictures were madeto have pixels which lie close to the maximum camera response (i.e. 255). Bothaperture and gain adjustments are linear so should not a�ect ratio constancy.Normalizing images in this way encourages Swain's algorithm to work, since thesecamera adjustments create an approximate form of colour constancy. Nonetheless,even under these favourable experimental conditions Swain's algorithm performs badly.The optimal choice of model set appears to correspond to the 3600K illumination.However, even here 36% of images are wrongly identi�ed; this is extremely poor per-formance given the small database size. Furthermore, a ranking of 5 or 7 out of 11 isclearly unacceptable.5.4 Histogram Intersection as a MetricSwain demonstrates that if two histograms are of the same size then their intersectionis a distance metric. In particular, histogram intersection is equivalent to the scaledsum of absolute di�erences, commonly referred to as the city-block metric. Considerthe intersection of two histograms M and I each with n bins.if nXi=1Mi = nXi=1 Ii = T) 1 � (I\M) = 12T nXi=1 jIi �MijSince ratios close to one are ignored ratio histograms must be normalized to haveequal total bin counts. Results for colour constant colour indexing when this metriccondition is enforced are given in Table 5.7.



CHAPTER 5. TEST RESULTS 61Database No. 1st Rank Other Ranks Av. Perc. Av. Tol. Var. Tol.Swain's Images 22 5,8 0.992 0.098 0.005Synthetic Images 180 1.00 0.558 0.034Real Images 19 2 0.986 0.11 0.004Table 5.7: Matching when Histogram Intersection is a MetricIt appears that colour constant colour indexing continues to work well. There isa slight performance fall; however, this may not be surprising considering the type ofnormalization. The results in Table 5.7 illustrate the stability of ratio histograms as acontext-invariant object descriptor. Since normalized histograms have constant size,this stability suggests match performance could be increased by using a K-nearestneighbour classi�er. For a discussion of these classi�ers see Duda and Hart[8].The model database for a K-nearest neighbour classi�er contains the ratio his-tograms of objects imaged in many di�erent visual contexts. An image is identi�edby examining the K best matches in this duplicate database. Of course, if all Kmatches are of the same object then this is a strong match. In general, however, itis su�cient to select the most numerous matched object as the identity of an image.A K-nearest neighbour classi�er requires that ratio histograms be a stable represen-tation and that their intersection be a metric. We predict, but have yet to test, thatthe performance of colour constant colour indexing will be improved if a K nearestneighbour classi�er is used. Swain's method cannot be extended in this way, sincecolour histograms are not stable under illumination change.



Chapter 6Concluding RemarksThe work presented in this thesis can be extended in various ways. A more informeddata analysis would lead to an improved bin distribution for ratio histograms; this inturn would lead to improved object identi�cation. Identi�cation success would alsobe increased if colour areas and colour boundaries contributed to match success. Wediscuss both of these topics in forthcoming sections. Thereafter we consider usingratio histograms for the object location problem. The chapter concludes with a briefsummary of the possible applications for colour constant colour-indexing.6.1 Data AnalysisThe probability model introduced in chapter 4 assumes that both colours and con-stancy �tting error are uniformly distributed. In reality these distributions are notuniform. The probability model can be strengthened by making more informed esti-mates about the ratio distribution and the variance of ratios over illuminant changes.This can be determined experimentally.A more accurate probability model would better guide the choice of bin distribu-tion for ratio histogram. This in turn should lead to improved match success.62



CHAPTER 6. CONCLUDING REMARKS 636.1.1 Cluster AnalysisWhen histogram intersection is a metric it is reasonable to consider a K-nearest neigh-bour approach to object identi�cation (see 5.7). In this case the database containsmany histograms for each model (corresponding to a single object imaged in dif-ferent contexts). There are a set of n histograms corresponding to the ith model:Mi = Mi1;Mi2; � � � ;Min. In this framework identi�cation is a majority decision|themost numerous neighbour of the image histogram identi�es the object.A priori to matching, the space of model histograms can be analysed to deter-mine the likelihood of match success. If each model set occupies a distinct region ofhistogram space then this favours successful identi�cation. In contrast overlappingmodel regions is indicative of match failures. This type of cluster analysis is useful inevaluating di�erent bin distributions. Further it can provide an upper bound on thenumber of models which can be successfully identi�ed (as the number of models inthe database increase, a false match becomes more likely).6.2 Lexicographic ordering of coloursRatio histograms and colour histograms encode related but di�erent information(there is no way to transform one into the other). Thus, an identi�cation systemwhich makes use of both representations would yield improved match success. Unfor-tunately such a system would necessarily be impaired by a changing illuminant|sincecolour histograms are not illuminant invariant.However by altering the implementation of histogram intersection colour his-tograms can be matched independent of the illuminant. The invariance of colourratios follows from the diagonal matrix model of colour constancy:dx = Dpx (6:2)Another implication of equation (6.2) is that the lexicographic ordering of coloursunder di�erent illuminants is the same. For example:



CHAPTER 6. CONCLUDING REMARKS 64p < q ( p1 � q1; p1 � q2; p2 � q1) Dp < Dq (6:3)Let us consider two histogramsH1 and H2 corresponding to the same scene imagedunder two illuminants. Subject to the ordering of equation (6.3) let the string of non-empty bin counts of H1 be denoted S1; where S1 = (c1; c2; � � � ; cm), ci is a bincountand m is the total number of distinct image colours. Hence because colour orderingis maintained during an illuminant change S2 = S1.In general the histogram string of an object viewed in di�erent visual contexts is notinvariant. This is especially true when the object is occluded or when the backgroundvaries, in these cases the set of image colours will change. However the problem ofapproximate string matching occurs often in computing science. For example theUNIX \di�" command �nds the minimal di�erence between two text �les. Histogramintersection implemented as string matching will allow colour areas and colour ratiosto contribute to object identi�cation.6.3 Object Location: Histogram Back-projectionThe object identi�cation task implicitly assumes that there is a single object inthe �eld of view|histogram intersection compares single model histograms with thecolours in an image. Thus histogram intersection is a method for identifying an un-known object at a known location. Swain[28] develops a method, called histogramback-projection for solving the inverse task: identifying a known object at an unknownlocation.The location problem is solved in two stages. Firstly the colours which are beingsearched for are highlighted|a highlight image, h, is constructed. Thereafter welocate the object by �nding the densest concentration of highlights in h.Consider we are searching for the object whose model histogram is M in an imagewhose histogram is I. We wish to highlight those colours in I that are in correspon-dence with M . The vehicle for this highlighting operation is the ratio histogram, R,



CHAPTER 6. CONCLUDING REMARKS 65de�ned below: Rijk = min( IijkMijk ; 1) (6:1)If the image vector px maps to Iabc then hx = Rabc. That is the highlight image isbrightest where image colours correspond to model colours. Further the largest brightregion in h should correspond to the location of the model (all colours in this regionwill be highlighted). The brightest region is found via mean-�lter convolution.Histogram back-projection should work equally well for ratio histograms. Theonly di�erence is in the highlight image where coloured edges as opposed to colouredareas are enhanced. Thus, although the focus of this thesis is object identi�cation,we predict that illuminant invariants provide a useful basis for the object locationproblem.In the context of the human visual system could histogram back-projection serveas a mechanism for controlling eye movements? One problem here is that unlikeCCD cameras, the human eye samples each scene non-uniformly; the sampling rate isinversely proportional to the distance from the fovea. However Swain has shown[28]that colour histograms are a salient description for objects despite resolution andhence are suitable location cues[30]. A similar study of the e�ect of resolution onratios would give insight on the suitability of ratio histograms for guiding visualattention.6.4 ApplicationsSwain proposes two applications for colour-indexing; we review each in relation to theresults presented in this thesis. Firstly Swain proposes that colour-indexing can beused in automated check-out devices in grocery stores. Clearly from the results in sec-tion 5, colour constant colour indexing should generally perform as well with respectto this task|and in unconstrained illumination. However for objects with few colours,for example fruit, colour constant colour-indexing will fail (since boundaries between



CHAPTER 6. CONCLUDING REMARKS 66di�erent colours are required). For this restricted domain colour constancy prepro-cessing may be possible and hence colour indexing employed. If the fruit is placedon an unchanging multi-coloured background there is su�cient colour complexity tosolve for colour constancy via the discrete CRULE.Secondly Swain suggests using colour labels in a robotic manufacturing environ-ment. Colour labels would assist a robot in solving both the identi�cation and locationproblems. We see no reason why colourful labels and colour constant colour-indexingshould not perform equally well in this task. Indeed because manufacturing environ-ments are often illuminated both with natural and arti�cial light, we predict colourconstant colour-indexing will out perform colour-indexing.6.5 ConclusionSwain's colour-indexing, whilst remarkably robust to many changes in visual context,is extremely sensitive to varying illumination. Theoretically images can be renderedillumination independent by transforming them via a colour constancy algorithm.Unfortunately colour constancy algorithms place strong restrictions on the types ofobjects and illuminants which inhabit the world. Even for the least restrictive algo-rithm, the discrete implementation of Forsyth's CRULE, objects must have simplegeometries and the incident illumination is constrained to be spatially constant.Colour constant colour-indexing indexes not on colour triples but on illuminantinvariants, circumventing the need for colour constancy preprocessing. There are threetypes of invariants|ratio, opponent and volumetric|each of which captures localimage properties. All three invariants are useful given complex object sets viewedunder spatially varying illumination.Colour constant colour-indexing, using colour ratios, successfully identi�es colour-ful objects independent of the context in which they are viewed. Further objects areidenti�ed with high levels of con�dence. We conclude therefore that colour imagesprovide a rich source of information for object recognition.
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