
Inference in Markov Blanket NetworksReimar HofmannSiemens AG, Corporate TechnologyD-81730 M�unchen, GermanyReimar.Hofmann@mchp.siemens.deTechnical Report FKI-235-00Technical University of MunichD-80290 Muenchen, GermanyFebruary 2000 (revised from a 1996 draft)AbstractBayesian networks have been successfully used to model joint probabilitiesin many cases. When dealing with continuous variables and nonlinear re-lationships neural networks can be used to model conditional densities aspart of a Bayesian network. However, doing inference can then be com-putationally expensive. Also, information is implicitly passed backwardsthrough neural networks, i.e. from their output to the input. Used in this\inverse" mode neural networks often perform suboptimal. We suggest adi�erent type of model called Markov blanket model (MBM). Here the neu-ral networks are used in the forward direction only. This gives advantagesin speed and guarantees to match the performance of the underlying neuralnetwork on complete data.1 IntroductionBayes nets (e.g. Heckerman (1995)) are models of the joint probability distribution of a setof variables fxigNi=1 of the form p(x) = NYi=1p(xijPi): (1)where Pi � fx1; : : : ; xi�1g are the parents1 of variable xi.1Usually the smallest set will be used. Pi is de�ned w. r. t. a given ordering of the variables.
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x3 x2Figure 1: Left: a Markov blanket model where neural networks are used to model theconditional probability pM(xijMi). Right: the corresponding Markov network.A Bayes net requires models of the conditional probability densities2 p(xijPi). Typically,they are implemented as tables (if variables are discrete) or as linear Gaussian models (ifvariables are continuous but the relations are linear). In Hofmann and Tresp (1996) weshowed how Bayes nets can model very general nonlinear relationships between continuousvariables by modeling the conditional densities using neural models such as multi-layerperceptrons, mixtures of experts or conditional Parzen windows.One of the strengths of Bayes nets is that they allow inference from partial knowledge, i. e.states of unknown variables can be estimated from an arbitrary set of variables with knownstates. Although in general known to be an NP-hard problem, for many discrete or linearBayes nets e�cient believe update rules can be applied.Correspondingly e�cient update rules for propagation in Bayes nets of continuous variableswith nonlinear dependencies are not available. A possible approach is to use Gibbs sampling.Gibbs sampling can be roughly described as follows: for all variables whose state is known,�x their states to the known values. For all unknown variables choose some initial states.Then pick a variable xi which is not known and update its value following the probabilitydistribution for xi given all other variablesp(xijfx1; : : : ; xNg n fxig) / p(xijPi)| {z }prior Yxi2Pj p(xj jPj)| {z }evidence : (2)Do this repeatedly for all unknown variables. Discard the �rst samples. Then, the sampleswhich are generated are drawn from the probability distribution of the unknown variablesgiven the known variables and can be used to calculate the expected value of any variable,estimate variances etc.Gibbs sampling requires sampling from the univariate probability distribution in Equation 2which is not straightforward in general since the conditional density does not have a conve-nient form. Therefore, sampling techniques such as sampling-importance-resampling have tobe used. The idea is to generate samples according to a distribution for which this is easy,and then reject or accept them with a probability (depending on the sample) such that thedistribution of the accepted samples is the desired distribution. In our case this typicallyproduces many rejected samples and is therefore ine�cient.An alternative is sampling based on Markov blanket conditional density models (MBM): A2For simplicity of notation we will only treat the continuous case throughout most of this paper.Results can be immediately transferred to discrete domains. We will use sloppy notation anddiscriminate probabilities by their arguments.



set Mi with p(xijfx1; : : : ; xNg n xi) = p(xijMi) is called a Markov blanket3 of xi. (givena Bayes net, the Markov blanket of a variable consists of its parents, its children and itschildren's parents.). A MBM consists of Markov blankets Mi and of conditional densitymodels pM(xijMi) � p(xijMi) for each variable xi in the network (Figure 1). Samplingdirectly from these is usually much easier than sampling from the product in Equation 2. Forexample in in conditional Parzen models the conditional density is a mixture of Gaussiansfrom which we can sample easily.MBMs are also interesting if we are only interested in always predicting one particularvariable, as in most neural network applications. Assuming that a signal-plus-noise modelis a reasonably good model for the conditional density, we can train an ordinary neuralnetwork to predict the variable of interest. In addition, we train a model for each inputvariable predicting it from the remaining variables. This way we still use our well testedneural model for the complete data case, but we can now also handle missing inputs and dobackward inference using Gibbs sampling.There is another bene�t to MBMs. It is well known that neural networks form very goodforward models, that is they are very powerful to predict an output variable based on theinput variables. In a MBM, if the variables in the Markov blanket are known we can usethese very powerful models for prediction. Also during sampling, we only need to go in theforward direction through the model. If we sample in Bayes nets, we implicitly invert theforward models if we know the state of children and have to infer the states of the parents.Using neural models in this \inverse" mode typically is suboptimal.Yet another bene�t of MBM is that they are easier to learn from data. Learning the Markovblankets can be done independently for every variable and can not get stuck in local minimaas can be the case learning the structure of Bayes nets if the ordering of variables in unknown.The next section discusses some theoretical issues concerning MBMs. The following Sectiondescribes our experiments and results. Section 4 contains conclusions.2 TheoryDuring this chapter we will always assume that all marginal and conditional probabilitiesand densities are strictly positive.A MBM fully speci�es the joint probability distribution. That is, the conditional densitiesp(xijfx1; : : : ; xNgnfxig) = p(xijMi) uniquely determine the joint density. This can be seenby noticing that these conditional densities are exactly what is needed to perform Gibbssampling. A more direct proof can be found in Hasseln (1996).Note, that reconstructing the joint density from a MBM is overdetermined. We can see thiseasily in the discrete case. Assume N binary variables, no independencies. In a Bayes net,we have PNi=1 2i�1 free parameters. In a MBN, we would have N � 2N�1 free parameters.The conditional models can be inconsistent with respect to each other, i.e. there may be nojoint density with conditionals as speci�ed. This will be the case in general if the conditionalmodels are determined from training data. Later in this paper we will examine the questionwhat happens if we perform Gibbs sampling on inconsistent conditional models. Anotherissue is stability: consider the linear MBM for two continuous variables with P (x1jx2) =G(x1; ax2; �2) and P (x2jx1) = G(x2; ax1; �2). For jaj < 1 the corresponding joint densityis Gaussian. With a approaching 1 the covariance between x1 and x2 approaches in�nity,i.e. arbitrarily small changes in a can lead to major changes in the resulting joint density.3A with respect to inclusion minimal Markov blanket is called Markov boundary.



In this sense Markov blanket sampling can be considered ill-posed. This raises the questionunder which conditions such instabilities can occur.2.1 Relationship to Markov NetworksBy specifying a Markov blanketMi for each variable xi, a MBM speci�es certain conditionalindependencies. We will show that a MBM can express all independencies that can beexpressed by a Markov network4: Given a Markov network N consider the MBM whichde�nes, for each xi, Mi to be the set of neighbours of xi in N . The semantics of a Markovnetwork guarantee that all independencies stated by the MBM also hold under N . For theconverse direction there is a theorem (Pearl (1988), Corollary 2, p. 98) stating that theMarkov network of any strictly positive distribution can be constructed by connecting eachvariable to all Members of its Markov blanket5. Since this is the original Markov networkthis shows that all independencies in N were also expressed by the MBM.In (Hofmann and Tresp 1998) the relationship between MBMs and Markov networks isexploited to perform structural learning of Markov networks for nonlinear domains basedon a MBM representation.2.2 The Linear CaseAssume we build a MBM corresponding to a fully connected Markov network and assumefurther we use linear models for the conditional densities pM (xijX(i)) = G(xi;X(i) �Li; �2i ),where G(:; c; �2) is our notation for an univariate normal distribution centered at c withvariance �2i , X is the vector (x1; : : : ; xN ), X(i) is the vector (x1; : : : ; xi�1; xi+1; : : : ; xN ) andX(i) �Li is a scalar product. Given training data we can perform maximum likelihood (ML-) training on the parameters of the conditional density models. We obtain ML-estimatesLMLi , �2;MLi (i = 1 : : : N ).Consider further a standard linear model pM (X) = G(X; 0;�) of the joint density (whereG(:; 0;�) is our notation for a multidimensional Gaussian centered at 0 with Covariancematrix �), and a model pM (X(i)) = G(X(i); 0;�(i)) of the joint density of all variablesexcept xi, and assume we perform ML-training on the parameters to obtain estimators�ML and �(i);ML.For every i the joint density can be factored according toG(X; 0;�) = G(X(i); 0;�(i))G(xi;X(i) � Li; �2i ); (3)and there is a one to one correspondence between the parameters f�g one the one side andf�(i); Li; �2i g on the other side of the equation. In other words both sides of the equationare just di�erent parameterisations of the same model. We know from elementary statisticsthat the ML-model is independent of the parameterization used. Therefore all conditionalmodels G(xi;X(i) � LMLi ; �2;MLi ) with ML-parameters are consistent with the joint modelG((x1; : : : ; xN ); 0;�ML) with ML-parameters.This shows that in the fully connected linear case and with ML-training no inconsistenciesoccur within the Markov blanket model, and that the joint density represented by theMarkov blanket model is identical to the standard linear model with ML-parameters. One4Markov networks are graphical stochastical models, which represent conditional independenciesin form of an undirected graph (see e.g. Pearl (1988) for a de�nition).5The corollary is stated for Markov boundaries. Using the larger Markov blanket will lead toa non minimal Markov network, but still all independencies stated by the Markov network will betrue.



can show that this holds not only for the fully connected structure making no independenceassumptions, but also for any other structure of a Markov network if all independenceand conditional independence statements made by the structure are true in the standardlinear ML-model of the joint density. Similarly one can show that for MBMs in discretedomains using ML-learning of standard multinomial distributions no inconsistencies occur ifall independence statements made by the MBM hold exactly for the empirical distributionof the data. In practice however, if one does not use a fully connected structure, theindependence statements of the structure will rarely be ful�lled exactly by the distributionof the data.2.3 Gibbs sampling from Inconsistent Conditional DensitiesIn the general case, inconsistencies can occur. Nevertheless, Gibbs sampling can be per-formed, and we will now attempt an analysis. We will assume discrete variables and do theanalysis in the framework of �nite state, discrete time, periodic, inhomogenous Markovchains. Let S be the �nite state space, the state at time i be si and the row vectorpi = (P (si))si2S be the probability distribution for si. Assume we start with s0 drawnfrom the initial distribution p0, and update variables periodically in the order o1; : : : ; oG,where G is the number of unknown variables. The variable updated at time i is thenui := o(i mod G) and the update is according to PM (xuijX(ui)). This de�nes, for time i,the transition matrix6 TMi := (PM(sijsi�1))si�1;si for positions where si�1 and si di�er inno other variable than ui. All other entries are zero. Induction showspi = p0 iYj=1TMj :From ui+G = ui we see TMi+G = TMi . Therefore, if we look only at times which are a multipleof G, the samples are drawn from a homogenous Markov chain with transition matrix UM ,and p(iG) = p0 � (UM )iwhere UM = QGj=1 TMuj . The theory of homogenous Markov chains tells us that a su�cientcondition for UM to be ergodic, i.e. for pM;0 := limk!1(p0 � (UM )k) to exist and to beindependent of p0, is that UM has only nonzero entries. We ensure this by assuming thatthe transition probabilities PM(xijX(i)) are all nonzero. Clearly, pM;0UM = pM;0.If there are no inconsistencies then there exists a probability distribution q with q TMi = q 8 i.Then q UM = q follows immediately, and from the ergodicity of UM also q = pM;0. So q isthe limit distribution at times which are a multiple of G. Now q TMi = q 8 i implies thatq is also the limit distribution for times which are not a multiple of G, i. e. q is the limitdistribution for pi as i goes towards in�nity.If the conditional probabilities are inconsistent there can be no limit distribution which isirrespective of the place in the update cycle. The limit distribution at position r in theupdate cycle then is pM;r := limk!1 p(Gk+r) = pM;0 rYj=1TMuj (4)We are interested in the case where the inconsistent conditional probability models areapproximations of the true consistent conditional probabilities. Assuming only small ap-proximation errors, i.e. TMi close to transition matrices Ti based on the true conditional6The \M" stands for \Model" since TMi is based on PM .



probabilities, UM is also close to U . We would like to �nd that then also pM;r is close to thetrue distribution p for all r. We know that pM;0 and p are Eigenvectors to the Eigenvalue1 of UM and U respectively. Further, UM and U are stochastic, strictly positive matrices.Sensitivity analysis for the Eigenvector problem gives a boundkpM � pk2 < K1� �2 kUM � Uk2 (5)where K is independent of UM and U , and �2 is the second largest Eigenvalue (the largestis always 1). The size of �2 also determines the convergence speed of the Gibbs sampler.So in cases where the Gibbs sampler converges fast, the �nal distribution will be insensitiveto small approximation errors of the conditional models. This condition for stability canbe transferred to bounded continuous domains, under conditions like continuity, by usingdiscretization. An interesting question is whether the bound in Equation 5 is tight.3 ExperimentsIn the experiment we will compare MBMs with a standard Parzen joint density model andwith Bayes nets on real data.Our Parzen joint density model wasp(x1; : : : ; xN) = DXk=1G((x1; : : : ; xN )); (xk1; : : : ; xkN); (�21; : : : ; �2N)) (6)where fxjgDj=1 is the training set. The Gaussians are centered at (xk1; : : : ; xkN ) which is thelocation of the k-th sample in the joint space. We use elliptic axis-parallel Gaussians withdi�erent variances (�21; : : : ; �2N ) in each dimension. The variances were optimized based onthe leave-one-out crossvalidation joint likelihood using a second order training algorithm.In the MBM and in the Bayes net we used the corresponding Parzen conditional densityestimators (compare Hofmann and Tresp (1995))pM (xijPi) = PDk=1G((xi;Pi); (xki ;Pki ); (�2i ; �2Pi))PDk=1G(Pi;Pki ; �2Pi) ; (7)The Gaussians in the nominator are centered at (xki ;Pki ) which is the location of the k-thsample in the joint input/output (or parent/child) space and the Gaussians in the denomi-nator are centered at (Pki ) which is the location of the k-th sample in the input (or parent)space. �2Pi is the vector of variances in the input space and (�2i ; �2Pi) is the vector of variancesin the joint input and output space. The Parzen conditional model is just the conditionaldensity derived from the Parzen joint model, the di�erence is that the variances of the Parzenconditional density model are optimized based on the conditional leave-one-out likelihood.Note that the Parzen joint model has the power to e�ectively remove unnecessary inputvariables by assigning them a large variance. This makes it unnecessary to explicitly deter-mine the Markov blanket of each variable, implicit input pruning is performed by trainingthe variances based on crossvalidation. In the case of Bayes nets structure learning is stillrequired to �nd the arrow directions.Our MBM was trained by independently optimizing the variances of the Parzen joint densitymodels for each variable. The Bayes net was trained using the structure learning algorithmdescribed in Hofmann and Tresp (1996).
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rorFigure 2: Mean squared test set error predicting the housing price against number of missinginputs for Markov blanket model (solid), Bayes net (dashed) and joint Parzen (dashdotted).We used the Boston housing data which is a data set with 506 samples. Each sampleconsists of the housing price and 14 variables which supposedly inuence the housing pricein a Boston neighbourhood. Two thirds of these samples were used for training, one thirdwas used as test set. To measure performance we predicted the housing price on test datagiven all or a subset of the other variables. We used the mean squared prediction error tomeasure performance.To predict the housing price using the Bayes net or the MBM we used Gibbs-sampling.For MBMs this is straightforward. For the Bayes net updating a variable xi requires draw-ing samples from the product of prior and evidence in Equation 2. We used sampling-importance-resampling(see e.g. Bernardo, Smith, 1994, p. 350): Initial samples were gen-erated according to the prior. The acceptance probability was the evidence divided by theupper bound7 b on the evidence. We chooseb(x1; : : : ; xi�1; xi+1; : : : ; xN) = Yxc2children(xi)(maxDk=1G(xc;xkc ; �2c)) (8)which can easily be seen to be an upper bound.3.1 ResultsFigure 2 shows the mean squared test set error in predicting the housing price. Inputvariables were taken away in �xed (arbitrary) order8.The predictions of both the MBM and the Bayes net were computed as the average over aset of Gibbs samples. With the MBM we generated 2000 samples for every test data point.With the Bayes net we used the same amount of CPU time for each test data point as withthe MBM. Depending on the rejection rate which can be very di�erent for di�erent datapoints this typically produced in the range of 20 to 1000 samples. Data points with highrejection rates generate less samples.The MBM performs signi�cantly better than the joint Parzen model over the whole rangeof missing inputs. For 0 to 2 missing inputs the MBM and the Bayes net show similarperformance, for 3 missing inputs the Bayes net is worse than even the joint Parzen model.The likely explanation for this seems to be that many more samples would be required hereto achieve competitive performance. These results are, however, preliminary. Results dovary from run to run and more experiments are scheduled. These will include evaluating theBayes net with more than three missing variables and with more samples per data point.7b is bound w.r.t. varying xi. It may depend on all other variables.8The order was: 'employment center', 'tax rate', 'crime rate', 'access to radial highways','pupil/teacher ratio'



4 ConclusionsWe introduced Markov blanket models and gave several potential advantages over Bayesiannetworks. First experiments showed competitive results.All experiments were based on Parzen windows. The only di�erences between the di�er-ent types of models were the way the Parzen windows were trained and combined. Thisallows meaningful comparisons between the di�erent models. The experimental comparisonbetween MBMs and Bayes nets is not yet conclusive. More experiments will be conductedhere. The next interesting step would then be to replace the Parzen windows by other typesof neural networks more commonly used in the neural network community like Gaussianmixtures with learned center positions, or multilayer perceptron plus noise models.ReferencesHasseln, H. (1996). An IPF procedure for conditionals: Maximum likelihood estimation fornon-unique conditionally speci�ed distributions. Instituto de Matematica Pura e Aplicada,Rio de Janeiro, Brasil. TR.Heckerman, D. (1995). A tutorial on learning Bayesian networks. Microsoft Research, TR.MSR-TR-95-06.Hofmann, R. and Tresp, V. (1996). Discovering structure in continuous variables usingBayesian networks. In: Neural Information Processing Systems 8, Proceedings of the 1995Conference., 500-506.Hofmann, R. and Tresp, V. (1998). Nonlinear Markov networks for continuous variables. In:Neural Information Processing Systems 10, Proceedings of the 1997 Conference, 521-527.Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Mateo, CA: MorganKaufmann.


