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Abstract

Bayesian networks have been successfully used to model joint probabilities
in many cases. When dealing with continuous variables and nonlinear re-
lationships neural networks can be used to model conditional densities as
part of a Bayesian network. However, doing inference can then be com-
putationally expensive. Also, information is implicitly passed backwards
through neural networks, i.e. from their output to the input. Used in this
“inverse” mode neural networks often perform suboptimal. We suggest a
different type of model called Markov blanket model (MBM). Here the neu-
ral networks are used in the forward direction only. This gives advantages
in speed and guarantees to match the performance of the underlying neural
network on complete data.

1 Introduction

Bayes nets (e.g. Heckerman (1995)) are models of the joint probability distribution of a set
of variables {z;}, of the form

N
p(z) = Hp(lﬂpi)- (1)
i=1
where P; C {xy,...,2;_1} are the parents' of variable =;.

'Usually the smallest set will be used. P; is defined w. r. t. a given ordering of the variables.
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Figure 1: Left: a Markov blanket model where neural networks are used to model the
conditional probability p™ (z;|M;). Right: the corresponding Markov network.

A Bayes net requires models of the conditional probability densities? p(x;|P;). Typically,
they are implemented as tables (if variables are discrete) or as linear Gaussian models (if
variables are continuous but the relations are linear). In Hofmann and Tresp (1996) we
showed how Bayes nets can model very general nonlinear relationships between continuous
variables by modeling the conditional densities using neural models such as multi-layer
perceptrons, mixtures of experts or conditional Parzen windows.

One of the strengths of Bayes nets is that they allow inference from partial knowledge, i. e.
states of unknown variables can be estimated from an arbitrary set of variables with known
states. Although in general known to be an NP-hard problem, for many discrete or linear
Bayes nets efficient believe update rules can be applied.

Correspondingly efficient update rules for propagation in Bayes nets of continuous variables
with nonlinear dependencies are not available. A possible approach is to use Gibbs sampling.
Gibbs sampling can be roughly described as follows: for all variables whose state is known,
fix their states to the known values. For all unknown variables choose some initial states.
Then pick a variable z; which is not known and update its value following the probability
distribution for x; given all other variables

pleil{zs, - o\ {ei}) o plai|Pi) I pla;1Py) - (2)
N T, EP;
prior
evidence

Do this repeatedly for all unknown variables. Discard the first samples. Then, the samples
which are generated are drawn from the probability distribution of the unknown variables
given the known variables and can be used to calculate the expected value of any variable,
estimate variances etc.

Gibbs sampling requires sampling from the univariate probability distribution in Equation 2
which is not straightforward in general since the conditional density does not have a conve-
nient form. Therefore, sampling techniques such as sampling-importance-resampling have to
be used. The idea is to generate samples according to a distribution for which this is easy,
and then reject or accept them with a probability (depending on the sample) such that the
distribution of the accepted samples is the desired distribution. In our case this typically
produces many rejected samples and is therefore inefficient.

An alternative is sampling based on Markov blanket conditional density models (MBM): A

2For simplicity of notation we will only treat the continuous case throughout most of this paper.
Results can be immediately transferred to discrete domains. We will use sloppy notation and
discriminate probabilities by their arguments.



set M; with p(z;|{z1,...,2n} \ 2;) = p(=:|M;) is called a Markov blanket® of z;. (given
a Bayes net, the Markov blanket of a variable consists of its parents, its children and its
children’s parents.). A MBM consists of Markov blankets A; and of conditional density
models pM (z;|M;) ~ p(x;|M;) for each variable z; in the network (Figure 1). Sampling
directly from these is usually much easier than sampling from the product in Equation 2. For
example in in conditional Parzen models the conditional density is a mixture of Gaussians
from which we can sample easily.

MBMs are also interesting if we are only interested in always predicting one particular
variable, as in most neural network applications. Assuming that a signal-plus-noise model
is a reasonably good model for the conditional density, we can train an ordinary neural
network to predict the variable of interest. In addition, we train a model for each input
variable predicting it from the remaining variables. This way we still use our well tested
neural model for the complete data case, but we can now also handle missing inputs and do
backward inference using Gibbs sampling.

There is another benefit to MBMs. It is well known that neural networks form very good
forward models, that is they are very powerful to predict an output variable based on the
input variables. In a MBM, if the variables in the Markov blanket are known we can use
these very powerful models for prediction. Also during sampling, we only need to go in the
forward direction through the model. If we sample in Bayes nets, we implicitly invert the
forward models if we know the state of children and have to infer the states of the parents.
Using neural models in this “inverse” mode typically is suboptimal.

Yet another benefit of MBM is that they are easier to learn from data. Learning the Markov
blankets can be done independently for every variable and can not get stuck in local minima
as can be the case learning the structure of Bayes nets if the ordering of variables in unknown.

The next section discusses some theoretical issues concerning MBMs. The following Section
describes our experiments and results. Section 4 contains conclusions.

2 Theory

During this chapter we will always assume that all marginal and conditional probabilities
and densities are strictly positive.

A MBM fully specifies the joint probability distribution. That is, the conditional densities
ples|{z1, ..., enF\{2:}) = p(x;|M;) uniquely determine the joint density. This can be seen
by noticing that these conditional densities are exactly what is needed to perform Gibbs
sampling. A more direct proof can be found in Hasseln (1996).

Note, that reconstructing the joint density from a MBM is overdetermined. We can see this
easily in the discrete case. Assume N binary variables, no independencies. In a Bayes net,
we have Zf\;l 2i=1 free parameters. In a MBN, we would have N x 2V~ free parameters.
The conditional models can be inconsistent with respect to each other, i.e. there may be no
joint density with conditionals as specified. This will be the case in general if the conditional
models are determined from training data. Later in this paper we will examine the question
what happens if we performm Gibbs sampling on inconsistent conditional models. Another
issue is stability: consider the linear MBM for two continuous variables with P(xzq|z3) =
G(x1;azz,0?) and P(xs]zy) = G(xz;axy,0%). For |a] < 1 the corresponding joint density
is Gaussian. With a approaching 1 the covariance between z; and x5 approaches infinity,
i.e. arbitrarily small changes in a can lead to major changes in the resulting joint density.

3 A with respect to inclusion minimal Markov blanket is called Markov boundary.



In this sense Markov blanket sampling can be considered ill-posed. This raises the question
under which conditions such instabilities can occur.

2.1 Relationship to Markov Networks

By specifying a Markov blanket M for each variable ;, a MBM specifies certain conditional
independencies. We will show that a MBM can express all independencies that can be
expressed by a Markov network*: Given a Markov network A consider the MBM which
defines, for each z;, M; to be the set of neighbours of z; in A". The semantics of a Markov
network guarantee that all independencies stated by the MBM also hold under A'. For the
converse direction there is a theorem (Pearl (1988), Corollary 2, p. 98) stating that the
Markov network of any strictly positive distribution can be constructed by connecting each
variable to all Members of its Markov blanket®. Since this is the original Markov network
this shows that all independencies in A" were also expressed by the MBM.

In (Hofmann and Tresp 1998) the relationship between MBMs and Markov networks is
exploited to perform structural learning of Markov networks for nonlinear domains based
on a MBM representation.

2.2 The Linear Case

Assume we build a MBM corresponding to a fully connected Markov network and assume
further we use linear models for the conditional densities p™ (z; |X(i)) = G(x;; XWDor;, o?),
where G(.;e,0?) is our notation for an univariate normal distribution centered at ¢ with
variance o7, X is the vector (x1,...,2n), X@) is the vector (x1,...,#;_1,i11,...,2x) and
X o L; is a scalar product. Given training data we can perform maximum likelihood (ML-
) training on the parameters of the conditional density models. We obtain ML-estimates

LML G2ML (=1 . N).

Consider further a standard linear model p (X) = G(X;0,X) of the joint density (where
G(.;0,X) is our notation for a multidimensional Gaussian centered at 0 with Covariance
matrix ¥), and a model pM (X)) = G(X);0,20)) of the joint density of all variables
except x;, and assume we perform ML-training on the parameters to obtain estimators
YML and $ML

For every ¢ the joint density can be factored according to
G(X;0,%) = G(XD;0, D) G (2 XD o L;, 02), (3)

and there is a one to one correspondence between the parameters {2} one the one side and
{E(i), Li, 02} on the other side of the equation. In other words both sides of the equation
are just different parameterisations of the same model. We know from elementary statistics
that the ML-model is independent of the parameterization used. Therefore all conditional
models G(x;; X0 o LME O'?’ML) with ML-parameters are consistent with the joint model
G((z1y-..,2n); 0, 2ML) with ML-parameters.

This shows that in the fully connected linear case and with ML-training no inconsistencies
occur within the Markov blanket model, and that the joint density represented by the
Markov blanket model is identical to the standard linear model with ML-parameters. One

*Markov networks are graphical stochastical models, which represent conditional independencies
in form of an undirected graph (see e.g. Pearl (1988) for a definition).

®The corollary is stated for Markov boundaries. Using the larger Markov blanket will lead to
a non minimal Markov network, but still all independencies stated by the Markov network will be
true.



can show that this holds not only for the fully connected structure making no independence
assumptions, but also for any other structure of a Markov network if all independence
and conditional independence statements made by the structure are true in the standard
linear ML-model of the joint density. Similarly one can show that for MBMs in discrete
domains using ML-learning of standard multinomial distributions no inconsistencies occur if
all independence statements made by the MBM hold exactly for the empirical distribution
of the data. In practice however, if one does not use a fully connected structure, the
independence statements of the structure will rarely be fulfilled exactly by the distribution
of the data.

2.3 Gibbs sampling from Inconsistent Conditional Densities

In the general case, inconsistencies can occur. Nevertheless, Gibbs sampling can be per-
formed, and we will now attempt an analysis. We will assume discrete variables and do the
analysis in the framework of finite state, discrete time, periodic, inhomogenous Markov
chains. Let S be the finite state space, the state at time ¢ be s; and the row vector
pi = (P(si))s,es be the probability distribution for s;. Assume we start with sg drawn
from the initial distribution pg, and update variables periodically in the order oq,...,0¢q,
where (' is the number of unknown variables. The variable updated at time ¢ is then
i mod @) and the update is according to PM (z,,|X (). This defines, for time 4,
the transition matrix® TM := (PM(5i|5i—1))s,_1,s, for positions where s;_; and s; differ in
no other variable than u;. All other entries are zero. Induction shows

i
pz'ZPOH]}M

j=1

Ui 1= 0

From u;+q = u; we see ﬂﬂfG = TM. Therefore, if we look only at times which are a multiple
of G, the samples are drawn from a homogenous Markov chain with transition matrix UM,
and
puc) = po - (UMY

where UM = Hszl T%. The theory of homogenous Markov chains tells us that a sufficient
condition for UM to be ergodic, i.e. for p™© := limg 00 (po - (UM)*) to exist and to be
independent of pg, is that U™ has only nonzero entries. We ensure this by assuming that
the transition probabilities PM (x;| X)) are all nonzero. Clearly, pM-0UM = pH.0,

If there are no inconsistencies then there exists a probability distribution ¢ with ¢ TM = ¢ V i.
Then ¢ UM = ¢ follows immediately, and from the ergodicity of UM also ¢ = p*:°. So ¢ is
the limit distribution at times which are a multiple of G. Now ¢ TM = ¢ V i implies that
g is also the limit distribution for times which are not a multiple of G, i. e. ¢ is the limit
distribution for p; as ¢ goes towards infinity.

If the conditional probabilities are inconsistent there can be no limit distribution which is
irrespective of the place in the update cycle. The limit distribution at position r in the
update cycle then is

.
M,r . M,0 M
=1 = ’ T 4
p Jim p(grsn) = p H1 P (4)
i

We are interested in the case where the inconsistent conditional probability models are
approximations of the true consistent conditional probabilities. Assuming only small ap-
proximation errors, i.e. TM close to transition matrices T; based on the true conditional

®The “M” stands for “Model” since TM is based on PM¥.



probabilities, UM is also close to U. We would like to find that then also p*" is close to the
true distribution p for all . We know that p*% and p are Eigenvectors to the Eigenvalue
1 of UM and U respectively. Further, U™ and U are stochastic, strictly positive matrices.
Sensitivity analysis for the Eigenvector problem gives a bound

Ip* = pll: < T AI0™ = Ullz (5)
where K is independent of UM and U, and )3 is the second largest Eigenvalue (the largest
is always 1). The size of Az also determines the convergence speed of the Gibbs sampler.
So in cases where the Gibbs sampler converges fast, the final distribution will be insensitive
to small approximation errors of the conditional models. This condition for stability can
be transferred to bounded continuous domains, under conditions like continuity, by using
discretization. An interesting question is whether the bound in Equation 5 is tight.

3 Experiments

In the experiment we will compare MBMs with a standard Parzen joint density model and
with Bayes nets on real data.

Our Parzen joint density model was

pl1,... oy Z (21, xn); (2F, o 2h), (02, ..., 0%) (6)

where {xf} ’_, is the training set. The Gaussians are centered at (zf,..., z%) which is the
location of the k-th sample in the joint space. We use elliptic axis-parallel Gaussians with
different variances (c%,...,0%) in each dimension. The variances were optimized based on

the leave-one-out crossvalidation joint likelihood using a second order training algorithm.

In the MBM and in the Bayes net we used the corresponding Parzen conditional density
estimators (compare Hofmann and Tresp (1995))

Sy G((xs, Pr); (f Pk)(?o%,))
Soey G(Pis PE 0% )

The Gaussians in the nominator are centered at (z¥,P¥) which is the location of the k-th
sample in the joint input/output (or parent/child) space and the Gaussians in the denomi-
nator are centered at (P¥) which is the location of the k-th sample in the input (or parent)
space. O'%l is the vector of variances in the input space and (o2, 0'%1) is the vector of variances
in the joint input and output space. The Parzen conditional model is just the conditional
density derived from the Parzen joint model, the difference is that the variances of the Parzen
conditional density model are optimized based on the conditional leave-one-out likelihood.

P (xi|Pr) =

; (7)

Note that the Parzen joint model has the power to effectively remove unnecessary input
variables by assigning them a large variance. This makes it unnecessary to explicitly deter-
mine the Markov blanket of each variable, implicit input pruning is performed by training
the variances based on crossvalidation. In the case of Bayes nets structure learning is still
required to find the arrow directions.

Our MBM was trained by independently optimizing the variances of the Parzen joint density
models for each variable. The Bayes net was trained using the structure learning algorithm
described in Hofmann and Tresp (1996).
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Figure 2: Mean squared test set error predicting the housing price against number of missing
inputs for Markov blanket model (solid), Bayes net (dashed) and joint Parzen (dashdotted).

We used the Boston housing data which is a data set with 506 samples. Each sample
consists of the housing price and 14 variables which supposedly influence the housing price
in a Boston neighbourhood. Two thirds of these samples were used for training, one third
was used as test set. To measure performance we predicted the housing price on test data
given all or a subset of the other variables. We used the mean squared prediction error to
measure performance.

To predict the housing price using the Bayes net or the MBM we used Gibbs-sampling.
For MBMs this is straightforward. For the Bayes net updating a variable z; requires draw-
ing samples from the product of prior and evidence in Equation 2. We used sampling-
importance-resampling(see e.g. Bernardo, Smith, 1994, p. 350): Initial samples were gen-
erated according to the prior. The acceptance probability was the evidence divided by the
upper bound” b on the evidence. We choose

D(T1y e ey Bim 1y Tigly e TN) = H (makazlG(xc;xlj,az)) (8)
z€children(z;)

which can easily be seen to be an upper bound.

3.1 Results

Figure 2 shows the mean squared test set error in predicting the housing price. Input
variables were taken away in fixed (arbitrary) order®.

The predictions of both the MBM and the Bayes net were computed as the average over a
set of Gibbs samples. With the MBM we generated 2000 samples for every test data point.
With the Bayes net we used the same amount of CPU time for each test data point as with
the MBM. Depending on the rejection rate which can be very different for different data
points this typically produced in the range of 20 to 1000 samples. Data points with high
rejection rates generate less samples.

The MBM performs significantly better than the joint Parzen model over the whole range
of missing inputs. For 0 to 2 missing inputs the MBM and the Bayes net show similar
performance, for 3 missing inputs the Bayes net is worse than even the joint Parzen model.
The likely explanation for this seems to be that many more samples would be required here
to achieve competitive performance. These results are, however, preliminary. Results do
vary from run to run and more experiments are scheduled. These will include evaluating the
Bayes net with more than three missing variables and with more samples per data point.

“b is bound w.r.t. varying 2;. It may depend on all other variables.
8The order was: ’employment center’, ’tax rate’, ’crime rate’, ’access to radial highways’,
’pupil /teacher ratio’



4 Conclusions

We introduced Markov blanket models and gave several potential advantages over Bayesian
networks. First experiments showed competitive results.

All experiments were based on Parzen windows. The only differences between the differ-
ent types of models were the way the Parzen windows were trained and combined. This
allows meaningful comparisons between the different models. The experimental comparison
between MBMs and Bayes nets is not yet conclusive. More experiments will be conducted
here. The next interesting step would then be to replace the Parzen windows by other types
of neural networks more commonly used in the neural network community like Gaussian
mixtures with learned center positions, or multilayer perceptron plus noise models.
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