
LISP AND SYMBOLIC COMPUTATION: An International Journal, 9, 001{019, 1997c
 1997 Kluwer Academic Publishers { Manufactured in The Netherlands
Threads yield continuations�SANJEEV KUMAR (skumar@cs.princeton.edu)Department of Computer SciencePrinceton UniversityPrinceton, NJ 08544 USACARL BRUGGEMAN (bruggema@cse.uta.edu)Department of Computer Science and EngineeringUniversity of Texas at ArlingtonArlington, TX 76019-0015 USAR. KENT DYBVIG (dyb@cs.indiana.edu)Computer Science DepartmentIndiana UniversityBloomington, IN 47405 USA(Received:)(Revised:)Keywords: Concurrency, Continuations, Control delimiters, Control operators, ThreadsAbstract. Just as a traditional continuation represents the rest of a computation from agiven point in the computation, a subcontinuation represents the rest of a subcomputationfrom a given point in the subcomputation. Subcontinuations are more expressive thantraditional continuations and have been shown to be useful for controlling tree-structuredconcurrency, yet they have previously been implemented only on uniprocessors. Thisarticle describes a concurrent implementation of one-shot subcontinuations. Like one-shot continuations, one-shot subcontinuations are �rst-class but may be invoked at mostonce, a restriction obeyed by nearly all programs that use continuations. The techniquesused to implement one-shot subcontinuations may be applied directly to other one-shotcontinuation mechanisms and may be generalized to support multi-shot continuationsas well. A novel feature of the implementation is that continuations are implementedin terms of threads. Because the implementation model does not rely upon any speciallanguage features or compilation techniques, the model is applicable to any language orlanguage implementation that supports a small set of thread primitives.1. IntroductionContinuations have proven useful for implementing a variety of controlstructures, such as nonlocal exits, exceptions, nonblind backtracking [28],�This material is based on work supported in part by the National Science Foundationunder grant numbers CDA-9312614 and CDA 93-03189.

2 KUMAR, BRUGGEMAN, AND DYBVIGnondeterministic computations [8, 14], coroutines [12], and multitask-ing [7, 15, 30], at the source level. Subcontinuations are more expressivethan traditional continuations and may be used to implement similar con-trol structures in the presence of tree-structured concurrency [16, 17]. Thisarticle describes a thread-based implementation of one-shot subcontinua-tions that has been incorporated into a multithreaded implementation ofChez Scheme on an SGI Power Challenge multiprocessor.Just as a traditional continuation represents the rest of a computationfrom a given point in the computation, a subcontinuation represents the restof a subcomputation from a given point in the subcomputation. The base ofa subcomputation is speci�ed explicitly, and a subcontinuation of the sub-computation is rooted at that base. In contrast, a traditional continuationis rooted implicitly at the base of an entire computation. Subcontinua-tions may be used to implement traditional continuations by introducingan explicit root within the top-level evaluation function. One-shot subcon-tinuations, like one-shot continuations [3, 23], are �rst-class but may beinvoked at most once, a restriction obeyed by nearly all programs that usecontinuations [3].Hieb et al. [17] describe subcontinuations in detail, give an operationalsemantics of a small language that incorporates subcontinuations, and de-scribe a sequential implementation of subcontinuations. They also describebrie
y how subcontinuations can be implemented in a concurrent setting,although until now a concurrent implementation has not been realized. Theimplementation requires that the control state of a concurrent computationbe represented as a tree of stack segments, just as the control state of a se-quential computation is represented as a stack of stack segments to supporttraditional continuations [18].The implementation of one-shot subcontinuations described in this articleuses threads to represent each stack segment in the tree of stack segmentsrequired by Hieb's implementation model. Using threads to represent stacksegments has several advantages over incorporating support for subcontinu-ations into the lowest levels of a language implementation. In particular, itsimpli�es the implementation of both threads and continuations and pro-vides a clear operational semantics for the interaction between them. Italso provides, for the �rst time, a viable model for adding continuations toexisting threaded implementations of other languages such as C and Java.The remainder of this article is organized as follows. Section 2 discussesvarious continuation mechanisms and how they relate to threads. Section 3describes subcontinuations in more detail and gives a few examples of theiruse. Section 4 describes the concurrent implementation of one-shot sub-continuations. This section identi�es a small set of thread primitives anddescribes the implementation of subcontinuations in terms of these primi-

THREADS YIELD CONTINUATIONS 3tives. Section 4 also discusses how the implementation might be generalizedto support multi-shot subcontinuations. Section 5 presents our conclusions.2. BackgroundA continuation capture operation, using traditional continuations, createsan object that encapsulates the \rest of the computation." Invoking a tra-ditional continuation discards (aborts) the entire current continuation andreinstates the previously captured continuation. Sometimes, however, �nercontrol is required, i.e., only part of the continuation needs to be captured,or only part of the current continuation needs to be discarded when a con-tinuation is reinstated. Felleisen [9, 10, 11] introduced the prompt operatorto identify the base of a continuation and F to capture the continuation upto the last prompt. A continuation captured using F is functional, or com-posable, in that invoking it does not abort but rather returns to the currentcontinuation. Shift and reset [6], which are based on a modi�ed CPS trans-formation, are similar, di�ering primarily in that captured continuationsinclude a prompt.Subcontinuations generalize Felleisen's single prompt to multiple nestedprompts and allow continuations to be used to control tree-structured con-currency [17]. In related work, Sitaram and Felleisen [27] show how nestedprompts may be obtained from single prompts in a sequential setting. Split-ter [26] extends the notion of a continuation in a manner similar to subcon-tinuations in a sequential setting but separates the continuation capturemechanism from the continuation abort mechanism. Gunter, et al. [13] de-scribe how support for multiple prompts may be added to statically typedlanguages.On a uniprocessor, both traditional and functional continuations are suf-�cient to implement multitasked threads at the source level [7, 15, 30].Thus, many systems that support continuations provide no primitive sup-port for threads. Continuations have also been used to implement threadson multiprocessors. MP [29] is a low-level interface designed to provide aportable multiprocessing platform. It provides an abstraction of a physicalprocessor, operations to manage its state, and spin locks for mutual exclu-sion. Various concurrency abstractions, including threads, are implementedusing �rst-class continuations on top of this interface.Some systems provide native support for both threads and continuations.For example, Sting [20, 21] is a dialect of Scheme that provides general,low-level support for concurrency. Cooper et al. [5] describe a Mach-basedmultiprocessor threads implementation for Standard ML. Their package isbased on the Modula-2+ threads package [2]. It includes mechanisms formutual exclusion, synchronization and thread state. Multischeme supports

4 KUMAR, BRUGGEMAN, AND DYBVIGboth futures and continuations [25]. While each of these systems supportboth continuations and some form of threads, continuation operations arelocal to threads and cannot be used to control (abort or reinstate) groupsof cooperating threads. Katz and Weise [22] also address the relationshipbetween continuations and futures, but rather than providing a mechanismfor controlling concurrency, they enforce a sequential semantics that makesconcurrency transparent to the programmer.One-shot continuations [3, 23] di�er from ordinary multi-shot continua-tions in that a one-shot continuation may be invoked at most once. One-shot continuations can be implemented more e�ciently than multi-shotcontinuations in stack-based implementations, because the stack segmentsrepresenting a one-shot continuation need not be copied for later use whenthe continuation is reinstated. Most applications that use continuationsuse them in a one-shot manner. One-shot continuations cannot, however,be used to implement nondeterminism, as in Prolog [4], in which a contin-uation is invoked multiple times to yield additional values [8, 14]. This isthe only application we have found that requires multi-shot continuationsrather than one-shot continuations [3].3. SubcontinuationsA subcontinuation [17] represents the rest of a subcomputation from a givenpoint in the subcomputation. In the presence of tree-shaped concurrency,subcontinuations provide complete control over the process tree, allowingarbitrary nonlocal exits and reinstatement of captured subcomputationsthat may involve multiple threads.The procedure spawn marks the root of a subcomputation and createsa controller that can be used to capture and abort the current subcontin-uation up to and including the root. spawn takes a procedure p of oneargument, creates a controller, and passes it to p. The controller can beinvoked only in the dynamic extent of the procedure's invocation. If thecontroller is never invoked, then the value of the call to spawn is the valuereturned by p. Thus, the expression (spawn (lambda (c) (cons 1 2))) re-turns (1 . 2).If the controller is applied to a procedure q, the subcontinuation fromthe point of controller invocation back to the root of the controller is cap-tured, and q is applied to the captured subcontinuation in the continuationof the controller invocation. If the subcontinuation is never invoked, thee�ect is merely to abort the current subcomputation. The subcontinuationitself is non-aborting and is therefore composable. The subcontinuationcaptured includes the root of the controller. The root is reinstated on asubcontinuation invocation, allowing the controller to be invoked again. In

THREADS YIELD CONTINUATIONS 5the following simple example,(cons 3(spawn (lambda (c)(cons 2(c (lambda (k)(cons 1 (k '()))))))))the call to spawn creates a controller c rooted within the cons of 3. Invokingthis controller within the cons of 2 captures and aborts the continuationwithout disturbing the cons of 3; the captured continuation includes onlythe cons of 2. Invoking the captured continuation reinstates the cons of 2within the cons of 1, so the value of the entire expression is (3 1 2).The subcontinuation captured by a controller invocation can be invokedmultiple times. In the following example, the controller is invoked in thebase case of the factorial computation so that the subcontinuation fact5�takes an argument and multiplies it by 120 (5!). So, the entire expressionreturns 14400 (120 � 120 � 1).(de�ne fact(lambda (n c)(if (= n 1)(c (lambda (k) k))(� n (fact (� n 1) c)))))(let ((fact5� (spawn (lambda (c) (fact 5 c)))))(fact5� (fact5� 1)))In the presence of concurrency, a subcontinuation captured and abortedby a controller invocation may encapsulate multiple threads of control.Invoking a subcontinuation that encapsulates multiple threads of controlcauses the concurrent subcomputation to resume. The parallel-search pro-cedure (Figure 1) concurrently traverses a given tree looking for nodes thatsatisfy the speci�ed predicate. On encountering such a node, it invokes thecontroller to suspend the search and returns the node along with a contin-uation that can be used to resume the search. We use pcall [1] here and inSection 4 to illustrate tree-structured concurrency, although any mechanismfor introducing tree-structured concurrency would su�ce, including a muchmore primitive fork operator. pcall evaluates its subexpressions in paralleland applies the procedural value of its �rst subexpression to the values ofthe remaining subexpressions. If none of the subexpressions involve sidee�ects, then the pcall expression behaves like a normal procedure call.Traditional continuations can be implemented in terms of subcontinua-

6 KUMAR, BRUGGEMAN, AND DYBVIG(de�ne parallel-search(lambda (tree predicate?)(spawn(lambda (c)(letrec ((search(lambda (tree)(if (empty? tree)#f(pcall(lambda (x y z) #f)(if (predicate? (node tree))(c (lambda (k)(cons (node tree) k))))(search (left tree))(search (right tree)))))))(search tree))))))Figure 1: When a node satis�es predicate?, parallel-search invokes the con-troller c to suspend the search and returns a pair containing the node anda continuation that may be used to search for additional nodes.tions by introducing an explicit root, via spawn, into the top-level evalua-tion function [17]. The traditional continuation operator, call/cc, is thende�ned in terms of the controller rooted in the top-level evaluation function.Although it is possible to implement spawn with call/cc in a sequential set-ting, doing so is less straightforward, as it involves the explicit simulation ofthe stack of stack segments required by a direct sequential implementationof subcontinuations.One-shot subcontinuations are similar to one-shot continuations in thata captured one-shot subcontinuation may be invoked at most once. Aswith one-shot continuations, the stack segments representing a one-shotsubcontinuation need not be copied when the subcontinuation is reinstated.In particular, as shown in Section 4.2, threads can be used to represent thestack segments required to implement one-shot subcontinuations withoutconcern for restarting the same thread from the same point multiple times.4. ImplementationThis section describes the implementation of subcontinuations in terms ofthreads and is organized as follows. Section 4.1 describes a small set of

THREADS YIELD CONTINUATIONS 7(thread-fork thunk) forks a thread to invoke thunk.(thread-self) returns the current thread.(mutex-make) returns a new mutex.(mutex-acquire mutex) acquires mutex.(mutex-release mutex [thread]) releases mutex (to thread, ifspeci�ed).(condition-make mutex) returns a new conditionassociated with mutex.(condition-signal condition) signals condition.(condition-wait condition [thread]) releases the mutex associatedwith condition (to thread, ifspeci�ed) and waits for conditionto be signaled, at which pointthe mutex is reacquired.(thread-block thread) blocks thread.(thread-unblock thread) unblocks thread.Figure 2: Thread system features used to implement one-shot subcontinu-ations.thread primitives that is su�cient for implementing subcontinuations. Sec-tion 4.2 presents the concurrent thread-based implementation of one-shotsubcontinuations. Section 4.3 describes how multi-shot subcontinuationsmight be implemented using threads and discusses certain problems andrestrictions.4.1. Thread primitivesOne-shot subcontinuations can be implemented in any language with athread system powerful enough to support the set of thread-system featuresshown in Figure 2. In addition to the ability to dynamically fork threads,this set of features includes mutexes for mutual exclusion and conditionvariables [19, 24] for synchronization. It also includes primitives that allowa thread to block and unblock other threads. These features are supportedat least indirectly by most modern thread systems, including the SGI IRIXthread system upon which our implementation is based.A thread is created dynamically using thread-fork, which invokes itsthunk argument in a separate thread. Threads are executed only for theire�ects.

8 KUMAR, BRUGGEMAN, AND DYBVIGMutexes and condition variables provide a structured way of accessingshared resources. The order in which threads waiting on a mutex suc-ceed in acquiring it is, on most systems, unspeci�ed. In the implemen-tation of subcontinuations, however, it is convenient to allow the threadreleasing a mutex to specify the next thread that will succeed in acquir-ing the mutex. Thus, the primitives that release a mutex (mutex-releaseand condition-wait) take an optional second argument, which is the threadthat will succeed in acquiring the mutex next. In the absence of directthread system support for this feature, the equivalent functionality can beimplemented by associating a \next thread" �eld with each mutex. Whena thread successfully acquires a mutex with a nonempty next-thread �eld,the thread must check to see if it is indeed the next thread that is expectedto hold the mutex. If it is not the designated thread it must release themutex and wait again on it. Eventually, the speci�ed thread will acquirethe mutex.The primitives thread-block and thread-unblock are required to controlconcurrent computations. They are asynchronous in that one thread canblock or unblock a thread at any point in the other thread's execution. Theoperations themselves, however, must be synchronous in that they do notreturn until the speci�ed thread is actually blocked or unblocked.The threads interface described here is simple enough that it can be im-plemented on top of most existing thread packages. Mutexes and conditionvariables are supported by most systems1. Several systems (SGI IRIX,Linux, Solaris, POSIX, etc.) extend the UNIX signal mechanism to sup-port threads. The signal mechanism can be used implement the threadblocking and unblocking procedures on those systems that do not supportthis functionality directly2.4.2. Subcontinuations from ThreadsAs described in Section 3, pcall provides a way to create tree-shaped con-currency, while spawn provides the ability to control tree-shaped concur-rency. An example of tree-shaped concurrent computation is shown inFigure 3. Although pcall is not essential to the subcontinuation mecha-nism, its implementation is described here along with the implementationof spawn to illustrate how spawn interacts with pcall. The implementationof pcall is representative of the implementation of any operator used tointroduce tree-structured concurrency.1On systems that provide semaphores instead, mutexes and condition variables canbe implemented in terms of semaphores.2This requires the use of a user signal, e.g., SIGUSR1, rather than SIGSTOP, since ahandler is needed to synchronize with the blocker before blocking.

THREADS YIELD CONTINUATIONS 9

Subcontinuation Controller Pcall baseBlockedExecuting

A

B

C

A

B

C B

A

(a) (b) (c)

K

Figure 3: A process tree containing subcontinuation controller and pcallbase nodes (a), subcontinuation capture by invoking the controller (b), andsubcontinuation reinstatement by invoking the captured subcontinuation(c).A pcall expression evaluates its subexpressions concurrently, then appliesthe value of its �rst expression to the values of the remaining expressions.The leaf in which the pcall is executed becomes a branch point, with aseparate branch for each of the subexpressions. Thus, execution takes placeonly at the leaves of the tree. Once the subexpressions have been evaluated,the branch point becomes a leaf again and the procedure is applied to itsarguments.A call to spawn causes a subcontinuation controller to be inserted at thecurrent execution point (Figure 3a). If control returns normally to thatpoint, the controller is removed from the tree and execution is resumed. Ifa controller (say B) is invoked at one of the leaves (say A) in the subtreewith B as the root, then that subtree is pruned and packaged into a sub-continuation K (Figure 3b). Subsequent invocation of that subcontinuationat a leaf (say C) causes the subcontinuation to be grafted onto the processtree at that leaf (Figure 3c).

10 KUMAR, BRUGGEMAN, AND DYBVIG(make-index-list n) returns the list (0 1 2 : : : n� 1).(insert-pcall-node! threads) creates and inserts a pcall node atthe current leaf.(insert-controller-node! thread) creates and inserts a controller nodeat the current leaf.(delete-child-node!) deletes the child of the currentthread.(delete-pcall-edge! node edge) deletes edge from the given pcallnode.(prune-subtree! node) prunes the subtree rooted at thegiven controller node.(graft-subtree! node) grafts the subtree rooted at thegiven controller node onto the treeat the current leaf.(controller-root node) returns the thread below the givencontroller node.(node->leaves node) returns a list of leaves in the subtreerooted at the given controller node.Figure 4: Procedures used by pcall and spawn to maintain the subcontin-uation data structures.Subcontinuations are implemented by maintaining a tree of stack seg-ments in which each stack segment is simply a stack of activation records.The key observation supporting the thread-based implementation of contin-uations is that a thread is, in essence, a stack of activation records. Thus,threads are used to represent stack segments. On subcontinuation capture,a subtree of threads is packaged into a subcontinuation after blocking thecurrently executing threads of the subcomputation (at the leaves of thesubtree). When a subcontinuation is reinstated, the subtree of threadsis grafted back onto the process tree and the computation is resumed byunblocking the threads at the leaves.Because the unblocked threads may overwrite the activation records ontheir stacks, subcontinuations represented in this manner can be invokedat most once, i.e., they are one-shot subcontinuations.The implementations of pcall and spawn share a common set of proce-dures that manipulate the data structures that make up the process tree.These procedures are listed in Figure 4. The code required to implementthese procedures is straightforward and is not presented here.

THREADS YIELD CONTINUATIONS 11All operations on the process tree must be atomic. Our implementationuses a single global mutex to serialize these operations. Most of the time, itis su�cient for the thread performing the operation to acquire the mutex,perform the operation, and release it. Some of the operations, however,require code to be executed by two di�erent threads. To ensure the atom-icity of the entire operation, the thread initiating the operation acquiresthe mutex, performs its half of the operation, and uses the optional next-thread parameter of the mutex-release procedure to pass the mutex to thesecond thread, which completes the operation before releasing the mutex.4.2.1. Implementation of pcallThe code for pcall is shown in Figure 5, along with a help procedure,pcall�. pcall itself is a syntactic extension. This syntactic extension simplymakes thunks of the pcall form subexpressions, e�ectively delaying theirevaluation, and passes them to pcall�. When pcall� is invoked, it �rstobtains the mutex to gain exclusive access to the process tree. It thenforks a thread for each of its arguments, updates the tree, and releases themutex while it waits on the condition done, which is signaled when all thearguments have been computed. Each child thread concurrently computesone argument. Each result computed by a child is communicated to theparent thread via a speci�ed slot in the vector result. The variable counteris decremented each time a child thread terminates to keep track of thenumber of arguments that have yet to be computed. When the last child�nishes, the counter goes to zero and the child wakes up the parent threadby signaling the condition done. The parent then trims the tree, releasesthe mutex, and applies the resulting procedure to the resulting arguments.4.2.2. Implementation of spawnWhen spawn (Figure 6) is invoked, it obtains the process-tree mutex andcreates a subcontinuation controller. It then forks a child thread, adds anode to the tree to mark the controller, and releases the mutex while itwaits on the condition done.The child thread applies the procedure f passed to spawn to the controller.Control can return from the call to f either by explicit invocation of thecontroller or by an ordinary return from f. The
ag controller-invoked? isused to distinguish between these two cases.The simpler case is when the controller is never invoked and the call tof returns value. In this case, the child thread enters the critical section,stores value in result to make it visible to the parent thread, and wakes upthe parent by signaling the condition done. The child thread terminatesand the parent thread resumes execution with result as the value returnedby spawn.

12 KUMAR, BRUGGEMAN, AND DYBVIG
(de�ne-syntax pcall(syntax-rules ()((proc arg : : :)(pcall* (length '(proc arg : : :))(lambda () proc)(lambda () arg) : : :))))(de�ne mutex (mutex-make))(de�ne pcall*(lambda (n . args)(let ((result (make-vector n '�))(pcall-node '�)(done (condition-make mutex))(parent (thread-self))(counter n))(mutex-acquire mutex)(let ((thread-list(map (lambda (fn index)(thread-fork(lambda ()(vector-set! result index (fn))(mutex-acquire mutex)(delete-pcall-edge! pcall-node index)(set! counter (� counter 1))(if (= counter 0)(begin(condition-signal done)(mutex-release mutex parent))(mutex-release mutex)))))args(make-index-list n))))(set! pcall-node (insert-pcall-node! thread-list)))(condition-wait done)(delete-child-node!)(mutex-release mutex)(let ((lst (vector->list result)))(apply (car lst) (cdr lst))))))Figure 5: Implementation of pcall.

THREADS YIELD CONTINUATIONS 13
(de�ne spawn(lambda (f)(de�ne controller-node '�)(de�ne controller-invoked? '�)(de�ne controller-invocation-thunk '�)(de�ne result '�)(de�ne done (condition-make mutex))(de�ne controller-wait(lambda ()(set! controller-invoked? #f)(condition-wait done)(if controller-invoked?(controller-invocation-thunk)(begin(delete-child-node!)(mutex-release mutex)result))))(de�ne controller ;; See Figure 7(lambda (g) : : :))(mutex-acquire mutex)(let ((thread(thread-fork(lambda ()(let ((value (f controller)))(mutex-acquire mutex)(let ((parent (controller-root controller-node)))(set! result value)(condition-signal done)(mutex-release mutex parent)))))))(set! controller-node (insert-controller-node! thread))(controller-wait))))Figure 6: Implementation of spawn.

14 KUMAR, BRUGGEMAN, AND DYBVIG(de�ne controller(lambda (g)(mutex-acquire mutex)(let ((val '�)(continue (condition-make mutex))(root-thread (controller-root controller-node)))(set! controller-invocation-thunk(lambda ()(prune-subtree! controller-node)(let ((leaves (node->leaves controller-node)))(for-each thread-block leaves)(mutex-release mutex)(let ((k (lambda (v)(mutex-acquire mutex)(graft-subtree! controller-node)(for-each thread-unblock leaves)(set! val v)(condition-signal continue)(controller-wait))))(g k)))))(set! controller-invoked? #t)(condition-signal done)(condition-wait continue root-thread)(mutex-release mutex)val))) Figure 7: Implementation of controller.The more complicated case is when the controller (Figure 7) is actuallyinvoked at one of the leaves. When this happens, the subcontinuationthat represents the subtree rooted at the controller (Figure 3b) must becaptured and aborted. To do this, the mutex is acquired to ensure thatno other thread starts a continuation operation on the process tree. Thethread that invokes the controller determines the thread root-thread that iswaiting at the subcontinuation controller, packages the work to be done bythat thread into a thunk controller-invocation-thunk, updates the variablecontroller-invoked? to inform it that the controller was invoked, and wakesup the controller by signaling the condition done. It then waits on conditioncontinue while handing the mutex to root-thread.When root-thread starts executing, the controller-invoked?
ag indicates

THREADS YIELD CONTINUATIONS 15that the controller was called explicitly, so it invokes controller-invocation-thunk to capture the subcontinuation. This causes the tree rooted at thecontroller to be pruned and the threads executing at its leaves to be blocked.Then, after leaving the critical section, it creates a subcontinuation k andapplies the controller argument g to this subcontinuation.Later, if the subcontinuation k is invoked by a thread executing at aleaf, the thread obtains the process-tree mutex, grafts the process subtreecaptured as part of the subcontinuation onto the current leaf, and unblocksall the threads at the leaves of the grafted subtree (Figure 3c). It then storesthe value v to be returned to the point where the controller was invoked inval, signals the condition continue to the thread that invoked the controller,and waits for the condition done. The signaled thread returns the valuenow stored in val to the point where the controller was invoked.To avoid deadlock, a thread is never blocked while holding the mutex. Tomaintain this invariant, the blocking thread always holds the mutex untilafter the (synchronous) blocking operation has succeeded.4.3. Multi-shot subcontinuationsThe implementation described in the preceding section can be extendedto support multi-shot subcontinuations. This requires a thread cloningoperator thread-dup that allows the threads captured in a subcontinuationto be cloned. The clones are used to restart the subcomputation captured inthe subcontinuation, while the original ones are kept around for subsequentinvocations of the subcontinuation.Three complications arise in this method for extending the implemen-tation to support multi-shot subcontinuation. First, a single controller orpcall node can now exist at multiple locations in the process tree. There-fore, the data structures used to communicate between parent threads andtheir children must be moved from the procedures where they are currentlyencapsulated into the process-tree data structure, and they must be clonedwhenever the corresponding node in the tree is cloned. At the start of eachoperation, the correct node in the tree must be located and the correspond-ing data structures used.Second, condition variables are also used on a per-node basis. Eachcondition variable has at most one thread waiting on it, and that thread isawakened by signaling that condition. Simple replication of the conditionvariables, however, in order to retain the property that only one threadcan wait on a condition variable at a time, does not work. This is becausesome of the threads are waiting on the condition variables when they arecloned, which therefore cannot be replaced. One solution to this problemis to accept the fact that multiple threads might be waiting on a condition

16 KUMAR, BRUGGEMAN, AND DYBVIGvariable and wake all of them up using a condition-broadcast primitive.Each thread, when awakened, would have to check to see if it is the intendedtarget of the wakeup message. If it is not, it must again wait on thecondition variable.Third, compiler support is required to allow the stack encapsulatedwithin a thread to be copied. In particular, mutable variables and datastructures must be stored outside of the stack or accessed from the originalstack via an extra level of indirection. In contrast, no compiler support isrequired to implement one-shot subcontinuations.5. ConclusionsIt has long been known that continuations can be used to implementthreads. In this article, we have shown that threads can be used to im-plement continuations. In so doing, we have provided the �rst detailed im-plementation model for subcontinuations in a concurrent setting, furtheredthe understanding of the relationship between continuations and threads,and provided a straightforward operational semantics for the interactionbetween threads and subcontinuations.We have implemented a complete thread package that supports the prim-itives described in Section 4.1 as part of Chez Scheme on an SGI PowerChallenge multiprocessor and used this package to implement one-shot sub-continuations (available via http://www.cs.princeton.edu/~skumar/subK).We have not yet extended the implementation with support for multi-shotsubcontinuations.Although the subcontinuation mechanism as described uses higher-orderprocedures, they are not essential to the mechanism or to its implementa-tion. Because the implementation of one-shot subcontinuations does notrely upon higher-order procedures or on any special compilation techniques,the model is applicable to any language or language implementation thatsupports the small set of thread primitives described in Section 4.1. Thus,the model demonstrates for the �rst time a straightforward way to add sup-port for �rst-class continuations to threaded versions of other languages,such as C and Java, without changes to the language or compiler.In languages without automatic storage management, such as C, the pro-grammer must be responsible for deallocating unused subcontinuations andany data structures used only by the threads that represent the subcon-tinuations. This is nothing new: programmers in such languages alreadyface a similar problem when threads are killed and when computations areaborted via longjmp or other nonlocal exits.The techniques used to implement one-shot subcontinuations can be

THREADS YIELD CONTINUATIONS 17adapted to support one-shot variants of the other continuation mechanismsdescribed in Section 2, including call/cc. Multi-shot variants of these othermechanisms can be supported as well, subject to the complications dis-cussed in Section 4.3. In the absence of concurrency, the asynchronousthread operators would not be needed, since all but the one active threadwould be blocked waiting on condition variables.Acknowledgements: Comments by Oscar Waddell and anonymous review-ers led to substantial improvements in the presentation of this material.References1. Halstead, Jr., Robert H. Multilisp: A language for concurrent symboliccomputation. ACM Transactions on Programming Languages and Sys-tems, 7, 4 (October 1985) 501{538.2. Birrell, Andrew, Guttag, John V., Horning, James J., and Levin, Roy.Synchronization Primitives for a Multiprocessor: A Formal Speci�ca-tion. In Proceedings of the Eleventh Symposium on Operating SystemsPrinciples (November 1987) 94{102.3. Bruggeman, Carl, Waddell, Oscar, and Dybvig, R. Kent. Representingcontrol in the presence of one-shot continuations. In Proceedings ofthe SIGPLAN '96 Conference on Programming Language Design andImplementation (May 1996) 99{107.4. Clocksin, William F. and Mellish, Christopher S. Programming in Pro-log. Springer-Verlag, second edition (1984).5. Cooper, Eric C. and Morrisett, J. Gregory. Adding Threads to Stan-dard ML. Technical Report CMU-CS-90-186, Computer Science De-partment, Carnegie Mellon University (December 1990).6. Danvy, Olivier and Filinski, Andrzej. Representing control: A study ofCPS transformation. Mathematical Structures in Computer Science,2, 4 (1992) 361{391.7. Dybvig, R. Kent and Hieb, Robert. Engines from continuations. Com-puter Languages, 14, 2 (1989) 109{123.8. Felleisen, Matthias. Transliterating Prolog into Scheme. Technical Re-port 182, Indiana University (October 1985).9. Felleisen, Matthias. The theory and practice of �rst-class prompts.In Conference Record of the Fifteenth Annual ACM Symposium onPrinciples of Programming Languages (January 1988) 180{190.

18 KUMAR, BRUGGEMAN, AND DYBVIG10. Felleisen, Matthias, Friedman, Daniel P., Duba, Bruce, and Merrill,John. Beyond Continuations. Technical Report 216, Indiana UniversityComputer Science Department (1987).11. Felleisen, Matthias, Wand, Mitchell, Friedman, Daniel P., and Duba,Bruce F. Abstract continuations: A mathematical semantics for han-dling full functional jumps. In Proceedings of the 1988 ACM Confer-ence on Lisp and Functional Programming (July 1988) 52{62.12. Friedman, Daniel P., Haynes, Christopher T., and Wand, Mitchell. Ob-taining coroutines with continuations. Computer Languages, 11, 3/4(1986) 143{153.13. Gunter, C. A., R�emy, R., and Riecke, Jon G. A generalization of ex-ceptions and control in ML-like languages. In Proceedings of the ACMConference on Functional Programming and Computer Architecture(June 1995).14. Haynes, Christopher T. Logic continuations. LISP Pointers (1987)157{176.15. Haynes, Christopher T. and Friedman, Daniel P. Engines build processabstractions. In Proceedings of the 1984 ACM Conference on Lisp andFunctional Programming (August 1984) 18{24.16. Hieb, Robert and Dybvig, R. Kent. Continuations and concurrency. InProceedings of the Second ACM SIGPLAN Symposium on Principlesand Practice of Parallel Programming (1990).17. Hieb, Robert, Dybvig, R. Kent, and Anderson, III, Claude W. Subcon-tinuations. Lisp and Symbolic Computation, 7, 1 (March 1994) 83{110.18. Hieb, Robert, Dybvig, R. Kent, and Bruggeman, Carl. Representingcontrol in the presence of �rst-class continuations. In Proceedings ofthe SIGPLAN '90 Conference on Programming Language Design andImplementation (June 1990) 66{77.19. Hoare, C.A.R. Monitors: An operating system structuring concept.Communications of the ACM, 17, 10 (1974) 549{557.20. Jagannathan, Suresh and Philbin, James. A Customizable Substratefor Concurrent Languages. In ACM SIGPLAN '91 Conference on Pro-gramming Language Design and Implementation (June 1992).21. Jagannathan, Suresh and Philbin, James. A foundation for an e�cientmulti-threaded Scheme system. In Proceedings of the 1992 Conferenceon Lisp and Functional Programming (June 1992).

THREADS YIELD CONTINUATIONS 1922. Katz, Morry and Weise, Daniel. Continuing into the future: On theinteraction of futures and �rst-class continuations. In Proceedings ofthe 1990 ACM Conference on Lisp and Functional Programming (June1990) 176{184.23. Komiya, Tsuneyasu and Yuasa, Taiichi. Inde�nite one-time contin-uation. Transactions Information Processing Society of Japan, 37, 1(1996) 92{100.24. Lampson, Butler W. and Redell, David D. Experience with processesand monitors in Mesa. Communications of the ACM, 23, 2 (1980)105{117.25. Miller, James S. MultiScheme: A Parallel Processing System Basedon MIT Scheme. PhD thesis, Massachusetts Institute of Technology(September 1987).26. Queinnec, Christian and Serpette, Bernard. A dynamic extent con-trol operator for partial continuations. In Conference Record of theEighteenth Annual ACM Symposium on Principles of ProgrammingLanguages (January 1991) 174{184.27. Sitaram, Dorai and Felleisen, Matthias. Control delimiters and theirhierarchies. Lisp and Symbolic Computation, 3, 1 (January 1990) 67{99.28. Sussman, Gerald J. and Steele Jr., Guy L. Scheme: An Interpreter forExtended Lambda Calculus. AI Memo 349, Massachusetts Institute ofTechnology Arti�cial Intelligence Lab (1975).29. Tolmach, Andrew and Morrisett, J. Gregory. A Portable Multiproces-sor Interface for Standard ML of New Jersey. Technical Report TR-376-92, Princeton University (June 1992).30. Wand, Mitchell. Continuation-based multiprocessing. In ConferenceRecord of the 1980 Lisp Conference (August 1980) 19{28.

