
A
ategory-theoreti
 a

ount of programmodulesEugenio Moggi�em�lf
s.edinburgh.a
.ukLFCS, University of Edinburgh, EH9 3JZ Edinburgh, UKMay 31, 1994Abstra
tThe type-theoreti
 explanation of modules proposed to date (for program-ming languages like ML) is unsatisfa
tory, be
ause it does not
apture thatevaluation of type-expressions is independent from evaluation of program-expressions. We propose a new explanation based on \programming lan-guages as indexed
ategories" and illustrates how ML
an be extended tosupport higher order modules, by developing a
ategory-theoreti
 semanti
sfor a
al
ulus of modules with dependent types. The paper outlines also amethodology, whi
h may lead to a modular approa
h in the study of program-ming languages.Introdu
tionThe addition of module fa
ilities to programming languages is motivated by the needto provide a better environment for the development and maintenan
e of large pro-grams. Nowadays many programming languages in
lude su
h fa
ilities. Throughoutthe paper Standard ML (see [Ma
85, HMM86, MTH90℄) is taken as representativefor these languages. The implementation of module fa
ilities has been based mainlyon an operational understanding. More re
ently, a type-theoreti
 understandingof ML-modules has been proposed, whi
h is based on a type theory with depen-dent types and a
umulative hierar
hy of two universes U1 and U2 s.t. U1:U2 andU1 � U2 (see [Ma
86, HM88℄). The explanation of ML-modules a

ording to thisunderstanding goes as follows:� ML-signatures are elements of U2 built from U1 and types (i.e. elements of U1)by the �-type
onstru
tor, while ML-stru
tures are elements of ML-signature,namely tuples made of values (i.e. elements of types) and types�This paper has been written in Cambridge and Paris thanks to the �nan
ial support given byESPRIT Basi
 Resear
h A
tion No. 3003 (Categori
al Logi
 In Computer S
ien
e) and the E
oleNormale Sup�erieure in Paris. 1

� ML-fun
tor signatures are elements of U2 of the form �s: sig1:sig2(s), wheresig1 and sig2 are ML-signatures, whileML-fun
tors are elements of ML-fun
torsignatures, namely fun
tions from ML-stru
tures to ML-stru
tures.However, the explanation of ML-fun
tors as fun
tions is problemati
 in relation totype-
he
king at
ompile-time. This be
omes apparent when trying to de�ne higherorder modules as done in XML (see [HM88℄). Let � be a type and f : (�x: �:U1) bean ML-fun
tor variable, whi
h may o

ur in the body of an higher order module.� It is not
lear what the meaning of the type-expression fM :U1 is, when theprogram-expressionM : � diverges. This may happen in ML, be
ause fun
tions
an be de�ned by re
ursion.� Type equality be
omes unde
idable as soon as re
ursive types are allowed (asin ML). For instan
e, if � = � ! � , then fM1 = fM2:U1()M1 =M2: � andthe se
ond equality is unde
idable, sin
e it amounts to ��-
onversion betweenuntyped �-terms.These two problems seem to jeopardise de
idability of type-
he
king. XML avoidsthese problems by requiring expressions to be total and equality of expression to bede
idable, but then the theory hardly
aptures the essen
e of ML, while ML avoidsthem by banning higher order modules, so that the only ML-fun
tors �x: �:M ofML-signature �x: �:U1 are those where x is not free in M .We take independen
e of type-expressions from program-expressionsas essential feature of programming languages (su
h as PASCAL,
oreML, ADA), whi
h should be respe
ted by module fa
ilities. Remark 5.1
lari�es how independen
e relates to phase distin
tion and type-
he
king .We
apture independen
e of types from values
ategori
ally, by viewing a program-ming language as an indexed
ategory, whi
h suggests an obvious de�nition of
at-egory of modules (see Se
tion 4). A
on
rete out
ome of our analysis is that ML-fun
tors should be viewed as pairs of fun
tions and not as fun
tions (from pairs topairs), e.g. ML-fun
tors from �t1:U1:�1(t1) to �t2:U1:�2(t2) are elements of�f :U1 ! U2:(�t1:U1:�1(t1)! �2(ft1))and not elements of (�t1:U1:�1(t1))! (�t2:U1:�2(t2)), as in [Ma
86, HM88℄.We give also a more abstra
t
hara
terisation of independen
e (seeDe�nition 7.3 and Theorem 7.5) and explain dependent sums and prod-u
ts at the level of ML-signatures in terms of dependent sums and prod-u
ts at the level of kinds and type s
hemas (see Theorem 7.9).Pragmati
 issues and general methodologyThe obje
tive of this paper is not only to des
ribe a language supporting higher or-der modules, but also to propose a general methodology for studying programming2

languages and to suggest how the independen
e of type-expressions from program-expressions and program modules may �t into it. From this perspe
tive CategoryTheory is parti
ularly appropriate. This methodology tries to address a deep-rootedproblem in the study of programming languages (and other areas): the la
k of modu-larity . In a modular approa
h the key
on
ept to investigate should be the \additionof features to a language" rather than spe
i�
 \toy languages" (i.e. languages withonly a few features).Syntax-independent view. The �rst ingredient of su
h a methodology should beto abstra
t as mu
h as possible from the
on
rete presentation of a language, so thatone
an fo
us only on the underlying \mathemati
al stru
tures". This is standardpra
ti
e in Categori
al Logi
 (see [KR77, Pitar℄), where theories are identi�ed with
ategories having
ertain additional stru
ture. We follow a similar paradigm for pro-gramming languages. In parti
ular, we propose to identify a programming languagewhere type-expressions are evaluated independently from program-expressions withan indexed
ategory C:Bop ! Cat s.t.� type-expressions are morphisms in B, while� program-expressions are morphisms in the �bers C[X℄.We introdu
e a language HML, where type-expressions are independent fromprogram-expressions, and show how it
an be viewed as an indexed
ategory. In[HMM90℄ this and related languages (in parti
ular a
al
ulus for higher order mod-ules with dependent signatures) are investigated in greater depth and with moreemphasis on pragmati
 issues, su
h as de
idability of type-
he
king. While here weinvestigate only the
ategory-theoreti
 foundations for these languages.Program modules. If programming languages are indexed
ategories (as out-lined above), then it is natural to expe
t that program modules should live in a
ategory where the type-expressions and program-expressions
oexist. There is astandard
onstru
tion, due to Grothendie
k, whi
h transforms an indexed
ategoryC:Bop ! Cat into a �bration �C:GC ! B. We take GC as the
ategory of modulesfor the programming language C. On
e we have established the
orre
t link be-tween programming language
on
epts and
ategory-theoreti
 notions, it is mainlya matter of letting standard
ategory-theoreti
 ma
hinery do the rest, e.g. tell uswhat it means to have higher order modules. More spe
i�
ally, we will show thatthe
ategory of HML-modules has the stru
ture needed to interpret a
al
ulus withdependent types, like the
al
ulus �MLmod studied in [HMM90℄.2-
ategori
al approa
h. The se
ond ingredient of a general methodology shouldbe ways to
ombine features. This is a very diÆ
ult problem to solve in generality,be
ause it depends on the way features intera
t . For instan
e:� they
ould be unrelated , like produ
ts and
oprodu
ts, or3

� one feature
ould be de�ned in terms of the other, e.g. the de�nition of fun
tionspa
e relies on having produ
ts.Here we fo
us on \adding one feature on top of another". The motivating example isto make pre
ise the idea of a notion of
omputation (see [Mog89b℄) whi
h respe
ts theindependen
e of type-expressions from program-expressions, or more formally theidea of a monad over an indexed
ategory (whi
h
aptures the independen
e of type-expressions from program-expressions). A simpler example of su
h a
ombinationis the notion of topologi
al group, whi
h amounts to a group in the
ategory oftopologi
al spa
es. The strategy suggested by the se
ond example is to look fora
ategory of topologi
al spa
es (the �rst feature) and generalise the de�nition ofgroup (the se
ond feature) over a set to that of group over an obje
t in a
ategory(with �nite produ
ts). By applying (mutatis mutandis) the same strategy to the�rst example, we have to generalise the de�nition of monad over a
ategory to thatof monad over an obje
t in a 2-
ategory and show that indexed
ategories form a 2-
ategory. Summarising, the key ideas of the 2-
ategori
al approa
h to programminglanguages are:� programming languages (with
ertain features) are obje
ts of a 2-
ategory C(whi
h will depend on the features one is interested in)� an additional feature is an instan
e in C of a 2-
ategori
al
on
ept.SummarySe
tion 1 reviews the basi
s of 2-
ategory theory (see also [KS74℄).Se
tion 2 reviews the basi
s of indexed-
ategory theory, and de�nes the 2-
ategoryof indexed
ategories. We use indexed
ategories to
apture the independen
e oftype-expressions from program-expressions.Se
tion 3 reviews brie
y the
ategory-theoreti
 semanti
s of several typed lambda-
al
uli and dis
usses how various features of programming languages
an be de-s
ribed
ategori
ally.Se
tion 4 des
ribes the Grothendie
k
onstru
tion, i.e. how to go from a program-ming language, viewed as an indexed
ategory C, to its
ategory GC of modules.Se
tion 5 introdu
es HML, a language similar to ML with type-expressions indepen-dent from program-expressions, and des
ribes the
ategory GC of HML-modules.The Appendix gives a
omplete des
ription of HML, while Se
tion 7 investigatesadditional stru
ture on the
ategory GC.Se
tion 6 reviews the
ategory-theoreti
 semanti
s of dependent types and the Cal
u-lus of Constru
tions (see [CH88℄) following quite
losely [HP89℄, but using
ategorieswith attributes instead of
lasses of display maps.Se
tion 7 investigates dependent kinds and dependent type s
hemas in HML, usingthe ma
hinery set up in Se
tion 6. More spe
i�
ally, it des
ribes the e�e
t of indepen-den
e of
onstru
tor-expressions from program-expressions at the level of
ategorieswith attributes, and relates dependen
y at the level of modules to dependen
y atthe level of
onstru
tors and programs. 4

1 Preliminaries on 2-
ategoriesBoth
ategories and B-indexed
ategories
an be viewed as obje
ts of suitable 2-
ategories, Cat and ICat(B) respe
tively. This view is parti
ularly useful for givingde�nitions involving B-indexed
ategories (and proving their properties) by analogywith
ategories. In fa
t, it is just a matter of rephrasing familiar
on
epts, like monador adjun
tion, in the formal language of 2-
ategories. We re
all the de�nitions of2-
ategory, 2-fun
tor and 2-natural transformation (see also [KS74℄).De�nition 1.1 A 2-
ategory C is a Cat-enri
hed
ategory, i.e.� a
lass of obje
ts Obj(C)� for every pair of obje
ts
1 and
2 a
ategory C(
1;
2)� for every obje
t
 an obje
t idC
 of C(
;
) and for every triple of obje
ts
1,
2and
3 a fun
tor
ompC
1;
2;
3 from C(
1;
2)�C(
2;
3) to C(
1;
3) satisfying theasso
iativity and identity axioms{
omp(;
omp(;)) =
omp(
omp(;);){
omp(id;) = =
omp(; id)Notation 1.2 An obje
t f of C(
1;
2) is
alled a 1-morphism, while an arrow � is
alled a 2-morphism. We write ; for
omp(;)
1 f1+ �1f 01 >>
2 f2+ �2f 02 >>
3 ;7�!
1 f1; f2+ �1; �2f 01; f 02 >>
3and � for
omposition of 2-morphisms

1 f1+ �1+ �2f2

>>>
2 �7�!
1 f1+ �1 � �2f2 >>
2
Example 1.3 The
anoni
al example of a 2-
ategory is Cat itself (see [Ma
71℄):� the obje
ts are
ategories� the 1-morphisms are fun
tors and ; is fun
tor
omposition,� the 2-morphisms are natural transformations and ; and � are respe
tivelyhorizontal and verti
al
omposition of natural transformations.5

De�nition 1.4 A 2-fun
tor F from C1 to C2 is a mapping
 f+ �f 0>>
0 in C1 F7�! F
 Ff+ F�Ff 0>> F
0 in C2whi
h
ommutes with identities, ; and � .De�nition 1.5 If F1 and F2 are 2-fun
tors from C1 to C2, then a 2-natural trans-formation � from F1 to F2 is a family hF1
 �
! F2
j
 2 Obj(C1)i of 1-morphismss.t.
 F1
 �
 > F2
_ �) _ =) _ F1�) _ _ F2�) _
0 F1
0 �
0 > F2
0i.e. the fun
tors �
;F2 and F1 ; �
0 from C1(
;
0) to C2(F1
; F2
0) are equal.Adjun
tions are the basi
 tool to de�ne data-types, while monads are used to model
omputations (see [Mog89b℄). Their de�nition
an be rephrased in the language of2-
ategories and most of their properties
an be proved in su
h a formal setting (see[Str72℄), so these standard tools
an be applied in a di�erent 2-
ategory, e.g. that ofindexed
ategories (see Se
tion 2).De�nition 1.6 Let
 and
0 be obje
ts of a 2-
ategory C.� A monad over
 is a triple (T; �; �) s.t.

 T >
 id
_ �) _T T ;T_ �) _T

(T ;�) � � = (�;T) � � and (T ; �) � � = idT = (�;T) � �.� An adjun
tion from
 to
0 is a quadruple (F;G; �; �) s.t.

0
 F< G >
0 id
_ �) _F ;G G;F_ �) _id
0

0(�;F) � (F ; �) = idF and (G; �) � (�;G) = idG.It is obvious from the de�nition above, that the 2-
ategori
al notions of monad andadjun
tion are preserved by 2-fun
tors and that in the 2-
ategory Cat they amountto familiar de�nitions. 6

2 Indexed
ategories and programming languagesIn this se
tion we de�ne the 2-
ategory ICat(B) of B-indexed
ategories. Indexed
ategories model only one feature of a strongly typed programming language, namelythat expressions are partitioned into two groups, type-expressions and program-expressions, and that the former are independent from the latter. Se
tion 3 willdis
uss how to model other features by additional stru
ture over an indexed
ategory.In Categori
al Logi
 there is a similar use of indexed
ategories to
apture thattypes and terms of �rst-order logi
 are given independently from formulas and proofs(see [See83℄), while to enfor
e the prin
iple of formulas-as-types one must be ableto map �bers down to the base (see [See84℄).The general de�nition of indexed
ategory is fairly
ompli
ated, sin
e it involvesthe notion of
anoni
al isomorphism. However, for representing languages it is moreappropriate to use a stri
ter de�nition of B-indexed
ategory (e.g. see [See84, See87℄),namely a fun
tor from Bop to Cat, where B is a small
ategory and Cat is the
ategory of small
ategories and fun
tors.De�nition 2.1 Given a small
ategory B, the 2-
ategory ICat(B) of B-indexed
ategories is de�ned as follows:� an obje
t (indexed
ategory) is a fun
tor C:Bop ! CatX C[X℄^f C7�! _C[f ℄Y C[Y ℄� a 1-morphism (indexed fun
tor) from C1 to C2 is a natural transformationF : C1 :! C2, i.e. a family hF [X℄: C1[X℄! C2[X℄jX 2 Bi of fun
tors s.t.X C1[X℄ F [X℄> C2[X℄^f =) C1[f ℄_ _C2[f ℄Y C1[Y ℄ F [Y ℄> C2[Y ℄i.e. for every f :Y ! X in B the fun
tors C1[f ℄;F [Y ℄ and F [X℄; C2[f ℄ areequal.� Given 1-morphisms F1 and F2 from C1 to C2, a 2-morphism (indexed naturaltransformation) from F1 to F2 is a family h�[X℄:F1[X℄ :! F2[X℄jX 2 Bi of7

natural transformations s.t.X C1[X℄ + �[X℄>> C2[X℄^f =) C1[f ℄_ _C2[f ℄Y C1[Y ℄ + �[Y ℄>> C2[Y ℄i.e. for every f :Y ! X in B the natural transformations C1[f ℄; �[Y ℄ and�[X℄; C2[f ℄ are equal.The de�nition of monad and adjun
tion for B-indexed
ategories are parti
ularinstan
es of the 2-
ategori
al de�nitions. The following proposition
hara
terisesan adjun
tion in ICat(B) as a family of adjun
tions in Cat satisfying the Be
k-Chevalley
ondition.Proposition 2.2 ([PS78℄) Given a B-indexed fun
tor G from C2 to C1, an adjun
-tion (F;G; �; �) from C1 to C2 amounts to having a familyh(F [b℄; G[b℄; �[b℄; �[b℄)jb 2 Bisatisfying the following properties:lo
 (F [b℄; G[b℄; �[b℄; �[b℄) is an adjun
tion from C1[b℄ to C2[b℄, for every b 2 B;BC the natural transformation (�[b1℄; C1[f ℄;F [b2℄)�(F [b1℄; C2[f ℄; �[b2℄) from C1[f ℄;F [b2℄to F [b1℄; C2[f ℄ is the identity, for every f : b2 ! b1 in B.Remark 2.3 The
ondition lo
 means that for every f :Y ! XC2[X℄ F [X℄< ?G[X℄> C1[X℄C2[f ℄_ _C1[f ℄C2[Y ℄ F [Y ℄< ?G[Y ℄> C1[Y ℄and the square involving only the Gs
ommute, sin
e G is an indexed fun
tor. Thesquare involving only F s does not
ommute, in general, though there is a natural8

transformation C2[X℄ <F [X℄ C1[X℄C2[f ℄_ * � _C1[f ℄C2[Y ℄ <F [Y ℄ C1[Y ℄where �
 2 C2(F [Y ℄(C1[f ℄
); C2[f ℄(F [X℄
)) is given by the following
onstru
tion:� take the unit �[X℄
 2 C1[X℄(
; G[X℄(F [X℄
)) of the adjun
tion G[X℄ ` F [X℄� take its image g in C1[Y ℄(C1[f ℄
; C1[f ℄(G[X℄(F [X℄
))) via the fun
tor C1[f ℄� g is in C1[Y ℄(C1[f ℄
; G[Y ℄(C2[f ℄(F [X℄
))), be
ause the indexed fun
tor G
om-mutes with substitution, i.e. C2[f ℄;G[Y ℄ = G[X℄; C1[f ℄� �
 is the morphism in C2[Y ℄(F [Y ℄(C1[f ℄
); C2[f ℄(F [X℄
))
orresponding to g viathe natural isomorphism F [Y ℄(); �[Y ℄b from C1[Y ℄(a;G[Y ℄b) to C2[Y ℄(F [Y ℄a; b),where �[Y ℄ is the
ounit for the adjun
tion G[Y ℄ ` F [Y ℄and the
ondition BC requires that � de�ned above is the identity. The Be
k-Chevalley
ondition in [PS78℄ requires only that the natural transformation givenabove is a
anoni
al isomorphism, but we have adopted a stri
t notion of indexed
ategory, where
anoni
al isomorphisms are identities.3 IntermezzoAt this point we review the
ategory-theoreti
 stru
tures used for interpreting sometyped �-
al
uli and dis
uss the additional stru
tures needed to model various fea-tures of programming languages.� Hyperdo
trines model the proof theory of intuitionisti
 �rst order logi
 (see[See83℄). They are indexed-
ategories C:Bop ! Cat, where morphisms in thebase
orrespond to terms and morphisms in the �bers
orrespond to deriva-tions. Moreover, the base B has �nite produ
ts, the �bers C[X℄ are bi
artesian
losed, the fun
tors C[f ℄ preserve su
h stru
ture and for every �rst proje
tion�b1;b1 : b1 � b ! b1 in B the fun
tor C[�b1;b1 ℄ has right adjoint 8[b1℄b and leftadjoint 9[b1℄b (
orresponding to universal and existential quanti�
ation overb) satisfying the Be
k-Chevalley
ondition. The de�nition of universal andexistential quanti�
ation in an hyperdo
trine C
ould be rephrased in termsof
ategories with attributes over GC (see De�nition 6.11), provided both thebase and the �bers have terminal obje
ts and enough pullba
ks.� Lo
ally
artesian
losed
ategories model intuitionisti
 type theory with equal-ity types (see [See84℄). They amount to identifying the two levels of an hyper-do
trine, intuitively propositions and types are identi�ed.9

� Contextual
ategories,
lass of display maps, D-
ategories and
ategories withattributes provide essentially equivalent a

ounts of dependent types. Unlikethe approa
h based on lo
ally
artesian
losed
ategories, they give a general
ategory-theoreti
 understanding of dependent types (see Se
tion 6).� PL Categories model the higher order lambda
al
ulus, or equivalently theproof theory of higher order intuitionisti
 propositional
al
ulus (see [See87℄).They are hyperdo
trines with an obje
t
 2 B (the type of propositions) s.t.the set of obje
ts of C[X℄ is B(X;
), and for any X 2 B a distinguishedexponential
X (the type of predi
ates over X).� Monads
an be used to model notions of
omputation (see [Mog89b, Mogar℄).Computational types are easily a

ommodated in the simply typed �-
al
ulus,but it is still un
lear how they �t with dependent types.We believe that a proper understanding of
omputational types ina
al
ulus of dependent types will
larify the semanti
s of sharing
onstraints and generativity , whi
h at the moment is given onlyoperationally (see [MTH90℄).Other features of programming languages, besides those of main interest for thepaper,
an be modelled as follows.� A distinguished obje
t
 in the base
ategory
orresponds to the kind of alltypes, while exponentials
X allow the interpretation of higher order type-
onstru
tors.� Computations at run-time are modelled by a monad in the 2-
ategory ICat(B).Sin
e monads are a 2-
ategori
al
on
ept, it is
lear how to de�ne monads overindexed
ategories.� Data-types (like produ
ts, sums, fun
tional types, : : :) are modelled by theusual adjun
tions but in the 2-
ategory ICat(B) instead of Cat.This is not quite right, be
ause fun
tion spa
es (and dependent prod-u
ts) are given via an adjun
tion with parameter. A 2-
ategori
alreformulation may have to rely on �brations in a 2-
ategory, whi
his far from simple (see [Str73℄).� Polymorphi
 types are modelled like universal quanti�ers (in Hyperdo
trines),while abstra
t data-types are modelled like existential quanti�ers (see [MP88℄).Remark 3.1� The requirement Obj(C[X℄) = B(X;
) for the kind
 of all types is not alwaysjusti�ed in relation to programming languages. For instan
e, in ML thereare types and type s
hemas. Types
orrespond to elements of
, while types
hemas
orrespond to obje
ts in the �ber
ategories. In Se
tion 5 we introdu
ea language whi
h does not identify types and type s
hemas. The in
lusion of10

types into type s
hemas is modelled by an obje
t t 2 C[
℄ (the generi
 type), sothat a type expression f :X !
 (with a free variable of kind X)
orrespondsto the type s
hema C[f ℄(t) in C[X℄. When Obj(C[X℄) = B(X;
), the generi
type is simply id
 2 C[
℄.� A general understanding of dependent types is essential for explaining depen-dent types in the
ategory of modules in terms of dependent types in the baseand �ber
ategories. For instan
e, there are non-trivial dependen
ies at thelevel of ML-signatures, even though
ore ML does not have dependent types.The semanti
s of dependent types is based on a spe
ial kind of indexed
at-egories (�brations), where it is possible to go ba
k and forth from one levelto the other (see de�nition of D-
ategory in [Ehr88℄). Su
h a possibility ofmoving ba
k and forth
ontradi
ts the independen
e of type-expressions fromprogram-expressions, we will
onsider instead an indexed
ategory C with twoD-
ategory stru
tures, one for the base and one for the �bers (see Se
tion 7).4 The
ategory of modulesThe 2-
ategory ICat(B) is isomorphi
 to the 2-
ategory of split B-�brations (see[Ben85℄). Sin
e B-�brations are fun
tors with
odomain B satisfying
ertain addi-tional properties, the 2-
ategory of B-�brations is a 2-sub
ategory of Cat#B andthe 2-embedding, mapping a B-indexed
ategory C to the
orresponding B-�bration�C :GC ! B,
an be viewed as a 2-fun
tor from ICat(B) to Cat#B. For our pur-poses we need only the 2-fun
tor G from ICat(B) to Cat, mapping a programminglanguage C to its
ategory of modules GC. In Se
tion 5 we will de�ne the
ategoryof modules for HML.De�nition 4.1 The 2-fun
tor G from ICat(B) to Cat is de�ned as follows:� if C is an indexed
ategory, then GC is the
ategory s.t.hX1;
1i where X1 2 B and
1 2 C[X1℄hf; gi_ where f 2 B(X1; X2) and g 2 C[X1℄(
1; C[f ℄
2)hX2;
2i where X2 2 B and
2 2 C[X2℄identity over hX;
i is hidX ; id
i,
omposition of hf1; g1i and hf2; g2i is hf1; f2; g1; C[f1℄g2i� if F is an indexed fun
tor from C1 to C2, then GF is the fun
tor s.t.hX;
i hX;F [X℄
ihf; gi_ in GC1 GF7�! hf; F [X℄gi_ in GC2hX 0;
0i hX 0; F [X 0℄
0i11

� if F1 and F2 are indexed fun
tors from C1 to C2 and � is an indexed naturaltransformation from F1 to F2, then G� is the natural transformation s.t.hX;
i in GC1 G�7�! hX;F1[X℄
i hidX ; � [X℄
i> hX;F2[X℄
i in GC2Remark 4.2 After de�ning the general
onstru
tion whi
h maps a programminglanguage, viewed as an indexed
ategory C, to its
ategory GC of modules, we
aninvestigate how additional stru
ture on GC depends on (is indu
ed by) additionalstru
ture on C and/or the base
ategory B. For instan
e, an indexed monad (T; �; �)over C, whi
h
orresponds to a notion of run-time
omputation, indu
es a monad overGC by simply taking its image w.r.t. the 2-fun
tor G, more pre
isely (GT)(hb;
i) =hb; T [b℄
i.5 An example: HMLIn this se
tion we de�ne a language, HML (for higher-order ML), whi
h extends theone given in [Mog89a℄. The main features of HML are:� Independen
e of type-expressions from program-expressions (as in system F!),enfor
ed synta
ti
ally by having two levels of judgements (and
ontexts), sothat HML
an be viewed as an indexed
ategory.� Dependent kinds and type s
hemas (as in the Cal
ulus of Constru
tions CCdes
ribed in [HP89℄). More pre
isely, HML has dependent sums and produ
tsfor kinds and type s
hemas, and type s
hemas universally and existentiallyquanti�ed over kinds.This enable us to analyse in full generality dependent types at the level ofmodules, that are ne
essary for giving a type-theoreti
 a

ount of sharing
onstraints (see [MTH90℄), sin
e these
onstraints spe
ify equality of (a limitedform of) program-expressions.� Distin
tion between types and type s
hemas (as in ML), so that having bothproper dependen
y at the level of type s
hemas (ne
essary to a

ommodatesharing
onstraints) and independen
e of type-expressions from program-expressions(as in F!) does not lead to in
onsisten
y.A study of the additional stru
ture on the
ategory GC of HML-modules is post-poned to Se
tion 7, where su
h stru
ture is
ompared to that for the Cal
ulus ofConstru
tions (as des
ribed in [HP89℄).Remark 5.1 The study of dependent types at the level of modules is relevant tothe
al
ulus �MLmod studied in [HMM90℄. Though �MLmod has an important restri
tion,type s
hemas are independent from the evaluation of program-expressions, whi
h isenfor
ed by repla
ing
losure w.r.t. �- and �-types with
losure w.r.t. produ
ts andfun
tion spa
es only. Su
h a restri
tion is essential to prove that \type-
he
king
anbe done at
ompile-time" (even for the
al
ulus of modules).12

Our notion of independen
e of type-expressions from program-expressions is re-lated to phase distin
tion as introdu
ed in [Car88℄ \: : : the exe
ution of a programis
arried out in two phases: a type-
he
king phase (
ompile-time) and an exe
utionphase (run-time)". Independen
e and phase distin
tion
oin
ide, when types andtype s
hemas are identi�ed, but in general phase distin
tion is a stronger require-ment than independen
e (provided types are a subset of type s
hemas).In �MLmod phase distin
tion (and termination of the type-
he
king phase) is a
hievedby having type s
hemas independent from program-expressions. In HML program-expressions may o

ur in type s
hemas (at least potentially), so the only way toguaranty termination of type-
he
king is to use a de
idable approximation of equal-ity for program-expressions.Overview. HML has four synta
ti

lasses:� Kinds � ` k, whose raw syntax isk 2 Kind: : = 1 j
 j (�v: k1:k2) j (�v: k1:k2)where � is a
onstru
tor
ontext, i.e. a sequen
e v1: k1; : : : ; vm: km.� Constru
tors � ` u: k, whose raw syntax isu 2 Constr: : = v j 1 j � j ! j � j hu1; u2i j �i(u) j (�v: k:u) j u1(u2)Besides the
onstants 1:
 and �;!:
 !
 !
 we
ould have
onsideredalso 8; 9: (k !
) !
, if types were
losed w.r.t. universal and existentialquanti�
ation over kind (like F!). As
ommon pra
ti
e, we write u1 ! u2instead of ! u1u2 (similarly for �) and � for a
onstru
tor of kind
.� Type s
hemas �; � ` �, whose raw syntax is� 2 S
hema: : = 1 j set(�) j (�x: �1:�2) j (�x: �1:�2) j (9v: k1:�2) j (8v: k1:�2)where � is a term
ontext, i.e. a sequen
e x1: �1; : : : ; xn: �n.� Terms �; � ` e: �, whose raw syntax ise 2 Term: : = x j � j he1; e2i j �i(e) j (�x: �:e) j e1(e2) j(u; e) j (let (v; x)=e in e0) j (�v: k:e) j e(u)For ea
h synta
ti

lass there are two forms of judgements: formation judgementsand equality judgements. Moreover, there are two auxiliary forms of formationjudgements for
ontexts. formation equality
onstr:
ontexts � `kinds � ` k � ` k1 = k2
onstru
tors � ` u: k � ` u1 = u2: kterm
ontexts �;� `s
hemas �;� ` � �;� ` �1 = �2terms �;� ` e: � �;� ` e1 = e2: �13

Remark 5.2 There are many similarities between HML and the Cal
ulus of Con-stru
tions CC des
ribed in [HP89℄, but one
ru
ial di�eren
e (tightly linked to thedistin
tion between types and type s
hemas): in HML the formation and equalityrules for
onstru
tors and kinds are independent from the rules for s
hemas andterms, while in CC all forms of judgement are interdependent.In an indexed
ategory the distin
tion between types and type s
hemas is easily
aptured as follows: types
orrespond to elements of an obje
t
 in the base
ate-gory, type s
hemas
orrespond to obje
ts in the �ber
ategories. The identi�
ationof types and type s
hemas (typi
al of F! and CC) amounts to having a one-one
orresponden
e between morphisms from b to
 in the base
ategory B and obje
tsin the �ber C[b℄ over b. In HML a type �
an be made into a type s
hema set(�), sotypes are type s
hemas, but not the other way around.Inferen
e Rules. The inferen
e rules of HML are partitioned in two sets s.t.the �rst is independent from the se
ond (see Appendix). The �rst set of rules isfor deriving formation and equality judgements for kinds and
onstru
tors, whi
hamounts to Martin-L�of predi
ative theory of dependent types with a kind
onstant
and
onstru
tor
onstants 1, � and! (of appropriate kind). The se
ond set of rulesis for deriving formation and equality judgements for type s
hemas and terms. It issimilar to the rules in [HP89℄ for types and terms of the Cal
ulus of Constru
tions.Categori
al view. The
al
ulus HML
an be viewed as an indexed
ategory a
-
ording to a standard term-model
onstru
tion (see [See87℄), where
onstru
tors(up to
onstru
tor equality) are morphisms in the base
ategory and terms are mor-phisms in the �ber
ategories.De�nition 5.3 HML
an be viewed as an indexed
ategory C:Bop ! Cat.� The base
ategory B is de�ned as follows:{ obje
ts are equivalen
e
lasses [k℄ of kinds, i.e. fk0j; ` k = k0g{ morphisms from [k1℄ to [k2℄ are equivalen
e
lasses [u℄k1;k2 of
onstru
tors,i.e. fu0jv: k1 ` u = u0: k2g, where it does not matter what one
hooses asrepresentative for [k1℄ and [k2℄{ [u1℄k1;k2 followed by [u2℄k2;k3 is [[u1=v℄u2℄k1;k3� If [k℄ is an obje
t of B, then the
ategory C[[k℄℄ is de�ned as follows:{ obje
ts are equivalen
e
lasses [�℄k of s
hemas, i.e. f�0jv: k; ; ` � = �0g{ morphisms from [�1℄k to [�2℄k are equivalen
e
lasses [e℄k;�1;�2 of terms,i.e. fe0jv: k; x: �1 ` e = e0: �2g{ [e1℄k;�1;�2 followed by [e2℄k;�2;�3 is [[e1=x℄e2℄k;�1;�3� If f = [u℄k1;k2 is a morphism from [k1℄ to [k2℄ in B, then C[f ℄ is the fun
torfrom C[[k2℄℄ to C[[k1℄℄ de�ned as follows:14

{ [�℄k2 is mapped to [[u=v℄�℄k1 and{ [e℄k2;�1;�2 is mapped to [[u=v℄e℄k1;[u=v℄�1;[u=v℄�2The indexed
ategory C has additional stru
ture, but we will study it as additionalstru
ture on the
ategory GC of modules, so that it
an be
ompared more easilywith the
ategori
al stru
ture of the Cal
ulus of Constru
tions
onsidered in [HP89℄.De�nition 5.4 The
ategory GC of HML-modules
an be des
ribed as follows:� obje
ts are pairs h[k℄; [�℄ki, denoted by [v: k; �℄� morphisms from [v: k1; �1℄ to [v: k2; �2℄ are pairs h[u℄k1;k2 ; [e℄k1;�1;[u=v℄�2i denotedby [(v: k1; x: �1):hu; ei℄k2;�2� [(v: k1; x: �1):hu1; e1i℄k2;�2 followed by [(v: k2; x: �2):hu2; e2i℄k3;�3 is the pair[(v: k1; x: �1):h[u1=v℄u2; [u1; e1=v; x℄e2i℄k3;�3Remark 5.5 At this point we
an outline the
orresponden
e between ML-modulesand GC. Sin
e we have not yet de�ned all the relevant stru
ture on GC, we
an
onsider only
losed signatures, stru
tures and fun
tors (i.e. without referen
e tonon-lo
al variables). This restri
tion will be dropped in Remark 7.11.� A
losed ML-signature
orresponds to an obje
t of GC, e.g.signature sig = (sig type v; val x: � end)
orresponds to the obje
t [v:
; �℄.� A
losed ML-stru
ture of
losed signature sig
orresponds to an element of[v:
; �℄, e.g. stru
ture S = (stru
t type v = u; val x = e end)
orresponds to the morphism [(v: 1; x: 1):hu; ei℄
;� from the terminal obje
t[v: 1; 1℄ to [v:
; �℄.� A
losed ML-fun
tor, whose parameter and result signatures are
losed,
or-responds to a morphism of GC, e.g.fun
tor F (S: sig1): sig2 =stru
t type v = [S:v=v℄u; val x = [S:v; S:x=v; x℄e end
orresponds to the morphism [(v:
; x: �1):hu; ei℄
;�2 from [v:
; �1℄ to [v:
; �2℄.While our explanation of ML-signatures and ML-stru
tures mat
hes the type-theoreti
intuition in [Ma
86, HM88℄, there is a major di�eren
e in the understanding of ML-fun
tors:for us it is essential that ML-types (in
luding those in the body of anML-fun
tor) do not depend on values, otherwise it would not be possibleto asso
iate a morphism in GC to an ML-fun
tor. On the other hand,su
h a property is ignored in [Ma
86, HM88℄.Note that this property holds even for HML, despite having dependent kinds andtype s
hemas. 15

6 A
ategori
al treatment of dependent typesUp to now there is no agreement on what is the best way of looking at dependenttypes
ategori
ally (see [Car78, See84, Tay87, HP89, Ehr88, Str88, Cur89, Pit89,Ja
90, Pitar℄). We follow the approa
h based on
ategories with attributes (see[Car78℄ and also [Cur89, Pit89, Pitar℄), whi
h avoids
ertain limitations of
lassesof display maps (see [Tay87, HP89℄) and the unne
essary generality of D-
ategories(see [Ehr88℄). This se
tion reviews the
on
epts involved in the de�nition of
ategor-i
al model for the Cal
ulus of Constru
tion (see De�nition 6.16), namely:
ategorywith attributes, generi
 type, unit types, dependent sums and produ
ts, universaland existential types, embedding between
ategories with attributes. Moreover, itintrodu
es some operations on
ategories with attributes (see De�nition 6.14).Remark 6.1 In the introdu
tion we advo
ate formulating
on
epts 2-
ategori
ally.Sin
e the
on
ept of �bration
an be formulated 2-
ategori
ally (see [Str73℄), itis possible to formulate
ategories with attributes and other
on
epts introdu
edbelow 2-
ategori
ally, too. However, we have not done so, be
ause it seemed too
ompli
ated and unintelligible. Nevertheless, a 2-
ategori
al formulation is essentialto de�ne indexed
ategories with attributes and explain how type dependen
y in the
ategory of modules is indu
ed by type dependen
y in the base and the �bers viathe 2-fun
tor G (given by the Grothendie
k
onstru
tion).De�nition 6.2 A
ategory with attributes is spe
i�ed by a quadruple (C;D; G; p)made of the following data:� a
ategory C with a terminal obje
t 1,� a dis
rete C-indexed
ategory D (we identify sets with dis
rete
ategories)� a natural transformation p GD G+ p�D>> C in Cats.t. for all f :Y ! X and a 2 D[X℄Y � f �a f � a> X � apf�a_ _paY f > Xi.e. the square is a pullba
k, where we write16

{ f �a for D[f ℄(a),{ X � a for the
ontext extension G(hX; ai),{ f � a for G(hf; idD[f ℄ai),{ pa for the
ontext proje
tion p at hX; ai.Remark 6.3 A general outline of the interpretation of judgements for a
al
ulus ofdependent types in a
ategory with attributes goes as follows:Judgement Interpretation
ontext � ` obje
t X of Ctype � ` � element a of D[X℄term � ` e: � se
tion f of pa, i.e. f :X ! X � a s.t. f ; pa = idXtype equality � ` � = �0 a = a0term equality � ` e = e0: � f = f 0The terminal obje
t 1 is used to interpret the empty
ontext.Given a
ategory with attributes we de�ne the following
ategories and fun
tors:De�nition 6.4 (Sli
e
ategory) Let X 2 C, then the sli
e
ategory C=X hasas obje
ts the morphisms with
odomain X and as morphisms from f1:Y1 ! X tof2:Y2 ! X the g:Y1 ! Y2 s.t. Y1 g > Y2���f1 ���R _f2XLet a 2 D[X℄, then �a: C=X ! C=(X �a) is the fun
tor mapping an obje
t f :Y ! Xonto f � a:Y � f �a! X � a and a morphism g from f1 to f2 onto the unique g � a s.t.Y1 g > Y2���p ���� ���p ���� _f2Y1 � f �1a g � a> Y2 � f �2a X���f1 � a ���R _f2 � a��� p����X � a17

De�nition 6.5 (Relative sli
e
ategory) Let X 2 C, then the relative sli
e
ategory C=DX has as obje
ts the elements of D[X℄ and as morphisms from a to bthe g:X � a! X � b s.t. X � a g > X � b���p ���R _pXLet f :Y ! X, then f �: C=DX ! C=DY is the fun
tor mapping an obje
t a onto f �aand a morphism g from a to b onto the unique f �g s.t.X � a g > X � b���f � a ���� ���f � b ���� _pY � f �a f �g> Y � f �b X���p ���R _p��� f����YThe following de�nition gives a
ategori
al
hara
terisation of
ertain types
on-stru
tors, dependent sums and produ
ts, in terms of universal properties and
om-mutativity with substitution, i.e. Be
k-Chevalley
ondition.De�nition 6.6 We say that a
ategory with attributes (C;D; G; p) has� generi
 type (U 2 C; t 2 D[U ℄) �()for every X 2 C and a 2 D[X℄ exists unique f :X ! U s.t. a = f �t� units 1[X℄ 2 D[X℄, for X 2 C �(){ for every f :Y ! X Y � 10 f � 1> X � 1p_ _pY f > Xwhere 1 �= 1[X℄ and 10 �= 1[Y ℄ = f �118

{ for every f :Y ! X exists unique ! s.t.Y ! > X � 1���f ���R _pXor equivalently !:X �! X � 1, i.e. ! is an iso, from idX to p1 in C=X.� sums �[X℄a:b 2 D[X℄ with unit �[X℄a;b for X 2 C , a 2 D[X℄ and b 2 D[X �a℄X � a � b � > X �� � p�a p > X �����p ���R _p � a _pX � a p > Xwhere � �= �[X℄a:b and � �= �[X℄a;b �(){ for every f :Y ! X X � a � b � > X �� � p�a p > X �����f � a � b ���� ���f � � � p�a ���� ���f � � ���� _pY � a0 � b0 �0> Y � �0 � p�a0 p > Y � �0 X���p ���R _p � a0 _p ��� f����Y � a0 p > Ywhere a0 �= f �a, b0 �= (f � a)�b, �0 �= �[Y ℄a0:b0 = f �� and �0 �= �[Y ℄a0;b0{ there is a natural isomorphism C=X(p�;) :�= C=(X � a)(pb; � a) given byX � � g > Y X � a � b h > Y � f �a���p ���R _f g �7! h �= �; (g � a) ���p ���R _f � aX X � aor equivalently s �= �; p:X � a � b �! X � � from pb; pa to p� in C=X.19

� produ
ts �[X℄a:b 2 D[X℄ with
ounit �[X℄a;b for X 2 C , a 2 D[X℄ andb 2 D[X � a℄ X � a � b <� X �� � p�a p > X � ����p ���R _p � a _pX � a p > Xwhere � �= �[X℄a:b and � �= �[X℄a;b �(){ for every f :Y ! X X � a � b < � X � � � p�a p > X � ����f � a � b ���� ���f � � � p�a ���� ���f � � ���� _pY � a0 � b0 <�0 Y � �0 � p�a0 p > Y � �0 X���p ���R _p � a0 _p ��� f����Y � a0 p > Ywhere a0 �= f �a, b0 �= (f � a)�b, �0 �= �[Y ℄a0:b0 �= f �� and �0 �= �[Y ℄a0;b0{ there is a natural isomorphism C=X(; p�) :�= C=(X � a)(� a; pb) given byX � � < g Y X � a � b <h Y � f �a���p ���R _f g �7! h �= (g � a); � ���p ���R _f � aX X � aRemark 6.7 The de�nitions of units and sums are essentially equivalent to those in[HP89℄, but our de�nitions of generi
 type and produ
ts are stronger.� In the de�nition of generi
 type [HP89℄ demands only existen
e of f :X ! U ,while we demand also uniqueness. Our de�nition des
ribes better the intendedproperty of a generi
 type, espe
ially in synta
ti
 models, and it seems moreappropriate, when there is a
anoni
al
hoi
e of pullba
ks.� In the de�nition of produ
ts [HP89℄ demands C=X(; p�) :�= C=(X � a)(� a; pb)for ranging only over p
:X �
! X (i.e. it uses C=D instead of C=), while welet range over arbitrary f :Y ! X. Note that the absoluteness of produ
ts(see 2.8 of [HP89℄) be
omes a simple
onsequen
e of our de�nition.20

The unit � for sums and the
ounit � for produ
ts have a simple des
ription as
ontext realisation in a theory of dependent types:� � is the realisation hx; ha; bi; ai of the
ontext [x:X; y: (�a:A:B); a:A℄ in the
ontext [x:X; a:A; b:B℄;� � is the realisation hx; a; f(a)i of the
ontext [x:X; a:A; b:B℄ in the
ontext[x:X; f : (�a:A:B); a:A℄.Example 6.8 A
ategory C
an be made into a trivial
ategory with attributes(having units, sums and produ
ts) by de�ning:� D[X℄ = f�g� X � � = X� f � � = f� p� = idXExample 6.9 A
ategory C with �nite produ
ts
an be made into a
ategory withattributes, having units and sums, by de�ning:� D[X℄ = Obj(C)� X � a = X � a� f � a = f � ida� pa = �X;a1� 1[X℄ = 1� �[X℄a:b = a� bMoreover, if C has exponentials, then as a
ategory with attributes it has also prod-u
ts �[X℄a:b = ba. In summary, a
artesian
losed
ategory
an be viewed as a
ategory with attributes having units, sums and produ
ts.Example 6.10 The
ategory Cat of small
ategories
an be made into a
ategorywith attributes (having units, sums and produ
ts) by de�ning:� D[B℄ = Obj(CatBop), i.e. the
lass of B-indexed
ategories� B � C = GC� (F � C)hX;
i = hFX;
i� pC = �CNote that the relative sli
e
ategory Cat=DB is not equivalent to ICat(B). However,the two are equivalent on dis
rete B-indexed
ategories.21

Following [HP89℄, we de�ne when a
ategory with attributes (C; E) has universaland existential quanti�
ation along proje
tions
orresponding to another
ategorywith attributes (C;D) (possibly the same).De�nition 6.11 Given a
ategory with attributes (C;D; G; p), we say that another
ategory with attributes (C; E ; G; p) has� 9-quanti�ers 9[X℄a:b 2 E [X℄ with unit �[X℄a;b for X 2 C , a 2 D[X℄ andb 2 E [X � a℄ X � a � b � > X � a � p�9 p � 9> X � 9���p ���R _p _pX � a p > Xwhere 9 �= 9[X℄a:b and � �= �[X℄a;b �(){ for every f :Y ! X X � a � b � > X � a � p�9 p � 9> X � 9���f � a � b ���� ���f � a � p�9 ���� ���f � 9 ���� _pY � a0 � b0 �0> Y � a0 � p�90 p � 90 > Y � 90 X���p ���R _p _p ��� f����Y � a0 p > Ywhere a0 �= f �a, b0 �= (f � a)�b, 90 �= 9[Y ℄a0:b0 = f �9 and �0 �= �[Y ℄a0;b0{ there is a natural isomorphism C=EX(9;) :�= C=E(X � a)(b; p�a) given byX � 9 g > X �
 X � a � b h > X � a � p�
���p ���R _p g �7! h �= �; (p�ag) ���p ���R _pX X � a
22

{ the morphism s �= �; (p � 9):X � a � b ! X � 9 is orthogonal to the setfp
jY 2 C ;
 2 E [Y ℄g, i.e. for all Y 2 C and
 2 E [Y ℄� s > � � s > �if g_ _f then 9!h s.t. g_ 	���h ��� _f� p
 > � � p
 > �� 8-quanti�ers 8[X℄a:b 2 E [X℄ with
ounit �[X℄a;b for X 2 C , a 2 D[X℄ andb 2 E [X � a℄ X � a � b <� X � 8 � p�a p > X � 8���p ���R _p � a _pX � a p > Xwhere 8 �= 8[X℄a:b and � �= �[X℄a;b �()they satisfy, mutatis mutandis, the requirements for produ
ts in De�nition 6.6Remark 6.12 The de�nition of 9-quanti�er is essentially equivalent to that in [HP89℄,but our de�nition of 8-quanti�ers is stronger in the same way as our de�nition ofprodu
t is (see Remark 6.7).The unit � for 9-quanti�ers, the morphism s used in the orthogonality
onditionand the
ounit � for 8-quanti�er have a simple des
ription as
ontext realisation ina theory of dependent types:� � is the realisation hx; a; (a; b)i of the
ontext [x:X; a:A; y: (9a:A:B)℄ in the
ontext [x:X; a:A; b:B℄;� s is the realisation hx; (a; b)i of the
ontext [x:X; y: (9a:A:B)℄ in the
ontext[x:X; a:A; b:B℄;� � is the realisation hx; a; f(a)i of the
ontext [x:X; a:A; b:B℄ in the
ontext[x:X; f : (8a:A:B); a:A℄.The orthogonality
ondition means simply that there is a one-one
orresponden
ebetween terms of type C (
lassi�ed by E) in the
ontext [x:X; y: (9a:A:B)℄ and termsof type [(a; b)=y℄C in the
ontext [x:X; a:A; b:B℄. The need for the orthogonality
ondition in the de�nition of 9-quanti�ers was realised by M. Hyland and A. Pitts.In spe
ial
ases orthogonality follows from the other two
onditions:� When D = E and E has sums. In fa
t, (�[X℄a:b) and (9[X℄a:b) are isomorphi
,so s is an iso, and isos are orthogonal to any
lass of morphisms.23

� When E is
onstant, i.e. when types do not depend on values like in F!. Inthis
ase orthogonality follows from the natural isomorphism of the se
ond
ondition.There is an asymmetry between the de�nition of 9- and 8-quanti�ers, sin
e inthe former the universal property is given in terms of relative sli
e
ategories, whilein the latter it is given in terms of sli
e
ategories. We have
hosen to formulatethe universal property for 8-quanti�ers in terms of sli
e
ategories be
ause of theabsoluteness result for dependent produ
ts established in 2.8 of [HP89℄. WhenD = E , it is obvious that the de�nitions of produ
ts and 8-quanti�ers for E
oin
ide,while sums and 9-quanti�ers
an both be de�ned and di�erent.For
ategories with attributes the set-theoreti
 notion of in
lusion between
lassesof display maps has to be repla
ed by a more
omplex one.De�nition 6.13 (Embedding)Given two
ategories with attributes (C;D; G; p) and (C; E ; G; p), an embedding ofthe �rst into the se
ond is a pair (In; in), where In:D ! E is a C-indexed fun
tor(between dis
rete indexed
ategories) and in:G :! (G(In);G):GD ! C is a naturalisomorphism s.t. for X 2 C and a 2 D[X℄ the following diagram in C
ommutesX � a inX;a> X � In(a)pa_ 	��� pIn(a)���XEmbeddings preserve (not ne
essarily on the nose) units, sums, produ
ts and 8-quanti�ers, but may not preserve 9-quanti�ers.De�nition 6.14 Let (C;D; G; p) and (C; E ; G; p) be two
ategories with attributes,parallel
omposition (C;DkE ; G; p) and juxtaposition (C;D � E ; G; p) are the
ategories with attributes de�ned as follows:� (DkE)[X℄ = (D[X℄� E [X℄)X � ha; bi = X � a � p�abf � ha; bi = f � a � p�abpha;bi = pp�ab; pa, i.e. the diagonal �lling of the pullba
k squareX � a � p�ab pa � b> X � bpp�ab_ ���pha;bi ���R _pbX � a pa > X24

� (D � E)[X℄ = (�a 2 D[X℄:E [X � a℄)X � ha; bi = X � a � bf � ha; bi = f � a � bpha;bi = pb; paRemark 6.15 The intended meaning of the operations des
ribed above is:�
ontext extension in DkE means
ontext extension by D and E in parallel ,�
ontext extension in D � E means
ontext extension by D and then by E .These operation
an also be viewed as binary fun
tors on the
ategory Attr(C)of
ategories with attributes over C and embedding. From this perspe
tive thebinary fun
tors
orresponding to parallel
omposition and juxtaposition are part ofa monoidal stru
ture over Attr(C) with unit 1, where 1[X℄ = f�g (see Example 6.8).Moreover, parallel
omposition is symmetri
, while juxtaposition is not. Note alsothat a
ategory with attributes having units and sums
orresponds to a monoidunits: 1 ! D D � D: sums in the monoidal
ategory Attr(C) with juxtapositionas tensor produ
t. The operations of parallel
omposition and juxtaposition
anbe viewed also as fun
tors on the poset Disp(C) of
lasses of display maps over Cordered by in
lusion, and it is easier to look at them in these terms. There are otheroperations on
lasses of display maps worth mentioning:� � and + (i.e. produ
t and
oprodu
t in Disp(C)).We summarise the
ategori
al semanti
s of the Cal
ulus of Constru
tions givenin [HP89℄ using the terminology introdu
ed in this se
tion.De�nition 6.16 A model of CC is spe
i�ed by a
ategory B with a terminal obje
t1 and two stru
tures R and A of
ategory with attributes on B s.t.� R is embedded in A;� R has a generi
 type (U; t) s.t. U = 1 � a for some a 2 A[1℄;� R and A have units, sums and produ
ts;� R has 9- and 8-quanti�ers along
ontext proje
tions in A.Remark 6.17 R and A
orrespond to
ontext extensions by a type and a kindrespe
tively. The embedding of R into A means that types are in
luded in kinds,while U = 1 � a for some a 2 A[1℄ means that there is a kind of all types.The de�nition above is almost equivalent to that in Summary 2.13 of [HP89℄.We have only dropped the requirement that every X 2 B is (up to isomorphism) ofthe form 1 � a for some a 2 A[1℄. In this way it is left open what
an be de
lared ina
ontext besides variables ranging over a kind (or a type).25

7 Independen
e and HML-modulesIn this se
tion we analyse the stru
ture over the
ategory GC of HML-modules (seeDe�nition 5.4) ne
essary for the interpretation of a
al
ulus with dependent types.� First, we
onsider two
ategories with attributes over GC, D and E ,
orre-sponding to dependent kinds and dependent type s
hemas.� Se
ond, we de�ne independen
e for
ategories with attributes (see De�ni-tion 7.3) and prove that D is independent from E .� Finally, we prove various te
hni
al lemmas on independen
e leading to Theo-rem 7.9, whi
h infer properties of D�E ,
orresponding (we
laim) to dependentsignatures, from similar properties of D and E .In analogy with the
ategori
al semanti
s of the Cal
ulus of Constru
tions (seeDe�nition 6.16) we de�ne two
ategories with attributes over the
ategory of HML-modules, D and E ,
orresponding to
ontext extension by a kind and a type s
hema.De�nition 7.1 The
ategory GC is equipped with two stru
tures D and E of
ategorywith attributes, de�ned as follows� D[hX;
i℄ is the set of equivalen
e
lasses [k0℄k, i.e. fk00jv: k ` k0 = k00ghf; gi�d = [[u=v℄k0℄k1hX;
i � d = [v: (�v: k:k0); �̂℄hf; gi � d = [(v: (�v: k1:[u=v℄k0); x: �̂1):hhû; �2vi; êi℄(�v:k:k0);�̂pd = [(v: (�v: k:k0); x: �̂):h�1v; xi℄k;�where hX;
i = [v: k; �℄ 2 GC , d = [k0℄k 2 D[hX;
i℄hf; gi = [(v: k1; x: �1):hu; ei℄k;� morphism from hX1;
1i to hX;
i^ is a shorthand for [�1v=v℄� E [hX;
i℄ is the set of equivalen
e
lasses [�0℄k;�, i.e. f�00jv: k; x: � ` �0 = �00ghf; gi�e = [[u; e=v; x℄�0℄k1;�1hX;
i � e = [v: k; (�x: �:�0)℄hf; gi � e = [(v: k1; x: (�x: �1:[u; e=v; x℄�0)):hu; h[�1x=x℄e; �2xii℄k;(�x:�:�0)pe = [(v: k; x: (�x: �:�0)):hv; �1xi℄k;�where hX;
i = [v: k; �℄ 2 GC , e = [�0℄k;� 2 E [hX;
i℄hf; gi = [(v: k1; x: �1):hu; ei℄k;� morphism from hX1;
1i to hX;
iProposition 7.2 the
ategory GC has a terminal obje
t 1 and the two stru
tures Eand D of
ategory with attributes on GC are s.t.� E and D have units, sums and produ
ts;� E has 9- and 8-quanti�ers along
ontext proje
tions in D.26

Proof The de�nitions of terminal obje
t, units, sums, produ
ts and quanti�ers arequite obvious, therefore they will be only sket
hed. The required properties
an bereformulated as equations and proved using the inferen
e rules for HML.� Given X = [v: k; �℄ 2 GC, d1 = [k1℄k 2 D[X℄ and d2 = [k2℄�v:k:k1 2 D[X � d1℄,the unit in D[X℄ is [1℄k, the sum and produ
t of d2 indexed over d1 are(�[X℄d1:d2) �= [�v1: k1:[hv; v1i=v℄k2℄k(�[X℄d1:d2) �= [�v1: k1:[hv; v1i=v℄k2℄k� Given X = [v: k; �℄ 2 GC, e1 = [�1℄k;� 2 E [X℄ and e2 = [�2℄k;�x:�:�1 2 E [X � e1℄,the unit in E [X℄ is [1℄k;�, the sum and produ
t of e2 indexed over e1 are(�[X℄e1:e2) �= [�x1: �1:[hx; x1i=x℄�2℄k;�(�[X℄e1:e2) �= [�x1: �1:[hx; x1i=x℄�2℄k;�� Given X = [v: k; �℄ 2 GC, d1 = [k1℄k 2 D[X℄ and e2 = [�2℄(�v:k:k1);�̂ 2 E [X �d1℄,the 9- and 8-quanti�er of e2 along pd1 are(9[X℄d1:e2) �= [9v1: k1:[hv; v1i=v℄�2℄k;�(8[X℄d1:e2) �= [8v1: k1:[hv; v1i=v℄�2℄k;�The stru
tures D and E fail to give a model of the Cal
ulus of Constru
tion fortwo reasons: E is not in
luded in D, and E doesn't have a generi
 type (U; t) s.t.U = 1 � d for some d 2 D[1℄. The se
ond reason
ould be
ir
umvented by usingF! instead of HML, sin
e in F! types and type s
hemas are identi�ed. However,the �rst reason is strongly related to independen
e of
onstru
tor-expressions fromterm-expressions, whi
h is a feature of F!, too. In HML independen
e in enfor
edsynta
ti
ally, by forbidding terms in kinds and
onstru
tors (see Se
tion 5). Beforestudying any further the
ategory of HML-modules, we
hara
terise independen
eat a more abstra
t level.De�nition 7.3 (Independen
e) Given two stru
tures D and E of
ategory withattributes over a
ategory C, we say that D is independent from E i� for everyX 2 C, e 2 E [X℄ and d 2 D[X℄� the mapping D[pe℄:D[X℄! D[X � e℄ is a bije
tion� there is a natural isomorphism C=X(; pd) :�= C=(X � e)(� e; pd � e) given byY g > X � d Y � f �e h > X � d � p�e �> X � e � p�d���f ���R _p g �7! h �= (g � e) ���f � e ���R _p � e	��� p���X X � e27

Remark 7.4 Sin
e pd �e and pp�ed are isomorphi
 in C=(X �e) and
ontext proje
tions
an be pulled ba
k along any morphism, then the se
ond
ondition amounts to sayingthat there is a bije
tion between se
tions of pd and se
tion of pp�ed. In summaryindependen
e of D from E means that types and terms
lassi�ed by D are invariantw.r.t.
ontext extensions by types
lassi�ed by E .Theorem 7.5 (Independen
e for HML) D is independent from E, where D andE are the
ategories with attributes on GC given in De�nition 7.1.Proof Indeed, we prove that D is independent from E whenever D is indu
ed by a
ategory with attributes over the base B and pe is of the form hidX ; gi for everyX 2 B and e 2 E [X℄.It is obvious from the de�nition that D[hX;
i℄ depends only fromX and D[hf; gi℄depends only from f . Sin
e pe is of the form hidX ; gi and D[hidX ; id
i℄ is the iden-tity, then D[pe℄ must be the identity and this amounts to the �rst requirement forindependen
e.The natural isomorphism GC=hX;
i(; pd) :�= GC=(hX;
i�e)(�e; pd �e), demandedin the se
ond requirement for independen
e, is a
onsequen
e of the following fa
ts:� pd is hf; idf�
i for some f and
� hf; idf�
i � e is hf; idf�
0i for some
0� GC=hX;
i(hf 0; g0i; hf; idf�
i) :�= B=X(f 0; f), as a morphism in the �rst hom-setmust be of the form hh; g0i for some h s.t. f 0 = h; f .In the sequel we establish some basi
 fa
ts about independen
e.Lemma 7.6 If D is independent from E, then pe is orthogonal to pd for everyX; Y 2 C, d 2 D[X℄ and e 2 E [Y ℄, i.e.� pe > � � pe > �if g_ _f then 9!h s.t. g_ 	��� h��� _f� pd > � � pd > �Proof Be
ause of Remark 7.4 we
an assume that X = Y , f = idX and show that� pe > � � pe > �if g_ ��� pd���� then 9!h se
tion of pd s.t. g_ 	��� h���� �whi
h amounts to a bije
tion between g 2 C=X(pe; pd) and h 2 C=X(idX ; pd) givenby g = pe; h. Su
h a bije
tion
an be given in two steps:28

� the bije
tion between g 2 C=X(pe; pd) and h0 2 C=X(idX�e; pd � e) given byg = h0; pp�de, sin
e � pd � e > �pp�de_ _pe� pd > �� the bije
tion between h0 2 C=X(idX�e; pd � e) and h 2 C=X(idX ; pd) given bythe se
ond requirement in the de�nition of independen
e, as idX�e = idX � e.We skip the
he
k that
omposition of these two bije
tions is the desired oneLemma 7.7 If D is independent from E, then for every X 2 C, e1 2 E [X℄ andd2 2 D[X � e1℄ there exists d1 2 D[X℄ and e2 2 E [X � d1℄ s.t.� �! � pd2 > �pe2_ _pe1� pd1 > �Proof Be
ause of the �rst
ondition in the de�nition of independen
e, there existsunique d1 2 D[X℄ s.t. d2 = D[pe1℄d1. Let e2 2 E [X �d1℄ be E [pd1℄e1. To show that d1and e2 satisfy the requirement, use the fa
t that the following squares are pullba
ksfor the same pair of morphisms� pd1 � e1 > � � pd2 > �pe2_ _pe1 pe1 � d1_ _pe1� pd1 > � � pd1 > �Remark 7.8 The proof of the Lemma essentially says that the two
ategories withattributes E � D and EkD, as given in De�nition 6.14, are equivalent . Sin
e inde-penden
e implies also that
ontext proje
tions for E are orthogonal to those for D,then the fa
torisation of pd2 ; pe1 given by the Lemma is unique (up to isomorphism).Another
onsequen
e of independen
e is that D has quanti�ers along
ontext pro-je
tions for E , but they are uninteresting . In fa
t, (9[X℄e1:d2) = (8[X℄e1:d2) = d1,where d1 is that given by the Lemma. 29

Finally, we derive properties of the juxtaposition D�E (see De�nition 6.14) underthe assumption that D is independent from E .Theorem 7.9 Given two
ategories with attributes D and E s.t.� D is independent from E;� E and D have units, sums and produ
ts;� E has 9- and 8-quanti�ers along
ontext proje
tions in D;then the juxtaposition A = D � E satis�es the following properties� E has 9- and 8-quanti�ers along
ontext proje
tions in A;� A has units, sums and produ
ts.Proof We give only a sket
h, and write ai for an element hdi; eii 2 A[℄.� Given X 2 C, a1 2 A[X℄ and e2 2 E [X � a1℄, thenthe 9- and 8-quanti�er of e2 along pa1 are(9[X℄a1:e2) �= 9[X℄d1:(�[X � d1℄e1:e2) and(8[X℄a1:e2) �= 8[X℄d1:(�[X � d1℄e1:e2)� Given X 2 C, a1 2 A[X℄ and a2 2 A[X � a1℄, thenthe unit in A[X℄ is 1[X℄ �= h1[X℄; 1[X � 1[X℄℄ithe sum and produ
t of a2 indexed over a1 are(�[X℄a1:a2) �= h(�[X℄d1:d3); (s�1)�(�[X � d1 � d3℄e3:e2)i(�[X℄a1:a2) �= hd; 8[X � d℄p�dd1:��(�[X � d1 � d3℄e3:e2)iwhere d3 2 D[X � d1℄ and e3 2 E [X � d1 � d3℄ are s.t. (see Lemma 7.7)1� pd2 > �pe3_ _pe1� pd3 > �s:X � d1 � d3 �! X ��[X℄d1:d3 is the isomorphism for sums (see De�nition 6.6)d 2 D[X℄ is the produ
t (�[X℄d1:d3), and�:X � d � p�dd1 ! X � d1 � d3 is the
ounit for produ
ts (see De�nition 6.6).1For simpli
ity, we that the isomorphism in the top-left
orner is the identity.30

The importan
e of Theorem 7.9 rests on the observation that, when D and E arethe
ategories with attributes given in De�nition 7.1, then A = D �E is the
ategorywith attributes
orresponding to
ontext extension by a signature. This
laimis justi�ed by looking at a more
on
rete de�nition of A and by
ompleting the
orresponden
e between ML-modules and the
ategory GC given in Remark 5.5.De�nition 7.10 The
ategory GC is equipped with a stru
ture A of
ategory withattributes, de�ned as follows� A[hX;
i℄ is the set of equivalen
e
lasses [v0: k0; �0℄k;�, i.e.fhk00; �00ijv: k ` k0 = k00 and v: k; v0: k0; x: � ` �0 = �00ghf; gi�a = [v0: [u=v℄k0; [u; e=v; x℄�0℄k1;�1hX;
i � a = [v: (�v: k:k0); (�x: �̂:[�2v=v0℄�̂0)℄hf; gi � a = [(v: (�v: k1:[u=v℄k0); x: (�x: �̂1:[û; �2v; ê=v; v0; x℄�0)):hhû; �2vi; h[�1x=x℄ê; �2(x)ii℄(�v:k:k0);(�x:�̂:[�2v=v0℄�̂0)pa = [(v: (�v: k:k0); x: (�x: �̂:[�2v=v0℄�̂0)):h�1v; �1xi℄k;�where hX;
i = [v: k; �℄ 2 GC , a = [v0: k0; �0℄k;� 2 A[hX;
i℄hf; gi = [(v: k1; x: �1):hu; ei℄k;� morphism from hX1;
1i to hX;
i^ is a shorthand for [�1v=v℄Remark 7.11 There is a bije
tion between A[hX;
i℄ and (D � E)[hX;
i℄, namelya = [v0: k0; �0℄k;� 2 A[hX;
i℄
orresponds to the pair hd; ei, whered = [k0℄k 2 D[hX;
i℄ and e = [[�2v=v0℄�̂0℄(�v:k:k0);�̂ 2 E [hX;
i � d℄.The notation for a 2 A[hX;
i℄ is suggestive of ML-signatures. To make the
orresponden
e with ML-modules easier to express we introdu
e a more suggestivenotation also for se
tions.Given hX;
i = [v: k; �℄ 2 GC and a = [v0: k0; �0℄k;� 2 A[hX;
i℄, we write[(v: k; x: �):hvi = u; xi = ei℄k0;[vi=v0℄�0 for the se
tion[(v: k; x: �):hhv; ui; hx; eii℄(�v:k:k0);(�x:�̂:[�2v=vi ℄�̂0)of pa, where vi and xi
an be
hoosen arbitrarily and ^ stands for [�1v=v℄ .Indeed every se
tion of pa
an be written in this way.Using the stru
ture A over GC we
an revise the
orresponden
e given in Re-mark 5.5 to a

ount for type dependen
y at the level of ML-modules. In ML stru
-tures and signatures must always be
onsidered relatively to a
ontext � for
on-stru
tor and value variables, spe
ifying kind and type of all (relevant) free variables.A
ontext �
an be thought as a
losed signature, and therefore it
orresponds toan obje
t hX;
i = [v: k; �℄ of GC (see Remark 5.5).� An ML-signature
orresponds to an element of A[hX;
i℄, e.g.signature sig = (sig type v0; val x0: �0 end)
orresponds to the element a = [v0:
; �0℄k;�.31

� An ML-stru
ture of signature sig
orresponds to a se
tion, whi
h given arealisation for � extends it to a realisation for � extended with sig, e.g.stru
ture S = (stru
t type v0 = u; val x0 = e end)
orresponds to the se
tion [(v: k; x: �):hv0 = u; x0 = ei℄
;�0 of pa.� An ML-fun
tor, with parameter signature sig1 and result signature sig2 (pos-sibly depending on sig1),
orresponds to a se
tion of p(�[hX;
i℄a1:a2), where ai
orresponds to sigi, e.g.fun
tor F (S: sig1): sig2 =stru
t type v0 = [S:v0=v0℄u; val x0 = [S:v0; S:x0=v0; x0℄e end
orresponds to the se
tion[(v: k; x: �):hF = (�v0:
:u);G = (�v0:
:�x0: �1:e)i℄(�v0:
:
);(�v0:T:�x0:�1:[Fv0=v0 ℄�2)8 Con
lusion and further resear
hIn this paper we have investigated program modules in relation to independen
e oftype-expressions from program-expressions (whi
h had been overlooked in previousa

ounts) and type dependen
y. In our investigation we have abstra
ted, as far aspossible, from the syntax and tried to work at a great level of generality. In fa
t,our understanding of program modules applies to any programming language whi
h
an be viewed as an indexed
ategory (possibly with some additional stru
ture).The main advantages of this approa
h are its language-independen
e and the abilityto reformulate un
lear questions, like \when does a language support higher ordermodules?", in terms of simple and pre
ise
on
epts, namely \is the Grothendie
k
onstru
tion GC a
artesian
losed
ategory?".In Remarks 5.5 and 7.11 we brie
y outlined how ML-modules �t in the
ategori
ala

ount of program modules. ML, like other programming language, has manyother aspe
ts that we do not address here, and some of them have no satisfa
torytheoreti
al a

ount, yet. Our analysis is not just an exposition of program modulesfor theoreti
ally minded people, instead we expe
t that it will have a feedba
k onprogramming languages. Good module fa
ilities are essential for programming in thelarge, and there seems to be a lot of spa
e for improvement in this area. Bridgingthe gap between theory and pra
ti
e
ould be rather diÆ
ult, sin
e one needs toaddress also synta
ti
 and pragmati
 issues. However, [HMM90℄ has already madea step in this dire
tion, by looking at
al
uli for program modules
onsistently withthe
ategory-theoreti
 a

ount given in this paper.Finally, we mention some related areas of resear
h (see also the introdu
tion):� Sharing
onstraints. Sharing
onstraints spe
ify that two stru
ture identi-�ers denote the same stru
ture. They were proposed by Dave Ma
Queen andare in
orporated in Standard ML (see [MTH90℄). There is already a
lean un-derstanding of sharing
onstraints in terms of names and generativity , whi
his used in the de�nition of Standard ML.32

In our opinion there should be a more general explanation of sharing
on-straints based on a
al
ulus for dependent types (as in Martin-L�of Type The-ory) and
omputations (as in [Mogar℄), whi
h would remove some of the
ur-rent limitations, e.g. only stru
ture identi�ers
an be used in sharing
on-straints. In su
h a
al
ulus one would expe
t that the subtypes f[a℄g andTfag of TA (where a 2 A) are di�erent. The �rst type is the singleton
on-taining only the
omputation [a℄ (whi
h does not do anything ex
ept returningthe value a). The se
ond type is the set of
omputations whi
h
an do what-ever they like, but at the end they
an only return the value a. The latteralternative seems a more appropriate to a

ount for sharing
onstraints.� Modular approa
h. In this paper we have fo
used our attention on oneaspe
t of programming languages. However, in the introdu
tion we stressedthe need for
ombining features, and how a 2-
ategori
al setting
ould help. Wedo not believe in a me
hani
al way of �nding the right
ombining of features,a trial and error methodology is more likely. The main
ontribution we expe
tfrom a 2-
ategori
al view of programming languages is a small set of strategiesto guide in su
h a sear
h.� Partial evaluation. If indexed
ategories
apture independen
e of a
lass ofexpressions from another, perhaps they ought to
apture evaluation of
onstantexpressions at
ompile-time, as done by optimising
ompilers. More pre
isely,expressions evaluated at
ompile-time should be morphisms in the base
ate-gory. Therefore for every obje
t N in the �ber over 1 we have to introdu
e anobje
t N 0 in the base, whi
h
lassi�es the expressions of type N
omputableat
ompile-time. The in
lusion of N 0 into N
an be a
hieved by having anelement
: 1! N in the �ber over N 0,
orresponding to the generi
 expressionof type N
omputable at
ompile-time. We have not investigated whether thisway of looking at partial evaluation has any useful appli
ations.� Categori
al semanti
s of dependent types. This paper has introdu
edsome operations on
ategories with attributes and
lasses of display maps(see De�nition 6.2 and Remark 6.15) and the
on
ept of independen
e (seeDe�nition 7.3), that were not present in the literature.Though these
on
epts were motivated by a spe
i�
 appli
ation, we believethat they deserve further study, e.g. it is not
lear whether there are analoguesof Theorem 7.9 for the other operations on
ategories with attributes, and
ould be useful in analysing and
omparing type theories. For instan
e, The-orem 7.9 essentially says that any model of F! indu
es a model of CC; thisseems related to Berardi-Mohring's translation from CC to F! (see [Ber89,Moh89℄).
33

A
knowledgementsAll my thanks to Dave Ma
Queen, who introdu
ed me to ML-modules; Rod Burstall,Lu
a Cardelli, Bob Harper, Tony Hoare, John Mit
hell, Pierre-Louis Curien, MartinHyland, Andy Pitts (and other members of the CLICS proje
t) for useful dis
us-sions; Pierre-Louis Curien, Eike Ritter and the referees gave valuable
omments onprevious drafts. I used Paul Taylor's pa
kage for
ommutative diagrams.Appendix: HML inferen
e rulesWe write [e1; : : : ; en=x1; : : : ; xn℄e for the parallel substitution in e of all variablesx1; : : : ; xn by the expressions e1; : : : ; en.Given a
ontext � we write DV(�) for the set of variables de
lared in � and, ifx is a variable in DV(�), then we write �(x) for the (unique) kind or type s
hemaassigned to x in �.Compile-time inferen
e rulesConstru
tor
ontext formation rules � `; ; `v � ` k�; v: k ` v 62 DV(�)Kind formation rules � ` k
 � `� `
1 � `� ` 1� � ` k1 �; v: k1 ` k2� ` (�v: k1:k2)� � ` k1 �; v: k1 ` k2� ` (�v: k1:k2)Kind equality rules � ` k1 = k2The type equality rules of the predi
ative theory of dependent types (see [HP89℄).
34

Constru
tor formation rules � ` u: kv � `� ` v: k k = �(v)unit � `� ` 1:
prod � `� ` �:
!
!
fun � `� `!:
!
!
1I � `� ` �: 1�I �; v: k1 ` k2 � ` u1: k1 � ` u2: [u1=v℄k2� ` hu1; u2i: (�v: k1:k2)�E.1 � ` u: (�v: k1:k2)� ` �1(u): k1�E.2 � ` u: (�v: k1:k2)� ` �2(u): [�1(u)=v℄k2�I �; v: k1 ` u: k2� ` (�v: k1:u): (�v: k1:k2)�E � ` u: (�v: k1:k2) � ` u1: k1� ` u(u1): [u1=v℄k2:-eq � ` u: k1 � ` k1 = k2� ` u: k2Constru
tor equality rules � ` u1 = u2: kThe term equality rules of the predi
ative theory of dependent types (see [HP89℄).Run-time inferen
e rulesTerm
ontext formation rules �;� `; � `�; ; `x �;� ` ��;�; x: � ` x 62 DV(�;�) 35

Type s
hema formation rules �;� ` �type �; � ` � ` � :
�; � ` set(�)1 �; � `�;� ` 1� �; � ` �1 �;�; x: �1 ` �2�;� ` (�x: �1:�2)� �; � ` �1 �;�; x: �1 ` �2�;� ` (�x: �1:�2)8 �;� ` �; v: k; � ` ��;� ` (8v: k:�)9 �;� ` �; v: k; � ` ��;� ` (9v: k:�)Type s
hema equality rules �;� ` �1 = �2Similar to the type equality rule for the Cal
ulus of Constru
tions (see [HP89℄), plusthe following rules saying that set()
ommutes with produ
ts and fun
tion spa
es:1: = �;� `�;� ` set(1) = 1�: = �;� ` � ` �1:
 � ` �2:
�; � ` set(�1 � �2) = (�x: set(�1):set(�2))! : = �;� ` � ` �1:
 � ` �2:
�; � ` set(�1 ! �2) = (�x: set(�1):set(�2))Term formation rules �;� ` e: �x �;� `�;� ` x: � � = �(x)1I �; � `�;� ` �: 1�I �; �; x: �1 ` �2 �;� ` e1: �1 �;� ` e2: [e1=x℄�2�;� ` he1; e2i: (�x: �1:�2)�E.1 �; � ` e: (�x: �1:�2)�; � ` �1(e): �1 36

�E.2 �; � ` e: (�x: �1:�2)�; � ` �2(e): [�1(e)=x℄�2�I �; �; x: �1 ` e: �2�;� ` (�x: �1:e): (�x: �1:�2)�E �; � ` e: (�x: �1:�2) �; � ` e1: �1�;� ` e(e1): [e1=x℄�28I �; � ` �; v: k; � ` e: ��;� ` (�v: k:e): (8v: k:�)8E �; � ` e: (8v: k:�) � ` u: k�; � ` e(u): [u=v℄�9I �; v: k; � ` � � ` u: k �; � ` e: [u=v℄��;� ` (u; e): (9v: k:�)9E �; � ` e: (9v: k:�)�; �; z: (9v: k:�) ` �0 �; v: k; �; x: � ` e0: [(v; x)=z℄�0�;� ` (let (v; x)=e in e0): [e=z℄�0:-eq �; � ` e: �1 �;� ` �1 = �2�;� ` e: �2Term equality rules �;� ` e1 = e2: �Similar to the type equality rule for the Cal
ulus of Constru
tions (see [HP89℄),namely the general rules for a
ongruen
e and the following ��-rules:1:� �;� ` e: 1�; � ` � = e: 1�:�.1 �; �; x: �1 ` �2 �;� ` e1: �1 �;� ` e2: [e1=x℄�2�;� ` �1(he1; e2i) = e1: �1�:�.2 �; �; x: �1 ` �2 �;� ` e1: �1 �;� ` e2: [e1=x℄�2�;� ` �2(he1; e2i) = e2: [e1=x℄�2�:� �;� ` e: (�x: �1:�2)�; � ` h�1(e); �2(e)i = e: (�x: �1:�2)�:� �;�; x: �1 ` e2: �2 �;� ` e1: �1�;� ` (�x: �1:e2)(e1) = [e1=x℄e2: [e1=x℄�237

�:� �;� ` e: (�x: �1:�2)�; � ` (�x: �1:e(x)) = e: (�x: �1:�2)8:� �;� ` �; v: k; � ` e: � � ` u: k�; � ` (�v: k:e)(u) = [u=v℄e: [u=v℄�8:� �;� ` e: (8v: k:�)�; � ` (�v: k:e(v)) = e: (8v: k:�)
9:� �; v: k; � ` �� ` u: k �; � ` e: [u=v℄��;�; z: (9v: k:�) ` �0 �; v: k; �; x: � ` e0: [(v; x)=z℄�0�;� ` (let (v; x)=(u; e) in e0) = [u; e=v; x℄e0: [(u; e)=z℄�09:� �;� ` e: (9v: k:�) �; �; z: (9v: k:�) ` e0: �0�;� ` (let (v; x)=e in [(v; x)=z℄e0) = [e=z℄e0: [e=z℄�0Referen
es[Ben85℄ J. Benabou. Fibred
ategories and the foundation of naive
ategory the-ory. Journal of Symboli
 Logi
, 50, 1985.[Ber89℄ S. Berardi. Type Dependen
y and Constru
tive Mathemati
s. PhD thesis,Universit�a di Torino, 1989.[Car78℄ J. Cartmell. Generalized Algebrai
 Theories and Contextual Categories.PhD thesis, University of Oxford, 1978.[Car88℄ L. Cardelli. Phase distin
tion in type theory. Draft 4/1/88, DEC SRC,1988.[CH88℄ T. Coquand and G. Huet. The
al
ulus of
onstru
tions. Informationand Computation, 73(2/3), 1988.[Cur89℄ P.-L. Curien. Alpha-
onversion,
onditions on variables and
ategori
allogi
. Studia Logi
a, 3, 1989.[Ehr88℄ T. Ehrhard. A
ategori
al semanti
s of
onstru
tions. In 3rd LICS Conf.IEEE, 1988.[HM88℄ R. Harper and J. Mit
hell. The essen
e of ML. In 15th POPL. ACM,1988.[HMM86℄ R. Harper, D. Ma
Queen, and R. Milner. Standard ML. Te
hni
al ReportECS-LFCS-86-2, Edinburgh Univ., Dept. of Comp. S
i., 1986.38

[HMM90℄ R. Harper, J. Mit
hell, and E. Moggi. Higher-order modules and thephase distin
tion. In 17th POPL. ACM, 1990.[HP89℄ J.M.E. Hyland and A.M. Pitts. The theory of
onstru
tions: Categori
alsemanti
s and topos-theoreti
 models. Contemporary Mathemati
s, 92,1989.[Ja
90℄ B. Ja
obs. Comprehension
ategories and the semanti
s of type depen-den
y. June 90, Dept. of Computer S
ien
e, Univ. of Nijmegen, 1990.[KR77℄ A. Ko
k and G.E. Reyes. Do
trines in
ategori
al logi
. In J. Barwise,editor, Handbook of Mathemati
al Logi
, volume 90 of Studies in Logi
.North Holland, 1977.[KS74℄ G.M. Kelly and R.H. Street. Review of the elements of 2-
ategories.In A. Dold and B. E
kmann, editors, Category Seminar, volume 420 ofLe
ture Notes in Mathemati
s. Springer Verlag, 1974.[Ma
71℄ S. Ma
Lane. Categories for the Working Mathemati
ian. Springer Verlag,1971.[Ma
85℄ D. Ma
Queen. Modules for standard ML. Polymorphism, 2, 1985.[Ma
86℄ D. Ma
Queen. Using dependent types to express modular stru
tures. In13th POPL. ACM, 1986.[Mog89a℄ E. Moggi. A
ategory-theoreti
 a

ount of program modules. In Pro-
eedings of the Conferen
e on Category Theory and Computer S
ien
e,Man
hester, UK, Sept. 1989, volume 389 of Le
ture Notes in ComputerS
ien
e. Springer Verlag, 1989.[Mog89b℄ E. Moggi. Computational lambda-
al
ulus and monads. In 4th LICSConf. IEEE, 1989.[Mogar℄ E. Moggi. Notions of
omputations as monads. Information and Compu-tation, to appear.[Moh89℄ C. Mohring. Extra
ting F!'s programs from proofs in the
al
ulus of
onstru
tions. In 16th POPL. ACM, 1989.[MP88℄ J.C. Mit
hell and G.D. Plotkin. Abstra
t types have existential type.ACM Trans. on Progr. Lang. and Sys., 10(3), 1988.[MTH90℄ R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML.MIT press, 1990.[Pit89℄ A.M. Pitts. Categori
al semanti
s of dependent types. Talk given at SRIMenlo Park and at the Logi
 Colloquium in Berlin, 1989.39

[Pitar℄ A.M. Pitts. Categori
al logi
. In Samson Abramsky, Dov M. Gabbay, andTom S. E. Maibaum, editors, Handbook of Logi
 in Computer S
ien
e,Volume III,
hapter 3.10. Oxford University Press, to appear.[PS78℄ R. Pare and D. S
huma
her. Abstra
t families and the adjoint fun
tortheorems. In P.T. Johnstone and R. Pare, editors, Indexed Categories andtheir Appli
ations, volume 661 of Le
ture Notes in Mathemati
s. SpringerVerlag, 1978.[See83℄ R.A.G. Seely. Hyperdo
trines, natural dedu
tion and the Be
k
ondition.Zeits
hr. f. math. Logik und Grundlagen d. Math., 29, 1983.[See84℄ R.A.G. Seely. Lo
ally
artesian
losed
ategories and type theory. Math.Pro
. Camb. Phil. So
., 95, 1984.[See87℄ R.A.G. Seely. Categori
al semanti
s for higher order polymorphi
 lambda
al
ulus. Journal of Symboli
 Logi
, 52(2), 1987.[Str72℄ R. Street. The formal theory of monads. Journal of Pure and AppliedAlgebra, 2, 1972.[Str73℄ R. Street. Fibrations and Yoneda's lemma in a 2-
ategory. In CategorySeminar, volume 420 of Le
ture Notes in Mathemati
s. Springer Verlag,1973.[Str88℄ T. Strei
her. Corre
tness and Completeness of a Semanti
s of the Cal
u-lus of Constru
tions with respe
t to Interpretation in Do
trines of Con-stru
tions. PhD thesis, University of Passau, 1988.[Tay87℄ P. Taylor. Re
ursive Domains, Indexed Category Theory and Polymor-phism. PhD thesis, University of Cambridge, 1987.

40

