
A ategory-theoreti aount of programmodulesEugenio Moggi�em�lfs.edinburgh.a.ukLFCS, University of Edinburgh, EH9 3JZ Edinburgh, UKMay 31, 1994AbstratThe type-theoreti explanation of modules proposed to date (for program-ming languages like ML) is unsatisfatory, beause it does not apture thatevaluation of type-expressions is independent from evaluation of program-expressions. We propose a new explanation based on \programming lan-guages as indexed ategories" and illustrates how ML an be extended tosupport higher order modules, by developing a ategory-theoreti semantisfor a alulus of modules with dependent types. The paper outlines also amethodology, whih may lead to a modular approah in the study of program-ming languages.IntrodutionThe addition of module failities to programming languages is motivated by the needto provide a better environment for the development and maintenane of large pro-grams. Nowadays many programming languages inlude suh failities. Throughoutthe paper Standard ML (see [Ma85, HMM86, MTH90℄) is taken as representativefor these languages. The implementation of module failities has been based mainlyon an operational understanding. More reently, a type-theoreti understandingof ML-modules has been proposed, whih is based on a type theory with depen-dent types and a umulative hierarhy of two universes U1 and U2 s.t. U1:U2 andU1 � U2 (see [Ma86, HM88℄). The explanation of ML-modules aording to thisunderstanding goes as follows:� ML-signatures are elements of U2 built from U1 and types (i.e. elements of U1)by the �-type onstrutor, while ML-strutures are elements of ML-signature,namely tuples made of values (i.e. elements of types) and types�This paper has been written in Cambridge and Paris thanks to the �nanial support given byESPRIT Basi Researh Ation No. 3003 (Categorial Logi In Computer Siene) and the EoleNormale Sup�erieure in Paris. 1

� ML-funtor signatures are elements of U2 of the form �s: sig1:sig2(s), wheresig1 and sig2 are ML-signatures, whileML-funtors are elements of ML-funtorsignatures, namely funtions from ML-strutures to ML-strutures.However, the explanation of ML-funtors as funtions is problemati in relation totype-heking at ompile-time. This beomes apparent when trying to de�ne higherorder modules as done in XML (see [HM88℄). Let � be a type and f : (�x: �:U1) bean ML-funtor variable, whih may our in the body of an higher order module.� It is not lear what the meaning of the type-expression fM :U1 is, when theprogram-expressionM : � diverges. This may happen in ML, beause funtionsan be de�ned by reursion.� Type equality beomes undeidable as soon as reursive types are allowed (asin ML). For instane, if � = � ! � , then fM1 = fM2:U1()M1 =M2: � andthe seond equality is undeidable, sine it amounts to ��-onversion betweenuntyped �-terms.These two problems seem to jeopardise deidability of type-heking. XML avoidsthese problems by requiring expressions to be total and equality of expression to bedeidable, but then the theory hardly aptures the essene of ML, while ML avoidsthem by banning higher order modules, so that the only ML-funtors �x: �:M ofML-signature �x: �:U1 are those where x is not free in M .We take independene of type-expressions from program-expressionsas essential feature of programming languages (suh as PASCAL, oreML, ADA), whih should be respeted by module failities. Remark 5.1lari�es how independene relates to phase distintion and type-heking .We apture independene of types from values ategorially, by viewing a program-ming language as an indexed ategory, whih suggests an obvious de�nition of at-egory of modules (see Setion 4). A onrete outome of our analysis is that ML-funtors should be viewed as pairs of funtions and not as funtions (from pairs topairs), e.g. ML-funtors from �t1:U1:�1(t1) to �t2:U1:�2(t2) are elements of�f :U1 ! U2:(�t1:U1:�1(t1)! �2(ft1))and not elements of (�t1:U1:�1(t1))! (�t2:U1:�2(t2)), as in [Ma86, HM88℄.We give also a more abstrat haraterisation of independene (seeDe�nition 7.3 and Theorem 7.5) and explain dependent sums and prod-uts at the level of ML-signatures in terms of dependent sums and prod-uts at the level of kinds and type shemas (see Theorem 7.9).Pragmati issues and general methodologyThe objetive of this paper is not only to desribe a language supporting higher or-der modules, but also to propose a general methodology for studying programming2

languages and to suggest how the independene of type-expressions from program-expressions and program modules may �t into it. From this perspetive CategoryTheory is partiularly appropriate. This methodology tries to address a deep-rootedproblem in the study of programming languages (and other areas): the lak of modu-larity . In a modular approah the key onept to investigate should be the \additionof features to a language" rather than spei� \toy languages" (i.e. languages withonly a few features).Syntax-independent view. The �rst ingredient of suh a methodology should beto abstrat as muh as possible from the onrete presentation of a language, so thatone an fous only on the underlying \mathematial strutures". This is standardpratie in Categorial Logi (see [KR77, Pitar℄), where theories are identi�ed withategories having ertain additional struture. We follow a similar paradigm for pro-gramming languages. In partiular, we propose to identify a programming languagewhere type-expressions are evaluated independently from program-expressions withan indexed ategory C:Bop ! Cat s.t.� type-expressions are morphisms in B, while� program-expressions are morphisms in the �bers C[X℄.We introdue a language HML, where type-expressions are independent fromprogram-expressions, and show how it an be viewed as an indexed ategory. In[HMM90℄ this and related languages (in partiular a alulus for higher order mod-ules with dependent signatures) are investigated in greater depth and with moreemphasis on pragmati issues, suh as deidability of type-heking. While here weinvestigate only the ategory-theoreti foundations for these languages.Program modules. If programming languages are indexed ategories (as out-lined above), then it is natural to expet that program modules should live in aategory where the type-expressions and program-expressions oexist. There is astandard onstrution, due to Grothendiek, whih transforms an indexed ategoryC:Bop ! Cat into a �bration �C:GC ! B. We take GC as the ategory of modulesfor the programming language C. One we have established the orret link be-tween programming language onepts and ategory-theoreti notions, it is mainlya matter of letting standard ategory-theoreti mahinery do the rest, e.g. tell uswhat it means to have higher order modules. More spei�ally, we will show thatthe ategory of HML-modules has the struture needed to interpret a alulus withdependent types, like the alulus �MLmod studied in [HMM90℄.2-ategorial approah. The seond ingredient of a general methodology shouldbe ways to ombine features. This is a very diÆult problem to solve in generality,beause it depends on the way features interat . For instane:� they ould be unrelated , like produts and oproduts, or3

� one feature ould be de�ned in terms of the other, e.g. the de�nition of funtionspae relies on having produts.Here we fous on \adding one feature on top of another". The motivating example isto make preise the idea of a notion of omputation (see [Mog89b℄) whih respets theindependene of type-expressions from program-expressions, or more formally theidea of a monad over an indexed ategory (whih aptures the independene of type-expressions from program-expressions). A simpler example of suh a ombinationis the notion of topologial group, whih amounts to a group in the ategory oftopologial spaes. The strategy suggested by the seond example is to look fora ategory of topologial spaes (the �rst feature) and generalise the de�nition ofgroup (the seond feature) over a set to that of group over an objet in a ategory(with �nite produts). By applying (mutatis mutandis) the same strategy to the�rst example, we have to generalise the de�nition of monad over a ategory to thatof monad over an objet in a 2-ategory and show that indexed ategories form a 2-ategory. Summarising, the key ideas of the 2-ategorial approah to programminglanguages are:� programming languages (with ertain features) are objets of a 2-ategory C(whih will depend on the features one is interested in)� an additional feature is an instane in C of a 2-ategorial onept.SummarySetion 1 reviews the basis of 2-ategory theory (see also [KS74℄).Setion 2 reviews the basis of indexed-ategory theory, and de�nes the 2-ategoryof indexed ategories. We use indexed ategories to apture the independene oftype-expressions from program-expressions.Setion 3 reviews briey the ategory-theoreti semantis of several typed lambda-aluli and disusses how various features of programming languages an be de-sribed ategorially.Setion 4 desribes the Grothendiek onstrution, i.e. how to go from a program-ming language, viewed as an indexed ategory C, to its ategory GC of modules.Setion 5 introdues HML, a language similar to ML with type-expressions indepen-dent from program-expressions, and desribes the ategory GC of HML-modules.The Appendix gives a omplete desription of HML, while Setion 7 investigatesadditional struture on the ategory GC.Setion 6 reviews the ategory-theoreti semantis of dependent types and the Calu-lus of Construtions (see [CH88℄) following quite losely [HP89℄, but using ategorieswith attributes instead of lasses of display maps.Setion 7 investigates dependent kinds and dependent type shemas in HML, usingthe mahinery set up in Setion 6. More spei�ally, it desribes the e�et of indepen-dene of onstrutor-expressions from program-expressions at the level of ategorieswith attributes, and relates dependeny at the level of modules to dependeny atthe level of onstrutors and programs. 4

1 Preliminaries on 2-ategoriesBoth ategories and B-indexed ategories an be viewed as objets of suitable 2-ategories, Cat and ICat(B) respetively. This view is partiularly useful for givingde�nitions involving B-indexed ategories (and proving their properties) by analogywith ategories. In fat, it is just a matter of rephrasing familiar onepts, like monador adjuntion, in the formal language of 2-ategories. We reall the de�nitions of2-ategory, 2-funtor and 2-natural transformation (see also [KS74℄).De�nition 1.1 A 2-ategory C is a Cat-enrihed ategory, i.e.� a lass of objets Obj(C)� for every pair of objets 1 and 2 a ategory C(1; 2)� for every objet an objet idC of C(;) and for every triple of objets 1, 2and 3 a funtor ompC1;2;3 from C(1; 2)�C(2; 3) to C(1; 3) satisfying theassoiativity and identity axioms{ omp(; omp(;)) = omp(omp(;);){ omp(id;) = = omp(; id)Notation 1.2 An objet f of C(1; 2) is alled a 1-morphism, while an arrow � isalled a 2-morphism. We write ; for omp(;)1 f1+ �1f 01 >> 2 f2+ �2f 02 >> 3 ;7�! 1 f1; f2+ �1; �2f 01; f 02 >> 3and � for omposition of 2-morphisms
1 f1+ �1+ �2f2

>>> 2 �7�! 1 f1+ �1 � �2f2 >> 2
Example 1.3 The anonial example of a 2-ategory is Cat itself (see [Ma71℄):� the objets are ategories� the 1-morphisms are funtors and ; is funtor omposition,� the 2-morphisms are natural transformations and ; and � are respetivelyhorizontal and vertial omposition of natural transformations.5

De�nition 1.4 A 2-funtor F from C1 to C2 is a mapping f+ �f 0>> 0 in C1 F7�! F Ff+ F�Ff 0>> F0 in C2whih ommutes with identities, ; and � .De�nition 1.5 If F1 and F2 are 2-funtors from C1 to C2, then a 2-natural trans-formation � from F1 to F2 is a family hF1 �! F2j 2 Obj(C1)i of 1-morphismss.t. F1 � > F2_ �) _ =) _ F1�) _ _ F2�) _0 F10 �0 > F20i.e. the funtors �;F2 and F1 ; �0 from C1(; 0) to C2(F1; F20) are equal.Adjuntions are the basi tool to de�ne data-types, while monads are used to modelomputations (see [Mog89b℄). Their de�nition an be rephrased in the language of2-ategories and most of their properties an be proved in suh a formal setting (see[Str72℄), so these standard tools an be applied in a di�erent 2-ategory, e.g. that ofindexed ategories (see Setion 2).De�nition 1.6 Let and 0 be objets of a 2-ategory C.� A monad over is a triple (T; �; �) s.t. T > id_ �) _T T ;T_ �) _T (T ;�) � � = (�;T) � � and (T ; �) � � = idT = (�;T) � �.� An adjuntion from to 0 is a quadruple (F;G; �; �) s.t. 0 F< G > 0 id_ �) _F ;G G;F_ �) _id0 0(�;F) � (F ; �) = idF and (G; �) � (�;G) = idG.It is obvious from the de�nition above, that the 2-ategorial notions of monad andadjuntion are preserved by 2-funtors and that in the 2-ategory Cat they amountto familiar de�nitions. 6

2 Indexed ategories and programming languagesIn this setion we de�ne the 2-ategory ICat(B) of B-indexed ategories. Indexedategories model only one feature of a strongly typed programming language, namelythat expressions are partitioned into two groups, type-expressions and program-expressions, and that the former are independent from the latter. Setion 3 willdisuss how to model other features by additional struture over an indexed ategory.In Categorial Logi there is a similar use of indexed ategories to apture thattypes and terms of �rst-order logi are given independently from formulas and proofs(see [See83℄), while to enfore the priniple of formulas-as-types one must be ableto map �bers down to the base (see [See84℄).The general de�nition of indexed ategory is fairly ompliated, sine it involvesthe notion of anonial isomorphism. However, for representing languages it is moreappropriate to use a striter de�nition of B-indexed ategory (e.g. see [See84, See87℄),namely a funtor from Bop to Cat, where B is a small ategory and Cat is theategory of small ategories and funtors.De�nition 2.1 Given a small ategory B, the 2-ategory ICat(B) of B-indexedategories is de�ned as follows:� an objet (indexed ategory) is a funtor C:Bop ! CatX C[X℄^f C7�! _C[f ℄Y C[Y ℄� a 1-morphism (indexed funtor) from C1 to C2 is a natural transformationF : C1 :! C2, i.e. a family hF [X℄: C1[X℄! C2[X℄jX 2 Bi of funtors s.t.X C1[X℄ F [X℄> C2[X℄^f =) C1[f ℄_ _C2[f ℄Y C1[Y ℄ F [Y ℄> C2[Y ℄i.e. for every f :Y ! X in B the funtors C1[f ℄;F [Y ℄ and F [X℄; C2[f ℄ areequal.� Given 1-morphisms F1 and F2 from C1 to C2, a 2-morphism (indexed naturaltransformation) from F1 to F2 is a family h�[X℄:F1[X℄ :! F2[X℄jX 2 Bi of7

natural transformations s.t.X C1[X℄ + �[X℄>> C2[X℄^f =) C1[f ℄_ _C2[f ℄Y C1[Y ℄ + �[Y ℄>> C2[Y ℄i.e. for every f :Y ! X in B the natural transformations C1[f ℄; �[Y ℄ and�[X℄; C2[f ℄ are equal.The de�nition of monad and adjuntion for B-indexed ategories are partiularinstanes of the 2-ategorial de�nitions. The following proposition haraterisesan adjuntion in ICat(B) as a family of adjuntions in Cat satisfying the Bek-Chevalley ondition.Proposition 2.2 ([PS78℄) Given a B-indexed funtor G from C2 to C1, an adjun-tion (F;G; �; �) from C1 to C2 amounts to having a familyh(F [b℄; G[b℄; �[b℄; �[b℄)jb 2 Bisatisfying the following properties:lo (F [b℄; G[b℄; �[b℄; �[b℄) is an adjuntion from C1[b℄ to C2[b℄, for every b 2 B;BC the natural transformation (�[b1℄; C1[f ℄;F [b2℄)�(F [b1℄; C2[f ℄; �[b2℄) from C1[f ℄;F [b2℄to F [b1℄; C2[f ℄ is the identity, for every f : b2 ! b1 in B.Remark 2.3 The ondition lo means that for every f :Y ! XC2[X℄ F [X℄< ?G[X℄> C1[X℄C2[f ℄_ _C1[f ℄C2[Y ℄ F [Y ℄< ?G[Y ℄> C1[Y ℄and the square involving only the Gs ommute, sine G is an indexed funtor. Thesquare involving only F s does not ommute, in general, though there is a natural8

transformation C2[X℄ <F [X℄ C1[X℄C2[f ℄_ * � _C1[f ℄C2[Y ℄ <F [Y ℄ C1[Y ℄where � 2 C2(F [Y ℄(C1[f ℄); C2[f ℄(F [X℄)) is given by the following onstrution:� take the unit �[X℄ 2 C1[X℄(; G[X℄(F [X℄)) of the adjuntion G[X℄ ` F [X℄� take its image g in C1[Y ℄(C1[f ℄; C1[f ℄(G[X℄(F [X℄))) via the funtor C1[f ℄� g is in C1[Y ℄(C1[f ℄; G[Y ℄(C2[f ℄(F [X℄))), beause the indexed funtor G om-mutes with substitution, i.e. C2[f ℄;G[Y ℄ = G[X℄; C1[f ℄� � is the morphism in C2[Y ℄(F [Y ℄(C1[f ℄); C2[f ℄(F [X℄)) orresponding to g viathe natural isomorphism F [Y ℄(); �[Y ℄b from C1[Y ℄(a;G[Y ℄b) to C2[Y ℄(F [Y ℄a; b),where �[Y ℄ is the ounit for the adjuntion G[Y ℄ ` F [Y ℄and the ondition BC requires that � de�ned above is the identity. The Bek-Chevalley ondition in [PS78℄ requires only that the natural transformation givenabove is a anonial isomorphism, but we have adopted a strit notion of indexedategory, where anonial isomorphisms are identities.3 IntermezzoAt this point we review the ategory-theoreti strutures used for interpreting sometyped �-aluli and disuss the additional strutures needed to model various fea-tures of programming languages.� Hyperdotrines model the proof theory of intuitionisti �rst order logi (see[See83℄). They are indexed-ategories C:Bop ! Cat, where morphisms in thebase orrespond to terms and morphisms in the �bers orrespond to deriva-tions. Moreover, the base B has �nite produts, the �bers C[X℄ are biartesianlosed, the funtors C[f ℄ preserve suh struture and for every �rst projetion�b1;b1 : b1 � b ! b1 in B the funtor C[�b1;b1 ℄ has right adjoint 8[b1℄b and leftadjoint 9[b1℄b (orresponding to universal and existential quanti�ation overb) satisfying the Bek-Chevalley ondition. The de�nition of universal andexistential quanti�ation in an hyperdotrine C ould be rephrased in termsof ategories with attributes over GC (see De�nition 6.11), provided both thebase and the �bers have terminal objets and enough pullbaks.� Loally artesian losed ategories model intuitionisti type theory with equal-ity types (see [See84℄). They amount to identifying the two levels of an hyper-dotrine, intuitively propositions and types are identi�ed.9

� Contextual ategories, lass of display maps, D-ategories and ategories withattributes provide essentially equivalent aounts of dependent types. Unlikethe approah based on loally artesian losed ategories, they give a generalategory-theoreti understanding of dependent types (see Setion 6).� PL Categories model the higher order lambda alulus, or equivalently theproof theory of higher order intuitionisti propositional alulus (see [See87℄).They are hyperdotrines with an objet
 2 B (the type of propositions) s.t.the set of objets of C[X℄ is B(X;
), and for any X 2 B a distinguishedexponential
X (the type of prediates over X).� Monads an be used to model notions of omputation (see [Mog89b, Mogar℄).Computational types are easily aommodated in the simply typed �-alulus,but it is still unlear how they �t with dependent types.We believe that a proper understanding of omputational types ina alulus of dependent types will larify the semantis of sharingonstraints and generativity , whih at the moment is given onlyoperationally (see [MTH90℄).Other features of programming languages, besides those of main interest for thepaper, an be modelled as follows.� A distinguished objet
 in the base ategory orresponds to the kind of alltypes, while exponentials
X allow the interpretation of higher order type-onstrutors.� Computations at run-time are modelled by a monad in the 2-ategory ICat(B).Sine monads are a 2-ategorial onept, it is lear how to de�ne monads overindexed ategories.� Data-types (like produts, sums, funtional types, : : :) are modelled by theusual adjuntions but in the 2-ategory ICat(B) instead of Cat.This is not quite right, beause funtion spaes (and dependent prod-uts) are given via an adjuntion with parameter. A 2-ategorialreformulation may have to rely on �brations in a 2-ategory, whihis far from simple (see [Str73℄).� Polymorphi types are modelled like universal quanti�ers (in Hyperdotrines),while abstrat data-types are modelled like existential quanti�ers (see [MP88℄).Remark 3.1� The requirement Obj(C[X℄) = B(X;
) for the kind
 of all types is not alwaysjusti�ed in relation to programming languages. For instane, in ML thereare types and type shemas. Types orrespond to elements of
, while typeshemas orrespond to objets in the �ber ategories. In Setion 5 we introduea language whih does not identify types and type shemas. The inlusion of10

types into type shemas is modelled by an objet t 2 C[
℄ (the generi type), sothat a type expression f :X !
 (with a free variable of kind X) orrespondsto the type shema C[f ℄(t) in C[X℄. When Obj(C[X℄) = B(X;
), the generitype is simply id
 2 C[
℄.� A general understanding of dependent types is essential for explaining depen-dent types in the ategory of modules in terms of dependent types in the baseand �ber ategories. For instane, there are non-trivial dependenies at thelevel of ML-signatures, even though ore ML does not have dependent types.The semantis of dependent types is based on a speial kind of indexed at-egories (�brations), where it is possible to go bak and forth from one levelto the other (see de�nition of D-ategory in [Ehr88℄). Suh a possibility ofmoving bak and forth ontradits the independene of type-expressions fromprogram-expressions, we will onsider instead an indexed ategory C with twoD-ategory strutures, one for the base and one for the �bers (see Setion 7).4 The ategory of modulesThe 2-ategory ICat(B) is isomorphi to the 2-ategory of split B-�brations (see[Ben85℄). Sine B-�brations are funtors with odomain B satisfying ertain addi-tional properties, the 2-ategory of B-�brations is a 2-subategory of Cat#B andthe 2-embedding, mapping a B-indexed ategory C to the orresponding B-�bration�C :GC ! B, an be viewed as a 2-funtor from ICat(B) to Cat#B. For our pur-poses we need only the 2-funtor G from ICat(B) to Cat, mapping a programminglanguage C to its ategory of modules GC. In Setion 5 we will de�ne the ategoryof modules for HML.De�nition 4.1 The 2-funtor G from ICat(B) to Cat is de�ned as follows:� if C is an indexed ategory, then GC is the ategory s.t.hX1; 1i where X1 2 B and 1 2 C[X1℄hf; gi_ where f 2 B(X1; X2) and g 2 C[X1℄(1; C[f ℄2)hX2; 2i where X2 2 B and 2 2 C[X2℄identity over hX; i is hidX ; idi, omposition of hf1; g1i and hf2; g2i is hf1; f2; g1; C[f1℄g2i� if F is an indexed funtor from C1 to C2, then GF is the funtor s.t.hX; i hX;F [X℄ihf; gi_ in GC1 GF7�! hf; F [X℄gi_ in GC2hX 0; 0i hX 0; F [X 0℄0i11

� if F1 and F2 are indexed funtors from C1 to C2 and � is an indexed naturaltransformation from F1 to F2, then G� is the natural transformation s.t.hX; i in GC1 G�7�! hX;F1[X℄i hidX ; � [X℄i> hX;F2[X℄i in GC2Remark 4.2 After de�ning the general onstrution whih maps a programminglanguage, viewed as an indexed ategory C, to its ategory GC of modules, we aninvestigate how additional struture on GC depends on (is indued by) additionalstruture on C and/or the base ategory B. For instane, an indexed monad (T; �; �)over C, whih orresponds to a notion of run-time omputation, indues a monad overGC by simply taking its image w.r.t. the 2-funtor G, more preisely (GT)(hb; i) =hb; T [b℄i.5 An example: HMLIn this setion we de�ne a language, HML (for higher-order ML), whih extends theone given in [Mog89a℄. The main features of HML are:� Independene of type-expressions from program-expressions (as in system F!),enfored syntatially by having two levels of judgements (and ontexts), sothat HML an be viewed as an indexed ategory.� Dependent kinds and type shemas (as in the Calulus of Construtions CCdesribed in [HP89℄). More preisely, HML has dependent sums and produtsfor kinds and type shemas, and type shemas universally and existentiallyquanti�ed over kinds.This enable us to analyse in full generality dependent types at the level ofmodules, that are neessary for giving a type-theoreti aount of sharingonstraints (see [MTH90℄), sine these onstraints speify equality of (a limitedform of) program-expressions.� Distintion between types and type shemas (as in ML), so that having bothproper dependeny at the level of type shemas (neessary to aommodatesharing onstraints) and independene of type-expressions from program-expressions(as in F!) does not lead to inonsisteny.A study of the additional struture on the ategory GC of HML-modules is post-poned to Setion 7, where suh struture is ompared to that for the Calulus ofConstrutions (as desribed in [HP89℄).Remark 5.1 The study of dependent types at the level of modules is relevant tothe alulus �MLmod studied in [HMM90℄. Though �MLmod has an important restrition,type shemas are independent from the evaluation of program-expressions, whih isenfored by replaing losure w.r.t. �- and �-types with losure w.r.t. produts andfuntion spaes only. Suh a restrition is essential to prove that \type-heking anbe done at ompile-time" (even for the alulus of modules).12

Our notion of independene of type-expressions from program-expressions is re-lated to phase distintion as introdued in [Car88℄ \: : : the exeution of a programis arried out in two phases: a type-heking phase (ompile-time) and an exeutionphase (run-time)". Independene and phase distintion oinide, when types andtype shemas are identi�ed, but in general phase distintion is a stronger require-ment than independene (provided types are a subset of type shemas).In �MLmod phase distintion (and termination of the type-heking phase) is ahievedby having type shemas independent from program-expressions. In HML program-expressions may our in type shemas (at least potentially), so the only way toguaranty termination of type-heking is to use a deidable approximation of equal-ity for program-expressions.Overview. HML has four syntati lasses:� Kinds � ` k, whose raw syntax isk 2 Kind: : = 1 j
 j (�v: k1:k2) j (�v: k1:k2)where � is a onstrutor ontext, i.e. a sequene v1: k1; : : : ; vm: km.� Construtors � ` u: k, whose raw syntax isu 2 Constr: : = v j 1 j � j ! j � j hu1; u2i j �i(u) j (�v: k:u) j u1(u2)Besides the onstants 1:
 and �;!:
 !
 !
 we ould have onsideredalso 8; 9: (k !
) !
, if types were losed w.r.t. universal and existentialquanti�ation over kind (like F!). As ommon pratie, we write u1 ! u2instead of ! u1u2 (similarly for �) and � for a onstrutor of kind
.� Type shemas �; � ` �, whose raw syntax is� 2 Shema: : = 1 j set(�) j (�x: �1:�2) j (�x: �1:�2) j (9v: k1:�2) j (8v: k1:�2)where � is a term ontext, i.e. a sequene x1: �1; : : : ; xn: �n.� Terms �; � ` e: �, whose raw syntax ise 2 Term: : = x j � j he1; e2i j �i(e) j (�x: �:e) j e1(e2) j(u; e) j (let (v; x)=e in e0) j (�v: k:e) j e(u)For eah syntati lass there are two forms of judgements: formation judgementsand equality judgements. Moreover, there are two auxiliary forms of formationjudgements for ontexts. formation equalityonstr: ontexts � `kinds � ` k � ` k1 = k2onstrutors � ` u: k � ` u1 = u2: kterm ontexts �;� `shemas �;� ` � �;� ` �1 = �2terms �;� ` e: � �;� ` e1 = e2: �13

Remark 5.2 There are many similarities between HML and the Calulus of Con-strutions CC desribed in [HP89℄, but one ruial di�erene (tightly linked to thedistintion between types and type shemas): in HML the formation and equalityrules for onstrutors and kinds are independent from the rules for shemas andterms, while in CC all forms of judgement are interdependent.In an indexed ategory the distintion between types and type shemas is easilyaptured as follows: types orrespond to elements of an objet
 in the base ate-gory, type shemas orrespond to objets in the �ber ategories. The identi�ationof types and type shemas (typial of F! and CC) amounts to having a one-oneorrespondene between morphisms from b to
 in the base ategory B and objetsin the �ber C[b℄ over b. In HML a type � an be made into a type shema set(�), sotypes are type shemas, but not the other way around.Inferene Rules. The inferene rules of HML are partitioned in two sets s.t.the �rst is independent from the seond (see Appendix). The �rst set of rules isfor deriving formation and equality judgements for kinds and onstrutors, whihamounts to Martin-L�of prediative theory of dependent types with a kind onstant
and onstrutor onstants 1, � and! (of appropriate kind). The seond set of rulesis for deriving formation and equality judgements for type shemas and terms. It issimilar to the rules in [HP89℄ for types and terms of the Calulus of Construtions.Categorial view. The alulus HML an be viewed as an indexed ategory a-ording to a standard term-model onstrution (see [See87℄), where onstrutors(up to onstrutor equality) are morphisms in the base ategory and terms are mor-phisms in the �ber ategories.De�nition 5.3 HML an be viewed as an indexed ategory C:Bop ! Cat.� The base ategory B is de�ned as follows:{ objets are equivalene lasses [k℄ of kinds, i.e. fk0j; ` k = k0g{ morphisms from [k1℄ to [k2℄ are equivalene lasses [u℄k1;k2 of onstrutors,i.e. fu0jv: k1 ` u = u0: k2g, where it does not matter what one hooses asrepresentative for [k1℄ and [k2℄{ [u1℄k1;k2 followed by [u2℄k2;k3 is [[u1=v℄u2℄k1;k3� If [k℄ is an objet of B, then the ategory C[[k℄℄ is de�ned as follows:{ objets are equivalene lasses [�℄k of shemas, i.e. f�0jv: k; ; ` � = �0g{ morphisms from [�1℄k to [�2℄k are equivalene lasses [e℄k;�1;�2 of terms,i.e. fe0jv: k; x: �1 ` e = e0: �2g{ [e1℄k;�1;�2 followed by [e2℄k;�2;�3 is [[e1=x℄e2℄k;�1;�3� If f = [u℄k1;k2 is a morphism from [k1℄ to [k2℄ in B, then C[f ℄ is the funtorfrom C[[k2℄℄ to C[[k1℄℄ de�ned as follows:14

{ [�℄k2 is mapped to [[u=v℄�℄k1 and{ [e℄k2;�1;�2 is mapped to [[u=v℄e℄k1;[u=v℄�1;[u=v℄�2The indexed ategory C has additional struture, but we will study it as additionalstruture on the ategory GC of modules, so that it an be ompared more easilywith the ategorial struture of the Calulus of Construtions onsidered in [HP89℄.De�nition 5.4 The ategory GC of HML-modules an be desribed as follows:� objets are pairs h[k℄; [�℄ki, denoted by [v: k; �℄� morphisms from [v: k1; �1℄ to [v: k2; �2℄ are pairs h[u℄k1;k2 ; [e℄k1;�1;[u=v℄�2i denotedby [(v: k1; x: �1):hu; ei℄k2;�2� [(v: k1; x: �1):hu1; e1i℄k2;�2 followed by [(v: k2; x: �2):hu2; e2i℄k3;�3 is the pair[(v: k1; x: �1):h[u1=v℄u2; [u1; e1=v; x℄e2i℄k3;�3Remark 5.5 At this point we an outline the orrespondene between ML-modulesand GC. Sine we have not yet de�ned all the relevant struture on GC, we anonsider only losed signatures, strutures and funtors (i.e. without referene tonon-loal variables). This restrition will be dropped in Remark 7.11.� A losed ML-signature orresponds to an objet of GC, e.g.signature sig = (sig type v; val x: � end)orresponds to the objet [v:
; �℄.� A losed ML-struture of losed signature sig orresponds to an element of[v:
; �℄, e.g. struture S = (strut type v = u; val x = e end)orresponds to the morphism [(v: 1; x: 1):hu; ei℄
;� from the terminal objet[v: 1; 1℄ to [v:
; �℄.� A losed ML-funtor, whose parameter and result signatures are losed, or-responds to a morphism of GC, e.g.funtor F (S: sig1): sig2 =strut type v = [S:v=v℄u; val x = [S:v; S:x=v; x℄e endorresponds to the morphism [(v:
; x: �1):hu; ei℄
;�2 from [v:
; �1℄ to [v:
; �2℄.While our explanation of ML-signatures and ML-strutures mathes the type-theoretiintuition in [Ma86, HM88℄, there is a major di�erene in the understanding of ML-funtors:for us it is essential that ML-types (inluding those in the body of anML-funtor) do not depend on values, otherwise it would not be possibleto assoiate a morphism in GC to an ML-funtor. On the other hand,suh a property is ignored in [Ma86, HM88℄.Note that this property holds even for HML, despite having dependent kinds andtype shemas. 15

6 A ategorial treatment of dependent typesUp to now there is no agreement on what is the best way of looking at dependenttypes ategorially (see [Car78, See84, Tay87, HP89, Ehr88, Str88, Cur89, Pit89,Ja90, Pitar℄). We follow the approah based on ategories with attributes (see[Car78℄ and also [Cur89, Pit89, Pitar℄), whih avoids ertain limitations of lassesof display maps (see [Tay87, HP89℄) and the unneessary generality of D-ategories(see [Ehr88℄). This setion reviews the onepts involved in the de�nition of ategor-ial model for the Calulus of Constrution (see De�nition 6.16), namely: ategorywith attributes, generi type, unit types, dependent sums and produts, universaland existential types, embedding between ategories with attributes. Moreover, itintrodues some operations on ategories with attributes (see De�nition 6.14).Remark 6.1 In the introdution we advoate formulating onepts 2-ategorially.Sine the onept of �bration an be formulated 2-ategorially (see [Str73℄), itis possible to formulate ategories with attributes and other onepts introduedbelow 2-ategorially, too. However, we have not done so, beause it seemed tooompliated and unintelligible. Nevertheless, a 2-ategorial formulation is essentialto de�ne indexed ategories with attributes and explain how type dependeny in theategory of modules is indued by type dependeny in the base and the �bers viathe 2-funtor G (given by the Grothendiek onstrution).De�nition 6.2 A ategory with attributes is spei�ed by a quadruple (C;D; G; p)made of the following data:� a ategory C with a terminal objet 1,� a disrete C-indexed ategory D (we identify sets with disrete ategories)� a natural transformation p GD G+ p�D>> C in Cats.t. for all f :Y ! X and a 2 D[X℄Y � f �a f � a> X � apf�a_ _paY f > Xi.e. the square is a pullbak, where we write16

{ f �a for D[f ℄(a),{ X � a for the ontext extension G(hX; ai),{ f � a for G(hf; idD[f ℄ai),{ pa for the ontext projetion p at hX; ai.Remark 6.3 A general outline of the interpretation of judgements for a alulus ofdependent types in a ategory with attributes goes as follows:Judgement Interpretationontext � ` objet X of Ctype � ` � element a of D[X℄term � ` e: � setion f of pa, i.e. f :X ! X � a s.t. f ; pa = idXtype equality � ` � = �0 a = a0term equality � ` e = e0: � f = f 0The terminal objet 1 is used to interpret the empty ontext.Given a ategory with attributes we de�ne the following ategories and funtors:De�nition 6.4 (Slie ategory) Let X 2 C, then the slie ategory C=X hasas objets the morphisms with odomain X and as morphisms from f1:Y1 ! X tof2:Y2 ! X the g:Y1 ! Y2 s.t. Y1 g > Y2���f1 ���R _f2XLet a 2 D[X℄, then �a: C=X ! C=(X �a) is the funtor mapping an objet f :Y ! Xonto f � a:Y � f �a! X � a and a morphism g from f1 to f2 onto the unique g � a s.t.Y1 g > Y2���p ���� ���p ���� _f2Y1 � f �1a g � a> Y2 � f �2a X���f1 � a ���R _f2 � a��� p����X � a17

De�nition 6.5 (Relative slie ategory) Let X 2 C, then the relative slieategory C=DX has as objets the elements of D[X℄ and as morphisms from a to bthe g:X � a! X � b s.t. X � a g > X � b���p ���R _pXLet f :Y ! X, then f �: C=DX ! C=DY is the funtor mapping an objet a onto f �aand a morphism g from a to b onto the unique f �g s.t.X � a g > X � b���f � a ���� ���f � b ���� _pY � f �a f �g> Y � f �b X���p ���R _p��� f����YThe following de�nition gives a ategorial haraterisation of ertain types on-strutors, dependent sums and produts, in terms of universal properties and om-mutativity with substitution, i.e. Bek-Chevalley ondition.De�nition 6.6 We say that a ategory with attributes (C;D; G; p) has� generi type (U 2 C; t 2 D[U ℄) �()for every X 2 C and a 2 D[X℄ exists unique f :X ! U s.t. a = f �t� units 1[X℄ 2 D[X℄, for X 2 C �(){ for every f :Y ! X Y � 10 f � 1> X � 1p_ _pY f > Xwhere 1 �= 1[X℄ and 10 �= 1[Y ℄ = f �118

{ for every f :Y ! X exists unique ! s.t.Y ! > X � 1���f ���R _pXor equivalently !:X �! X � 1, i.e. ! is an iso, from idX to p1 in C=X.� sums �[X℄a:b 2 D[X℄ with unit �[X℄a;b for X 2 C , a 2 D[X℄ and b 2 D[X �a℄X � a � b � > X �� � p�a p > X �����p ���R _p � a _pX � a p > Xwhere � �= �[X℄a:b and � �= �[X℄a;b �(){ for every f :Y ! X X � a � b � > X �� � p�a p > X �����f � a � b ���� ���f � � � p�a ���� ���f � � ���� _pY � a0 � b0 �0> Y � �0 � p�a0 p > Y � �0 X���p ���R _p � a0 _p ��� f����Y � a0 p > Ywhere a0 �= f �a, b0 �= (f � a)�b, �0 �= �[Y ℄a0:b0 = f �� and �0 �= �[Y ℄a0;b0{ there is a natural isomorphism C=X(p�;) :�= C=(X � a)(pb; � a) given byX � � g > Y X � a � b h > Y � f �a���p ���R _f g �7! h �= �; (g � a) ���p ���R _f � aX X � aor equivalently s �= �; p:X � a � b �! X � � from pb; pa to p� in C=X.19

� produts �[X℄a:b 2 D[X℄ with ounit �[X℄a;b for X 2 C , a 2 D[X℄ andb 2 D[X � a℄ X � a � b <� X �� � p�a p > X � ����p ���R _p � a _pX � a p > Xwhere � �= �[X℄a:b and � �= �[X℄a;b �(){ for every f :Y ! X X � a � b < � X � � � p�a p > X � ����f � a � b ���� ���f � � � p�a ���� ���f � � ���� _pY � a0 � b0 <�0 Y � �0 � p�a0 p > Y � �0 X���p ���R _p � a0 _p ��� f����Y � a0 p > Ywhere a0 �= f �a, b0 �= (f � a)�b, �0 �= �[Y ℄a0:b0 �= f �� and �0 �= �[Y ℄a0;b0{ there is a natural isomorphism C=X(; p�) :�= C=(X � a)(� a; pb) given byX � � < g Y X � a � b <h Y � f �a���p ���R _f g �7! h �= (g � a); � ���p ���R _f � aX X � aRemark 6.7 The de�nitions of units and sums are essentially equivalent to those in[HP89℄, but our de�nitions of generi type and produts are stronger.� In the de�nition of generi type [HP89℄ demands only existene of f :X ! U ,while we demand also uniqueness. Our de�nition desribes better the intendedproperty of a generi type, espeially in syntati models, and it seems moreappropriate, when there is a anonial hoie of pullbaks.� In the de�nition of produts [HP89℄ demands C=X(; p�) :�= C=(X � a)(� a; pb)for ranging only over p:X �! X (i.e. it uses C=D instead of C=), while welet range over arbitrary f :Y ! X. Note that the absoluteness of produts(see 2.8 of [HP89℄) beomes a simple onsequene of our de�nition.20

The unit � for sums and the ounit � for produts have a simple desription asontext realisation in a theory of dependent types:� � is the realisation hx; ha; bi; ai of the ontext [x:X; y: (�a:A:B); a:A℄ in theontext [x:X; a:A; b:B℄;� � is the realisation hx; a; f(a)i of the ontext [x:X; a:A; b:B℄ in the ontext[x:X; f : (�a:A:B); a:A℄.Example 6.8 A ategory C an be made into a trivial ategory with attributes(having units, sums and produts) by de�ning:� D[X℄ = f�g� X � � = X� f � � = f� p� = idXExample 6.9 A ategory C with �nite produts an be made into a ategory withattributes, having units and sums, by de�ning:� D[X℄ = Obj(C)� X � a = X � a� f � a = f � ida� pa = �X;a1� 1[X℄ = 1� �[X℄a:b = a� bMoreover, if C has exponentials, then as a ategory with attributes it has also prod-uts �[X℄a:b = ba. In summary, a artesian losed ategory an be viewed as aategory with attributes having units, sums and produts.Example 6.10 The ategory Cat of small ategories an be made into a ategorywith attributes (having units, sums and produts) by de�ning:� D[B℄ = Obj(CatBop), i.e. the lass of B-indexed ategories� B � C = GC� (F � C)hX; i = hFX; i� pC = �CNote that the relative slie ategory Cat=DB is not equivalent to ICat(B). However,the two are equivalent on disrete B-indexed ategories.21

Following [HP89℄, we de�ne when a ategory with attributes (C; E) has universaland existential quanti�ation along projetions orresponding to another ategorywith attributes (C;D) (possibly the same).De�nition 6.11 Given a ategory with attributes (C;D; G; p), we say that anotherategory with attributes (C; E ; G; p) has� 9-quanti�ers 9[X℄a:b 2 E [X℄ with unit �[X℄a;b for X 2 C , a 2 D[X℄ andb 2 E [X � a℄ X � a � b � > X � a � p�9 p � 9> X � 9���p ���R _p _pX � a p > Xwhere 9 �= 9[X℄a:b and � �= �[X℄a;b �(){ for every f :Y ! X X � a � b � > X � a � p�9 p � 9> X � 9���f � a � b ���� ���f � a � p�9 ���� ���f � 9 ���� _pY � a0 � b0 �0> Y � a0 � p�90 p � 90 > Y � 90 X���p ���R _p _p ��� f����Y � a0 p > Ywhere a0 �= f �a, b0 �= (f � a)�b, 90 �= 9[Y ℄a0:b0 = f �9 and �0 �= �[Y ℄a0;b0{ there is a natural isomorphism C=EX(9;) :�= C=E(X � a)(b; p�a) given byX � 9 g > X � X � a � b h > X � a � p����p ���R _p g �7! h �= �; (p�ag) ���p ���R _pX X � a
22

{ the morphism s �= �; (p � 9):X � a � b ! X � 9 is orthogonal to the setfpjY 2 C ; 2 E [Y ℄g, i.e. for all Y 2 C and 2 E [Y ℄� s > � � s > �if g_ _f then 9!h s.t. g_ 	���h ��� _f� p > � � p > �� 8-quanti�ers 8[X℄a:b 2 E [X℄ with ounit �[X℄a;b for X 2 C , a 2 D[X℄ andb 2 E [X � a℄ X � a � b <� X � 8 � p�a p > X � 8���p ���R _p � a _pX � a p > Xwhere 8 �= 8[X℄a:b and � �= �[X℄a;b �()they satisfy, mutatis mutandis, the requirements for produts in De�nition 6.6Remark 6.12 The de�nition of 9-quanti�er is essentially equivalent to that in [HP89℄,but our de�nition of 8-quanti�ers is stronger in the same way as our de�nition ofprodut is (see Remark 6.7).The unit � for 9-quanti�ers, the morphism s used in the orthogonality onditionand the ounit � for 8-quanti�er have a simple desription as ontext realisation ina theory of dependent types:� � is the realisation hx; a; (a; b)i of the ontext [x:X; a:A; y: (9a:A:B)℄ in theontext [x:X; a:A; b:B℄;� s is the realisation hx; (a; b)i of the ontext [x:X; y: (9a:A:B)℄ in the ontext[x:X; a:A; b:B℄;� � is the realisation hx; a; f(a)i of the ontext [x:X; a:A; b:B℄ in the ontext[x:X; f : (8a:A:B); a:A℄.The orthogonality ondition means simply that there is a one-one orrespondenebetween terms of type C (lassi�ed by E) in the ontext [x:X; y: (9a:A:B)℄ and termsof type [(a; b)=y℄C in the ontext [x:X; a:A; b:B℄. The need for the orthogonalityondition in the de�nition of 9-quanti�ers was realised by M. Hyland and A. Pitts.In speial ases orthogonality follows from the other two onditions:� When D = E and E has sums. In fat, (�[X℄a:b) and (9[X℄a:b) are isomorphi,so s is an iso, and isos are orthogonal to any lass of morphisms.23

� When E is onstant, i.e. when types do not depend on values like in F!. Inthis ase orthogonality follows from the natural isomorphism of the seondondition.There is an asymmetry between the de�nition of 9- and 8-quanti�ers, sine inthe former the universal property is given in terms of relative slie ategories, whilein the latter it is given in terms of slie ategories. We have hosen to formulatethe universal property for 8-quanti�ers in terms of slie ategories beause of theabsoluteness result for dependent produts established in 2.8 of [HP89℄. WhenD = E , it is obvious that the de�nitions of produts and 8-quanti�ers for E oinide,while sums and 9-quanti�ers an both be de�ned and di�erent.For ategories with attributes the set-theoreti notion of inlusion between lassesof display maps has to be replaed by a more omplex one.De�nition 6.13 (Embedding)Given two ategories with attributes (C;D; G; p) and (C; E ; G; p), an embedding ofthe �rst into the seond is a pair (In; in), where In:D ! E is a C-indexed funtor(between disrete indexed ategories) and in:G :! (G(In);G):GD ! C is a naturalisomorphism s.t. for X 2 C and a 2 D[X℄ the following diagram in C ommutesX � a inX;a> X � In(a)pa_ 	��� pIn(a)���XEmbeddings preserve (not neessarily on the nose) units, sums, produts and 8-quanti�ers, but may not preserve 9-quanti�ers.De�nition 6.14 Let (C;D; G; p) and (C; E ; G; p) be two ategories with attributes,parallel omposition (C;DkE ; G; p) and juxtaposition (C;D � E ; G; p) are theategories with attributes de�ned as follows:� (DkE)[X℄ = (D[X℄� E [X℄)X � ha; bi = X � a � p�abf � ha; bi = f � a � p�abpha;bi = pp�ab; pa, i.e. the diagonal �lling of the pullbak squareX � a � p�ab pa � b> X � bpp�ab_ ���pha;bi ���R _pbX � a pa > X24

� (D � E)[X℄ = (�a 2 D[X℄:E [X � a℄)X � ha; bi = X � a � bf � ha; bi = f � a � bpha;bi = pb; paRemark 6.15 The intended meaning of the operations desribed above is:� ontext extension in DkE means ontext extension by D and E in parallel ,� ontext extension in D � E means ontext extension by D and then by E .These operation an also be viewed as binary funtors on the ategory Attr(C)of ategories with attributes over C and embedding. From this perspetive thebinary funtors orresponding to parallel omposition and juxtaposition are part ofa monoidal struture over Attr(C) with unit 1, where 1[X℄ = f�g (see Example 6.8).Moreover, parallel omposition is symmetri, while juxtaposition is not. Note alsothat a ategory with attributes having units and sums orresponds to a monoidunits: 1 ! D D � D: sums in the monoidal ategory Attr(C) with juxtapositionas tensor produt. The operations of parallel omposition and juxtaposition anbe viewed also as funtors on the poset Disp(C) of lasses of display maps over Cordered by inlusion, and it is easier to look at them in these terms. There are otheroperations on lasses of display maps worth mentioning:� � and + (i.e. produt and oprodut in Disp(C)).We summarise the ategorial semantis of the Calulus of Construtions givenin [HP89℄ using the terminology introdued in this setion.De�nition 6.16 A model of CC is spei�ed by a ategory B with a terminal objet1 and two strutures R and A of ategory with attributes on B s.t.� R is embedded in A;� R has a generi type (U; t) s.t. U = 1 � a for some a 2 A[1℄;� R and A have units, sums and produts;� R has 9- and 8-quanti�ers along ontext projetions in A.Remark 6.17 R and A orrespond to ontext extensions by a type and a kindrespetively. The embedding of R into A means that types are inluded in kinds,while U = 1 � a for some a 2 A[1℄ means that there is a kind of all types.The de�nition above is almost equivalent to that in Summary 2.13 of [HP89℄.We have only dropped the requirement that every X 2 B is (up to isomorphism) ofthe form 1 � a for some a 2 A[1℄. In this way it is left open what an be delared ina ontext besides variables ranging over a kind (or a type).25

7 Independene and HML-modulesIn this setion we analyse the struture over the ategory GC of HML-modules (seeDe�nition 5.4) neessary for the interpretation of a alulus with dependent types.� First, we onsider two ategories with attributes over GC, D and E , orre-sponding to dependent kinds and dependent type shemas.� Seond, we de�ne independene for ategories with attributes (see De�ni-tion 7.3) and prove that D is independent from E .� Finally, we prove various tehnial lemmas on independene leading to Theo-rem 7.9, whih infer properties of D�E , orresponding (we laim) to dependentsignatures, from similar properties of D and E .In analogy with the ategorial semantis of the Calulus of Construtions (seeDe�nition 6.16) we de�ne two ategories with attributes over the ategory of HML-modules, D and E , orresponding to ontext extension by a kind and a type shema.De�nition 7.1 The ategory GC is equipped with two strutures D and E of ategorywith attributes, de�ned as follows� D[hX; i℄ is the set of equivalene lasses [k0℄k, i.e. fk00jv: k ` k0 = k00ghf; gi�d = [[u=v℄k0℄k1hX; i � d = [v: (�v: k:k0); �̂℄hf; gi � d = [(v: (�v: k1:[u=v℄k0); x: �̂1):hhû; �2vi; êi℄(�v:k:k0);�̂pd = [(v: (�v: k:k0); x: �̂):h�1v; xi℄k;�where hX; i = [v: k; �℄ 2 GC , d = [k0℄k 2 D[hX; i℄hf; gi = [(v: k1; x: �1):hu; ei℄k;� morphism from hX1; 1i to hX; i^ is a shorthand for [�1v=v℄� E [hX; i℄ is the set of equivalene lasses [�0℄k;�, i.e. f�00jv: k; x: � ` �0 = �00ghf; gi�e = [[u; e=v; x℄�0℄k1;�1hX; i � e = [v: k; (�x: �:�0)℄hf; gi � e = [(v: k1; x: (�x: �1:[u; e=v; x℄�0)):hu; h[�1x=x℄e; �2xii℄k;(�x:�:�0)pe = [(v: k; x: (�x: �:�0)):hv; �1xi℄k;�where hX; i = [v: k; �℄ 2 GC , e = [�0℄k;� 2 E [hX; i℄hf; gi = [(v: k1; x: �1):hu; ei℄k;� morphism from hX1; 1i to hX; iProposition 7.2 the ategory GC has a terminal objet 1 and the two strutures Eand D of ategory with attributes on GC are s.t.� E and D have units, sums and produts;� E has 9- and 8-quanti�ers along ontext projetions in D.26

Proof The de�nitions of terminal objet, units, sums, produts and quanti�ers arequite obvious, therefore they will be only skethed. The required properties an bereformulated as equations and proved using the inferene rules for HML.� Given X = [v: k; �℄ 2 GC, d1 = [k1℄k 2 D[X℄ and d2 = [k2℄�v:k:k1 2 D[X � d1℄,the unit in D[X℄ is [1℄k, the sum and produt of d2 indexed over d1 are(�[X℄d1:d2) �= [�v1: k1:[hv; v1i=v℄k2℄k(�[X℄d1:d2) �= [�v1: k1:[hv; v1i=v℄k2℄k� Given X = [v: k; �℄ 2 GC, e1 = [�1℄k;� 2 E [X℄ and e2 = [�2℄k;�x:�:�1 2 E [X � e1℄,the unit in E [X℄ is [1℄k;�, the sum and produt of e2 indexed over e1 are(�[X℄e1:e2) �= [�x1: �1:[hx; x1i=x℄�2℄k;�(�[X℄e1:e2) �= [�x1: �1:[hx; x1i=x℄�2℄k;�� Given X = [v: k; �℄ 2 GC, d1 = [k1℄k 2 D[X℄ and e2 = [�2℄(�v:k:k1);�̂ 2 E [X �d1℄,the 9- and 8-quanti�er of e2 along pd1 are(9[X℄d1:e2) �= [9v1: k1:[hv; v1i=v℄�2℄k;�(8[X℄d1:e2) �= [8v1: k1:[hv; v1i=v℄�2℄k;�The strutures D and E fail to give a model of the Calulus of Constrution fortwo reasons: E is not inluded in D, and E doesn't have a generi type (U; t) s.t.U = 1 � d for some d 2 D[1℄. The seond reason ould be irumvented by usingF! instead of HML, sine in F! types and type shemas are identi�ed. However,the �rst reason is strongly related to independene of onstrutor-expressions fromterm-expressions, whih is a feature of F!, too. In HML independene in enforedsyntatially, by forbidding terms in kinds and onstrutors (see Setion 5). Beforestudying any further the ategory of HML-modules, we haraterise independeneat a more abstrat level.De�nition 7.3 (Independene) Given two strutures D and E of ategory withattributes over a ategory C, we say that D is independent from E i� for everyX 2 C, e 2 E [X℄ and d 2 D[X℄� the mapping D[pe℄:D[X℄! D[X � e℄ is a bijetion� there is a natural isomorphism C=X(; pd) :�= C=(X � e)(� e; pd � e) given byY g > X � d Y � f �e h > X � d � p�e �> X � e � p�d���f ���R _p g �7! h �= (g � e) ���f � e ���R _p � e	��� p���X X � e27

Remark 7.4 Sine pd �e and pp�ed are isomorphi in C=(X �e) and ontext projetionsan be pulled bak along any morphism, then the seond ondition amounts to sayingthat there is a bijetion between setions of pd and setion of pp�ed. In summaryindependene of D from E means that types and terms lassi�ed by D are invariantw.r.t. ontext extensions by types lassi�ed by E .Theorem 7.5 (Independene for HML) D is independent from E, where D andE are the ategories with attributes on GC given in De�nition 7.1.Proof Indeed, we prove that D is independent from E whenever D is indued by aategory with attributes over the base B and pe is of the form hidX ; gi for everyX 2 B and e 2 E [X℄.It is obvious from the de�nition that D[hX; i℄ depends only fromX and D[hf; gi℄depends only from f . Sine pe is of the form hidX ; gi and D[hidX ; idi℄ is the iden-tity, then D[pe℄ must be the identity and this amounts to the �rst requirement forindependene.The natural isomorphism GC=hX; i(; pd) :�= GC=(hX; i�e)(�e; pd �e), demandedin the seond requirement for independene, is a onsequene of the following fats:� pd is hf; idf�i for some f and � hf; idf�i � e is hf; idf�0i for some 0� GC=hX; i(hf 0; g0i; hf; idf�i) :�= B=X(f 0; f), as a morphism in the �rst hom-setmust be of the form hh; g0i for some h s.t. f 0 = h; f .In the sequel we establish some basi fats about independene.Lemma 7.6 If D is independent from E, then pe is orthogonal to pd for everyX; Y 2 C, d 2 D[X℄ and e 2 E [Y ℄, i.e.� pe > � � pe > �if g_ _f then 9!h s.t. g_ 	��� h��� _f� pd > � � pd > �Proof Beause of Remark 7.4 we an assume that X = Y , f = idX and show that� pe > � � pe > �if g_ ��� pd���� then 9!h setion of pd s.t. g_ 	��� h���� �whih amounts to a bijetion between g 2 C=X(pe; pd) and h 2 C=X(idX ; pd) givenby g = pe; h. Suh a bijetion an be given in two steps:28

� the bijetion between g 2 C=X(pe; pd) and h0 2 C=X(idX�e; pd � e) given byg = h0; pp�de, sine � pd � e > �pp�de_ _pe� pd > �� the bijetion between h0 2 C=X(idX�e; pd � e) and h 2 C=X(idX ; pd) given bythe seond requirement in the de�nition of independene, as idX�e = idX � e.We skip the hek that omposition of these two bijetions is the desired oneLemma 7.7 If D is independent from E, then for every X 2 C, e1 2 E [X℄ andd2 2 D[X � e1℄ there exists d1 2 D[X℄ and e2 2 E [X � d1℄ s.t.� �! � pd2 > �pe2_ _pe1� pd1 > �Proof Beause of the �rst ondition in the de�nition of independene, there existsunique d1 2 D[X℄ s.t. d2 = D[pe1℄d1. Let e2 2 E [X �d1℄ be E [pd1℄e1. To show that d1and e2 satisfy the requirement, use the fat that the following squares are pullbaksfor the same pair of morphisms� pd1 � e1 > � � pd2 > �pe2_ _pe1 pe1 � d1_ _pe1� pd1 > � � pd1 > �Remark 7.8 The proof of the Lemma essentially says that the two ategories withattributes E � D and EkD, as given in De�nition 6.14, are equivalent . Sine inde-pendene implies also that ontext projetions for E are orthogonal to those for D,then the fatorisation of pd2 ; pe1 given by the Lemma is unique (up to isomorphism).Another onsequene of independene is that D has quanti�ers along ontext pro-jetions for E , but they are uninteresting . In fat, (9[X℄e1:d2) = (8[X℄e1:d2) = d1,where d1 is that given by the Lemma. 29

Finally, we derive properties of the juxtaposition D�E (see De�nition 6.14) underthe assumption that D is independent from E .Theorem 7.9 Given two ategories with attributes D and E s.t.� D is independent from E;� E and D have units, sums and produts;� E has 9- and 8-quanti�ers along ontext projetions in D;then the juxtaposition A = D � E satis�es the following properties� E has 9- and 8-quanti�ers along ontext projetions in A;� A has units, sums and produts.Proof We give only a sketh, and write ai for an element hdi; eii 2 A[℄.� Given X 2 C, a1 2 A[X℄ and e2 2 E [X � a1℄, thenthe 9- and 8-quanti�er of e2 along pa1 are(9[X℄a1:e2) �= 9[X℄d1:(�[X � d1℄e1:e2) and(8[X℄a1:e2) �= 8[X℄d1:(�[X � d1℄e1:e2)� Given X 2 C, a1 2 A[X℄ and a2 2 A[X � a1℄, thenthe unit in A[X℄ is 1[X℄ �= h1[X℄; 1[X � 1[X℄℄ithe sum and produt of a2 indexed over a1 are(�[X℄a1:a2) �= h(�[X℄d1:d3); (s�1)�(�[X � d1 � d3℄e3:e2)i(�[X℄a1:a2) �= hd; 8[X � d℄p�dd1:��(�[X � d1 � d3℄e3:e2)iwhere d3 2 D[X � d1℄ and e3 2 E [X � d1 � d3℄ are s.t. (see Lemma 7.7)1� pd2 > �pe3_ _pe1� pd3 > �s:X � d1 � d3 �! X ��[X℄d1:d3 is the isomorphism for sums (see De�nition 6.6)d 2 D[X℄ is the produt (�[X℄d1:d3), and�:X � d � p�dd1 ! X � d1 � d3 is the ounit for produts (see De�nition 6.6).1For simpliity, we that the isomorphism in the top-left orner is the identity.30

The importane of Theorem 7.9 rests on the observation that, when D and E arethe ategories with attributes given in De�nition 7.1, then A = D �E is the ategorywith attributes orresponding to ontext extension by a signature. This laimis justi�ed by looking at a more onrete de�nition of A and by ompleting theorrespondene between ML-modules and the ategory GC given in Remark 5.5.De�nition 7.10 The ategory GC is equipped with a struture A of ategory withattributes, de�ned as follows� A[hX; i℄ is the set of equivalene lasses [v0: k0; �0℄k;�, i.e.fhk00; �00ijv: k ` k0 = k00 and v: k; v0: k0; x: � ` �0 = �00ghf; gi�a = [v0: [u=v℄k0; [u; e=v; x℄�0℄k1;�1hX; i � a = [v: (�v: k:k0); (�x: �̂:[�2v=v0℄�̂0)℄hf; gi � a = [(v: (�v: k1:[u=v℄k0); x: (�x: �̂1:[û; �2v; ê=v; v0; x℄�0)):hhû; �2vi; h[�1x=x℄ê; �2(x)ii℄(�v:k:k0);(�x:�̂:[�2v=v0℄�̂0)pa = [(v: (�v: k:k0); x: (�x: �̂:[�2v=v0℄�̂0)):h�1v; �1xi℄k;�where hX; i = [v: k; �℄ 2 GC , a = [v0: k0; �0℄k;� 2 A[hX; i℄hf; gi = [(v: k1; x: �1):hu; ei℄k;� morphism from hX1; 1i to hX; i^ is a shorthand for [�1v=v℄Remark 7.11 There is a bijetion between A[hX; i℄ and (D � E)[hX; i℄, namelya = [v0: k0; �0℄k;� 2 A[hX; i℄ orresponds to the pair hd; ei, whered = [k0℄k 2 D[hX; i℄ and e = [[�2v=v0℄�̂0℄(�v:k:k0);�̂ 2 E [hX; i � d℄.The notation for a 2 A[hX; i℄ is suggestive of ML-signatures. To make theorrespondene with ML-modules easier to express we introdue a more suggestivenotation also for setions.Given hX; i = [v: k; �℄ 2 GC and a = [v0: k0; �0℄k;� 2 A[hX; i℄, we write[(v: k; x: �):hvi = u; xi = ei℄k0;[vi=v0℄�0 for the setion[(v: k; x: �):hhv; ui; hx; eii℄(�v:k:k0);(�x:�̂:[�2v=vi ℄�̂0)of pa, where vi and xi an be hoosen arbitrarily and ^ stands for [�1v=v℄ .Indeed every setion of pa an be written in this way.Using the struture A over GC we an revise the orrespondene given in Re-mark 5.5 to aount for type dependeny at the level of ML-modules. In ML stru-tures and signatures must always be onsidered relatively to a ontext � for on-strutor and value variables, speifying kind and type of all (relevant) free variables.A ontext � an be thought as a losed signature, and therefore it orresponds toan objet hX; i = [v: k; �℄ of GC (see Remark 5.5).� An ML-signature orresponds to an element of A[hX; i℄, e.g.signature sig = (sig type v0; val x0: �0 end)orresponds to the element a = [v0:
; �0℄k;�.31

� An ML-struture of signature sig orresponds to a setion, whih given arealisation for � extends it to a realisation for � extended with sig, e.g.struture S = (strut type v0 = u; val x0 = e end)orresponds to the setion [(v: k; x: �):hv0 = u; x0 = ei℄
;�0 of pa.� An ML-funtor, with parameter signature sig1 and result signature sig2 (pos-sibly depending on sig1), orresponds to a setion of p(�[hX;i℄a1:a2), where aiorresponds to sigi, e.g.funtor F (S: sig1): sig2 =strut type v0 = [S:v0=v0℄u; val x0 = [S:v0; S:x0=v0; x0℄e endorresponds to the setion[(v: k; x: �):hF = (�v0:
:u);G = (�v0:
:�x0: �1:e)i℄(�v0:
:
);(�v0:T:�x0:�1:[Fv0=v0 ℄�2)8 Conlusion and further researhIn this paper we have investigated program modules in relation to independene oftype-expressions from program-expressions (whih had been overlooked in previousaounts) and type dependeny. In our investigation we have abstrated, as far aspossible, from the syntax and tried to work at a great level of generality. In fat,our understanding of program modules applies to any programming language whihan be viewed as an indexed ategory (possibly with some additional struture).The main advantages of this approah are its language-independene and the abilityto reformulate unlear questions, like \when does a language support higher ordermodules?", in terms of simple and preise onepts, namely \is the Grothendiekonstrution GC a artesian losed ategory?".In Remarks 5.5 and 7.11 we briey outlined how ML-modules �t in the ategorialaount of program modules. ML, like other programming language, has manyother aspets that we do not address here, and some of them have no satisfatorytheoretial aount, yet. Our analysis is not just an exposition of program modulesfor theoretially minded people, instead we expet that it will have a feedbak onprogramming languages. Good module failities are essential for programming in thelarge, and there seems to be a lot of spae for improvement in this area. Bridgingthe gap between theory and pratie ould be rather diÆult, sine one needs toaddress also syntati and pragmati issues. However, [HMM90℄ has already madea step in this diretion, by looking at aluli for program modules onsistently withthe ategory-theoreti aount given in this paper.Finally, we mention some related areas of researh (see also the introdution):� Sharing onstraints. Sharing onstraints speify that two struture identi-�ers denote the same struture. They were proposed by Dave MaQueen andare inorporated in Standard ML (see [MTH90℄). There is already a lean un-derstanding of sharing onstraints in terms of names and generativity , whihis used in the de�nition of Standard ML.32

In our opinion there should be a more general explanation of sharing on-straints based on a alulus for dependent types (as in Martin-L�of Type The-ory) and omputations (as in [Mogar℄), whih would remove some of the ur-rent limitations, e.g. only struture identi�ers an be used in sharing on-straints. In suh a alulus one would expet that the subtypes f[a℄g andTfag of TA (where a 2 A) are di�erent. The �rst type is the singleton on-taining only the omputation [a℄ (whih does not do anything exept returningthe value a). The seond type is the set of omputations whih an do what-ever they like, but at the end they an only return the value a. The latteralternative seems a more appropriate to aount for sharing onstraints.� Modular approah. In this paper we have foused our attention on oneaspet of programming languages. However, in the introdution we stressedthe need for ombining features, and how a 2-ategorial setting ould help. Wedo not believe in a mehanial way of �nding the right ombining of features,a trial and error methodology is more likely. The main ontribution we expetfrom a 2-ategorial view of programming languages is a small set of strategiesto guide in suh a searh.� Partial evaluation. If indexed ategories apture independene of a lass ofexpressions from another, perhaps they ought to apture evaluation of onstantexpressions at ompile-time, as done by optimising ompilers. More preisely,expressions evaluated at ompile-time should be morphisms in the base ate-gory. Therefore for every objet N in the �ber over 1 we have to introdue anobjet N 0 in the base, whih lassi�es the expressions of type N omputableat ompile-time. The inlusion of N 0 into N an be ahieved by having anelement : 1! N in the �ber over N 0, orresponding to the generi expressionof type N omputable at ompile-time. We have not investigated whether thisway of looking at partial evaluation has any useful appliations.� Categorial semantis of dependent types. This paper has introduedsome operations on ategories with attributes and lasses of display maps(see De�nition 6.2 and Remark 6.15) and the onept of independene (seeDe�nition 7.3), that were not present in the literature.Though these onepts were motivated by a spei� appliation, we believethat they deserve further study, e.g. it is not lear whether there are analoguesof Theorem 7.9 for the other operations on ategories with attributes, andould be useful in analysing and omparing type theories. For instane, The-orem 7.9 essentially says that any model of F! indues a model of CC; thisseems related to Berardi-Mohring's translation from CC to F! (see [Ber89,Moh89℄).
33

AknowledgementsAll my thanks to Dave MaQueen, who introdued me to ML-modules; Rod Burstall,Lua Cardelli, Bob Harper, Tony Hoare, John Mithell, Pierre-Louis Curien, MartinHyland, Andy Pitts (and other members of the CLICS projet) for useful disus-sions; Pierre-Louis Curien, Eike Ritter and the referees gave valuable omments onprevious drafts. I used Paul Taylor's pakage for ommutative diagrams.Appendix: HML inferene rulesWe write [e1; : : : ; en=x1; : : : ; xn℄e for the parallel substitution in e of all variablesx1; : : : ; xn by the expressions e1; : : : ; en.Given a ontext � we write DV(�) for the set of variables delared in � and, ifx is a variable in DV(�), then we write �(x) for the (unique) kind or type shemaassigned to x in �.Compile-time inferene rulesConstrutor ontext formation rules � `; ; `v � ` k�; v: k ` v 62 DV(�)Kind formation rules � ` k
 � `� `
1 � `� ` 1� � ` k1 �; v: k1 ` k2� ` (�v: k1:k2)� � ` k1 �; v: k1 ` k2� ` (�v: k1:k2)Kind equality rules � ` k1 = k2The type equality rules of the prediative theory of dependent types (see [HP89℄).
34

Construtor formation rules � ` u: kv � `� ` v: k k = �(v)unit � `� ` 1:
prod � `� ` �:
!
!
fun � `� `!:
!
!
1I � `� ` �: 1�I �; v: k1 ` k2 � ` u1: k1 � ` u2: [u1=v℄k2� ` hu1; u2i: (�v: k1:k2)�E.1 � ` u: (�v: k1:k2)� ` �1(u): k1�E.2 � ` u: (�v: k1:k2)� ` �2(u): [�1(u)=v℄k2�I �; v: k1 ` u: k2� ` (�v: k1:u): (�v: k1:k2)�E � ` u: (�v: k1:k2) � ` u1: k1� ` u(u1): [u1=v℄k2:-eq � ` u: k1 � ` k1 = k2� ` u: k2Construtor equality rules � ` u1 = u2: kThe term equality rules of the prediative theory of dependent types (see [HP89℄).Run-time inferene rulesTerm ontext formation rules �;� `; � `�; ; `x �;� ` ��;�; x: � ` x 62 DV(�;�) 35

Type shema formation rules �;� ` �type �; � ` � ` � :
�; � ` set(�)1 �; � `�;� ` 1� �; � ` �1 �;�; x: �1 ` �2�;� ` (�x: �1:�2)� �; � ` �1 �;�; x: �1 ` �2�;� ` (�x: �1:�2)8 �;� ` �; v: k; � ` ��;� ` (8v: k:�)9 �;� ` �; v: k; � ` ��;� ` (9v: k:�)Type shema equality rules �;� ` �1 = �2Similar to the type equality rule for the Calulus of Construtions (see [HP89℄), plusthe following rules saying that set() ommutes with produts and funtion spaes:1: = �;� `�;� ` set(1) = 1�: = �;� ` � ` �1:
 � ` �2:
�; � ` set(�1 � �2) = (�x: set(�1):set(�2))! : = �;� ` � ` �1:
 � ` �2:
�; � ` set(�1 ! �2) = (�x: set(�1):set(�2))Term formation rules �;� ` e: �x �;� `�;� ` x: � � = �(x)1I �; � `�;� ` �: 1�I �; �; x: �1 ` �2 �;� ` e1: �1 �;� ` e2: [e1=x℄�2�;� ` he1; e2i: (�x: �1:�2)�E.1 �; � ` e: (�x: �1:�2)�; � ` �1(e): �1 36

�E.2 �; � ` e: (�x: �1:�2)�; � ` �2(e): [�1(e)=x℄�2�I �; �; x: �1 ` e: �2�;� ` (�x: �1:e): (�x: �1:�2)�E �; � ` e: (�x: �1:�2) �; � ` e1: �1�;� ` e(e1): [e1=x℄�28I �; � ` �; v: k; � ` e: ��;� ` (�v: k:e): (8v: k:�)8E �; � ` e: (8v: k:�) � ` u: k�; � ` e(u): [u=v℄�9I �; v: k; � ` � � ` u: k �; � ` e: [u=v℄��;� ` (u; e): (9v: k:�)9E �; � ` e: (9v: k:�)�; �; z: (9v: k:�) ` �0 �; v: k; �; x: � ` e0: [(v; x)=z℄�0�;� ` (let (v; x)=e in e0): [e=z℄�0:-eq �; � ` e: �1 �;� ` �1 = �2�;� ` e: �2Term equality rules �;� ` e1 = e2: �Similar to the type equality rule for the Calulus of Construtions (see [HP89℄),namely the general rules for a ongruene and the following ��-rules:1:� �;� ` e: 1�; � ` � = e: 1�:�.1 �; �; x: �1 ` �2 �;� ` e1: �1 �;� ` e2: [e1=x℄�2�;� ` �1(he1; e2i) = e1: �1�:�.2 �; �; x: �1 ` �2 �;� ` e1: �1 �;� ` e2: [e1=x℄�2�;� ` �2(he1; e2i) = e2: [e1=x℄�2�:� �;� ` e: (�x: �1:�2)�; � ` h�1(e); �2(e)i = e: (�x: �1:�2)�:� �;�; x: �1 ` e2: �2 �;� ` e1: �1�;� ` (�x: �1:e2)(e1) = [e1=x℄e2: [e1=x℄�237

�:� �;� ` e: (�x: �1:�2)�; � ` (�x: �1:e(x)) = e: (�x: �1:�2)8:� �;� ` �; v: k; � ` e: � � ` u: k�; � ` (�v: k:e)(u) = [u=v℄e: [u=v℄�8:� �;� ` e: (8v: k:�)�; � ` (�v: k:e(v)) = e: (8v: k:�)
9:� �; v: k; � ` �� ` u: k �; � ` e: [u=v℄��;�; z: (9v: k:�) ` �0 �; v: k; �; x: � ` e0: [(v; x)=z℄�0�;� ` (let (v; x)=(u; e) in e0) = [u; e=v; x℄e0: [(u; e)=z℄�09:� �;� ` e: (9v: k:�) �; �; z: (9v: k:�) ` e0: �0�;� ` (let (v; x)=e in [(v; x)=z℄e0) = [e=z℄e0: [e=z℄�0Referenes[Ben85℄ J. Benabou. Fibred ategories and the foundation of naive ategory the-ory. Journal of Symboli Logi, 50, 1985.[Ber89℄ S. Berardi. Type Dependeny and Construtive Mathematis. PhD thesis,Universit�a di Torino, 1989.[Car78℄ J. Cartmell. Generalized Algebrai Theories and Contextual Categories.PhD thesis, University of Oxford, 1978.[Car88℄ L. Cardelli. Phase distintion in type theory. Draft 4/1/88, DEC SRC,1988.[CH88℄ T. Coquand and G. Huet. The alulus of onstrutions. Informationand Computation, 73(2/3), 1988.[Cur89℄ P.-L. Curien. Alpha-onversion, onditions on variables and ategoriallogi. Studia Logia, 3, 1989.[Ehr88℄ T. Ehrhard. A ategorial semantis of onstrutions. In 3rd LICS Conf.IEEE, 1988.[HM88℄ R. Harper and J. Mithell. The essene of ML. In 15th POPL. ACM,1988.[HMM86℄ R. Harper, D. MaQueen, and R. Milner. Standard ML. Tehnial ReportECS-LFCS-86-2, Edinburgh Univ., Dept. of Comp. Si., 1986.38

[HMM90℄ R. Harper, J. Mithell, and E. Moggi. Higher-order modules and thephase distintion. In 17th POPL. ACM, 1990.[HP89℄ J.M.E. Hyland and A.M. Pitts. The theory of onstrutions: Categorialsemantis and topos-theoreti models. Contemporary Mathematis, 92,1989.[Ja90℄ B. Jaobs. Comprehension ategories and the semantis of type depen-deny. June 90, Dept. of Computer Siene, Univ. of Nijmegen, 1990.[KR77℄ A. Kok and G.E. Reyes. Dotrines in ategorial logi. In J. Barwise,editor, Handbook of Mathematial Logi, volume 90 of Studies in Logi.North Holland, 1977.[KS74℄ G.M. Kelly and R.H. Street. Review of the elements of 2-ategories.In A. Dold and B. Ekmann, editors, Category Seminar, volume 420 ofLeture Notes in Mathematis. Springer Verlag, 1974.[Ma71℄ S. MaLane. Categories for the Working Mathematiian. Springer Verlag,1971.[Ma85℄ D. MaQueen. Modules for standard ML. Polymorphism, 2, 1985.[Ma86℄ D. MaQueen. Using dependent types to express modular strutures. In13th POPL. ACM, 1986.[Mog89a℄ E. Moggi. A ategory-theoreti aount of program modules. In Pro-eedings of the Conferene on Category Theory and Computer Siene,Manhester, UK, Sept. 1989, volume 389 of Leture Notes in ComputerSiene. Springer Verlag, 1989.[Mog89b℄ E. Moggi. Computational lambda-alulus and monads. In 4th LICSConf. IEEE, 1989.[Mogar℄ E. Moggi. Notions of omputations as monads. Information and Compu-tation, to appear.[Moh89℄ C. Mohring. Extrating F!'s programs from proofs in the alulus ofonstrutions. In 16th POPL. ACM, 1989.[MP88℄ J.C. Mithell and G.D. Plotkin. Abstrat types have existential type.ACM Trans. on Progr. Lang. and Sys., 10(3), 1988.[MTH90℄ R. Milner, M. Tofte, and R. Harper. The De�nition of Standard ML.MIT press, 1990.[Pit89℄ A.M. Pitts. Categorial semantis of dependent types. Talk given at SRIMenlo Park and at the Logi Colloquium in Berlin, 1989.39

[Pitar℄ A.M. Pitts. Categorial logi. In Samson Abramsky, Dov M. Gabbay, andTom S. E. Maibaum, editors, Handbook of Logi in Computer Siene,Volume III, hapter 3.10. Oxford University Press, to appear.[PS78℄ R. Pare and D. Shumaher. Abstrat families and the adjoint funtortheorems. In P.T. Johnstone and R. Pare, editors, Indexed Categories andtheir Appliations, volume 661 of Leture Notes in Mathematis. SpringerVerlag, 1978.[See83℄ R.A.G. Seely. Hyperdotrines, natural dedution and the Bek ondition.Zeitshr. f. math. Logik und Grundlagen d. Math., 29, 1983.[See84℄ R.A.G. Seely. Loally artesian losed ategories and type theory. Math.Pro. Camb. Phil. So., 95, 1984.[See87℄ R.A.G. Seely. Categorial semantis for higher order polymorphi lambdaalulus. Journal of Symboli Logi, 52(2), 1987.[Str72℄ R. Street. The formal theory of monads. Journal of Pure and AppliedAlgebra, 2, 1972.[Str73℄ R. Street. Fibrations and Yoneda's lemma in a 2-ategory. In CategorySeminar, volume 420 of Leture Notes in Mathematis. Springer Verlag,1973.[Str88℄ T. Streiher. Corretness and Completeness of a Semantis of the Calu-lus of Construtions with respet to Interpretation in Dotrines of Con-strutions. PhD thesis, University of Passau, 1988.[Tay87℄ P. Taylor. Reursive Domains, Indexed Category Theory and Polymor-phism. PhD thesis, University of Cambridge, 1987.

40

