
Spill Code Minimization via Interference Region Spilling �Peter Bergnery Peter Dahlz David Engebretsen Matthew O'KeefeUniversity of MinnesotaDepartment of Electrical EngineeringMinneapolis, MN 55455bergner@vnet.ibm.comAbstractMany optimizing compilers perform global register al-location using a Chaitin-style graph coloring algorithm.Live ranges that cannot be allocated to registers arespilled to memory. The amount of code required tospill the live range depends on the spilling heuristicused. Chaitin's spilling heuristic o�ers some guidancein reducing the amount of spill code produced. How-ever, this heuristic does not allow the partial spilling oflive ranges and the reduction in spill code is limited toa local level. In this paper, we present a global tech-nique called interference region spilling that improvesthe spilling granularity of any local spilling heuristic.Our technique works above the local spilling heuristic,limiting the normal insertion of spill code to a portion ofeach spilled live range. By partially spilling live ranges,we can achieve large reductions in dynamically executedspill code; up to 75% in some cases and an average of33.6% across the benchmarks tested.1 IntroductionGlobal register allocation can be modeled as a graphcoloring problem. Nodes in the interference graph rep-resent the live ranges which need to be allocated tomachine registers. Edges between nodes specify con-straints on the allocation. Speci�cally, if two nodesare connected by an edge, then their associated live�This work was supported in part by the O�ce of Naval Researchunder grant no. N00014-94-1-0846 and grant no. N00019-95-1-0611,by the NSF through grant no. ASC-9523480, and in part by IBMGraduate Fellowships and an IBM Faculty Development Award.yCurrently with IBM Rochester.zCurrently with SGI, Mountain View CA.

ranges cannot be allocated to the same machine register.The register allocation problem then becomes: Does aproper k-coloring1 of the interference graph exist? If theinterference graph is k-colorable, then the colors can beseen as representing registers and the coloring as a validregister assignment. Although minimal graph coloringis NP-complete, fast and powerful heuristics exist thatproduce very e�cient colorings in practice [6, 3, 7].1.1 Chaitin-Style AllocatorsChaitin et al. at IBM Yorktown were the �rst to im-plement a global register allocator based on a graphcoloring algorithm [5, 6]. Chaitin's coloring heuristicis fast, simple and it relies on the following seeminglyobvious but very powerful graph theoretic property:Given a graph G and a node v such thatdegree(v) < k, thenG is k-colorable if and only ifG� v is k-colorable.This property states that no matter how the reducedgraph G�v is colored, there will always be at least onecolor left for v. Chaitin's coloring heuristic utilizes thisproperty to recursively simplify the interference graphby removing unconstrained nodes2 until the graph is ei-ther empty or all the nodes in the reduced graph areconstrained3. If the graph is empty, then Chaitin's col-oring heuristic has reduced the problem of �nding a k-coloring of the interference graph to �nding a k-coloringof the empty graph. Chaitin then re-inserts the nodesinto the graph in the reverse order that they were re-moved, giving each node a color not used by any of itsneighbors. Since each node was unconstrained when re-moved, each node is guaranteed to be colorable when itis re-inserted.1Where k equals the number of machine registers.2Nodes with degree < k.3Nodes with degree � k.

build coalesce colorsimplifyspill costs

spill code

renumber Figure 1: Flow Graph of Briggs' Allocator1.2 The Need for SpillingRegister allocation becomes di�cult when there are notenough registers for all the live ranges (i.e., the inter-ference graph is not k-colorable). Since the number ofmachine registers is �xed, a valid allocation for the in-termediate language (IL) does not exist. The problemthen is to modify the IL in such a way that its interfer-ence graph is k-colorable and the increase in programexecution time is minimized.In Chaitin-style allocators, the IL is modi�ed byspilling the live ranges of uncolorable nodes to mem-ory during portions of the program when they are notneeded. Using Chaitin's spilling heuristic, this roughlytranslates to inserting a store after each def of the liverange and a load before every use (Section 2.1 describesChaitin's spilling heuristic in more detail). A shortcom-ing of this heuristic is that it inserts spill code through-out the entire spilled live range. The live range is ei-ther entirely allocated or it is entirely spilled, no middleground exists. This spilling heuristic results in the liverange being broken into many very short live ranges,all of which are live for only one basic block (i.e., thenew live ranges do not extend across basic block bound-aries.). In fact, many of the new live ranges are live foronly a few IL statements.In this paper, we present a global technique calledinterference region spilling that improves the spillinggranularity of Chaitin's spilling heuristic4. Our tech-nique works above the local spilling heuristic, limitingthe normal insertion of spill code to a portion of eachlive range. This allows live ranges to be partially spilledso that the new live ranges produced by our techniquemay extend across basic block boundaries, maybe evenentire loops. By partially spilling live ranges, we canachieve large reductions in dynamically executed spillcode; up to 75% in some cases and an average of 33.6%across the benchmarks tested.4Our technique can actually improve the spilling granularity ofany local spilling heuristic.

2 Briggs' AllocatorBriggs et al. developed an improvement to Chaitin'sallocator when faced with a reduced graph that onlycontains constrained nodes [3]. Normally, Chaitin's al-locator would remove one of the constrained nodes fromthe graph and mark it for later spilling. However, Briggstakes this node and removes it from the graph as if itwere unconstrained, optimistically hoping there will bea color for it during the coloring phase. This spill candi-date is chosen using Chaitin's spill cost heuristic whichselects the constrained node with the smallest spill costdivided by current degree. This heuristic attempts tosatisfy the goal of minimizing spill costs while at thesame time trying to simplify the graph by reducing thedegrees of many nodes (hopefully making some of theneighboring nodes unconstrained). After the node hasbeen removed from the graph, the simpli�cation stagecontinues the process of removing unconstrained nodesor choosing another spill candidate if there are none,until the graph becomes empty.Once the interference graph has been reduced to theempty graph, Briggs re-inserts the nodes in reverse or-der of deletion, attempting to give each node a colorthat is di�erent than any of its neighbors. For uncon-strained nodes, Briggs is guaranteed to �nd a color. Forconstrained nodes, if two or more non-interfering neigh-bors have received the same color, then some color maystill be available for assignment to the constrained node.If Briggs �nds an available color, he gives the node thatcolor and continues. However, if the neighboring nodeshave been assigned all k colors, then Briggs marks thisnode for later spilling. The process of coloring the nodescontinues until all nodes have been re-inserted with acolor or marked for spilling.If all of the nodes receive a color, then the colors canbe seen as representing machine registers and the col-oring as a valid register assignment. If however, someof the nodes did not receive a color, then Briggs in-serts spill code using Chaitin's spilling heuristic for allthe live ranges whose nodes were marked for spilling.

Since spill code requires some register resources, theentire process of building, simplifying and coloring theinterference graph is repeated until no further spillingis needed. The
ow graph for Briggs' allocator is shownin Figure 1.2.1 Chaitin's Spilling HeuristicOnce we have determined which live ranges are to bespilled, we must now decide where to place the spillcode. The simplest and roughest technique is to inserta store after every def of the live range and a load be-fore every use. Although this spill-everywhere techniqueworks, it usually generates much more spill code thanis necessary. In Chaitin's spilling heuristic, he men-tions several local optimizations that can reduce theamount of spill code produced when compared to thespill-everywhere technique [6, Pages 100{101].� If a use of a live range is easy to recompute, thenit should not be reloaded, but recomputed.� If a use of a live range is \close" to its de�nition,then it is unnecessary to reload the live range atthe use.� If two uses of a live range are close, then it is un-necessary to reload the live range at the seconduse.� Live ranges whose uses are all close to their de�-nition should never be spilled.Two references to a live range are de�ned by Chaitinto be \close" if no other live range dies between them.In other words, if no new register resources are madeavailable by the death of a live range, then the load atthe second use will gain nothing and should be avoided.Spilling a live range whose uses are all close to its def-inition will not help make the interference graph moreeasily colored. Therefore, Chaitin gives these live rangesan in�nite spill cost. This ensures they are never spilled.Later work, such as Bernstein et al.'s spill-almost-everywhere [1] and Briggs et al.'s rematerialization [4]techniques further reduced the amount of spill code gen-erated. However, the drawback of all of these techniquesis that if a live range has been marked for spilling, it isspilled entirely.

3 Interference Region SpillingTo enable the partial spilling of live ranges, we intro-duce a new concept called the interference region. Fortwo interfering live ranges, we de�ne their interferenceregion to be the portion of the program where they arelive simultaneously. By eliminating (i.e., spilling) thisregion from one of the live ranges through the additionof spill code, they will no longer be live simultaneouslyanywhere in the program; thus they will no longer in-terfere. This e�ectively removes the edge between thetwo nodes in the interference graph, making the graphmore easily colored. An example of a simple interfer-ence region can be seen in Figure 2.To spill an interference region from a live range,we simply limit the insertion of normal spill code tothe uses of the live range that occur inside the inter-ference region and to the de�nition points of the liverange that can reach, in the data-
ow sense, the inter-ference region. Unlike Chaitin's and Bernstein's localspilling heuristics, our technique can reduce the num-ber of stores as well as the number of loads inserted fornon-rematerializable live ranges.In the event the spilled live range will be used againafter the interference region, as is the case in our exam-ple, we must introduce a new form of spill code to reloadthe live range back into a register for further reuse. Ifthe next use of the spilled live range after the inter-ference region is within the current basic block, thenour reloads will be inserted at the same location whereChaitin's spilling heuristic places a load. However, ifthe next use is in a successor basic block, then we willinsert a reload where Chaitin has none.This has important rami�cations when computinginterference region spill costs. Speci�cally, it may bemore expensive, in terms of weighted loads and storesto spill an interference region from a live range thanto spill the live range entirely. In the next section, wediscuss how to easily ensure interference region spillingnever generates more expensive spill code than the localspilling heuristic.Returning to our simple example, Figure 3 showswhat live range B might look like after spilling it usingChaitin's spilling heuristic, while Figure 4 shows what itmight look like after interference region spilling. Noticethat with interference region spilling and after renum-bering, the majority of B's original live range is stillintact and it no longer interferes with A.

A

B
Interference
Region

A

B
store
load

load

load

load

load

close use

A

B
store
load

reload

Figure 2: Live Ranges Figure 3: Chaitin Spilling Figure 4: IR Spilling3.1 Choosing Interference Regions to SpillNow that we are able to remove arbitrary edges fromthe interference graph by spill interference regions, thequestion becomes: which interference regions should wespill? Our solution utilizes the k-colored subgraph ofthe interference graph and the list of uncolorable nodesfrom the output of Briggs' coloring phase.In Briggs' allocator, the k-colored subgraph repre-sents the live ranges that can be fully allocated, whilethe list of uncolorable nodes represents the live rangesthat could not be fully allocated (i.e., there may havebeen some register resources available, but none weresu�cient to entirely satisfy their needs). With inter-ference region spilling, we re�ne the meaning of the k-colored subgraph to represent the live ranges that canbe fully or partially allocated. We start with the k-colored subgraph produced by Briggs and we attemptto increase its size by attaching onto the subgraph eachof the uncolorable nodes, such that the enlarged sub-graph is still k-colorable. Since these nodes are uncol-orable, we cannot include all of their edges. For eachuncolorable node, we group its edges into k sets { oneset for each color { where each set contains the edgesthat lead to neighboring nodes with the same color. Acolor is then chosen that minimizes spill costs, and theset of edges associated with that color are not insertedback into the graph with the node. By not insertingthe edges from one of the sets, we have made availablea color with which that node can be colored. The edgesnot inserted represent the interference regions we mustspill.

By increasing the size of the k-colored subgraph, weare allowing portions of live ranges that were spilledby Chaitin's spilling heuristic to be allocated, thus re-ducing the amount of spill code for each spilled liverange. An important consequence of interference regionspilling is that we insert a subset of the loads and storesgenerated by Chaitin's spilling heuristic working alone,meaning any load or store we insert will be inserted byChaitin's heuristic, while some loads and stores Chaitininserts may not be inserted by our technique. How-ever, our technique may also insert some reloads whichChaitin's spilling heuristic does not insert. Therefore,the amount of spill code reduction, if any, depends onthe number of uses of the live range that lie outside thespilled interference regions, plus the number of de�ni-tion points that do not reach those interference regions,minus any reloads we are forced to insert5.In the event the interference region covers the en-tire live range, then our technique reduces to Chaitin'sspilling heuristic. However, if we insert any reloads, itmay actually be cheaper (in terms of weighted loads andstores) to spill the entire live range. However, since ourheuristic works on top of Chaitin's spilling heuristic, wecan simply revert to using Chaitin's spilling heuristicfor any live range which is less expensive to spill en-tirely than it is to spill any of its interference regions.Therefore, for a given spilling decision, we are guaran-teed never to produce more spill code than Chaitin'sspilling heuristic working alone.5Actually, only reloads which are inserted in locations whereChaitin's spilling heuristic has not inserted a load count against us.

A = input();

B = A + 1;

if (A) {

 C = A + 2;

 B = A + C;

 if (C) {

 B = B + C;

 C = B + C;

 }

}

 A = B + C;

D = A + B;

D

A B

C

node costA 8B 12C 12D 1
Figure 5: Code Example Figure 6: Interference Graph Figure 7: Spill Costs3.2 Interference Region Spilling ExampleTo demonstrate the e�ectiveness of interference regionspilling, we present a simple example to compare thespill code generated by interference region spilling ver-sus Chaitin's spilling heuristic. The code example andits corresponding interference graph are shown in Fig-ures 5 and 6. In this example, we will attempt a 2-coloring using the spill costs6 given in Figure 7.

DC

BA

Figure 8: 2-Colored Sub-GraphAfter Briggs' coloring phase has �nished, we are leftwith the 2-colored subgraph shown in Figure 8 and theuncolored live range A. Normally we would spill the liverange A using Chaitin's spilling heuristic resulting inthe code in Figure 10. However with interference regionspilling, we �rst insert the uncolorable node A back intothe graph. Now we must make A colorable by choosinga color for it and removing all of its edges leading toneighboring nodes with that color. For our example, we6In Briggs' spill cost phase, loads and stores are charged a cost of2 versus 1 for rematerializable instructions [2].

DC

BA

Figure 9: Spilling A$Chave two choices. We may either omit the edge A$B orwe can omit the edge A$C.The estimated spill cost of spilling interference re-gion A$C is less than the cost of spilling interferenceregion A$B (1 store + 1 load vs. 2 stores + 1 load +1 reload), so we omit this edge from the graph givingus the enlarged 2-colored subgraph shown in Figure 9.The code resulting from spilling interference region A$Cfrom live range A is shown in Figure 11.Once spilling is completed, we need to recomputelive ranges and rebuild the interference graph so thatwe can attempt another coloring. However, for this ex-ample, we will �nd that the new interference graphsfor the codes in Figures 10 and 11 are both 2-colorableand further spilling is not necessary. Therefore, the �-nal result is that interference region spilling inserted 1store and 1 load of live range A while Chaitin's spillingheuristic generated 2 stores and 2 loads. This is a 50%reduction in total spill code for this example.

A = input();store A;B = A + 1;if (A) fload A1;C = A1 + 2;B = A1 + C;if (C) fB = B + C;C = B + C;gA2 = B + C;store A2;gload A3;D = A3 + B;

A = input();store A;B = A + 1;if (A) fload A1;C = A1 + 2;B = A1 + C;if (C) fB = B + C;C = B + C;gA = B + C;gD = A + B;Figure 10: After Spilling A Entirely Figure 11: After Spilling A$C3.3 Implementation DetailsTo implement interference region spilling, we modi�edBriggs' allocator in two ways. First, we added an addi-tional interference region spill costs stage that, for eachspilled live range, determines whether we should spillthe entire live range or which set of interference regionswe need to spill. This stage attempts to choose the in-terference regions that will minimize the amount of spillcode needed.Secondly, the spill code stage was modi�ed to limitthe insertion of spill code to the uses inside the spilledinterference regions and to the loads needed to reloadthe live range for any further uses outside the interfer-ence regions. We also altered this stage so that onlyde�nition points that reach the new loads and reloadswill have stores inserted for them. Figure 12 shows the
ow graph for Briggs' allocator modi�ed with interfer-ence region spilling.In Briggs' implementation of Chaitin's spilling heuris-tic, a single pass is made over the control
ow graphand each instruction in the block is visited in reverseorder. As each instruction is visited, the instructionoperands are examined to determine whether any spillloads or spill stores are needed. Three sets are uti-lized: live indicates which live ranges are currentlylive, markedLR contains the live ranges that have beenmarked for spilling and needLoad speci�es all the liveranges which have been marked for spilling and havebeen used since the last death.

foreachBasicBlock(CFG, blk) fcopySet(live, blk->liveOut);clearSet(needLoad);foreachMember(markedLR, reg) f< init range[reg].numLiveNeighbors info >if (member?(live, reg) &&!range[reg].spillEntirely &&range[reg].numLiveNeighbors == 0)addMember(needReload, reg);g// Scan instructions from bottom to top...foreachInsnB2T(blk, insn) f< handle de�nitions of insn >< check for deaths in insn >< handle uses of insn >g// Add loads at top of blockforeachMember(needLoad, reg)< insert load of reg >// Add some reloads at top of blockforeachMember(needReload, reg)if (at IR boundary for reg)< insert reload of reg >g< insert stores for defs that reach the new loads/reloads >Figure 13: Interference Region Spill Code

build coalesce colorsimplifyspill costsrenumber

interference
region spill code

interference
region spill costs

Figure 12: Briggs' Allocator Modi�ed with Interference Region SpillingOur implementation of interference region spillingbuilds upon this framework in several ways. We haveadded three new �elds to Briggs' range structure. Therange[reg].spillEntirely �eld indicates whether alive range is cheaper to spill entirely or spill partially. Ifa live range is partially spilled, range[reg].spillColorspeci�es the interference regions that need to be spilled(i.e., the interference regions associated with edges lead-ing to neighboring nodes that were assigned the colorrange[reg].spillColor). To easily detect when aninterference region boundary is encountered, we incre-mentally update the range[reg].numLiveNeighbors�eld to count the number of neighbors that are assignedthe color range[reg].spillColor and that are cur-rently live. Since reloads are inserted at interference re-gion boundaries, a needReload set was added to trackthe live ranges that have been marked for spilling buthave only been used outside of any spilled interferenceregion.While scanning the de�nitions, Briggs' implementa-tion updates the live and needLoad sets and insertsstores for de�nitions of spilled live ranges. With in-terference region spilling, we include an update of theneedReload set and delay the insertion of stores untiluntil all loads and reloads have been inserted.// Handle definitions of insnforeachDefinedReg(insn, reg) f< update range[: : :].numLiveNeighbors info >deleteMember(needLoad, reg);deleteMember(needReload, reg);deleteMember(live, reg);g Figure 14: Handle De�nitionsIn Briggs' implementation of Chaitin's spilling heuris-tic, if a death is detected, loads are inserted for everyspilled live range that has been used since the last death(i.e., members of needLoad). With interference regionspilling, we also need to insert reloads if this death

is an interference region boundary for any member ofneedReload.// Insert loads/reloads only at deaths: : :foreachUsedReg(insn, reg) fif (!member?(live, reg)) fcolor = range[reg].color;foreachMember(needReload, mem)if (color == range[mem].spillColor &&range[mem].numLiveNeighbors == 0 &&interfere(reg, mem)) f< insert reload of mem >deleteMember(needReload, mem);gforeachMember(needLoad, mem)< insert load of mem >clearSet(needLoad);gg Figure 15: Check for DeathsFinally, after any loads and reloads have been in-serted, the live, needLoad and needReload sets needto be updated. If a used live range is a member ofmarkedLR, then it is added to the needLoad set if ischeaper to spill entirely or this use occurred within aspilled interference region. Otherwise, if the live rangeis not already a member of needLoad, it is added to theneedReload set.An important question with regard to interferenceregion spilling is how much e�ect does it have on alloca-tion time when compared to Chaitin's spilling heuristic.Currently, we only have limited allocation time mea-surements comparing interference region spilling andChaitin's spilling heuristic. Preliminary data compilingtomcatv indicates that the increase in register alloca-tion time due to interference region spilling is approx-imately 20 - 40%. However, analyzing our implemen-tation, we believe tuning can reduce this performancepenalty. The modi�cations to Briggs' allocator havebeen localized to the spilling phase, which means that

// Handle uses of insnforeachUsedReg(insn, reg) fif (member?(markedLR, reg)) fif (range[reg].spillEntirely ||range[reg].numLiveNeighbors != 0)addMember(needLoad, reg);else if (!member?(needLoad, reg))addMember(needReload, reg);g else if (!member?(live, reg))< update range[: : :].numLiveNeighbors info >addMember(live, reg);g Figure 16: Handle Usesthe allocation time for routines that do not need anyspilling is unchanged. For routines that require spillcode, we now must compute interference region spillcosts. However, we need only compute these for liveranges that have been marked for spilling.4 ResultsIn order to experiment with our spill code minimiza-tion heuristics, we have modi�ed a version of the GNUC compiler (gcc version 2.7.2 targeted to a MIPS IIprocessor) to contain our implementation of Briggs' op-timistic coloring allocator. We then modi�ed Briggs' al-locator so that we can choose between the normal spillcode stage which uses Chaitin's spilling heuristic andour new spill code stage which uses interference regionspilling. We then compiled several integer and
oat-ing point intensive programs from the SPEC 92 suiteof benchmarks. To simulate varying levels of registerpressure, we compiled each benchmark multiple timesvarying the number of registers available to the registerallocator. To accurately measure the amount of exe-cuted spill code, a MIPS II instruction level simulatorwas used to count the spill code that was inserted byour spilling phases.Our results are given in Table 17. The �rst twocolumns of the table specify the benchmark compiledand the number of registers available for allocation7.The third and fourth columns give results using Briggs'implementation of Chaitin's spilling heuristic[2]. Col-umn 3 shows the dynamic spill cost which is computedby counting each spill instruction executed8 and column4 shows the percentage of all instructions executed that7Here, \8" registers indicates 8 integer and 8
oating point regis-ters were used for allocation. Note the MIPS II ISA only contains 16usable
oating point registers.8Spill loads and stores are weighted twice as much as simple re-materialized spill instructions.

were spill code. The �fth and sixth columns give thesame information as columns 3 and 4 for interferenceregion spilling. The next three columns show the per-cent improvement in terms of dynamic spill costs forloads, stores and rematerialized instructions. Finally,the last two columns show the percent reduction in dy-namic spill code executed and execution time9.For example, the �rst row of data shows we compiledthe benchmark compress, allowing the allocator only8 registers for coloring. The spill cost using Chaitin'sspilling heuristic was 128 million weighted spill instruc-tions executed and 19.5% of all instructions executedwere spill instructions. For interference region spilling,our dynamic spill cost dropped to 63 million weightedspill instructions, which now comprise only 11.7% of allinstructions executed. This gives us a 51.2% reductionin spill code and an 18.6% execution time improvement.Note that all percentages less than one tenth of one per-cent have been left blank and register �le sizes for whichspill code comprised less than one percent of all instruc-tions executed have been omitted.Examining these results, we notice that although in-terference region spilling is not guaranteed to generateless spill code than Chaitin's spilling heuristic, for ev-ery benchmark compiled, interference region spilling al-ways produced better spill code than Chaitin's spillingheuristic. Secondly, interference region spilling aver-aged a 33.6% reduction in dynamic spill costs and an8.3% improvement in execution time over all of thebenchmarks compiled.5 ConclusionWe have introduced a new �ne granularity spilling tech-nique called interference region spilling that can sig-ni�cantly reduce the amount of spill code generatedin Chaitin-style graph coloring register allocators. In-terference region spilling relies on our de�nition of aninterference region, which speci�es the portion of theprogram where two interfering live ranges are live si-multaneously. Spilling this region from one of the liveranges breaks their interference, allowing them to be al-located to the same register. The results demonstratethe e�ectiveness of interference region spilling. Com-paring against Chaitin's spilling heuristic, interferenceregion spilling reduced dynamic spill costs an averageof 33.6% across all register �les sizes and benchmarkstested and up to 75% in some cases. Our results alsoindicate that under heavy register pressure, interfer-ence region spilling signi�cantly outperforms Chaitin'sspilling heuristic.9Timings were taken on an MIPS R5000. Data shown is an averageof 10 trials.

Program # Regs Dynamic Spill Costs Percentage ReductionChaitin % total IR Spill % total load store remat Total Spill Run TimeCompress 8 128222726 19.5 62578192 11.7 51.2 51.2 18.6%12 128222726 19.5 62578192 11.8 51.2 51.2 16.1%16 128222726 19.5 62578192 11.7 51.2 51.2 16.4%20 26421276 6.6 26421272 6.6 0.5%Espresso 8 966806867 14.9 763558471 12.0 16.9 -0.4 4.5 21.0 6.8%12 733166332 12.0 502212430 8.7 27.6 0.5 3.4 31.5 8.7%16 563277100 9.7 334234983 6.1 35.2 0.1 5.4 40.7 6.7%20 99429247 2.0 74511956 1.5 24.1 1.0 25.1 0.9%Li 8 2330448245 39.6 1470516987 29.5 35.6 1.3 36.9 9.0%12 2340525803 41.4 1465031307 30.4 36.1 1.3 37.4 9.3%16 2345019255 42.5 1465032073 30.7 36.3 1.3 37.5 8.8%20 142346501 3.8 119978216 2.9 0.1 15.7 15.7 -0.1%Alvinn 8 1824793308 46.2 463650268 17.9 74.6 74.6 15.0%12 1817620508 46.1 458937468 17.8 74.8 74.8 13.5%16 1816336508 46.1 457653468 17.7 74.8 74.8 15.7%Tomcatv 8 2154304766 42.1 2121383158 41.7 1.2 0.3 1.5 0.0%12 1321829706 31.7 1262873006 30.1 2.0 -1.0 3.5 4.5 7.7%16 580301462 18.7 501863262 16.2 4.5 2.2 6.8 13.5 10.7%20 404606462 14.2 365004062 12.6 3.2 6.6 9.7 1.1%24 261551462 10.7 208587562 8.3 5.1 15.2 20.3 0.0%28 261551462 10.7 208587562 8.3 5.1 15.2 20.3 0.0%32 261551462 10.7 208587562 8.3 5.1 15.2 20.3 0.0%Figure 17: SPEC'92 BenchmarksReferences[1] Bernstein, D., Goldin, D. Q., Golumbic,M. C., Krawczyk, H., Mansour, Y., Nahshon,I., and Pinter, R. Y. Spill code minimizationtechniques for optimizing compilers. SIGPLAN No-tices 24, 7 (July 1989), 258{263. Proceedings of theACM SIGPLAN '89 Conference on ProgrammingLanguage Design and Implementation.[2] Briggs, P. Register allocation via graph coloring.Ph.D. Thesis Rice COMP TR92-183, Department ofComputer Science, Rice University, 1992.[3] Briggs, P., Cooper, K. D., Kennedy, K., andTorczon, L. Coloring heuristics for register alloca-tion. SIGPLAN Notices 24, 7 (July 1989), 275{284.Proceedings of the ACM SIGPLAN '89 Conferenceon Programming Language Design and Implementa-tion.[4] Briggs, P., Cooper, K. D., and Torczon, L.Rematerialization. SIGPLAN Notices 27, 7 (July1992), 311{321. Proceedings of the ACM SIGPLAN'92 Conference on Programming Language Designand Implementation.[5] Chaitin, G., Auslander, M., Chandra, A.,Cocke, J., Hopkins, M., and Markstein, P.

Register allocation via coloring. Computer Lan-guages 6 (1981), 47{57.[6] Chaitin, G. J. Register allocation and spillingvia graph coloring. SIGPLAN Notices 17, 6 (June1982), 98{105. Proceedings of the ACM SIGPLAN'82 Symposium on Compiler Construction.[7] Chow, F. C., and Hennessy, J. L. The priority-based coloring approach to register allocation. ACMTrans. Program. Lang. Syst. 12, 4 (Oct. 1990), 501{536.

