Spill Code Minimization via Interference Region Spilling *

Peter Bergner! Peter Dahl* David Engebretsen Matthew O’Keefe

University of Minnesota

Department of Electrical Engineering
Minneapolis, MN 55455

bergner@vnet.ibm.com

Abstract

Many optimizing compilers perform global register al-
location using a Chaitin-style graph coloring algorithm.
Live ranges that cannot be allocated to registers are
spilled to memory. The amount of code required to
spill the live range depends on the spilling heuristic
used. Chaitin’s spilling heuristic offers some guidance
in reducing the amount of spill code produced. How-
ever, this heuristic does not allow the partial spilling of
live ranges and the reduction in spill code is limited to
a local level. In this paper, we present a global tech-
nique called interference region spilling that improves
the spilling granularity of any local spilling heuristic.
Our technique works above the local spilling heuristic,
limiting the normal insertion of spill code to a portion of
each spilled live range. By partially spilling live ranges,
we can achieve large reductions in dynamically executed
spill code; up to 75% in some cases and an average of
33.6% across the benchmarks tested.

1 Introduction

Global register allocation can be modeled as a graph
coloring problem. Nodes in the interference graph rep-
resent the live ranges which need to be allocated to
machine registers. Edges between nodes specify con-
straints on the allocation. Specifically, if two nodes
are connected by an edge, then their associated live

*This work was supported in part by the Office of Naval Research
under grant no. N00014-94-1-0846 and grant no. N00019-95-1-0611,
by the NSF through grant no. ASC-9523480, and in part by IBM
Graduate Fellowships and an IBM Faculty Development Award.

iCurrently with IBM Rochester.

fCurrently with SGI, Mountain View CA.

ranges cannot be allocated to the same machine register.
The register allocation problem then becomes: Does a
proper k-coloring! of the interference graph exist? If the
interference graph is k-colorable, then the colors can be
seen as representing registers and the coloring as a valid
register assignment. Although minimal graph coloring
is NP-complete, fast and powerful heuristics exist that
produce very efficient colorings in practice [6, 3, 7].

1.1 Chaitin-Style Allocators

Chaitin et al. at IBM Yorktown were the first to im-
plement a global register allocator based on a graph
coloring algorithm [5, 6]. Chaitin’s coloring heuristic
is fast, simple and it relies on the following seemingly
obvious but very powerful graph theoretic property:

Given a graph G and a node v such that
degree(v) < k, then G is k-colorable if and only if
G — v is k-colorable.

This property states that no matter how the reduced
graph G — v is colored, there will always be at least one
color left for ». Chaitin’s coloring heuristic utilizes this
property to recursively simplify the interference graph
by removing unconstrained nodes? until the graph is ei-
ther empty or all the nodes in the reduced graph are
constrained?®. If the graph is empty, then Chaitin’s col-
oring heuristic has reduced the problem of finding a k-
coloring of the interference graph to finding a k-coloring
of the empty graph. Chaitin then re-inserts the nodes
into the graph in the reverse order that they were re-
moved, giving each node a color not used by any of its
neighbors. Since each node was unconstrained when re-
moved, each node is guaranteed to be colorable when it
is re-inserted.

'Where k equals the number of machine registers.
2Nodes with degree < k.
3Nodes with degree > k.

spill code

A
J

Y

build

A 4

renumber coalesce

Y

Y

Y

spill costs simplify color

Figure 1: Flow Graph of Briggs’ Allocator

1.2 The Need for Spilling

Register allocation becomes difficult when there are not
enough registers for all the live ranges (i.e., the inter-
ference graph is not k-colorable). Since the number of
machine registers is fixed, a valid allocation for the in-
termediate language (IL) does not exist. The problem
then is to modify the IL in such a way that its interfer-
ence graph is k-colorable and the increase in program
execution time is minimized.

In Chaitin-style allocators, the IL is modified by
spilling the live ranges of uncolorable nodes to mem-
ory during portions of the program when they are not
needed. Using Chaitin’s spilling heuristic, this roughly
translates to inserting a store after each def of the live
range and a load before every use (Section 2.1 describes
Chaitin’s spilling heuristic in more detail). A shortcom-
ing of this heuristic is that it inserts spill code through-
out the entire spilled live range. The live range is ei-
ther entirely allocated or it is entirely spilled, no middle
ground exists. This spilling heuristic results in the live
range being broken into many very short live ranges,
all of which are live for only one basic block (i.e., the
new live ranges do not extend across basic block bound-
aries.). In fact, many of the new live ranges are live for
only a few IL statements.

In this paper, we present a global technique called
interference region spilling that improves the spilling
granularity of Chaitin’s spilling heuristic*. Our tech-
nique works above the local spilling heuristic, limiting
the normal insertion of spill code to a portion of each
live range. This allows live ranges to be partially spilled
so that the new live ranges produced by our technique
may extend across basic block boundaries, maybe even
entire loops. By partially spilling live ranges, we can
achieve large reductions in dynamically executed spill
code; up to 75% in some cases and an average of 33.6%
across the benchmarks tested.

40ur technique can actually improve the spilling granularity of
any local spilling heuristic.

2 Briggs’ Allocator

Briggs et al. developed an improvement to Chaitin’s
allocator when faced with a reduced graph that only
contains constrained nodes [3]. Normally, Chaitin’s al-
locator would remove one of the constrained nodes from
the graph and mark it for later spilling. However, Briggs
takes this node and removes it from the graph as if it
were unconstrained, optimistically hoping there will be
a color for it during the coloring phase. This spill candi-
date is chosen using Chaitin’s spill cost heuristic which
selects the constrained node with the smallest spill cost
divided by current degree. This heuristic attempts to
satisfy the goal of minimizing spill costs while at the
same time trying to simplify the graph by reducing the
degrees of many nodes (hopefully making some of the
neighboring nodes unconstrained). After the node has
been removed from the graph, the simplification stage
continues the process of removing unconstrained nodes
or choosing another spill candidate if there are none,
until the graph becomes empty.

Once the interference graph has been reduced to the
empty graph, Briggs re-inserts the nodes in reverse or-
der of deletion, attempting to give each node a color
that is different than any of its neighbors. For uncon-
strained nodes, Briggs is guaranteed to find a color. For
constrained nodes, if two or more non-interfering neigh-
bors have received the same color, then some color may
still be available for assignment to the constrained node.
If Briggs finds an available color, he gives the node that
color and continues. However, if the neighboring nodes
have been assigned all k colors, then Briggs marks this
node for later spilling. The process of coloring the nodes
continues until all nodes have been re-inserted with a
color or marked for spilling.

If all of the nodes receive a color, then the colors can
be seen as representing machine registers and the col-
oring as a valid register assignment. If however, some
of the nodes did not receive a color, then Briggs in-
serts spill code using Chaitin’s spilling heuristic for all
the live ranges whose nodes were marked for spilling.

Since spill code requires some register resources, the
entire process of building, simplifying and coloring the
interference graph is repeated until no further spilling
is needed. The flow graph for Briggs’ allocator is shown
in Figure 1.

2.1 Chaitin’s Spilling Heuristic

Once we have determined which live ranges are to be
spilled, we must now decide where to place the spill
code. The simplest and roughest technique is to insert
a store after every def of the live range and a load be-
fore every use. Although this spill-everywhere technique
works, it usually generates much more spill code than
is necessary. In Chaitin’s spilling heuristic, he men-
tions several local optimizations that can reduce the
amount of spill code produced when compared to the
spill-everywhere technique [6, Pages 100-101].

e If a use of a live range is easy to recompute, then
it should not be reloaded, but recomputed.

e If a use of a live range is “close” to its definition,
then it is unnecessary to reload the live range at
the use.

e If two uses of a live range are close, then it is un-
necessary to reload the live range at the second
use.

e Live ranges whose uses are all close to their defi-
nition should never be spilled.

Two references to a live range are defined by Chaitin
to be “close” if no other live range dies between them.
In other words, if no new register resources are made
available by the death of a live range, then the load at
the second use will gain nothing and should be avoided.
Spilling a live range whose uses are all close to its def-
inition will not help make the interference graph more
easily colored. Therefore, Chaitin gives these live ranges
an infinite spill cost. This ensures they are never spilled.

Later work, such as Bernstein et al.’s spill-almost-
everywhere [1] and Briggs et al’s rematerialization [4]
techniques further reduced the amount of spill code gen-
erated. However, the drawback of all of these techniques
is that if a live range has been marked for spilling, it is
spilled entirely.

3 Interference Region Spilling

To enable the partial spilling of live ranges, we intro-
duce a new concept called the interference region. For
two interfering live ranges, we define their interference
region to be the portion of the program where they are
live simultaneously. By eliminating (i.e., spilling) this
region from one of the live ranges through the addition
of spill code, they will no longer be live simultaneously
anywhere in the program; thus they will no longer in-
terfere. This effectively removes the edge between the
two nodes in the interference graph, making the graph
more easily colored. An example of a simple interfer-
ence region can be seen in Figure 2.

To spill an interference region from a live range,
we simply limit the insertion of normal spill code to
the uses of the live range that occur inside the inter-
ference region and to the definition points of the live
range that can reach, in the data-flow sense, the inter-
ference region. Unlike Chaitin’s and Bernstein’s local
spilling heuristics, our technique can reduce the num-
ber of stores as well as the number of loads inserted for
non-rematerializable live ranges.

In the event the spilled live range will be used again
after the interference region, as is the case in our exam-
ple, we must introduce a new form of spill code to reload
the live range back into a register for further reuse. If
the next use of the spilled live range after the inter-
ference region is within the current basic block, then
our reloads will be inserted at the same location where
Chaitin’s spilling heuristic places a load. However, if
the next use is in a successor basic block, then we will
insert a reload where Chaitin has none.

This has important ramifications when computing
interference region spill costs. Specifically, it may be
more expensive, in terms of weighted loads and stores
to spill an interference region from a live range than
to spill the live range entirely. In the next section, we
discuss how to easily ensure interference region spilling
never generates more expensive spill code than the local
spilling heuristic.

Returning to our simple example, Figure 3 shows
what live range B might look like after spilling it using
Chaitin’s spilling heuristic, while Figure 4 shows what it
might look like after interference region spilling. Notice
that with interference region spilling and after renum-
bering, the majority of B’s original live range is still
intact and it no longer interferes with A.

8 |

Interference
Region

Figure 2: Live Ranges

<— Store
<«— load

<«— load

<«— load
<«— Closeuse
<«— load

I 000 000

<«— load

Figure 3: Chaitin Spilling

[«— store
— +— load

<«— reload

Figure 4: IR Spilling

3.1 Choosing Interference Regions to Spill

Now that we are able to remove arbitrary edges from
the interference graph by spill interference regions, the
question becomes: which interference regions should we
spill? Our solution utilizes the k-colored subgraph of
the interference graph and the list of uncolorable nodes
from the output of Briggs’ coloring phase.

In Briggs’ allocator, the k-colored subgraph repre-
sents the live ranges that can be fully allocated, while
the list of uncolorable nodes represents the live ranges
that could not be fully allocated (i.e., there may have
been some register resources available, but none were
sufficient to entirely satisfy their needs). With inter-
ference region spilling, we refine the meaning of the k-
colored subgraph to represent the live ranges that can
be fully or partially allocated. We start with the k-
colored subgraph produced by Briggs and we attempt
to increase its size by attaching onto the subgraph each
of the uncolorable nodes, such that the enlarged sub-
graph is still k-colorable. Since these nodes are uncol-
orable, we cannot include all of their edges. For each
uncolorable node, we group its edges into k sets — one
set for each color where each set contains the edges
that lead to neighboring nodes with the same color. A
color is then chosen that minimizes spill costs, and the
set of edges associated with that color are not inserted
back into the graph with the node. By not inserting
the edges from one of the sets, we have made available
a color with which that node can be colored. The edges
not inserted represent the interference regions we must
spill.

By increasing the size of the k-colored subgraph, we
are allowing portions of live ranges that were spilled
by Chaitin’s spilling heuristic to be allocated, thus re-
ducing the amount of spill code for each spilled live
range. An important consequence of interference region
spilling is that we insert a subset of the loads and stores
generated by Chaitin’s spilling heuristic working alone,
meaning any load or store we insert will be inserted by
Chaitin’s heuristic, while some loads and stores Chaitin
inserts may not be inserted by our technique. How-
ever, our technique may also insert some reloads which
Chaitin’s spilling heuristic does not insert. Therefore,
the amount of spill code reduction, if any, depends on
the number of uses of the live range that lie outside the
spilled interference regions, plus the number of defini-
tion points that do not reach those interference regions,
minus any reloads we are forced to insert®.

In the event the interference region covers the en-
tire live range, then our technique reduces to Chaitin’s
spilling heuristic. However, if we insert any reloads, it
may actually be cheaper (in terms of weighted loads and
stores) to spill the entire live range. However, since our
heuristic works on top of Chaitin’s spilling heuristic, we
can simply revert to using Chaitin’s spilling heuristic
for any live range which is less expensive to spill en-
tirely than it is to spill any of its interference regions.
Therefore, for a given spilling decision, we are guaran-
teed never to produce more spill code than Chaitin’s
spilling heuristic working alone.

5Actually, only reloads which are inserted in locations where
Chaitin’s spilling heuristic has not inserted a load count against us.

A = input();
B=A+1;
if CA)A{
C=A+ 2
B=A+C
it (C) {
B=B+ C
C=B+ C
}
A =B+ C
}
D=A+ B

Figure 5: Code Example

Figure 6: Interference Graph

A 8
B 12
C 12
D 00

Figure 7: Spill Costs

3.2 Interference Region Spilling Example

To demonstrate the effectiveness of interference region
spilling, we present a simple example to compare the
spill code generated by interference region spilling ver-
sus Chaitin’s spilling heuristic. The code example and
its corresponding interference graph are shown in Fig-
ures 5 and 6. In this example, we will attempt a 2-
coloring using the spill costs® given in Figure 7.

Figure 8: 2-Colored Sub-Graph

After Briggs’ coloring phase has finished, we are left
with the 2-colored subgraph shown in Figure 8 and the
uncolored live range A. Normally we would spill the live
range A using Chaitin’s spilling heuristic resulting in
the code in Figure 10. However with interference region
spilling, we first insert the uncolorable node A back into
the graph. Now we must make A colorable by choosing
a color for it and removing all of its edges leading to
neighboring nodes with that color. For our example, we

SIn Briggs’ spill cost phase, loads and stores are charged a cost of
2 versus 1 for rematerializable instructions [2].

®@ O

Figure 9: Spilling A<>C

have two choices. We may either omit the edge A<+B or
we can omit the edge A<C.

The estimated spill cost of spilling interference re-
gion A<C is less than the cost of spilling interference
region A<B (1 store + 1 load vs. 2 stores + 1 load +
1 reload), so we omit this edge from the graph giving
us the enlarged 2-colored subgraph shown in Figure 9.
The code resulting from spilling interference region A«<+C
from live range A is shown in Figure 11.

Once spilling is completed, we need to recompute
live ranges and rebuild the interference graph so that
we can attempt another coloring. However, for this ex-
ample, we will find that the new interference graphs
for the codes in Figures 10 and 11 are both 2-colorable
and further spilling is not necessary. Therefore, the fi-
nal result is that interference region spilling inserted 1
store and 1 load of live range A while Chaitin’s spilling
heuristic generated 2 stores and 2 loads. This is a 50%
reduction in total spill code for this example.

A = input();

store A;
B=A+1;
if (A) {
load A;;
C=A + 2;
B=A1+C;
if (C) {
B =B+ C;
C =B + C;
}
A, =B + C;
store As;
}
load Aj;
D = A3 + B;

Figure 10: After Spilling A Entirely

A = input();
store A;
B=A+1;
if (A){
load A;;
C=A + 2;
B=A1+C;
if (C) {
B =B+ C;
C =B + C;
}
A =B + C;
}
D = A + B;

Figure 11: After Spilling A<~C

3.3 Implementation Details

To implement interference region spilling, we modified
Briggs’ allocator in two ways. First, we added an addi-
tional interference region spill costs stage that, for each
spilled live range, determines whether we should spill
the entire live range or which set of interference regions
we need to spill. This stage attempts to choose the in-
terference regions that will minimize the amount of spill
code needed.

Secondly, the spill code stage was modified to limit
the insertion of spill code to the uses inside the spilled
interference regions and to the loads needed to reload
the live range for any further uses outside the interfer-
ence regions. We also altered this stage so that only
definition points that reach the new loads and reloads
will have stores inserted for them. Figure 12 shows the
flow graph for Briggs’ allocator modified with interfer-
ence region spilling.

In Briggs’ implementation of Chaitin’s spilling heuris-
tic, a single pass is made over the control flow graph
and each instruction in the block is visited in reverse
order. As each instruction is visited, the instruction
operands are examined to determine whether any spill
loads or spill stores are needed. Three sets are uti-
lized: live indicates which live ranges are currently
live, markedLR contains the live ranges that have been
marked for spilling and needLoad specifies all the live
ranges which have been marked for spilling and have
been used since the last death.

foreachBasicBlock(CFG, blk) {

copySet(live, blk->liveOut);
clearSet(needLoad) ;
foreachMember (markedLR, reg) {

< init range[reg] .numLiveNeighbors info >

if (member?(live, reg) &&

'range[reg] .spillEntirely &&
range[reg] .numLiveNeighbors == 0)
addMember (needReload, reg);

}
// Scan instructions from bottom to top...
foreachInsnB2T(blk, insn) {

< handle definitions of insn >

< check for deaths in insn >

< handle uses of insn >
}
// Add loads at top of block
foreachMember (needLoad, reg)

< insert load of reg >
// Add some reloads at top of block
foreachMember (needReload, reg)

if (at IR boundary for reg)

< insert reload of reg >

}

< insert stores for defs that reach the new loads/reloads >

Figure 13: Interference Region Spill Code

interference |
region spill code |

interference
region spill costs

[b

build

\

\

coalesce

Y

Y

renumber

Y

spill costs simplify color

Figure 12: Briggs’ Allocator Modified with Interference Region Spilling

Our implementation of interference region spilling
builds upon this framework in several ways. We have
added three new fields to Briggs’ range structure. The
range[reg] .spillEntirely field indicates whether a
live range is cheaper to spill entirely or spill partially. If
a live range is partially spilled, range [reg] . spillColor
specifies the interference regions that need to be spilled
(i.e., the interference regions associated with edges lead-
ing to neighboring nodes that were assigned the color
range [reg] .spillColor). To easily detect when an
interference region boundary is encountered, we incre-
mentally update the range[reg].numLiveNeighbors
field to count the number of neighbors that are assigned
the color rangelreg].spillColor and that are cur-
rently live. Since reloads are inserted at interference re-
gion boundaries, a needReload set was added to track
the live ranges that have been marked for spilling but
have only been used outside of any spilled interference
region.

While scanning the definitions, Briggs’ implementa-
tion updates the 1live and needLoad sets and inserts
stores for definitions of spilled live ranges. With in-
terference region spilling, we include an update of the
needReload set and delay the insertion of stores until
until all loads and reloads have been inserted.

// Handle definitions of insn
foreachDefinedReg(insn, reg) {
< update rangel[...] .numLiveNeighbors info >
deleteMember (needLoad, reg);
deleteMember (needReload, reg);
deleteMember(live, reg);

Figure 14: Handle Definitions

In Briggs’ implementation of Chaitin’s spilling heuris-
tic, if a death is detected, loads are inserted for every
spilled live range that has been used since the last death
(i.e., members of needLoad). With interference region
spilling, we also need to insert reloads if this death

is an interference region boundary for any member of
needReload.

// Insert loads/reloads only at deaths...
foreachUsedReg(insn, reg) {
if ('member?(live, reg)) {
color = rangel[reg].color;
foreachMember (needReload, mem)
if (color == range[mem].spillColor &&
range [mem] .numLiveNeighbors == 0 &&
interfere(reg, mem)) {
< insert reload of mem >
deleteMember (needReload, mem);
}
foreachMember (needLoad, mem)
< insert load of mem >

clearSet (needLoad) ;

Figure 15: Check for Deaths

Finally, after any loads and reloads have been in-
serted, the live, needLoad and needReload sets need
to be updated. If a used live range is a member of
markedLR, then it is added to the needLoad set if is
cheaper to spill entirely or this use occurred within a
spilled interference region. Otherwise, if the live range
is not already a member of needLoad, it is added to the
needReload set.

An important question with regard to interference
region spilling is how much effect does it have on alloca-
tion time when compared to Chaitin’s spilling heuristic.
Currently, we only have limited allocation time mea-
surements comparing interference region spilling and
Chaitin’s spilling heuristic. Preliminary data compiling
tomcatv indicates that the increase in register alloca-
tion time due to interference region spilling is approx-
imately 20 - 40%. However, analyzing our implemen-
tation, we believe tuning can reduce this performance
penalty. The modifications to Briggs’ allocator have
been localized to the spilling phase, which means that

// Handle uses of insn
foreachUsedReg(insn, reg) {
if (member?(markedLR, reg)) {
if (rangel[reg].spillEntirely ||
range [reg] .numLiveNeighbors != 0)
addMember (needLoad, reg);
else if (!'member?(needLoad, reg))
addMember (needReload, reg);
} else if (!'member?(live, reg))
< update rangel...] .numLiveNeighbors info >

addMember (live, reg);

Figure 16: Handle Uses

the allocation time for routines that do not need any
spilling is unchanged. For routines that require spill
code, we now must compute interference region spill
costs. However, we need only compute these for live
ranges that have been marked for spilling.

4 Results

In order to experiment with our spill code minimiza-
tion heuristics, we have modified a version of the GNU
C compiler (gcc version 2.7.2 targeted to a MIPS II
processor) to contain our implementation of Briggs’ op-
timistic coloring allocator. We then modified Briggs’ al-
locator so that we can choose between the normal spill
code stage which uses Chaitin’s spilling heuristic and
our new spill code stage which uses interference region
spilling. We then compiled several integer and float-
ing point intensive programs from the SPEC 92 suite
of benchmarks. To simulate varying levels of register
pressure, we compiled each benchmark multiple times
varying the number of registers available to the register
allocator. To accurately measure the amount of exe-
cuted spill code, a MIPS II instruction level simulator
was used to count the spill code that was inserted by
our spilling phases.

Our results are given in Table 17. The first two
columns of the table specify the benchmark compiled
and the number of registers available for allocation”.
The third and fourth columns give results using Briggs’
implementation of Chaitin’s spilling heuristic[2]. Col-
umn 3 shows the dynamic spill cost which is computed
by counting each spill instruction executed® and column
4 shows the percentage of all instructions executed that

7Here, “8” registers indicates 8 integer and 8 floating point regis-
ters were used for allocation. Note the MIPS IT ISA only contains 16
usable floating point registers.

88pi11 loads and stores are weighted twice as much as simple re-
materialized spill instructions.

were spill code. The fifth and sixth columns give the
same information as columns 3 and 4 for interference
region spilling. The next three columns show the per-
cent improvement in terms of dynamic spill costs for
loads, stores and rematerialized instructions. Finally,
the last two columns show the percent reduction in dy-
namic spill code executed and execution time®.

For example, the first row of data shows we compiled
the benchmark compress, allowing the allocator only
8 registers for coloring. The spill cost using Chaitin’s
spilling heuristic was 128 million weighted spill instruc-
tions executed and 19.5% of all instructions executed
were spill instructions. For interference region spilling,
our dynamic spill cost dropped to 63 million weighted
spill instructions, which now comprise only 11.7% of all
instructions executed. This gives us a 51.2% reduction
in spill code and an 18.6% execution time improvement.
Note that all percentages less than one tenth of one per-
cent have been left blank and register file sizes for which
spill code comprised less than one percent of all instruc-
tions executed have been omitted.

Examining these results, we notice that although in-
terference region spilling is not guaranteed to generate
less spill code than Chaitin’s spilling heuristic, for ev-
ery benchmark compiled, interference region spilling al-
ways produced better spill code than Chaitin’s spilling
heuristic. Secondly, interference region spilling aver-
aged a 33.6% reduction in dynamic spill costs and an
8.3% improvement in execution time over all of the
benchmarks compiled.

5 Conclusion

We have introduced a new fine granularity spilling tech-
nique called interference region spilling that can sig-
nificantly reduce the amount of spill code generated
in Chaitin-style graph coloring register allocators. In-
terference region spilling relies on our definition of an
interference region, which specifies the portion of the
program where two interfering live ranges are live si-
multaneously. Spilling this region from one of the live
ranges breaks their interference, allowing them to be al-
located to the same register. The results demonstrate
the effectiveness of interference region spilling. Com-
paring against Chaitin’s spilling heuristic, interference
region spilling reduced dynamic spill costs an average
of 33.6% across all register files sizes and benchmarks
tested and up to 75% in some cases. Our results also
indicate that under heavy register pressure, interfer-
ence region spilling significantly outperforms Chaitin’s
spilling heuristic.

9Timings were taken on an MIPS R5000. Data shown is an average
of 10 trials.

Dynamic Spill Costs Percentage Reduction

Program # Regs — - i i
Chaitin % total | TR Spill % total || load [store | remat [| Total Spill]| Run Time
Compress 8 128222726 19.5 62578192 11.7 51.2 51.2 18.6%
12 128222726 19.5 62578192 11.8 51.2 51.2 16.1%
16 128222726 19.5 62578192 11.7 51.2 51.2 16.4%
20 26421276 6.6 26421272 6.6 0.5%
Espresso 8 966806867 14.9 763558471 12.0 16.9 -0.4 4.5 21.0 6.8%
12 733166332 12.0 502212430 8.7 27.6 0.5 3.4 31.5 8.7%
16 563277100 9.7 334234983 6.1 35.2 0.1 5.4 40.7 6.7%
20 99429247 2.0 74511956 1.5 24.1 1.0 25.1 0.9%
Li 8 2330448245 39.6 1470516987 29.5 35.6 1.3 36.9 9.0%
12 2340525803 41.4 | 1465031307 30.4 36.1 1.3 37.4 9.3%
16 2345019255 42.5 1465032073 30.7 36.3 1.3 37.5 8.8%
20 142346501 3.8 119978216 2.9 0.1 15.7 15.7 -0.1%
Alvinn 8 1824793308 46.2 463650268 17.9 74.6 74.6 15.0%
12 1817620508 46.1 458937468 17.8 74.8 74.8 13.5%
16 1816336508 46.1 457653468 17.7 74.8 74.8 15.7%
Tomcatv 8 2154304766 42.1 2121383158 41.7 1.2 0.3 1.5 0.0%
12 1321829706 31.7 | 1262873006 30.1 2.0 -1.0 3.5 4.5 7.7%
16 580301462 18.7 501863262 16.2 4.5 2.2 6.8 13.5 10.7%
20 404606462 14.2 365004062 12.6 3.2 6.6 9.7 1.1%
24 261551462 10.7 208587562 8.3 5.1 15.2 20.3 0.0%
28 261551462 10.7 208587562 8.3 5.1 15.2 20.3 0.0%
32 261551462 10.7 208587562 8.3 5.1 15.2 20.3 0.0%

Figure 17: SPEC’92 Benchmarks

References

[1] BErNSTEIN, D., GorpiN, D. Q., GOLUMBIC,
M. C., KrawczyK, H., MANSOUR, Y., NAHSHON,
I., AND PINTER, R. Y. Spill code minimization
techniques for optimizing compilers. SIGPLAN No-
tices 24, 7 (July 1989), 258-263. Proceedings of the

ACM SIGPLAN ’89 Conference on Programming
Language Design and Implementation.

[2] Bricas, P. Register allocation via graph coloring.
Ph.D. Thesis Rice COMP TR92-183, Department of
Computer Science, Rice University, 1992.

[3] Bricas, P., CoopPER, K. D., KENNEDY, K., AND
TorczoN, L. Coloring heuristics for register alloca-
tion. SIGPLAN Notices 24, 7 (July 1989), 275 284.
Proceedings of the ACM SIGPLAN 89 Conference
on Programming Language Design and Implementa-
tion.

[4] Bricas, P., CoopeR, K. D., AND TORCZON, L.
Rematerialization. SIGPLAN Notices 27, 7 (July
1992), 311-321. Proceedings of the ACM SIGPLAN
92 Conference on Programming Language Design
and Implementation.

[5] CHAITIN, G., AUSLANDER, M., CHANDRA, A.,
CocCKE, J., HOPKINS, M., AND MARKSTEIN, P.

Register allocation via coloring. Computer Lan-
guages 6 (1981), 47 57.

CHAITIN, G. J. Register allocation and spilling
via graph coloring. SIGPLAN Notices 17, 6 (June
1982), 98-105. Proceedings of the ACM SIGPLAN
'82 Symposium on Compiler Construction.

Cuow, F. C., AND HENNESSY, J. L. The priority-
based coloring approach to register allocation. ACM
Trans. Program. Lang. Syst. 12, 4 (Oct. 1990), 501—
536.

