
Design of an Object Model for a Context Sensitive
Tourist GUIDE

 Keith Cheverst, Keith Mitchell and Nigel Davies
Distributed Multimedia Research Group,

Department of Computing,
Lancaster University,
Lancaster, LA1 4YR.

e-mail: kc,mitchelk,nigel@comp.lancs.ac.uk
telephone: +44 (0)1524 594337

1. Introduction

The prospect of providing city visitors with
dynamic and context-sensitive multimedia
information whilst on the move is both novel and
exciting and raises many interesting research
issues. The GUIDE project is currently examining

these issues by developing systems and
application-level support for hand-portable
multimedia GUIDE units with wireless network
connectivity, enabling context-sensitive
information to be presented to city visitors whilst
they roam.

The support for context-sensitive information
by GUIDE has been strongly influenced by the
work of Schilit [Schilit,94] and Brown
[Brown,97]. In essence, the notion of context is
required in order to provide GUIDE units with the
intelligence to adapt their behaviour in order to
meet both the preferences of the visitor and the
state of the visitor’s current environment.

At an early design stage, the fundamental
decision was made to base the GUIDE system

around a distributed cellular architecture,
comprising a number of strategically located base
stations. This architecture enables information to
be broadcast to a portable GUIDE unit, once it
enters an area of cell coverage. For reasons of
scalability and because of the limited amount of
bandwidth available in any one cell, it was

decided that some form of broadcast schedule
should be used for transferring information to the
portables units. Each base station being
responsible for broadcasting information specific
to its own geographic location. However, because
of the need to enable visitors to request specific
information, including information held on the
internet, each broadcast schedule shall also have
some number of user request slots. Figure 1,
below, illustrates this basic GUIDE architecture
and shows how the GUIDE system will utilise
web based technologies in order to disseminate
information to mobile GUIDE units.

An alternative to the network based approach,
would have been to produce some form of stand-
alone system in which the entire working set of

Internet traffic

WWW server + object model
+ tranport mechanism

Browser + object
model + tranport

Communication via
WaveLAN ‘microcells’

Base

GUIDE units

Figure 1 : The GUIDE Architecture.

information is stored on the end system. Such an
approach was adopted by the Cyberguide project
[Long,96]. This approach is, however, unsuitable
for supporting the flexibility required by GUIDE.
For example, the stand-alone approach cannot
support dynamic changes to information. So,
although such a system would be capable of
presenting information based on a visitor’s
changing geographic coordinates, the information
displayed could have become out of date since the
unit’s working set was loaded. Another problem
with this approach, concerns the size of the
working set which would need to be stored. A
truly useful visitor’s guide should, for example,
contain information stored in different languages,
for different reading ages and assuming different
levels of background knowledge. One further
reason for rejecting this approach was based on
the fact that, in the medium term, portable web-
client based machines will become available
which, compared to stand-alone PC’s, will
consume less power and be cheaper.

In this paper we present the results of our
requirements analysis and early development
work on the GUIDE system. In particular, we
focus on our design of an appropriate object
model, capable of handling the high degree of
flexibility required by GUIDE.

[1] Requirements for an Intelligent
Visitor Guide

Following a series of semi-structured
interviews with members of Lancaster's Tourist
Information Centre (TIC) we have obtained the
following set of requirements for an intelligent
visitor guide :-

Flexibility
Visitors should be able to use the GUIDE
system as much or as little as they desire. For
example, if a visitor requires a structured
guide of the city then the system should be
capable of directing them from one location
to the next, providing relevant information
throughout the tour. Alternatively, if a visitor
would prefer to be left to roam the city, but
still have the ability to ask the system for
specific pieces of information along the way,
then this mode of operation should also be
supported.

Context-Sensitive Information
The information presented to visitors should
be context sensitive. There are two classes of
context that should be used, namely personal
and environmental. Perhaps, the most
significant piece of personal context is the
visitor’s interests. Such interests can be as
diverse as history, architecture, maritime
activities, cotton production and antique
dealerships. Additional personal context that
should be used includes: the visitor’s current
location, the amount of time they wish to
spend on their visit, their budget (to cover
entrance fees etc.) and any refreshment
preferences they might have. Examples of
environmental context to be used as context
include: the time of day, the weather, the
season and the state of the city’s transport
system e.g. the location of traffic congestion
or the closure of walkways. If a visitor has
requested a personal tour of the city, then the
GUIDE system should use both personal and
environmental context to create a suitably
tailored tour. Context should also be used
when presenting information to the city
visitor. For example, information should be
presented in a way that is suitable given the
age and technical background of the visitor
and there preferred reading language.

Support For Dynamic Information
During our study we found there to be a
significant requirement for the support of
dynamic information. Such information
should be made available to visitors
whenever their context deems this to be
appropriate. For example, consider the
hypothetical scenario in which a visitor
touring the city has expressed a particular
interest in Lancaster castle. When the visitor
started their tour, the castle was closed to the
public because the court room, situated within
the castle, was in session. The GUIDE system
would, therefore, not have included a visit to
the castle in its recommended tour. However,
if the court session finished early then the
GUIDE system should use this dynamic
information to notify the visitor that the castle
is now open to the public and optionally
modify their tour schedule to include a visit
to the castle. Further examples of dynamic
information include changes in the weather
and average waiting times at local attractions.

Support for Interactive Services
Studying tourist activities in Lancaster
revealed that a surprising number of visitors

make repeat visits to the TIC, often during the
course of a single day. In most cases this is
because they require additional information
on activities or landmarks, they have specific
questions which require interaction with a
member of the TIC, or they wish to make use
of a service offered by the TIC, most
commonly the booking of accommodation.
The GUIDE system should provide support
for such interactive services.

3. Object Model

A number of interesting issues arose during
our design of an object model to satisfy the
requirements described above. One issue being
how to manage the great variety of information
which the GUIDE system should be capable of
providing to city visitors. Our initial approach to
this problem, was to create a large set of static
HTML pages, some of which would be stored
locally and others that would be available via
remote web servers. The problem with this
approach, was that it involved trying to create a
set of pages to match each possible permutation of
personal and environmental context for each and
every location in the city. So, for example, a
different HTML page would be served for the
Castle location if the visitorÕs main interest was
refreshments to that served if the visitorÕs main
interest was medieval architecture. Clearly, the
two pages would contain a large degree of
commonality, e.g. pictures of the castle and a
summary of the castle.

In an attempt to make use of this
commonality, we adopted an approach which

essentially involves the fusing together of HTML
based packets of information, in order to
dynamically compose the required HTML pages.

If we consider the castle based example, then the
packets of information would include various
pictures of the castle and the nearby caf� and
various pieces of text, including a summary of the
castle, a description of the castleÕs architecture
and the menu offered by the nearby caf�.

The actual interaction between the
components of the object model are illustrated
below in figure 2. It is worth noting that all
components of the object model are Java based
except for the local web browser component,
which was written using C++ and ÔActive XÕ
technology.

A visitor interacts with their GUIDE unit
through their own local web browser. All http
requests are processed by the local web server
object, which may in turn need to interact with
other objects in order to service the request.
Should the visitor request other services, such as
the creation of a tour, then the local web browser
invokes the services provided by the GUIDE
control object. This object is responsible for
controlling and communicating with the various
other system components, namely, the local
position sensor object, the tour creator object, the
resolver object and the visitorÕs profile object.
The control object is also responsible for storing
the visitorÕs current location.

The function of the local position sensor
object is to notify the control object, via its
receiveNewPosition method, whenever the city
visitor enters a new or previously visited location.
A resolver object is then responsible for creating
new instances of landmark objects based on the

Local Web
Browser

Local
Position
Sensor

GUIDE
Control

VisitorÕs
Profile

Local Web
Server

Remote
Web

Server

Local
Proxy

Resolver

Local Remote

Tour
Creator

Figure 2 : The GUIDE object

visitorÕs current preferences, which are stored in
the visitorÕs profile object. This object supports a
number of methods for returning the visitorÕs
details, e.g. the returnPreferredLanguage method
and these methods are invoked by either the
control object, the tour creator object or the local
web server object.

The local web server object, interacts with the
control and visitorÕs profile objects in order to
obtain the context for dynamically creating a
tailored HTML page formed from a collection of
information packets. The local web server also
interacts with a local proxy object in case some or
all of the required information packets have been
cached. If some of the packets are not available in
the local cache then a request is made for the
relevant packets to a remote web server using a
free slot in the broadcast schedule.

The design of this object model satisfies the
requirements for flexibility, context sensitivity,
support for dynamic information and support for
interactive services. The following steps illustrate
the way in which objects interact in order to
provide context sensitive information to city
visitors whilst they roam :-

1) The position sensor object listens for
beacons from remote base stations.

2) On hearing a beacon the position sensor
object notifies the control object of the
visitorÕs new location e.g. the castle.

3) The control object requests an instance of
the appropriate landmark object (e.g. the
castle object) from the resolver object. A
landmark object stores state information
(such as geographic position and whether
the location has been visited previously)
and supports methods to modify this state
information and post messages to the
control object.

4) The resolver object checks whether an
instance of the appropriate landmark
object already exists. If the instance exists
in local memory, (i.e. because the visitor
has already visited the location that day)
then this instance is returned.
Alternatively, if the instance only exists in
the local cache, (i.e. because the visitor
has visited this location in the past) then
this instance is returned. However, if the
instance does not reside at either of the

above object stores, then an instance of
the required object is created based on the
visitorÕs preferences and the current
context

5) On receiving a handle to the landmark
object, the control object can invoke
methods on it. For example, on arrival in
the castle cell, the Arrive method would
be invoked on the Castle object. This
would result in the posting of a message to
the local browser object instructing it to
inform the visitor of their new location.

6) The visitor can then use their local web
browser to request information such as,
ÔWhat are the local attractions near to me
?Õ.

7) This request would be served by the local
web server object which would obtain the
required packets of information (based on
the visitorÕs context) from the local proxy
object, or from the remote server object, if
some or all of the information was not
available locally.

The design of the object model is such that
the integration of new features to the GUIDE
system should be relatively straightforward and
not require the rewriting of large sections of
application code.

4. Supporting Infrastructure

We have considered a wide range of end-
systems for use in GUIDE, including pen-based
tablet PCs and PDAs, and finally selected the
transflective version of the Fujitsu TeamPad 7600.
This compact, ruggedised, unit measuring
8"x9"x1.5", is based on a 486 100 Mhz processor.
Its transflective, greyscale, screen enables the
display to be readable even in direct sunlight,
which is currently not possible with colour
screens. Further details on the TeamPad can be
found at [Fujitsu, 98].

The communications support for GUIDE was
developed to address the following requirements
:-

Scalability : The system must be capable of
supporting a potentially large user community
requiring access to data simultaneously, therefore
the system must adequately scale.

Flexibility of Services: The system should
support data broadcast and interactive services.
Thus, it must provide a high bandwidth down link
channel for the broadcast of data and also include
spare time-slots within the broadcast schedule to
enable clients to make explicit requests for
information or services.

Support for Disconnected Operation: There
will be areas of disconnection across the city of
Lancaster which should not disrupt the services
provided by GUIDE as visitors roam around the
city.

To meet these requirements we propose to
replace TCP as the means of communication
between the mobile units (clients) and base
stations (servers). In more detail, the protocol will
build on previous work on broadcast disks as a
means of disseminating data [Acharya,95],
[Acharya,97] to allow the system to support a
large number of clients within each network cell
whilst making use of the available bandwidth.

5. Concluding Remarks

In this paper we have described our on-going
development of a context sensitive intelligent
guide for city visitors. The requirements for such
a guide have been presented and we have outlined
our design for an object model capable of
providing the high level of flexibility required by
the GUIDE system. In particular, the model
supports the provision of dynamic and context
sensitive information by adopting an approach
based on the composition of dynamically tailored
web pages from a collection of both locally, and
remotely, stored information packets.

The GUIDE project is currently deploying its
infrastructure throughout the city of Lancaster and
is currently approaching the stage where the
system can be demonstrated and evaluated by
end-users.

REFERENCES
[Acharya, 94] Acharya, S., R. Alonso, M. Franklin,
and S. ZDonik. "Broadcast Disks: Data Management
for Asymmetric Communication Environments", Proc.
SIGMOD Õ95, San Jose, California, Pages 199-210.

[Acharya, 97] Acharya, S., M. Franklin, and S. Zdonik.
"Balancing Push and Pull for Data Broadcast", Proc.
ACM SIGMOG Ô97, Tuscon, Arizona.

[Brown, 97] Brown, P.J., J.D. Bovey, and X. Chen.
"Context-aware applications: from the laboratory to the

market place", IEEE Personal Communications,
October '97, Pages 58-64.

[Fujitsu, 98] Fujitsu TeamPad Technical Page.
http://www.fjicl.com/TeamPad/teampad7
6.htm.

[Long, 96] Long, S., R. Kooper et al . "Rapid
Prototyping of Mobile Context-Aware Applications:
The Cyberguide Case Study", Proc. 2nd ACM
International Conference on Mobile Computing
(MOBICOM), Rye, New York, U.S.

[Schilit, 94] Schilit, B., N. Adams, and R. Want.
"Context-Aware Computing Applications", Proc.
Workshop on Mobile Computing Systems and
Applications, Santa Cruz, CA, U.S.

