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1. INTRODUCTION

Traditional denotational semantics models imperative languages using state-to-
state functions [Scott and Strachey 1971; Tennent 1991]. This approach successfully
accounts for the fact that storage variables take on different values at different times
during computation, but it does not cope nearly as well with the idea that a state
change destructively alters the contents of the store.

To see the difficulty, suppose we use a function p : States — States x Values to
model the behaviour of an expression with side effects. Because a state is treated as
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a value like any other we are free, in the semantics, to manipulate any such function
in a decidedly non-imperative manner. For instance, we can define a function

snap : (States — States X Values) — (States — States x Values)
as follows:
snap(p)s = [s,v], where ps = [s',v].

(Here we are ignoring issues of non-termination.) This snap operator is a perfectly
reasonable mathematical function, but if we try to read it in an imperative fashion
it contradicts the intuitive understanding of a state transformation as altering the
store. Instead, it displays a “snapback” effect; snap(p) proceeds by executing p,
producing a new state s’ and value v, and then snapping the state back to its initial
value s. The use of p here does not destroy the initial state s.

In this paper we present an approach that better captures the imperative char-
acter of state transformations. The approach is based on a combination of linear
typing and parametric polymorphism, and is given, formally, via syntactic transla-
tions from two variations on Algol 60 into a linear polymorphic A-calculus. The
translations are based on the idea that a program is linearly polymorphic in the
type of the state; this allows for a subtle interplay between the copyability of spe-
cific values put into the store, and the inability of a program to copy the entire
store. We analyze the translations using a model of the target language.

Although our analysis mainly focuses on the resulting semantics of the source
languages, the translations can be regarded as well as indicating the imperative
nature of the target language. That is, although the linear polymorphic calculus
is a purely functional language, the translations can be regarded as providing an
imperative reading of a range of types in the functional target.

Before continuing we would like to stress that the “problem” with the traditional
semantics should be understood in its historical context. Indeed, Strachey on a
number of occasions emphasized the fundamentally different way that the state
and environment are used. For example:

“The state transformation produced by obeying a command is essentially
irreversible and it is, by the nature of the computers we use, impossible
to have more than one version of [the state] available at any one time.”

C. Strachey [1972]

And Scott identified the non-copyability of state as crucial:

“We will be tempted to copy p [the environment], but we will never

generally feel free to ask for a copy of the whole computer store there
is just no room for that.” D.S. Scott [1972]

But, while Scott and Strachey’s prose vividly distinguished the state from the
environment, in 1972 the theoretical techniques were not yet in place to allow for
a precise description of the imperative, or irreversible, nature of state change, as
expressed informally by them.

In 1975, one of the authors (Reynolds) attempted to use the polymorphic A-
calculus [Girard 1972; Reynolds 1974] to describe Algol, discovering much of the
translation we will exhibit in Sections 4.1, 5.1, and 5.2. At the time, this seemed
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to be a quixotic effort to define a well-understood language in terms of a less
understood one. (The author overlooked the fact that the translation avoided
impredicativity.)

The intervening years, however, have seen the development of a relational se-
mantics of polymorphism [Reynolds 1983]; possible world semantics of imperative
languages [Reynolds 1981b; Oles 1982]; a connection between polymorphism and lo-
cal state [O'Hearn and Tennent 1995]; and linear logic [Girard 1987]. Drawing upon
all of these developments, we are now able to give a refined translation of Algol-like
languages into the linear polymorphic A-calculus that, when coupled with a rela-
tional semantics for the latter language, gives a more abstract description of Algol
that earlier formulations of its semantics.

The translations are essentially a recasting of the the functor-category semantics
developed by Reynolds [1981b] and Oles [1982] in the early eighties, using a lin-
ear polymorphic A-calculus in place of a functor category. Their store shapes are
replaced by type variables, natural transformations are replaced by polymorphic
functions, and state-to-state functions are replaced by linear functions. This use of
polymorphism is as in the parametric-functor semantics of O’Hearn and Tennent
[1995], but refined by the use of linearity.

In the remainder of this Introduction we give an extended, informal, description
of the main elements underlying our approach.

1.1 Linear Typing and State Transformations

The central idea, on which linear logic hinges, is that of a linear function. The
guiding intuition is that a linear function “uses” its argument exactly once; as a
result, it cannot freely copy or ignore its argument, because doing so would violate
the use criterion. One often speaks also of a linear function as “consuming” its
argument in the process of producing its result. The connection between use and
consumption is that, after a linear function has used its argument once, the argu-
ment is no longer available, because to use it again would constitute two uses. The
problem with snapback is that it uses the initial state twice, once when producing
an intermediate result and again when producing a final answer. Thus, it is not
linear in its state argument.

Linear logic is based on Girard’s identification of the structural rules of logic as
a source of discarding and copying data [Girard 1987]:

. I''BBFA
TFBFi:lA Weakening ———— Contraction.

IBEFA
Weakening introduces a dummy assumption: In computational terms it may be
understood as transforming a computation depending on I' into a computation
depending on T and B, but which ignores B. In Girard’s resource description of
logical rules, the ignoring of the B component involves the discarding of a datum of
type B. Similarly, Contraction involves copying: From a computation depending
on two B-typed values a computation depending on only one can be obtained, if we
have the ability to duplicate that value and supply the two copies to the original
computation.

Linear logic is a refinement of traditional logic which arises by restricting the
use of Weakening and Contraction. When the logic is used as a type system for
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a programming language, this control over structural rules translates into restric-
tions on the occurrences of identifiers within terms [Abramsky 1993; Wadler 1991;
Benton et al. 1993]. These restrictions result in a type A—o B of linear functions,
which cannot discard or duplicate their arguments through free use of Weakening
or Contraction.

To connect these ideas back to imperative computation, let us try to write snap
in a programming notation:

snap(p) = As.let[s’,v] bepsin [s,v].

This term uses both Contraction and Weakening: Contraction corresponds to the
two non-binding occurrences of the initial state s in the body of the A-expression,
and Weakening to the absence of s’ in [s,v]. As a result, if we were to use
States—o States ® Values as the type of side-effecting expressions (where States ®
Values is a type of “eager pairs”) then snap(p) would fail to typecheck; snapback
is excluded by linear typing.

There is thus a tantalizing analogy between linear functions and imperative state
transformations. So it is natural to ask whether, or the extent to which, linear logic
can give rise to an improved semantic treatment of state.

As a first test of the analogy, we might translate a basic imperative language,
such as the language of while programs, into a linear functional language. It is
clear that one could express typical constructs, such as sequencing, assignment and
iteration, in terms of linear functions.

This is all well and good, but it only connects up imperative and linear functional
programming on a basic level, for an imperative language without procedures. And
such a language does not in fact provide a satisfactory test. For, basic sequential
imperative languages, without procedures, already possess a satisfactory founda-
tion, with simple semantic models based on partial functions on states and logics
based on Hoare triples or weakest preconditions. It is difficult to see how this un-
derstanding could be improved by phrasing the semantics in terms of linear types.

How can this bel' We began by describing problems in traditional semantics
based on state-to-state functions, and the language of while programs uses precisely
that kind of semantics. Consider again the snapback example: snap is a function
from state transformations to state transformations; in imperative terms it is a
procedure that expects an expression thunk as an argument. It takes an arbitrary
state transformation, runs it, and then restores the state to its initial value. The
whole discussion of snapback and irreversibility hinged on having procedures, which
are missing from the language of while programs.

We can go further still if we use local variables: We can then write programs
whose observable behaviour is sensitive to whether or not snapback is present in
the semantics:

snaptester = Ap.new z.x :=0; p(z :=x + 1); if z > 0 then diverge.

The termination/nontermination behaviour of snaptester is equivalent to that of
Ap. p(diverge). The reason is that if p executes its argument at all then the value
of z on termination of p(z := x + 1) will be greater than 0, since there is no way for
p to alter the value of z other than by using its argument. Snapback contradicts
this informal reasoning, since snaptester(snap) converges while snaptester(diverge)
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diverges.

Thus, it makes sense to consider imperative languages that have procedures and
local state, in addition to assignment. In this paper we consider two such languages,
based on Idealized Algol [Reynolds 1981b].

1.2 Polymorphism, Data Abstraction and Store Shapes

It is evident how to model state transformations with linear functions, but now we
must consider how to model procedures and local state. We might attempt to do so
directly in a simply-typed linear language, using —o to model state transformations
and a conventional function type — to model procedures, but there is a further
problem: It is not obvious how we might account for the interaction of procedures
and local state (as given, for example, in snaptester).

To expand on this last last point, consider how a “counter class” can be pro-
grammed in an Algol-like language using procedures and local state [Reynolds 1978]:

newcounter = Ap.new z.x :=0; p(z:=z+ 1,x).

This code works by declaring a local variable x, and then passing the ability to
increment and read x to the procedure p. (The second argument z of p is implicitly
dereferenced from a variable to an expression, so that it cannot be assigned to by
p.). Because the procedure p can never access the local variable 2 we are assured,
for example, that the value of z can never be decremented. This illustrates how
a form of data abstraction results from the combination of procedures and local
state; it is hard to see how this phenomenon could be modelled in a simply typed
version of linear A-calculus.

This discussion has been leading toward our choice of target language. We can
account for data abstraction and local state using polymorphic types [Reynolds
1974; O’Hearn and Tennent 1995], so our target language will be a linearly-typed,
polymorphic A-calculus.

We can now sketch the main ideas behind the translations. The starting point is
to allow for multiple state types instead of only one. In terms of the polymorphic
target language we regard type variables as ranging over various “store shapes” or
state types, so that in a type a—o «a of state transformations the type variable «
can be instantiated to a variety of different representations of the state. The basic
idea is that programs working with different store shapes act on separate parts of
the store.

To see how this works recall the counter class above. An argument p to new-
counter is a procedure that accepts a command and an expression as arguments,
and produces a command as a result. We assign p the polymorphic type

VB.(B— B8)&(8—o [ @ nat) = (a ® B—o0a® f).

The idea is that the state in use when p is called is partitioned into the a-typed
part, which p may access directly, and the [-typed part, about which p knows
nothing. The argument type S—o 8 corresponds to a command for changing this
unknown state, and 8—o 8 ® nat to a natural number-valued expression (possibly
with side effects).

The type constructors & and — here are for conventional product and function
types; they are not subject to linearity restrictions. The mixing of linear and non-
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linear type constructors in the type of p implies that it is only the state that must
be used linearly; the two arguments, of types 8—o 3 and —o 3 ® nat, may be used
zero, one, or many times, as is common in imperative languages.

Now, if we apply the counter class to such a p, i.e., newcounter(p), we obtain a
function of type a—o a:

As:alet [s',n] be pnat]{An.n + 1, An. [n,n])[s, 0]
in s'.

We can see from this how the S-component in the type of p is regarded as ranging
over possible pieces of local state. What a local-variable declaration does first is
extend the state s to [s,0], i.e., a state with an additional component initialized
to 0. In this process of initialization the type of the state changes from a to
a®nat, with nat being the type of the values that can be held by the local variable.
Instantiating the 8 component to nat allows p to work in this enlarged state:
Communication between local state and non-local procedures is achieved through
polymorphic instantiation. Intuitively, the independence of non-local procedures
from local state corresponds to the parametricity of a polymorphic function whose
type argument ranges over possible pieces of local state [Reynolds 1983; O’Hearn
and Tennent 1995].

This example also illustrates how the move from simple to polymorphic types has
an additional effect, beyond enabling a treatment of data abstraction. To see this,
consider that we have used Contraction and Weakening of nat-typed identifiers:
Contraction is used for dereferencing, in An.[n,n], and Weakening of n’ is used to
model deallocation of the local variable on block exit. (We also sometimes need
Weakening to model updates.) These uses of Contraction and Weakening do not
contradict the intuitive connection between linearity and state change, because the
polymorphic uses of nat by p (obtained by instantiating £) will still all be linear.
This point deserves careful consideration, and we will return to it several times,
but the general idea is that polymorphic instantiation mediates between the linear
way that state is manipulated, and the use of non-linear values to make up specific
states.

Local-variable declarations are a special mechanism for ensuring absence of in-
terference through shared variables. We can also use polymorphic typing to treat
non-interference more generally. For example, consider the type

VBYy. (B B)&(y—oy®nat) = (a®@BRy—oa®B®7Y).

In imperative terms, a procedure of this type accepts two arguments, one a com-
mand and the other a side-effecting expression. If ¢ is such a procedure then in an
application g[A][B]{c,e) it is never possible to use ¢ to change the state in a way
that affects a future use of e. This is because, in ¢, using ¢ produces a (-typed
value, while e expects a y-typed value, and these types do not match up. So the
use of different type variables for the arguments means that the output state of one
cannot, be used as the input state of the other. Again in imperative terms, we take
this to mean that the two arguments ¢ and e don’t interfere.

We now proceed to present the translations, and the semantics. Our two source
languages are Idealized Algol [Reynolds 1981b] (without jumps or coercions, and
with side effects in expressions) and syntactic control of interference [Reynolds
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1978] (without passivity). The target language is based on the —o, ®, &, — (or
“I”) fragment of intuitionistic linear logic [Girard 1987; Barber and Plotkin 1997],
extended with a fixed-point operator and a predicative form of polymorphism. The
semantic model of the target language is based on strict continuous functions and
binary relational parametricity [Reynolds 1983]. We analyze the model by looking
at sample equivalences, and by characterizing the structure of first-order types in
terms of domain equations for resumptions.

In Section 8 we will describe the connection to functor-category semantics in some
detail, but for the most part we will work directly with the polymorphic language
and its model.

2. TWO VARIATIONS ON ALGOL

Our imperative languages are based on the analysis of Algol 60 given in [Reynolds
1978; Reynolds 1981b]. The one, substantial, caveat is that our languages do not
account for passivity. Thus, evaluation of a natural-number expression can produce
a side effect, and we do not consider a concept of passive type [Reynolds 1978] (also,
[O’Hearn et al. 1999]).

Both languages use the following grammar of types:

¢ u= exp |acc | comm primitive types
=plOx0 |00 types

(s
1]

The primitive type exp is the type of natural-number expressions, acc is the type
of acceptors, and comm is the type of commands. Commands change the state of
the store but do not produce values, and an acceptor changes the state when it is
supplied with an integer. The type var of storage variables is an abbreviation for
acc x exp. The factors of var give the basic capabilities of updating and accessing
a storage variable.

2.1 lIdealized Algol

The typing rules for Idealized Algol follow. A typing context T' is a finite list of
assumptions z : § pairing identifiers with types, with the proviso that no identifier
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appears twice.

- w where ['is a permutation of I’
z:0Fx:60 'EM:6
Fz:0FM:¢ 'M:§—>6" THN:6
FEXz:0.M:60 -6 EMN:§6
PEM:6x0 102 L-M:0 TEN:6
ThmM:q; “iererissor TH(M,N):6x6
F'FNy:exp T'EFN;j:p,1=2,3
'+0:exp I'Fif Ny =0 then N, else N3 : ¢
' M:exp ' M:exp
'+ succ M : exp '+ pred M : exp
'-M:0—-46 I'M:var — ¢
Y, M:0 '-new, M : ¢
'FM:comm T'FN:yp
I' F skip : comm 'EM;N:p
' M :exp — comm 'FM:acc T'FN:exp
I' - byvalue M : acc I'M:=N:comm

Idealized Algol contains the functional constructs of PCF [Plotkin 1977]. Of
the imperative constructs, new(\z. C) works by binding x to a local storage vari-
able that is initialized to 0, “;” is sequential composition, skip is the do-nothing
command, and assignment supplies an integer value to an acceptor.

Acceptors were originally introduced as part of a generalized approach to vari-
ables [Reynolds 1981b], in which an acceptor was considered simply as a function
from data values to commands. On this view acceptors are similar to functions of
type exp — commn, except that they accept integer values rather than expression-
thunks as arguments; they are thus a form of call-by-value procedures. The byvalue
construct converts a thunk-expecting procedure to an acceptor using a coercion
from natural-number values to expressions. (It would be conceivable to provide
instead an alternate binding form for call-by-value, as was done in Algol 60 using
the keyword value with a formal parameter.)

We will often use syntactic sugar in an informal, but hopefully clear, way. For

instance, newcounter is rendered formally as

Ap : (comm X exp — comm) — comm.
NeWeomm (AZ : var. (mz) := 0;p((m ) := (sucec max), mox)).

Generally, we omit mention of types in new or on A-bound identifiers, we omit
the projections when using a term of type var, and we write new z. M instead of
new (Az. M).

An important difference with the original Idealized Algol is that a sequential
composition of the form M; N when N : exp may result in an “active expression,”
which may return different natural numbers on different uses. For example, if
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x : var is a declared variable then = := x + 1; z returns successive natural numbers
on successive uses.

We have not attempted to produce an irredundant collection of basic constructs.
For instance, the expression new,.. P of type acc could be eliminated, as it is
equivalent to byvalue (\y : eXp. neWeomm 2. Pz := y).

It is worth considering how the inclusion of side effects in expressions impacts
the coding of arithmetic operations. A typical functional encoding of addition is

plus = Y (Aplus. Ax. Ay.if z = 0 then y else plus (pred z) (succ y)).

In Idealized Algol (with side effects) an evaluation of plus e; eo will evaluate e; and
e multiple times, perhaps changing the state each time. For example,

NeWexp 2. 2 1= 1; (plus (z := 2z + 1; 2) 2)

diverges since z is incremented each time pred is evaluated.
Using new we can program a version of addition that evaluates its arguments
once each, left followed by right, and adds the resulting values together:

leftadd = Ax. dy.newz'.newy'.x' := x;y" := y; plus (z') (y').
We can also define rightadd = Az. \y. leftadd y .

2.2 Basic SCI

Basic SCI (for syntactic control of interference) is similar to Idealized Algol, but
for a few modifications. First, it uses the affine A-calculus as its type system,
whereas Idealized Algol uses the full simply-typed calculus. The affine calculus is
just the usual simply-typed calculus, except that the rule for procedure application
is restricted so that procedure and argument have no free identifiers in common.
(This is another way of saying that the calculus does not have Contraction.) This
restriction prevents interference between different identifiers. For instance, y and z
are aliases in ((AyAz.-- -y :=a---z:=b---)x)x if z denotes a storage variable. But
a term of this form cannot typecheck in Basic SCI because there is an occurrence
of z in a procedure and its argument.

Second, the rule for recursion is restricted to procedures with no free identifiers.
This restriction is needed because otherwise a recursive unwinding Y (F) > F(Y (F))
would violate the disjointness between procedure and argument that is character-
istic of Basic SCI.

Third, in Basic SCI we have a determinate form of parallelism, where the parallel
composition M || N is allowed if the free identifiers of M and N are disjoint. This
illustrates the difference with Idealized Algol, where the same construct would
(because of interference) lead to indeterminacy.

These modifications and additions to Idealized Algol are summed up in the fol-
lowing rules:

'-M:0—-6 I'"+-N:§ T'HFM:comm I'F N :comm
T'FMN : 6 LT'F M| N:comm

FM:0—860
|—Y9M:9
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To illustrate further the difference between SCI and Idealized Algol consider the
addition operations leftadd, rightadd : exp — exp — exp. In Idealized Algol these
operations are inequivalent because of interfering side-effects. For example, in a
state where the contents of storage variable x is 5, evaluation of leftadd(succ z)(z :=
succ x; x) returns value 12, whereas rightadd(succ z)(z := succ x; z) returns value
13. In contrast, in SCI the arguments to these functions never interfere: The typing
rules ensure that in a procedure call leftadd(e,)(e2) the procedure leftadd(eq) and
argument ey have disjoint sets of free identifiers. As a result, even though we allow
side effects in expressions, leftadd and rightadd are equivalent in SCI.

An interfering version of addition can be programmed in SCI using the type
exp X exp — exp instead of exp — exp — exp. The point is that SCI types can
be used to specify both potential dependence and necessary independence between
program parts.

3. A POLYMORPHIC LINEAR A-CALCULUS

Now we introduce the polymorphic target language. We follow the version of linear
type theory formulated by Barber and Plotkin [1997], where two zones are used in
a typing context to keep track of intuitionistic and linear assumptions. The basic
idea is that linear assumptions are used once, while intuitionistic assumptions can
be used multiple times in a term. (We refer to [Abramsky 1993; Benton et al. 1993;
Wadler 1990; Wadler 1991] for further discussions of linear A-calculi.)

The kind of polymorphism we need for interpreting Algol is predicative in nature,
so we work with the following stratification of types:

o = a|nat|o®ao | Level 1
Au=o0|Va A|AoA|A— A| A&A|!A Level 2

Type variables are denoted by «a (or other Greek letters 3, ). The essence of
the stratification is that the V quantifier ranges over only Level 1 types. This
is significant because it makes the construction of models much easier than for
impredicative calculi.

This stratification is possible because of the distinction between data types and
phrase types (or between storable and denotable values) in Algol. The Level 1 types
correspond, intuitively, to store shapes in the sense of Reynolds and Oles, whereas
Level 2 types are, after translation, types of phrases in the imperative languages.

It would be possible to define A — B as !A—o B. But since, for the purpose of
the two translations, the only significant uses of “!” would be in this encoding we
prefer to work explicitly with both function types —o and —. For emphasis we use
two binding forms, Az : A.t and Az : A.t, one for each function type. We will use
the same syntax for applying both kinds of function (in effect leaving dereliction
implicit in —); no confusion is likely to arise from this.

The system uses typing judgements of the form

IARE: A,

where the context is broken into an intuitionistic zone I' and a linear zone A.
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IDENTITY
ARt A ~ ~
== whereI', A are permutations of I', A
ARt A
Fz:A_Fz:A Iiz: Az A
ADDITIVES

IArFt:A T;AFu:B

;AR (t,u): A&B
IIAFt: A&B
NAFmt: A

IIAFt: A&B

IIAFmst: B
Iz:A;A+t: B INMAFt:A—-B TI;_Fu:A

IAFAX:At:A—> B INAkFtu:B

MULTIPLICATIVES

ARt T T;AFu: A
A, AsFlet « betinu: A
IAtFu:AB T;Aq,z:Ay:BkFt:C

[;A,Ax Flet [z,y]beuint: C

| RS |

AT Ft:A TA3Fu:B

;A A tu]: AR B

Az AFt: B
IAFAM:At: A—-oB

A Ft:A—-oB T;AFu: A
F;A],Agl_tUZB

I;_Ft: A AT Fu:!A Tha: A AsFHt: B
r;_Fit:1A A, Ay Flet!lzbeuint: B
POLYMORPHISM
ARE:Va. A ARE: A

[iAFto] - Alo/a] T;AF Aat:Va.A adfv(l, A)
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NATURAL NUMBERS AND RECURSION

Ii_Ft: A A
[_F0:nat [;_FYyat: A
AR t:nat AR t:nat
I'; A F succ t: nat I';AF pred t: nat
AR t:nat AR t:nat

I'MAFcopyt:nat @nat [';AF discardt: 1

A Fuy:nat T;AsFus: A TiAsFug: A
A1, As Fifuy; =0 then us else uz : A

In this formulation of linear typing we have introduction and elimination rules for
each type constructor. However, we do not have to add explicit rules that permit
Weakening and Contraction of “!”-typed identifiers; this is because of the use of
two zones, which allows Weakening and Contraction in the intuitionistic zone to be
left implicit, as is the case in simply-typed A-calculus. This allows for a particularly
smooth treatment of the intuitionistic function type —, which is attractive for our
purposes: We will have need for —, but not explicitly for “l.”

The characteristic feature of the additive rules is the sharing of typing contexts.
For instance, in the introduction rule for &, the linear zone A is shared between
both premises. On the other hand, the characteristic feature of the multiplicatives is
the splitting of typing contexts in the linear zone. For instance, in the introduction
rule for ®, the contexts A; and As must be made up of disjoint collections of
identifiers. The absence of Contraction is reflected in this splitting of contexts in
the multiplicative rules, and the absence of Weakening is reflected in the rules for
identifiers; the linear zone is empty when an identifier from the intuitionistic zone
is typed, and of length one when a linear identifier is typed.

One point to notice is the presence of explicit terms for copying and discarding
natural numbers. Using these and the rules for I we can define appropriate copying
and discarding terms of types c— 0 ® o and o—o I, for any closed Level 1 type
0. But we do not have copying or discarding of Level 1 types available generically,
as terms of type Va.a—oa ® a or Ya. a—o I. This distinction between specific and
generic copying/discarding is related to the following idea in Idealized Algol: A
state change effected by a command on any fixed finite number of storage variables
could be reversed by using local variables to store and restore the values. But we
cannot program a general snapback mechanism that reverses state changes for every
possible shape of the store.

We have used [s,t] as notation for ®-pairs, reserving f ® g for the functorial
action of ®, where

f®g = Ax: A® B.let [y, 2] be z in [fy, g2]

3

when f: A— A" and g: B—o B'.

We use 24 to abbreviate Y4 (Az : A.x). In a fully polymorphic language ¥ would
have type Va. (o — a) — «, but in the predicative sublanguage this type is not
sufficient because a does not range over all types.
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4. TRANSLATIONS OF TYPES

In this section we give the translations on the level of types. We consider terms
by treating a few examples, leaving the detailed translation to the next section.
In presenting examples we will be somewhat liberal in the use of syntactic sugar
and the application of (meaning-preserving) syntactic simplifications in the linear
calculus.

4.1 Idealized Algol
The translation takes a judgement
r1:601,...,0, :0, - M:0
in Idealized Algol to a judgement
1 07a,. . oy Oha; M a: 8% a

in polymorphic linear A-calculus, where

comm*aq = a—o«
acc*a = a®nat—-oq
exp*a = a—oa ® nat

@ x 0V a = 60*a&b*a
0= 60)a =V3.0(axp) =0 (axpB).

The translation 6* of an Idealized Algol type is a type with a “hole” that can
be filled by substituting type variables and other Level 1 types. For instance,
comm*(a ® ) is a ® f—oa ® 3. Similarly, a term M gets mapped to a term M*
with a type variable hole that can be filled with various type variables or Level 1
types: M*o, M*o'... and so on. (The translation could be arranged so that each
M* was a polymorphic function of type Va.0ia & --- &6ra — 6*a. We prefer,
however, to use the term-with-hole representation in order to minimize explicit
manipulations of environments.)

The only essential uses of linearity involve primitive types and states. In partic-
ular, the translations of Algol types always appear in the intuitionistic zone of a
typing judgement.

In the informal translation of newcounter in the Introduction we used Weakening
and Contraction of nat-typed identifiers. With our linear language, however, we
have to be more explicit, using copy and discard. Also, a slight adjustment is
needed because the translation of procedure types in Idealized Algol allows a to
appear to the left of —, whereas the type for the procedure p in the Introduction
used the SCI interpretation (see below) where o does not appear to the left. So p
now has type

VB.(a®fB—oa®fB) X (a®foa®BRnat) = (a® foa®f),
and the translation of newcounter(p) is the following function of type a—o a:

As : a.let [s',n'] be p[nat]{(id, ® An. succ n), (id, ® An.copyn))|s, 0]
in (let * be (discardn') in ')

where id, is As : a. s.
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Some equivalences between Idealized Algol terms can be proven using basic laws
of polymorphic A-calculus. For example, the equivalence (new Az.c) = ¢, for an
identifier ¢ : comm, follows from basic equivalences of polymorphic A-calculus to-
gether with the assumption that discard and copy give nat a comonoid structure.
Typically, the basic equations that are valid in models where V is interpreted simply
as an indexed product are sufficient for reasoning about new blocks whose only free
identifiers are of primitive type, but parametricity is needed when there are free
identifiers of procedural type.

In the Introduction we discussed snapback in the context of a single collection
States of states. In the polymorphic language snapback would ostensibly be given
by a term

Aa.Xs:a.let [s',n] be ¢s in [s,n]

of type Ya. (a—o a®nat) — (a—o a®mnat) which (given the isomorphism a = I @)
would determine a closed term of type (exp — exp)*I. But this term does not
have the indicated type because it uses Contraction of s and Weakening of s,
where s and s’ are a-typed values. This does not show that no other term produces
the behaviour of snapback for that we will appeal to a semantic model but it
illustrates that it is the general, or polymorphic, snapback that we expect control
of structural rules to forbid.

4.2 Basic SCI

We translate
x1:601,...,0, :0, - M:0
in Basic SCI to a judgement
1 00an,. .y Onay; o MO (o, .. ) 0%(a ® - ® ay)

in polymorphic linear A-calculus, where

comm®a = a—ow
acc’a = a ®nat—oq
exp°a = a—oa ® nat

(0 x0)a = 0°a&b°a
(0 — 0)°a = VB.0°8— 0°(axB).

Compared to the other translation, each identifier x; is now associated with a
separate state-type «;; the idea is that each identifier has a separate piece of the
store that it acts upon. The other difference is that the procedure type uses 6°43
in the argument position instead of §°(a ® ). The result is that the procedure
and argument types no longer share type variable o, mirroring the restricted rule
for application in SCI which ensures that procedures and their arguments don’t
interfere.

For example, the type comm — exp — comm translates as

V3. (B0 pB) = (Vy.(yoy®@nat) = (a®fRyo0a®B®Y)),
which is isomorphic to the type
VBVy. (B—oB)& (y—oy®nat) = (a®fRyoa®f®Y)
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that we used to illustrate non-interference in the Introduction.

Note that the absence of Contraction in linear logic is not being used to account
for the absence of Contraction in SCI. Indeed, the translations of SCI types al-
ways appear in the intuitionistic zone in the translation of a judgement. It is the
use of different type variables that corresponds to the absence of Contraction in
SCI: Different occurrences of the same SCI type 6, say x; : 8, xo : 6, get sent to
different types, z1 : 8°ay, 2 : §°as. Generally, parametric polymorphism is used
to model both local state and non-interference, whereas linearity (combined with
polymorphism) ensures that there is no snapback.

We give several examples of term translations. First, if z; and z, are different
identifiers of type comm, then the translation of z || z9 is

1 X1 —O0Q1,T2 I X209, _
FAs:ar ®as. let [s1,s2] besin[z1s1,2282]: a1 @ as—o a1 ® as.

From this we can see how the disjointness property of SCI is very explicit: It is
obvious that £ and y act on disjoint portions of the store, so we can run them in
parallel.

Consider next the sequential composition x;y of two command identifiers. This
is translated as

T1 (X1 —0O0Q1,Ty I Aa—0Qg, -
. (! .
FAs:a ®ag. zh(2)(s)) : a1 ® ag—oay ® g,

where

) = As:a; ® az.let [s1,s2] be s in [z151, $9]
xh = As:ag ® as.let [s1,s9] be s in [s1,y2s2].

Although the translation uses z} (2} (s)), which indicates that z; is evaluated first,
it reduces to let [s1,s2] be s in [x1$1,z252] using typical reductions of linear A-
calculus. Thus, it is clear that z1;z2 and x; || 2 are equivalent.

Finally, consider our two addition operations leftadd and rightadd. The transla-
tions of leftadd(xz1)(x2) and rightadd(z:)(x2) are both

Tt ap—o ] ®nat,xs 1 ax—o as ® nat; _
FAs:ar ®as. let [s1,s2] be sin
let[[s’] s n]: [SIQ7 m]] be [.’17131,.’17232] in [[ql] ’ S‘IZ]: m + ’ﬂ,]

T @ as—oa; ® as ® nat.

We regard the two arguments as being evaluated in parallel, possibly altering differ-
ent portions of the store, before their results are added together. (The translations
do not literally result in this term, but in ones that are, by an easy analysis using
the semantic model of Section 6, seen to be equivalent to it.)

5. TRANSLATIONS OF TERMS

The detailed translations of terms follow ideas from functor-category semantics
[Oles 1982].
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5.1 ldealized Algol

We begin by translating assignment. An assignmen