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From Algol to Polymorphic Linear Lambda-calculus � 3a value like any other we are free, in the semantics, to manipulate any such functionin a decidedly non-imperative manner. For instance, we can de�ne a functionsnap : (States! States�Values)! (States! States�Values)as follows: snap(p)s = [s; v]; where ps = [s0; v]:(Here we are ignoring issues of non-termination.) This snap operator is a perfectlyreasonable mathematical function, but if we try to read it in an imperative fashionit contradicts the intuitive understanding of a state transformation as altering thestore. Instead, it displays a \snapback" e�ect; snap(p) proceeds by executing p,producing a new state s0 and value v, and then snapping the state back to its initialvalue s. The use of p here does not destroy the initial state s.In this paper we present an approach that better captures the imperative char-acter of state transformations. The approach is based on a combination of lineartyping and parametric polymorphism, and is given, formally, via syntactic transla-tions from two variations on Algol 60 into a linear polymorphic �-calculus. Thetranslations are based on the idea that a program is linearly polymorphic in thetype of the state; this allows for a subtle interplay between the copyability of spe-ci�c values put into the store, and the inability of a program to copy the entirestore. We analyze the translations using a model of the target language.Although our analysis mainly focuses on the resulting semantics of the sourcelanguages, the translations can be regarded as well as indicating the imperativenature of the target language. That is, although the linear polymorphic calculusis a purely functional language, the translations can be regarded as providing animperative reading of a range of types in the functional target.Before continuing we would like to stress that the \problem" with the traditionalsemantics should be understood in its historical context. Indeed, Strachey on anumber of occasions emphasized the fundamentally di�erent way that the stateand environment are used. For example:\The state transformation produced by obeying a command is essentiallyirreversible and it is, by the nature of the computers we use, impossibleto have more than one version of [the state] available at any one time."C. Strachey [1972]And Scott identi�ed the non-copyability of state as crucial:\We will be tempted to copy � [the environment], but we will nevergenerally feel free to ask for a copy of the whole computer store { thereis just no room for that." D.S. Scott [1972]But, while Scott and Strachey's prose vividly distinguished the state from theenvironment, in 1972 the theoretical techniques were not yet in place to allow fora precise description of the imperative, or irreversible, nature of state change, asexpressed informally by them.In 1975, one of the authors (Reynolds) attempted to use the polymorphic �-calculus [Girard 1972; Reynolds 1974] to describe Algol, discovering much of thetranslation we will exhibit in Sections 4.1, 5.1, and 5.2. At the time, this seemed



4 � P.W. O'Hearn and J.C. Reynoldsto be a quixotic e�ort to de�ne a well-understood language in terms of a lessunderstood one. (The author overlooked the fact that the translation avoidedimpredicativity.)The intervening years, however, have seen the development of a relational se-mantics of polymorphism [Reynolds 1983]; possible world semantics of imperativelanguages [Reynolds 1981b; Oles 1982]; a connection between polymorphism and lo-cal state [O'Hearn and Tennent 1995]; and linear logic [Girard 1987]. Drawing uponall of these developments, we are now able to give a re�ned translation of Algol-likelanguages into the linear polymorphic �-calculus that, when coupled with a rela-tional semantics for the latter language, gives a more abstract description of Algolthat earlier formulations of its semantics.The translations are essentially a recasting of the the functor-category semanticsdeveloped by Reynolds [1981b] and Oles [1982] in the early eighties, using a lin-ear polymorphic �-calculus in place of a functor category. Their store shapes arereplaced by type variables, natural transformations are replaced by polymorphicfunctions, and state-to-state functions are replaced by linear functions. This use ofpolymorphism is as in the parametric-functor semantics of O'Hearn and Tennent[1995], but re�ned by the use of linearity.In the remainder of this Introduction we give an extended, informal, descriptionof the main elements underlying our approach.1.1 Linear Typing and State TransformationsThe central idea, on which linear logic hinges, is that of a linear function. Theguiding intuition is that a linear function \uses" its argument exactly once; as aresult, it cannot freely copy or ignore its argument, because doing so would violatethe use criterion. One often speaks also of a linear function as \consuming" itsargument in the process of producing its result. The connection between use andconsumption is that, after a linear function has used its argument once, the argu-ment is no longer available, because to use it again would constitute two uses. Theproblem with snapback is that it uses the initial state twice, once when producingan intermediate result and again when producing a �nal answer. Thus, it is notlinear in its state argument.Linear logic is based on Girard's identi�cation of the structural rules of logic asa source of discarding and copying data [Girard 1987]:� ` A�; B ` A Weakening �; B;B ` A�; B ` A Contraction:Weakening introduces a dummy assumption: In computational terms it may beunderstood as transforming a computation depending on � into a computationdepending on � and B, but which ignores B. In Girard's resource description oflogical rules, the ignoring of the B component involves the discarding of a datum oftype B. Similarly, Contraction involves copying: From a computation dependingon two B-typed values a computation depending on only one can be obtained, if wehave the ability to duplicate that value and supply the two copies to the originalcomputation.Linear logic is a re�nement of traditional logic which arises by restricting theuse of Weakening and Contraction. When the logic is used as a type system for



From Algol to Polymorphic Linear Lambda-calculus � 5a programming language, this control over structural rules translates into restric-tions on the occurrences of identi�ers within terms [Abramsky 1993; Wadler 1991;Benton et al. 1993]. These restrictions result in a type A��B of linear functions,which cannot discard or duplicate their arguments through free use of Weakeningor Contraction.To connect these ideas back to imperative computation, let us try to write snapin a programming notation:snap(p) = �s: let [s0; v] be p s in [s; v]:This term uses both Contraction and Weakening: Contraction corresponds to thetwo non-binding occurrences of the initial state s in the body of the �-expression,and Weakening to the absence of s0 in [s; v]. As a result, if we were to useStates��States 
 Values as the type of side-e�ecting expressions (where States 
Values is a type of \eager pairs") then snap(p) would fail to typecheck; snapbackis excluded by linear typing.There is thus a tantalizing analogy between linear functions and imperative statetransformations. So it is natural to ask whether, or the extent to which, linear logiccan give rise to an improved semantic treatment of state.As a �rst test of the analogy, we might translate a basic imperative language,such as the language of while programs, into a linear functional language. It isclear that one could express typical constructs, such as sequencing, assignment anditeration, in terms of linear functions.This is all well and good, but it only connects up imperative and linear functionalprogramming on a basic level, for an imperative language without procedures. Andsuch a language does not in fact provide a satisfactory test. For, basic sequentialimperative languages, without procedures, already possess a satisfactory founda-tion, with simple semantic models based on partial functions on states and logicsbased on Hoare triples or weakest preconditions. It is di�cult to see how this un-derstanding could be improved by phrasing the semantics in terms of linear types.How can this be? We began by describing problems in traditional semanticsbased on state-to-state functions, and the language ofwhile programs uses preciselythat kind of semantics. Consider again the snapback example: snap is a functionfrom state transformations to state transformations; in imperative terms it is aprocedure that expects an expression thunk as an argument. It takes an arbitrarystate transformation, runs it, and then restores the state to its initial value. Thewhole discussion of snapback and irreversibility hinged on having procedures, whichare missing from the language of while programs.We can go further still if we use local variables: We can then write programswhose observable behaviour is sensitive to whether or not snapback is present inthe semantics:snaptester = �p:new x: x := 0; p(x := x+ 1); if x > 0 then diverge:The termination/nontermination behaviour of snaptester is equivalent to that of�p: p(diverge). The reason is that if p executes its argument at all then the valueof x on termination of p(x := x+1) will be greater than 0, since there is no way forp to alter the value of x other than by using its argument. Snapback contradictsthis informal reasoning, since snaptester(snap) converges while snaptester(diverge)



6 � P.W. O'Hearn and J.C. Reynoldsdiverges.Thus, it makes sense to consider imperative languages that have procedures andlocal state, in addition to assignment. In this paper we consider two such languages,based on Idealized Algol [Reynolds 1981b].1.2 Polymorphism, Data Abstraction and Store ShapesIt is evident how to model state transformations with linear functions, but now wemust consider how to model procedures and local state. We might attempt to do sodirectly in a simply-typed linear language, using �� to model state transformationsand a conventional function type ! to model procedures, but there is a furtherproblem: It is not obvious how we might account for the interaction of proceduresand local state (as given, for example, in snaptester).To expand on this last last point, consider how a \counter class" can be pro-grammed in an Algol-like language using procedures and local state [Reynolds 1978]:newcounter = �p:new x: x := 0; p(x := x+ 1; x):This code works by declaring a local variable x, and then passing the ability toincrement and read x to the procedure p. (The second argument x of p is implicitlydereferenced from a variable to an expression, so that it cannot be assigned to byp.). Because the procedure p can never access the local variable x we are assured,for example, that the value of x can never be decremented. This illustrates howa form of data abstraction results from the combination of procedures and localstate; it is hard to see how this phenomenon could be modelled in a simply typedversion of linear �-calculus.This discussion has been leading toward our choice of target language. We canaccount for data abstraction and local state using polymorphic types [Reynolds1974; O'Hearn and Tennent 1995], so our target language will be a linearly-typed,polymorphic �-calculus.We can now sketch the main ideas behind the translations. The starting point isto allow for multiple state types instead of only one. In terms of the polymorphictarget language we regard type variables as ranging over various \store shapes" orstate types, so that in a type ���� of state transformations the type variable �can be instantiated to a variety of di�erent representations of the state. The basicidea is that programs working with di�erent store shapes act on separate parts ofthe store.To see how this works recall the counter class above. An argument p to new-counter is a procedure that accepts a command and an expression as arguments,and produces a command as a result. We assign p the polymorphic type8�:(����)&(���� 
 nat)! (�
 ����
 �):The idea is that the state in use when p is called is partitioned into the �-typedpart, which p may access directly, and the �-typed part, about which p knowsnothing. The argument type ���� corresponds to a command for changing thisunknown state, and ���� 
 nat to a natural number-valued expression (possiblywith side e�ects).The type constructors & and ! here are for conventional product and functiontypes; they are not subject to linearity restrictions. The mixing of linear and non-



From Algol to Polymorphic Linear Lambda-calculus � 7linear type constructors in the type of p implies that it is only the state that mustbe used linearly; the two arguments, of types ���� and ����
nat, may be usedzero, one, or many times, as is common in imperative languages.Now, if we apply the counter class to such a p, i.e., newcounter(p), we obtain afunction of type ����:�s : �: let [s0; n0] be p[nat]h�n: n+ 1; �n: [n; n]i[s; 0]in s0.We can see from this how the �-component in the type of p is regarded as rangingover possible pieces of local state. What a local-variable declaration does �rst isextend the state s to [s; 0], i.e., a state with an additional component initializedto 0. In this process of initialization the type of the state changes from � to�
nat, with nat being the type of the values that can be held by the local variable.Instantiating the � component to nat allows p to work in this enlarged state:Communication between local state and non-local procedures is achieved throughpolymorphic instantiation. Intuitively, the independence of non-local proceduresfrom local state corresponds to the parametricity of a polymorphic function whosetype argument ranges over possible pieces of local state [Reynolds 1983; O'Hearnand Tennent 1995].This example also illustrates how the move from simple to polymorphic types hasan additional e�ect, beyond enabling a treatment of data abstraction. To see this,consider that we have used Contraction and Weakening of nat-typed identi�ers:Contraction is used for dereferencing, in �n: [n; n], and Weakening of n0 is used tomodel deallocation of the local variable on block exit. (We also sometimes needWeakening to model updates.) These uses of Contraction and Weakening do notcontradict the intuitive connection between linearity and state change, because thepolymorphic uses of nat by p (obtained by instantiating �) will still all be linear.This point deserves careful consideration, and we will return to it several times,but the general idea is that polymorphic instantiation mediates between the linearway that state is manipulated, and the use of non-linear values to make up speci�cstates.Local-variable declarations are a special mechanism for ensuring absence of in-terference through shared variables. We can also use polymorphic typing to treatnon-interference more generally. For example, consider the type8� 8
: (����)&(
�� 
 
 nat)! (�
 � 
 
���
 � 
 
):In imperative terms, a procedure of this type accepts two arguments, one a com-mand and the other a side-e�ecting expression. If q is such a procedure then in anapplication q[A][B]hc; ei it is never possible to use c to change the state in a waythat a�ects a future use of e. This is because, in q, using c produces a �-typedvalue, while e expects a 
-typed value, and these types do not match up. So theuse of di�erent type variables for the arguments means that the output state of onecannot be used as the input state of the other. Again in imperative terms, we takethis to mean that the two arguments c and e don't interfere.We now proceed to present the translations, and the semantics. Our two sourcelanguages are Idealized Algol [Reynolds 1981b] (without jumps or coercions, andwith side e�ects in expressions) and syntactic control of interference [Reynolds



8 � P.W. O'Hearn and J.C. Reynolds1978] (without passivity). The target language is based on the �� , 
, &, ! (or\!") fragment of intuitionistic linear logic [Girard 1987; Barber and Plotkin 1997],extended with a �xed-point operator and a predicative form of polymorphism. Thesemantic model of the target language is based on strict continuous functions andbinary relational parametricity [Reynolds 1983]. We analyze the model by lookingat sample equivalences, and by characterizing the structure of �rst-order types interms of domain equations for resumptions.In Section 8 we will describe the connection to functor-category semantics in somedetail, but for the most part we will work directly with the polymorphic languageand its model.
2. TWO VARIATIONS ON ALGOLOur imperative languages are based on the analysis of Algol 60 given in [Reynolds1978; Reynolds 1981b]. The one, substantial, caveat is that our languages do notaccount for passivity. Thus, evaluation of a natural-number expression can producea side e�ect, and we do not consider a concept of passive type [Reynolds 1978] (also,[O'Hearn et al. 1999]).Both languages use the following grammar of types:
' ::= exp j acc j comm primitive types� ::= ' j � � �0 j �! �0 typesThe primitive type exp is the type of natural-number expressions, acc is the typeof acceptors, and comm is the type of commands. Commands change the state ofthe store but do not produce values, and an acceptor changes the state when it issupplied with an integer. The type var of storage variables is an abbreviation foracc�exp. The factors of var give the basic capabilities of updating and accessinga storage variable.2.1 Idealized AlgolThe typing rules for Idealized Algol follow. A typing context � is a �nite list ofassumptions x : � pairing identi�ers with types, with the proviso that no identi�er



From Algol to Polymorphic Linear Lambda-calculus � 9appears twice.�; x : � ` x : � � `M : �e� `M : � where e� is a permutation of ��; x : � `M : �0� ` �x : �:M : � ! �0 � `M : � ! �0 � ` N : �� `MN : �0� `M : �1 � �2� ` �iM : �i where i is 1 or 2 � `M : � � ` N : �0� ` hM;Ni : � � �0� ` 0 : exp � ` N1 : exp � ` Ni : ' ; i = 2; 3� ` if N1 = 0 then N2 else N3 : '� `M : exp� ` succ M : exp � `M : exp� ` pred M : exp� `M : � ! �� ` Y�M : � � `M : var! '� ` new'M : '� ` skip : comm � `M : comm � ` N : '� `M ;N : '� `M : exp! comm� ` byvalueM : acc � `M : acc � ` N : exp� `M := N : commIdealized Algol contains the functional constructs of PCF [Plotkin 1977]. Ofthe imperative constructs, new(�x:C) works by binding x to a local storage vari-able that is initialized to 0, \;" is sequential composition, skip is the do-nothingcommand, and assignment supplies an integer value to an acceptor.Acceptors were originally introduced as part of a generalized approach to vari-ables [Reynolds 1981b], in which an acceptor was considered simply as a functionfrom data values to commands. On this view acceptors are similar to functions oftype exp! comm, except that they accept integer values rather than expression-thunks as arguments; they are thus a form of call-by-value procedures. The byvalueconstruct converts a thunk-expecting procedure to an acceptor using a coercionfrom natural-number values to expressions. (It would be conceivable to provideinstead an alternate binding form for call-by-value, as was done in Algol 60 usingthe keyword value with a formal parameter.)We will often use syntactic sugar in an informal, but hopefully clear, way. Forinstance, newcounter is rendered formally as�p : (comm� exp! comm)! comm:newcomm (�x : var: (�1x) := 0; ph(�1x) := (succ �2x); �2xi):Generally, we omit mention of types in new or on �-bound identi�ers, we omitthe projections when using a term of type var, and we write newx:M instead ofnew (�x:M).An important di�erence with the original Idealized Algol is that a sequentialcomposition of the form M ;N when N : exp may result in an \active expression,"which may return di�erent natural numbers on di�erent uses. For example, if



10 � P.W. O'Hearn and J.C. Reynoldsx : var is a declared variable then x := x+1;x returns successive natural numberson successive uses.We have not attempted to produce an irredundant collection of basic constructs.For instance, the expression newacc P of type acc could be eliminated, as it isequivalent to byvalue (�y : exp:newcomm z: Pz := y).It is worth considering how the inclusion of side e�ects in expressions impactsthe coding of arithmetic operations. A typical functional encoding of addition isplus = Y (� plus: � x: �y: if x = 0 then y else plus (pred x) (succ y)).In Idealized Algol (with side e�ects) an evaluation of plus e1 e2 will evaluate e1 ande2 multiple times, perhaps changing the state each time. For example,newexp z: z := 1; (plus (z := z + 1; z) 2)diverges since z is incremented each time pred is evaluated.Using new we can program a version of addition that evaluates its argumentsonce each, left followed by right, and adds the resulting values together:leftadd = �x: �y:newx0:new y0: x0 := x; y0 := y; plus (x0) (y0).We can also de�ne rightadd = �x: �y: leftadd y x.2.2 Basic SCIBasic SCI (for syntactic control of interference) is similar to Idealized Algol, butfor a few modi�cations. First, it uses the a�ne �-calculus as its type system,whereas Idealized Algol uses the full simply-typed calculus. The a�ne calculus isjust the usual simply-typed calculus, except that the rule for procedure applicationis restricted so that procedure and argument have no free identi�ers in common.(This is another way of saying that the calculus does not have Contraction.) Thisrestriction prevents interference between di�erent identi�ers. For instance, y and zare aliases in ((�y�z: � � � y := a � � � z := b � � �)x)x if x denotes a storage variable. Buta term of this form cannot typecheck in Basic SCI because there is an occurrenceof x in a procedure and its argument.Second, the rule for recursion is restricted to procedures with no free identi�ers.This restriction is needed because otherwise a recursive unwindingY(F )�F (Y(F ))would violate the disjointness between procedure and argument that is character-istic of Basic SCI.Third, in Basic SCI we have a determinate form of parallelism, where the parallelcomposition M k N is allowed if the free identi�ers of M and N are disjoint. Thisillustrates the di�erence with Idealized Algol, where the same construct would(because of interference) lead to indeterminacy.These modi�cations and additions to Idealized Algol are summed up in the fol-lowing rules:� `M : �! �0 �0 ` N : ��;�0 `MN : �0 � `M : comm �0 ` N : comm�;�0 `M k N : comm`M : � ! �` Y�M : �



From Algol to Polymorphic Linear Lambda-calculus � 11To illustrate further the di�erence between SCI and Idealized Algol consider theaddition operations leftadd; rightadd : exp! exp! exp. In Idealized Algol theseoperations are inequivalent because of interfering side-e�ects. For example, in astate where the contents of storage variable x is 5, evaluation of leftadd(succ x)(x :=succ x;x) returns value 12, whereas rightadd(succ x)(x := succ x;x) returns value13. In contrast, in SCI the arguments to these functions never interfere: The typingrules ensure that in a procedure call leftadd(e1)(e2) the procedure leftadd(e1) andargument e2 have disjoint sets of free identi�ers. As a result, even though we allowside e�ects in expressions, leftadd and rightadd are equivalent in SCI.An interfering version of addition can be programmed in SCI using the typeexp� exp! exp instead of exp! exp! exp. The point is that SCI types canbe used to specify both potential dependence and necessary independence betweenprogram parts.3. A POLYMORPHIC LINEAR �-CALCULUSNow we introduce the polymorphic target language. We follow the version of lineartype theory formulated by Barber and Plotkin [1997], where two zones are used ina typing context to keep track of intuitionistic and linear assumptions. The basicidea is that linear assumptions are used once, while intuitionistic assumptions canbe used multiple times in a term. (We refer to [Abramsky 1993; Benton et al. 1993;Wadler 1990; Wadler 1991] for further discussions of linear �-calculi.)The kind of polymorphism we need for interpreting Algol is predicative in nature,so we work with the following strati�cation of types:� ::= � j nat j � 
 � j I Level 1A ::= � j 8�:A j A��A j A! A j A&A j !A Level 2Type variables are denoted by � (or other Greek letters �, 
). The essence ofthe strati�cation is that the 8 quanti�er ranges over only Level 1 types. Thisis signi�cant because it makes the construction of models much easier than forimpredicative calculi.This strati�cation is possible because of the distinction between data types andphrase types (or between storable and denotable values) in Algol. The Level 1 typescorrespond, intuitively, to store shapes in the sense of Reynolds and Oles, whereasLevel 2 types are, after translation, types of phrases in the imperative languages.It would be possible to de�ne A ! B as !A��B. But since, for the purpose ofthe two translations, the only signi�cant uses of \!" would be in this encoding weprefer to work explicitly with both function types �� and !. For emphasis we usetwo binding forms, �x : A: t and �x : A: t, one for each function type. We will usethe same syntax for applying both kinds of function (in e�ect leaving derelictionimplicit in!); no confusion is likely to arise from this.The system uses typing judgements of the form�;� ` t : A;where the context is broken into an intuitionistic zone � and a linear zone �.



12 � P.W. O'Hearn and J.C. ReynoldsIdentity �;� ` t : Ae�; e� ` t : A where e�; e� are permutations of �;��; x : A; ` x : A �;x : A ` x : AAdditives �;� ` t : A �;� ` u : B�;� ` ht; ui : A&B�;� ` t : A&B�;� ` �1 t : A �;� ` t : A&B�;� ` �2 t : B�; x : A; � ` t : B�;� ` �x : A: t : A! B �;� ` t : A! B �; ` u : A�;� ` t u : BMultiplicatives�; ` � : I �;�1 ` t : I �;�2 ` u : A�;�1;�2 ` let � be t in u : A�;�1 ` u : A
B �;�2; x : A; y : B ` t : C�;�1;�2 ` let [x; y] be u in t : C�;�1 ` t : A �;�2 ` u : B�;�1;�2 ` [t; u] : A
B�;�; x : A ` t : B�;� ` �x : A: t : A��B �;�1 ` t : A��B �;�2 ` u : A�;�1;�2 ` t u : B�; ` t : A�; ` !t : !A �;�1 ` u : !A �; x : A; �2 ` t : B�;�1;�2 ` let !x be u in t : BPolymorphism�;� ` t : 8�:A�;� ` t[�] : A[�=�] �;� ` t : A�;� ` ��:t : 8�:A � 62 fv(�;�)



From Algol to Polymorphic Linear Lambda-calculus � 13Natural Numbers and Recursion�; ` 0 : nat �; ` t : A! A�; ` YA t : A�;� ` t : nat�;� ` succ t : nat �;� ` t : nat�;� ` pred t : nat�;� ` t : nat�;� ` copy t : nat
 nat �;� ` t : nat�;� ` discard t : I�;�1 ` u1 : nat �;�2 ` u2 : A �;�2 ` u3 : A�;�1;�2 ` if u1 = 0 then u2 else u3 : AIn this formulation of linear typing we have introduction and elimination rules foreach type constructor. However, we do not have to add explicit rules that permitWeakening and Contraction of \!"-typed identi�ers; this is because of the use oftwo zones, which allows Weakening and Contraction in the intuitionistic zone to beleft implicit, as is the case in simply-typed �-calculus. This allows for a particularlysmooth treatment of the intuitionistic function type !, which is attractive for ourpurposes: We will have need for !, but not explicitly for \!."The characteristic feature of the additive rules is the sharing of typing contexts.For instance, in the introduction rule for &, the linear zone � is shared betweenboth premises. On the other hand, the characteristic feature of the multiplicatives isthe splitting of typing contexts in the linear zone. For instance, in the introductionrule for 
, the contexts �1 and �2 must be made up of disjoint collections ofidenti�ers. The absence of Contraction is re
ected in this splitting of contexts inthe multiplicative rules, and the absence of Weakening is re
ected in the rules foridenti�ers; the linear zone is empty when an identi�er from the intuitionistic zoneis typed, and of length one when a linear identi�er is typed.One point to notice is the presence of explicit terms for copying and discardingnatural numbers. Using these and the rules for I we can de�ne appropriate copyingand discarding terms of types ���� 
 � and ��� I , for any closed Level 1 type�. But we do not have copying or discarding of Level 1 types available generically,as terms of type 8�: ����
 � or 8�: ��� I . This distinction between speci�c andgeneric copying/discarding is related to the following idea in Idealized Algol: Astate change e�ected by a command on any �xed �nite number of storage variablescould be reversed by using local variables to store and restore the values. But wecannot program a general snapback mechanism that reverses state changes for everypossible shape of the store.We have used [s; t] as notation for 
-pairs, reserving f 
 g for the functorialaction of 
, wheref 
 g = �x : A
B: let [y; z] be x in [fy; gz];when f : A��A0 and g : B��B0.We use 
A to abbreviate YA(�x : A:x). In a fully polymorphic language Y wouldhave type 8�: (� ! �) ! �, but in the predicative sublanguage this type is notsu�cient because � does not range over all types.



14 � P.W. O'Hearn and J.C. Reynolds4. TRANSLATIONS OF TYPESIn this section we give the translations on the level of types. We consider termsby treating a few examples, leaving the detailed translation to the next section.In presenting examples we will be somewhat liberal in the use of syntactic sugarand the application of (meaning-preserving) syntactic simpli�cations in the linearcalculus.4.1 Idealized AlgolThe translation takes a judgementx1 : �1; : : : ; xn : �n `M : �in Idealized Algol to a judgementx1 : �?1�; : : : ; xn : �?n�; `M?� : �?�in polymorphic linear �-calculus, wherecomm?� = ����acc?� = �
 nat���exp?� = ����
 nat(� � �0)?� = �?�& �0?�(� ! �0)?� = 8�: �?(� 
 �)! �0?(�
 �):The translation �? of an Idealized Algol type is a type with a \hole" that canbe �lled by substituting type variables and other Level 1 types. For instance,comm?(� 
 �) is �
 ����
 �. Similarly, a term M gets mapped to a term M?with a type variable hole that can be �lled with various type variables or Level 1types: M��, M��0... and so on. (The translation could be arranged so that eachM? was a polymorphic function of type 8�: �?1�& � � � & �?n� ! �?�. We prefer,however, to use the term-with-hole representation in order to minimize explicitmanipulations of environments.)The only essential uses of linearity involve primitive types and states. In partic-ular, the translations of Algol types always appear in the intuitionistic zone of atyping judgement.In the informal translation of newcounter in the Introduction we used Weakeningand Contraction of nat-typed identi�ers. With our linear language, however, wehave to be more explicit, using copy and discard. Also, a slight adjustment isneeded because the translation of procedure types in Idealized Algol allows � toappear to the left of !, whereas the type for the procedure p in the Introductionused the SCI interpretation (see below) where � does not appear to the left. So pnow has type8�: (�
 ����
 �)� (� 
 ����
 � 
 nat)! (�
 ����
 �);and the translation of newcounter(p) is the following function of type ����:�s : �: let [s0; n0] be p[nat]h(id� 
 �n: succ n); (id� 
 �n: copyn)i[s; 0]in (let � be (discardn0) in s0),where id� is �s : �: s.



From Algol to Polymorphic Linear Lambda-calculus � 15Some equivalences between Idealized Algol terms can be proven using basic lawsof polymorphic �-calculus. For example, the equivalence (new�x: c) � c, for anidenti�er c : comm, follows from basic equivalences of polymorphic �-calculus to-gether with the assumption that discard and copy give nat a comonoid structure.Typically, the basic equations that are valid in models where 8 is interpreted simplyas an indexed product are su�cient for reasoning about new blocks whose only freeidenti�ers are of primitive type, but parametricity is needed when there are freeidenti�ers of procedural type.In the Introduction we discussed snapback in the context of a single collectionStates of states. In the polymorphic language snapback would ostensibly be givenby a term ��: �s : �: let [s0; n] be c s in [s; n]of type 8�: (����
nat)! (����
nat) which (given the isomorphism � �= I
�)would determine a closed term of type (exp ! exp)?I . But this term does nothave the indicated type because it uses Contraction of s and Weakening of s0,where s and s0 are �-typed values. This does not show that no other term producesthe behaviour of snapback { for that we will appeal to a semantic model { but itillustrates that it is the general, or polymorphic, snapback that we expect controlof structural rules to forbid.4.2 Basic SCIWe translate x1 : �1; : : : ; xn : �n `M : �in Basic SCI to a judgementx1 : ��1�1; : : : ; xn : ��n�n; `M�(�1; : : : ; �n) : ��(�1 
 � � � 
 �n)in polymorphic linear �-calculus, wherecomm�� = ����acc�� = �
 nat���exp�� = ����
 nat(� � �0)�� = ���& �0��(� ! �0)�� = 8�: ��� ! �0�(� 
 �):Compared to the other translation, each identi�er xi is now associated with aseparate state-type �i; the idea is that each identi�er has a separate piece of thestore that it acts upon. The other di�erence is that the procedure type uses ���in the argument position instead of ��(� 
 �). The result is that the procedureand argument types no longer share type variable �, mirroring the restricted rulefor application in SCI which ensures that procedures and their arguments don'tinterfere.For example, the type comm! exp! comm translates as8�: (����)! (8
: (
��
 
 nat)! (�
 � 
 
���
 � 
 
));which is isomorphic to the type8� 8
: (����)& (
�� 
 
 nat)! (�
 � 
 
���
 � 
 
)



16 � P.W. O'Hearn and J.C. Reynoldsthat we used to illustrate non-interference in the Introduction.Note that the absence of Contraction in linear logic is not being used to accountfor the absence of Contraction in SCI. Indeed, the translations of SCI types al-ways appear in the intuitionistic zone in the translation of a judgement. It is theuse of di�erent type variables that corresponds to the absence of Contraction inSCI: Di�erent occurrences of the same SCI type �, say x1 : �; x2 : �, get sent todi�erent types, x1 : ���1; x2 : ���2. Generally, parametric polymorphism is usedto model both local state and non-interference, whereas linearity (combined withpolymorphism) ensures that there is no snapback.We give several examples of term translations. First, if x1 and x2 are di�erentidenti�ers of type comm, then the translation of x1 k x2 isx1 : �1���1; x2 : �2���2;` � s : �1 
 �2: let [s1; s2] be s in [x1s1; x2s2] : �1 
 �2���1 
 �2.From this we can see how the disjointness property of SCI is very explicit: It isobvious that x and y act on disjoint portions of the store, so we can run them inparallel.Consider next the sequential composition x; y of two command identi�ers. Thisis translated asx1 : �1���1; x2 : �2���2;` � s : �1 
 �2: x02(x01(s)) : �1 
 �2���1 
 �2,where x01 = �s : �1 
 �2: let [s1; s2] be s in [x1s1; s2]x02 = �s : �1 
 �2: let [s1; s2] be s in [s1; y2s2].Although the translation uses x02(x01(s)), which indicates that x1 is evaluated �rst,it reduces to let [s1; s2] be s in [x1s1; x2s2] using typical reductions of linear �-calculus. Thus, it is clear that x1;x2 and x1 k x2 are equivalent.Finally, consider our two addition operations leftadd and rightadd. The transla-tions of leftadd(x1)(x2) and rightadd(x1)(x2) are bothx1 : �1���1 
 nat; x2 : �2���2 
 nat;` � s : �1 
 �2: let [s1; s2] be s inlet[[s01; n]; [s02;m]] be [x1s1; x2s2] in [[s01; s02];m+ n]: �1 
 �2���1 
 �2 
 nat.We regard the two arguments as being evaluated in parallel, possibly altering di�er-ent portions of the store, before their results are added together. (The translationsdo not literally result in this term, but in ones that are, by an easy analysis usingthe semantic model of Section 6, seen to be equivalent to it.)5. TRANSLATIONS OF TERMSThe detailed translations of terms follow ideas from functor-category semantics[Oles 1982].



From Algol to Polymorphic Linear Lambda-calculus � 175.1 Idealized AlgolWe begin by translating assignment. An assignment statementM := N is executedby �rst evaluating N , obtaining a changed state and value, and then supplying thisvalue and state to M . Thus, assignment is simply a composition of the form� �
 nat �:-N?� -M?�More explicitly, we may de�ne(M := N)?� = �s : �: let [s0;m] = (N?� s) in (M?� [s0;m]):To translate newcomm we follow the pattern of the newcounter example in theIntroduction:(newcomm P )?� = �s : �: let [s0; n] be (P ?�)[nat] (v[�]) [s; 0] inlet � be (discardn) in s0:In this equation the expanded state [s; 0] and a local variable v[�] (de�ned below)are passed as arguments to the procedure P , and the �nal value n of the localvariable is discarded on termination of P . The translation P ?� of P has type8�:var?(� 
 �) ! comm?(� 
 �), and polymorphic instantiation is used to setthe �-component to nat.The local variable v is given by the term ��: hassign[�]; lookup[�]i of type8�: (acc� exp)?(�
 nat), whereassign = ��: �s : (�
 nat)
nat: let [[a; n];m]be s inlet � be (discardn) in [a;m]lookup = ��: � s : �
 nat: let [a; n] be s inlet [n0; n00] be (copyn) in [[a; n0]; n00].The essence of these two operations is the use of discard in assign and copyin lookup. Similar assignment and lookup operations are therefore available if wereplace nat by any type that has appropriate versions of copy and discard maps.Since all types of the form !A have copy and discard maps, if we were to consideran impredicative polymorphic calculus we could write lookup and assign mapsfor \storing" elements of any such type. An interesting question is whether suchoperations make (imperative) operational sense.The translation of newexp is similar:(newexp P )?� = �s : �: let [[s0; n];m] be (P ?�)[nat] (v[�]) [s; 0] inlet � be (discardn) in [s0;m]:If we had interpreted comm as ����
 I then the two new constructs could havebeen treated uniformly, by the same de�ning equation. The translation of newacc Pis obtained by viewing it as sugar for byvalue (�y : exp:newcomm z: Pz := y).To translate an application (MN)?, where M : � ! �0 and N : �, we must usetranslations of M and N with the following types:M?� : 8�: �?(� 
 �)! �0?(� 
 �)N?� : �?�.



18 � P.W. O'Hearn and J.C. ReynoldsIn order to apply M? to N?, we apply M?� to the unit I of 
, and then use acanonical isomorphism �
I �= � to make the types of the procedure and argumentmatch up. That is,(MN)?� = h�(M?�)[I ](i(N?�))�,where h : �0?(� 
 I)�� �0?� and i : �?��� �?(� 
 I) are terms coding canonicalisomorphisms.We will not give the explicit de�nitions of h and i, but simply say that theyare de�ned in a standard way by induction on types. If T (�) is a type of thepolymorphic calculus with a free type variable �, and f : ���� and g : ���� areterms (� 62 fv(T )), then there is an induced term T [f; g] : T (�)��T (�) obtained byapplying f for positive occurrences of � and g for negative occurrences. Further,T [f; g] is an isomorphism (say, in the model of the following section) whenever fand g denote inverse isomorphisms.This use of canonical isomorphisms is unpleasant, and is treated much moresmoothly in a semantics based explicitly on a functor category.The next case we consider is �-abstraction. We need to de�ne(�x : �:M)?� : 8�: �?(�
 �)! �0?(�
 �)in terms ofM?� : �0�, assuming x : �?�.The type mismatch between �?� and �?(�
�) is dealt with now by using \expan-sion" mappings expand� : 8��: �?��� �?(� 
 �). Expansions show how a piece ofcode de�ned outside the scope of a local-variable declaration can be used withinthe scope of the declaration. For instance, a command identi�er c : comm�� getssent to �[s; s0] : �
 �: [c(s); s0].A detailed description of expand is postponed until later in this section, but theway expansions are used to treat �-abstraction can be set out now. Suppose we aregivenx1 : �?1 : �; : : : ; xn : �?n�; x : �?� ; `M?� : �0�.Then we also havex1 : �?1(�
 �); : : : ; xn : �?n(�
 �);x : �?(�
 �) ;`M?(�
 �) : �0(�
 �),and using a typical substitution lemma for the linear calculus we can inferx1 : �?1 : �; : : : ; xn : �?n�;x : �?(�
 �) ;` (M?(�
 �))[expand�i [�][�]xi=xi] : �0(�
 �),where (M?(�
�))[expand�i [�][�]xi=xi] denotes the term obtained by substitutingexpand�i [�][�]xi for each xi. Notice that x is not replaced. Given this judgementwe can �rst �-abstract x and then �-abstract �, leading to the de�nition(�x : �:M)?� = �� �x : �?(� 
 �): (M?(�
 �))[expand�i [�][�]xi=xi]:Note that the use of expansions makes the translation M? dependent on thetypes of free identi�ers; e.g. �x : comm: y(z) gets translated di�erently, depending



From Algol to Polymorphic Linear Lambda-calculus � 19on the types of y and z. So to be precise the translation in fact de�nes termsM?��,indexed by Idealized Algol type assignments �.The remaining clauses are straightforward by comparison. A canonical isomor-phism h : �?(� 
 I)�� �?(�) is used to deal with the function application in thetranslation of the �xed-point combinator.x?� = x(�iM)?� = �i(M?�)hM;Ni?� = hM?�;N?�i0?� = �s : �: [s; 0](ifN1 = 0 thenN2 = �s : �: let [s0; y] be N?1 s inelseN3)?� if y = 0 thenN?2� s0 elseN?3� s0(succ M)?� = �s : �: let [s0; y] beM?� s in [s0; (succ y)](pred M)?� = �s : �: let [s0; y] beM?� s in [s0; (pred y)](Y�M)?� = h(Y�?(�
I)M?�[I ])(byvalueM)?� = �[s; n] : �
 nat:let [s0; x] = (M?�[I ](�a : �
 I: [a; n])[s; �]) inlet � be x in s0(M ;N)?� = �s : �:N?� (M?� s)skip?� = �s : �: sThe clause for M ;N is for the cases when N : exp or N : comm. Thecase of M ;N when N : acc is treated by the translation as sugar for the ex-pression (byvalue �x : exp:M ; (N := x)). Similarly, the clause for if is whenN2; N3 : comm or N2; N3 : exp , and the acceptor case is sugar for the expression(byvalue �x : exp: ifN1 = 0 thenN1 := x elseN2 := x).5.2 ExpansionsWe de�ne functions expand� : 8�8�: �?��� �?(� 
 �);where � and � are di�erent type variables. These functions will be given by closedterms. In the present setup, the Expansion Parametricity Lemma of [O'Hearn andTennent 1995] is then a consequence of the de�nability of these expansions and the



20 � P.W. O'Hearn and J.C. ReynoldsLogical Relations Lemma. The de�nition goes by induction on �:expandcomm = ���: �c : ����: �[a; b] : �
 �: [c a; b]expandacc = ���: �c : �
 nat���: �[[a; b]; n] : (�
 �)
 nat: [c[a; n]; b]expandexp = ���: �e : ����
 nat: �[a; b] : �
 �: let [a0; n] = e ain [[a0; b]; n]expand���0 = ���: (expand�[�; �])&(expand�0 [�; �])expand�!�0 = ���: �p:�
: i1 � p[� 
 
] � i2Here we have used the shorthand of composition � (in functional order) and thefunctorial action of &. The terms i1 and i2 are for associativity isomorphisms:i1 : �0((� 
 �)
 
)�� �0(�
 (� 
 
))i2 : �((� 
 �)
 
)�� �(�
 (� 
 
)).Thus, expansions for function types are de�ned according to the following diagram:
�?((�
 �)
 
)�?(�
 (� 
 
)) �0?((�
 �)
 
)�0?(�
 (� 
 
))6i2 -p[� 
 
] -expand�!�0 [�][�]p[
] ?i15.3 Basic SCIIn the translation for Basic SCI we will gloss over isomorphisms for permuting andassociating 
. The translation is similar in many ways to the one for IdealizedAlgol: We concentrate on the main di�erences.First, to translate identi�ers, givenx1 : �1; : : : ; xm : �m ` xi : �iin SCI we must de�nex1 : ��1�1; : : : ; xm : ��m�m; ` x�i (�1; : : : ; �m) : ��i (�1 
 � � � 
 �m):We de�ne x�i (�1; : : : ; �m) = e(xi), where e : ��i �i�� ��i (�1 
 � � � 
 �m) is obtainedby composing an expansion with appropriate symmetry isomorphisms.For �-abstraction, givenx1 : ��1�1; : : : ; xm : ��m�m; y : ���;` M�(�1; : : : ; �m; �) : �0�(�1 
 � � � 
 �m 
 �)we can form the judgementx1 : ��1�1; : : : ; xm : ��m�m;` ��: �y : ���:M�(�1; : : : ; �m; �): : 8�: ��! �0(�1 
 � � � 
 �m 
 �):We take this as the interpretation of �-abstraction in SCI; it is remarkably simplecompared to the translation for Idealized Algol.



From Algol to Polymorphic Linear Lambda-calculus � 21The SCI rule for application is of the formx1 : �1; : : : ; xn : �n `M : � ! �0 xn+1 : �1; : : : ; xm : �m ` N : �x1 : �1; : : : ; xm : �m `MN : �0 ;and we de�ne (MN)�(�1; : : : ; �m) to be�M�(�1; : : : ; �n)[�n+1 
 � � � 
 �m]��N�(�n+1; : : : ; �m)�:In this de�nition the �-component ofM�(�1; : : : ; �n) : 8�: ��� ! �0�(�1 
 � � � 
 �n 
 �)is instantiated to the type �n+1 
 � � � 
 �m of the state for N .For parallel composition, givenx1 : �1; : : : ; xn : �n `M : comm xn+1 : �1; : : : ; xm : �m ` N : commx1 : �1; : : : ; xm : �m `M k N : comm ;we translate as follows:(M k N)�(�1; : : : ; �m) = �s : � let [z1; : : : ; zm] be s in�M�(�1; : : : ; �n)[z1; : : : ; zn];N�(�n+1; : : : ; �m)[zn+1; : : : ; zm]�:This interpretation splits the state into components z1; : : : ; zn and zn+1; : : : ; zmthat are acted upon independently by M and N .The equations for newcomm and newexp are as in Idealized Algol, except thatthe variable v[�] is replaced by v : (acc � exp)�(nat), given by hassign; lookupi,where assign = �[n;m] : nat
 nat: let � be (discardn) in mlookup = �n : nat: copyn.There is no longer a need for the � component of v because procedures and argu-ments don't interfere in Basic SCI.Finally, expansions for procedure types are de�ned as follows:expand�!�0 = ���: �p:�
: i � expand�0 [�
 
][�] � p[
],where i is an isomorphism as indicated in the following diagram
��(
)�0�(� 
 
) �0�((� 
 �)
 
)�0�((�
 
)
 �))6p[
] -expand�0 [�
 
][�]-expand�!�0 [�][�]p[
] ?iExpansions for the primitive types are the same as in Idealized Algol.There is another candidate de�nition for expansions at procedure types, based



22 � P.W. O'Hearn and J.C. Reynoldson the following diagram.
��(
)��(� 
 
) �0�((�
 �)
 
)�0�(�
 (� 
 
))6expand�[
][�] -p[� 
 
] -expand�!�0 [�][�]p[
] ?iThe equivalence of these two de�nitions depends on a naturality property for p,which we will be able to verify later (Theorem 11) using a semantic model of thelinear calculus.6. THE STRICT PARAMETRICITY MODELHaving de�ned the translations we now want to analyze them in more detail. Theapproach we take is to look at a simple semantic model of the target language,and push it as far as possible. This will allow us (in Section 7) to very quickly gobeyond previous functor models [Oles 1982; O'Hearn and Tennent 1995]. Anotherpossibility for analysis would have been to directly relate contextual equivalencerelations for the source and target languages: A syntactic study along these lineswould be interesting, but is outside the scope of the present paper. Additionally, thesemantic model contains useful information beyond contextual equivalence, whichcan be viewed as providing relational reasoning principles, and which leads to rep-resentation results.The model is based on strict continuous functions and relational parametricity;we call it simply the strict parametricity model. It actually supports Contraction,though it does not support Weakening. Such a simple model is useful for our pur-pose, it seems, because problematic examples like snapback in imperative languagestypically use both Weakening and Contraction. Removing just one of Weakeningor Contraction banishes many of these examples.6.1 Semantics of TypesIn the strict parametricity model, types are interpreted as cpo's, i.e., directed-complete partial orders possessing a least element [Plotkin 1983; Abramsky andJung 1994]. Level 1 types will always denote countable, 
at cpo's, where there is adiscretely-ordered set of elements arranged just above a least element ?.More speci�cally, a type A determines a function [[A]] from type environmentsto cpo's, where a type environment D maps type variables to countable, 
at cpo's.Most type constructors are interpreted directly by their cpo counterparts:[[�]]D = D�[[I ]]D = I[[nat]]D = N?[[� 
 �0]]D = [[�]]D 
 [[�0]]D[[A&B]]D = [[A]]D &[[A]]D[[A! B]]D = [[A]]D ! [[B]]D[[A��B]]D = [[A]]D�� [[B]]D[[!A]]D = ([[A]]D)?:On the right-hand side I is the two-point cpo, (�)? is lifting, 
 is smash product,



From Algol to Polymorphic Linear Lambda-calculus � 23& is cartesian product, �� is strict continuous function space (pointwise ordered),and ! is continuous function space.To de�ne 8 we make use of an auxiliary relational semantics [Reynolds 1983].Suppose R (a relation environment) is a function mapping each type variable intoa pointed (i.e., h?;?i-containing) binary relation between 
at cpo's, such thatR(�) : D�$ D0�; all �for type environments D;D0. Then we de�ne a complete relation[[A]]R : [[A]]D $ [[A]]D0as follows. (Completeness means that the relation is closed under lubs of directedsets in [[A]]D $ [[A]]D0 . This condition is needed for recursion to be compatible withthe Logical Relations Lemma, below.)[[�]]R = R�[[I ]]R = fha; ai j a 2 Ig[[nat]]R = fhn; ni j n 2 N?g[[� 
 �0]]R = fh[d; d0]; [e; e0]i j hd; ei 2 [[�]]R ^ hd0; e0i 2 [[�0]]Rg[[A&B]]R = fhhd; d0i; he; e0ii j hd; ei 2 [[A]]R ^ hd0; e0i 2 [[B]]Rg[[A! B]]R = fhf; f 0i j 8hd; d0i 2 [[A]]R: hfd; f 0d0i 2 [[B]]Rg[[A��B]]R = fhf; f 0i j 8hd; d0i 2 [[A]]R: hfd; f 0d0i 2 [[B]]Rg[[!A]]R = fhd; ei j hd; ei 2 [[A]]R _ d = e = ?g:The relational actions of ! and �� use the same clauses, the di�erence being thatthe clause for �� assumes that both f and f 0 are strict. In the de�nition of 
, [x; y]is the least element h?;?i if x or y is ? and is the pair hx; yi otherwise. We oftenrefer to the relational action of type constructors directly, for example by writingR
 S instead of [[� 
 �]](� 7! R; � 7! S).The relational action of 
 deserves comment. A basic justi�cation for the de�-nition is the following two properties that it satis�es:|If hf; gi 2 R��S and hf 0; g0i 2 R0��S0 then hf 
 f 0; g 
 g0i 2 R
R0��S 
 S0,|R
 S��T �= R�� (S��T ).The �rst property connects the functorial and relational actions of 
, and is neededfor the interpretation of the elimination rule for 
 to satisfy relevant parametric-ity properties (needed for the Logical Relations Lemma below). The second is arelationship we expect between 
 and �� .Next, note that we do not have the property thatha; bi�R
 S�hc; di implies aRc and bSd.For instance if ?Rc and bSd then h?;?i�R 
 S�hc; di even when we do not have?Sd. The property fails because of the use of [�; �] in the de�nition of R
 S.Finally, a particular subtlety is that the formula for R
S does not always producea complete relation, for complete relations R and S on arbitrary cpo's. For example,consider relations R : N? $ I and S : N? $ V nat where R = fh?;?i; h?; �ig andS = fh?; 0i; h1; 2i; h2; 3i; :::g, and V nat is the vertical natural numbers. Then R
Scontains a chain of all tuples hh?;?i; h�; nii, for n > 1, but it does not contain thelub hh?;?i; h�;1ii. Nevertheless, R 
 S is strict and trivially complete whenever



24 � P.W. O'Hearn and J.C. ReynoldsR and S are strict relations on 
at (or �nite height) cpo's. In the semantics of ourpolymorphic language 
 is only ever applied to 
at cpo's, so the de�nition of therelational action is suitable for this language.Returning to the de�nition of the model, we can now de�ne the cpo and relationalsemantics for 8. For this, let Level1 stand for the collection of countable, 
at cpo's.A polymorphic function will be an element of an indexed product, indexed by cpo'sin Level1, subject to a relational parametricity condition:[[8�:A]]D = fp 2Qd2Level1[[A]]Dj�7!d j8d; d0 2 Level1 ; 8r : d$ d0: hp[d]; p[d0]i 2 [[A]]IDj�7!rg;ordered pointwisehp; p0i 2 [[8�:A]]R , 8d; d0 2 Level1 ; 8r : d$ d0: hp[d]; p0[d0]i 2 [[A]]Rj�7!d:Here ID maps each � to the identity relation �D� on D�. The notation r : d$ d0indicates that r is a relation between (
at) cpo's d and d0 that relates their leastelements. For the well-de�nedness of this de�nition it is crucial that Level1 isessentially small { there are only set-many countable, 
at cpo's (at least up toisomorphic copies).With these de�nitions one may verify that each [[A]]D is a cpo and each [[A]]R is acomplete relation on cpo's. This ensures that the least �xed-point operator existsin the model.By \parametric model" we mean a model satisfying the Identity Extension Lemma:[[A]]ID = fha; ai j a 2 [[A]]Dg:This is usually taken as the de�ning characteristic of relational parametricity [Reynolds1983], and the de�nition of 8 is arranged precisely to ensure the identity property(which is included here as part of the Isomorphism Lemma).Lemma 1. (Isomorphism Functoriality Lemma) For any type A, the rela-tional action of [[A]] is functorial on isomorphisms. That is, (i) if R� is the graphof an isomorphism between 
at cpo's for each � free in A then [[A]]R is the graph ofan isomorphism, and (ii) [[A]] preserves identities and composites of isomorphisms.6.2 Semantics of TermsA typing judgementx1 : A1; : : : ; xn : An; y1 : B1; : : : ; ym : Bm ` t : Cis interpreted by a D-indexed family of strict continuous functions[[t]]D : ([[A1]]D)? 
 � � � 
 ([[An]]D)? 
 [[B1]]D 
 � � � 
 [[Bm]]D �! [[C]]D:We omit the detailed de�nition, which is standard, but we do describe the unifor-mity property of this family. For this, we extend relational actions from types totyping contexts using the actions for 
 and !:[[x1 : A1; : : : ; xn : An; y1 : B1; : : : ; ym : Bm]]R= [[!A1]]R 
 � � � 
 [[!An]]R 
 [[B1]]R 
 � � � 
 [[Bm]]R:



From Algol to Polymorphic Linear Lambda-calculus � 25Lemma 2. (Logical Relations Lemma) If�;� ` t : AR� : D�$ D0�, for all �h�; �0i 2 [[�;�]]R,then h [[t]]D� ; [[t]]D0�0 i 2 [[A]]R.Since logical relations are used to constrain 8 types, the lemma and the well-de�nedness of the maps [[t]]D are proven simultaneously by induction on t.7. WORKING WITH THE MODELOur aim in this section is to illustrate how strict, relational parametricity can beused to reason about types and terms in the source languages. All of the examplesgo beyond those that can be treated properly in either the basic functor categorymodel of Oles [1982] or the parametric functor models of O'Hearn and Tennent[1995], and Sieber [1996]. (The ability to relate ? to non-? states is responsiblefor the improvement over [O'Hearn and Tennent 1995].)From now on we will often mix notation for polymorphic types and cpo's. Forinstance, we write 8�: (S 
 ���S 
 �)! (S 
 ���S 
 �)instead of the more cumbersome[[8�: (�
 ����
 �)! (�
 ����
 �)]](�7!S):Similarly, we write M?S and M�S to indicate functions, and �?S and ��S toindicate cpo's, obtained by composing the translations with the semantics of thelinear langauge.7.1 SnapbackExample 1. We consider a snapback operator of type8�: (����
 nat)! (����
 nat):Were it to exist in the model, this operator would satisfy the propertysnap[S]e s = � hs; ni if e(s) = hs0; ni? if e(s) = ?for countable 
at cpo's S and s 2 S. We show that snap is not parametric.Consider any p 2 [[8�: (���� 
 nat) ! (���� 
 nat)]]. We show the followingproperty (where 2 = f0; 1g):If e : 2?�� 2? 
N? is such that e(s) = h1; 1i when s 6= ?,and p[2?]e0 = h0; 1ithen p[2?]?0 = h0; 1i.This property says that if you use e at all, the �nal state can no longer be 0: Usinge causes an irreversible state change.



26 � P.W. O'Hearn and J.C. ReynoldsTo prove the property, suppose the two assumptions hold for p and e, and considerthe relation R : 2? $ 2? consisting of tuples h0; 0i, h?;?i, h1;?i. Then he;?i 2[R��R
�N? ] and by parametricity hp[2?]e0; p[2?]?0i 2 R
�N? . Since h0; 1i isonly R
�N?-related to itself the property follows.In contrast, the property is not satis�ed by snap because snap[2?]?0 = ?, eventhough we will have snap[2?]e0 = h0; 1i for any e satisfying the �rst assumptionin the property. Thus, snap does not exist in the model.The argument for the non-parametricity of snapback is, in fact, a transcription ofthe failure of Weakening in the category of cpo's and strict functions. Speci�cally,for any cpo D there is a candidate Weakening map wD : D�� I that takes ? to ?and all other elements of D to the non-? element of I . Though this map exists forall D, it is not natural, in that DE I?f -wD�����3wEdoes not commute when f takes a non-? element to ?. Re-expressing this inrelational form, using the graph of such an f , shows that the family wD of maps,indexed by countable, 
at cpo's D 2 Level1, is not in [[8�: ��� I ]].The failure of the naturality of this Weakening map is reminiscent of our con-tention that it is general, or polymorphic, snapback that does not exist in Algol,whereas speci�c state changes can often be reversed.Example 2. The reasoning in Example 1 can be used more positively, to verifythe snaptester equivalence from the Introduction:new x: x := 0; p(x := x+ 1); if (x > 0) then diverge � p(diverge):To show the equivalence we argue that the translations(2) �s : �: let [s0; n0] be p[nat](id� 
 �n: n+ 1)[s; 0]in let [s00; n00] be (ifn0 > 0 then
 s0 else s0)in (let � be (discardn00) in s00) : ����and(3) �s : �: let [s0; n] be p[I ](
(�
I)�� (�
I)) [s; �] inlet � be (discardn) in s0are equivalent, wherep : 8�: (�
 ����
 �)! (�
 ����
 �).Let S be a countable, 
at cpo (the denotation of �) and consider the relationR : N? $ I consisting of the tuples h?;?i, h0; �i, and hi;?i for i > 0. Letc : S 
N?��S 
N? be idS 
 succ, where succ is the strict extension of successor.Then hc;?i 2 �S
R���S
R:As a result, for arbitrary p we can use the parametricity property to gethp[N?]c[s; 0] ; p[I ]?[s; �]i 2 �S
R:



From Algol to Polymorphic Linear Lambda-calculus � 27Next, for any s 2 S suppose that p[N?]c[s; 0] = [s0; n] and p[I ]?[s; �] = [s00; x].Using h[s0; n]; [s00; x]i 2 �S
 R we can argue that (2)=(3) by cases as follows:|If [s0; n] = ? then [s00; x] = ? by the de�nition of R and 
, and so (2)s=(3)s.|If p[N?]c[s; 0] = [s0; n] 6= ? then there are two subcases.|If n = 0 then, by the de�nition of R, we must have that [s00; x] = [s0; �] andobviously (2)s=(3)s, since both will, when beginning in state s, return s0.|If n > 0 then we know that (2) applied to s returns ?. But since n > 0 weknow, from the de�nition of R and parametricity, that [s00; x] = ?, and so both(2) and (3) return ? when started in state s.Many other equivalences can be treated using this form of reasoning. Typically,one �nds a relation between pieces of local state and implementations of di�erentobjects. For example, to show the equivalence of two counter classes�p:new �x: x := 0; � �p:new �x: x := 0;p(x := x+ 1; x) p(x := x+ 2; x=2)for p : comm � exp ! comm, we simply use a relation on their local statesR : N?$ N? consisting of h?;?i and all pairs hi; 2ii. This example (taken from[O'Hearn and Tennent 1995]) indicates that the strict-function model provides anextension of the reasoning methods presented there.Example 3. Since the cpo model of PCF contains functions such as \parallel or,"[Plotkin 1977] one might expect similar functions to arise in the model here. But,in the presence of side e�ects, if we are to evaluate two arguments in parallel thenindeterminacy typically results, unless we use snapback. For example, a \parallelor" function of type (exp ! exp ! exp)�I in SCI would be determined by afunction of type8��: (����
 nat)&(���� 
 nat)! (�
 ����
 � 
 nat)with the following de�ning property:por[S1][S2]he1; e2i [s1; s2] = 8<: hs1; s2; 0i if 9s01: e1(s1) = hs01; 0i_ 9s02: e2(s2) = hs02; 0i? otherwiseThis function is not parametric, because por[I ][{]h?; {i would essentially be theunary snapback which, as we saw in Example 1, is not parametric. Note herethat the condition 9s01: e1(s1) = hs01; 0i is testing whether running e1 results intermination with result 0, and possibly some state change; it, and the other disjunct,are false in the case of non-termination and also in the case of producing a resultother than 0.A more subtle form of parallelism and snapback, which is not correctly treatedby the model, will be considered at the end of this section.7.2 Sample Type AnalysesExample 4. The polymorphic type (comm ! comm)?I corresponds to closedterms of type comm! comm in Idealized Algol. We can calculate its structure



28 � P.W. O'Hearn and J.C. Reynoldsas follows: (comm! comm)?I= 8�: ((I 
 �)�� (I 
 �))! ((I 
 �)�� (I 
 �))�= 8�: (����)! (����)�= N?;where the last isomorphism uses a parametricity argument in the strict-functionmodel. On the level of Idealized Algol, we obtain a correspondencen 7! �c : comm: cn? 7! �c : comm : diverge;where c0 = skip and ci+1 = c; ci. This representation of comm! comm shouldbe compared to that of O'Hearn and Tennent [1995], where (comm! comm)I isN?
 V natop, with V natop the vertical natural numbers 
ipped upside-down. TheV nat component was concerned exclusively with a form of snapback.It is instructive to examine the parametricity argument giving the �nal isomor-phism with N?. (It is in fact the usual parametricity argument for Church numerals[Plotkin 1980; Reynolds 1983], extended to take appropriate care of the presenceof ?.) Let p 2 [[8�: (����)! (����)]] and consider any 
at cpo D, d 2 D, and c :D��D. Let R : N? $ D be the relation consisting of pairs h?;?i and hm; cm(d)i.Then hsucc; ci 2 R��R and, by parametricity, (p[N?] succ 0)R (p[D] c d). Next,if (p[N?] succ 0) = ? then the de�nition of R ensures that (p[D] c d) = ?, andso p = ?. And if (p[N?] succ 0) = n 6= ? then the de�nition of R ensures that(p[D] c d) = cnd, and so p is the n'th Church numeral. We may conclude that[[8�: (����)! (����)]] is isomorphic to N?.In this argument note that R is strict and single-valued. Note also that n isrelated to ? when cnd = ?. In [O'Hearn and Tennent 1995], relations that relate? to non-? elements were not considered, which is why this argument could notgo through.Example 5. The SCI interpretation (comm ! comm)�I turns out to be thesame as (comm! comm)?I . However, when we replace I by a non-trivial 
atcpo S a di�erence appears. We calculate(comm! comm)�S= 8�: (����)! ((S 
 �)�� (S 
 �))�= S�� (S 
N?);where the last isomorphism is again a straightforward parametricity argument. Inthe cpo S�� (S 
 N?), the N? part corresponds to use of the �-component, thenumber of times the command argument is executed (so this part is essentially aChurch numeral). This cpo illustrates how the computation on the S and � com-ponents can be carried out independently: The input state can a�ect the number oftimes the command argument is used, but not what happens on each use. Equally,none of the uses of the command argument a�ects the S-component, which is whythere is a single transformation from input state to output that is independent of�. This independence is re
ected in certain equivalences between terms, such asbetween procedures �c: c;x := 1 and �c: x := 1; c of type comm! comm.



From Algol to Polymorphic Linear Lambda-calculus � 29The same type in Idealized Algol translates as follows:(comm! comm)?S= 8�: (S 
 ���S 
 �)! ((S 
 �)�� (S 
 �)):The representation in terms of S�� (S
N?) no longer works due to the possibilityof interference between procedure and argument in Idealized Algol. For instance,the terms �c: c;x := 1 and �c: x := 1; c can be now distinguished by being appliedto an argument that interferes with x.An explicit description of the cpo for (comm! comm)?S can be given in termsof resumptions. This will be presented as a special case of a representation resultin Section 10.1.Example 6. Next we consider a type for functions with two arguments:(comm� comm! comm)?I�= 8�: (����)&(����)! (����)�= (listf1; 2g)?:A list ` of 1's and 2's corresponds to �c : comm�comm : c`, where c� = skip andci;` = (�ic); c`, for i = 1; 2 and i; ` is the cons of i onto `. The parametricity argu-ment showing the last isomorphism is essentially the same as in Example 4. Withthis representation we can see which argument an element of this type evaluates�rst: i; ` evaluates the i'th argument.Example 7. Two-argument curried functions in SCI are less rigidly sequential, inthat it is not necessary for one argument to be evaluated �rst:(comm! comm! comm)�S�= 8�
: (����)&(
�� 
)! (S 
 � 
 
��S 
 � 
 
)�= S�� (S 
N? 
N?):In this case computation in the �, 
, and S components can all be carried outindependently, being again Church numerals in � and 
. If we consider the casewhere S = I , then we obtain a correspondence between N? 
N? and closed SCIterms of type comm! comm! comm:hn;mi 7! �c1: �c2: cn k cm? 7! �c1: �c2 : diverge:In contrast to Example 6, the evaluations of the two command arguments canproceed completely independently, in parallel.7.3 A Limitation of Binary, Strict ParametricityIndependence from evaluation order in SCI gives rise to examples that requirestronger principles than binary relational parametricity to treat correctly.Example 8. We de�ne a function rotate in the denotation of the type8�1�2�3: (�1���1 
 nat)&(�2���2 
 nat)&(�3���3 
 nat)�! (�1 
 �2 
 �3���1 
 �2 
 �3 
 nat)



30 � P.W. O'Hearn and J.C. ReynoldsThis type is isomorphic to (exp! exp! exp! exp)�I . The de�nition isrotate[S1; S2; S3]hc1; c2; c3i[s1; s2; s3]= 8>><>>: [s01; s02; s3; 0] if c1s1 = [s01; 0] 6= ? ^ c2s2 = [s02; 0] 6= ?[s1; s02; s03; 1] if c2s2 = [s02; 1] 6= ? ^ c3s3 = [s03; 1] 6= ?[s01; s2; s03; 2] if c1s1 = [s01; 2] 6= ? ^ c3s3 = [s03; 2] 6= ?? otherwiseInformally, to evaluate rotate we begin by evaluating its three arguments in paral-lel. Of the three possible rightmost conditions above only one can apply. If it isthe �rst, then we return the altered states s01 and s02, while leaving s3 unchanged.Similarly we leave s1 unchanged in the second case and s2 in the third. Intuitively,this involves a form of snapback in each argument. Nevertheless, rotate does existin the model. (We leave the veri�cation of parametricity conditions as an exercise.)This example shows a limitation of the strict-function model of the polymorphiccalculus, and of the corresponding model of Basic SCI. In particular, because ofthe example we would not expect a result to the e�ect that the syntactic type(exp ! exp ! exp ! exp)�I is, in the model, characterized by SCI-de�nableelements: It seems reasonably clear that rotate is not de�nable in the linear language(though a rigorous proof would be very involved).Although this points to a limitation in the strict parametricity model, it doesnot indicate a problem in our syntactic translation. We believe that the elementsof the cpo (exp! exp! exp! exp)�I that are de�nable by source and targetlanguage terms are the same. Furthermore, it appears that these de�nable elements(and their lubs) form a cpo that is isomorphic to the cpo N� �N� �N� !s N?of Kahn-Plotkin sequential functions, where N� is a stream cpo.The rotate function is a variation on Berry's [1978] example of a stable functionthat is not sequential. It came to our attention in the context of SCI because ofReddy's coherence space model, where a version of it is also present. This indicatesthat neither model fully accounts for sequentiality, or for the absence of snapback.Reddy has suggested that one might hope that the approach to sequentiality usinggames [Abramsky et al. ; Hyland and Ong 1994] might help to resolve this issue.Another possibility would be to use a stronger form of parametricity based, perhaps,on Kripke relations, which have also proven useful in approaching sequentiality[O'Hearn and Riecke 1995; Riecke and Sandholm 1997].8. RELATION TO FUNCTOR MODELSWhile we have said that our translations are based on functor-category models, theprecise relationship to them may not be obvious. In particular, the translation forIdealized Algol relies on special properties of the functor-category model de�nedby Oles [1982, 1997], and does not use standard structure found in all functorcategories. Furthermore, the translation for Basic SCI is unusual, in that eachidenti�er is associated with a separate store shape. In this section we describe theingredients allowing connections between the polymorphic and functor-categoryforms of semantics to be drawn.For Idealized Algol we de�ne a logical relation between our model and the functor-



From Algol to Polymorphic Linear Lambda-calculus � 31category model of Oles (allowing for side e�ects in expressions). The logical relationestablishes that our model agrees with Oles's on the meanings of closed terms ofprimitive type. A corollary of this is a computational adequacy result, connectingthe model to an operational semantics for Idealized Algol. Interestingly, para-metricity is not needed for this connection to be made, and it goes through for amodel in which 8 is simply an indexed product. For Basic SCI we relate the styleof interpretation where each identi�er is associated with a separate store shape toa notion of multi-map between functors.It would be helpful to have some familiarity with functor-category models here.In the next section we return to an analysis of the translations in their own right.8.1 Idealized AlgolWe recall the category � of store shapes [Oles 1982; Oles 1987].|The objects are countable sets.|The morphisms from W to X are pairs of set-theoretic functions' : X !W;� : W �X ! X such that(1) 8x 2 X: �h'(x); xi = x;(2) 8x 2 X:8w 2W:'(�hw; xi) = w;(3) 8x 2 X:8w;w0 2W:�hw; �hw0; xii = �hw; xi:The propotypical example is the \expansion" morphism ('; �):W !W �Y whereW � Y is the set-product, ' is the �rst projection and �hw0; hw; yii = hw0; yi. Thecomposite of morphisms ('; �):W ! X and ('0; �0):X ! Y is ('00; �00):W ! Ysuch that '00 = '0;' and �00hw; yi = �0h�hw;'0(y)i; yi. The identity morphism onW is ('; �) such that '(w) = w and �(w;w0) = w. ('; �) is an isomorphism i� ' isa bijection.Let Predom denote the category of predomains (possibly bottomless cpo's) andcontinuous functions. The functor category Predom� is Cartesian closed. In fact,PredomC is Cartesian closed, for any small category C: The internal hom can begiven in a standard way using the de�nition(F ) G)X = PredomC [C[X; {]� F;G]: (Standard De�nition)(Note that this formula is covariant in X , which gives the action on morphisms.)However, in the case that C = � a factorization of morphisms shown by Oles allowsthe internal hom to be calculated in a special way.Lemma 3. (Expansion Factorization Lemma) Any morphism ('; �) : X !Y in � factors as an expansion followed by an isomorphism X e! X � Z i! Y .Lemma 4. (Exponent Representation Lemma) The internal hom ) inPredom� is such that(F ) G)X �= Predom�[F (X � {); G(X � {)]; ordered pointwisefor any functors F;G : � ! Predom and any countable set X. (We are usingX�{ to denote the evident endofunctor on �; but note that � is not the categoricalproduct in �.)



32 � P.W. O'Hearn and J.C. ReynoldsProof: The proof of the Factorization Lemma is in [Oles 1982]; we sketch why theRepresentation Lemma follows from it. Any p 2 (F ) G)X accepts a store shapeY and a pair (('; �) : X ! Y; a 2 FY ) as arguments, and produces a result in GY .Using Oles's lemma, we can factor ('; �) into a composite X e! X � Z i! Y . Byfunctoriality F (i�1) and Gi are both isomorphisms, where i�1 is the isomorphisminverse to i. By naturality for the isomorphisms, p[Y ](('; �); a) must be equalto Gi(p[X � Z](e; (Fi�1)a). Thus, we can see that p is completely determinedby its action on expansions, and this leads in a straightforward fashion to therepresentation result.Notice that the formula for the internal hom in the Representation Lemma is for-mally similar to the translation of function types in Idealized Algol. With this it ispossible to establish a connection with the translation (�)?, which we now outline.First, given the Representation Lemma, we might as well de�ne the internal homas (F ) G)X = Predom�[F (X � {); G(X � {)]: (Alternate De�nition)If e : X ! X � Y is an expansion then the required functorial action of F ) G isgiven (suppressing associativity isomorphisms) by((F ) G)e p)[W ] = p[Y �W ] : F (X � Y �W )! G(X � Y �W ):If i : X ! Y is an isomorphism then((F ) G)i p)[W ] = F (i�W )�1; p[W ];G(i�W );and the functorial action for arbitrary �-morphisms is then obtained from theExpansion Factorization Lemma.In order to interpret recursion we need to work in the full subcategory whoseobjects are functors F where [Oles 1982]: (i) FX has a least element, for each storeshape X , and (ii) F ('; �) preserves least elements, for each �-morphism ('; �). Allof the objects we mention will in fact lie in this subcategory.We can now de�ne a functor O[[�]] for each Idealized Algol type �. (The productF �G of functors is de�ned pointwise as usual.)O[[comm]]W = W?��W?O[[comm]]('; �)cs = � ? if s = ? or c('s) = ?�hc('(s)); si otherwiseO[[acc]]W = W? 
N?��W?O[[acc]]('; �)chs; ni = � ? if s = ? or c[('s); n] = ?�hc['(s); n]; si otherwiseO[[exp]]W = W?��W? 
N?O[[exp]]('; �)es = � ? if s = ? or e('s) = ?�h�(s; s0); ni when hs0; ni = e('s)O[[�! �0]] = O[[�]]) O[[�0]]O[[� � �0]] = O[[�]]�O[[�0]]



From Algol to Polymorphic Linear Lambda-calculus � 33The morphism part of O[[comm]] appears, at �rst sight, to be nonlinear in the store,where s is copied. Apart from the fact that the two occurrences of s are in di�erentarms of a pairing for a categorical product h�; �i, this is not a problem becausewhen ('; �) is an expansion the \otherwise" clause of the de�nition is equivalent to�hcx; yi, and this is what we use in the translation to linear �-calculus.Now we set up a logical relation between (�)? and O[[�]], the former understood interms of the strict parametricity model. For each type � and countable set X , wede�ne a relation RX� � �?X? �O[[�]]X:For � = comm, acc or exp, RW� is an identity relation, and product types use theobvious pointwise de�nition. For procedures,hp; qi 2 RX�!�0 () 8W: ha; bi 2 RX�W� ) hp[W?]a; q[W ]bi 2 RX�W�0 :We de�ne RX� by viewing a type assignment � as a product as usual.Lemma 5. Each RX� is a pointed, complete relation.Lemma 6. (Expansion Relatedness Lemma) If ha; bi 2 RX� thenh(expand�[X?][Y?]a); (O[[�]](e)b)i 2 RX�Y� ;where e : X ! X � Y is the expansion in �.The proof of the Expansion Relatedness Lemma is straightforward, as the de�nitionof expand� merely copies the de�nition of O[[�]]e in the functor category.Each judgement � ` M : � in Idealized Algol is interpreted as a natural trans-formation O[[M ]] : O[[�]] :! O[[�]]:The interpretations are essentially as in the translations (�)?, except that we useenvironment manipulations in place of substitution. Representing environments u 2O[[�]]X as functions from identi�ers to appropriately-typed values, representativeequations are: O[[M ;M 0]]Wus = O[[M 0]]Wu(O[[M ]]Wus)O[[�x : �:M ]]Wu[X ]d = O[[M ]](W �X) ((O[[�]]fu) j x 7! d)O[[M(M 0)]]Wu = h(O[[M ]]Wu[I ](iO[[M 0]]Wu))O[[newcommM ]]Wuw = � w0 if O[[M ]]Wu[N ]v[w; 0] = [w0; n]? if O[[M ]]Wu[N ]v[w; 0] = ?:In these de�nitions, i and h are suitable isomorphisms, f : W ! W � X is theexpansion morphism, N is the set of natural numbers. The standard local variable vis ha; ei, where e : (X�N)?�� ((X�N)�N)? and a : ((X�N)�N)?�� (X�N)?are the unique strict functions such thatehx; ni = hhx; ni; ni, andahhx; ni;mi = hx;mi.(Notice that a and e are obtained by lifting � and ' from the expansion map('; �) : X ! X �N in the category �.)



34 � P.W. O'Hearn and J.C. ReynoldsLemma 7. Suppose � ` M : � in Idealized Algol, and that hu; u0i 2 RX� . Thenh(M?X? u); (O[[M ]]X u0)i 2 RX� .Proof: By induction on M . We indicate the key cases of new and �-abstraction.For new'(M), by induction we know that hp; qi 2 RXvar!', where p is the deno-tation of M in the strict parametricity model and q in the Oles model. new'(M)is de�ned in the models by supplying local variables v and v0 to p and q, and de-allocating on termination. Clearly, by the de�nition of R for procedure types, thiscase will hold if we can show that the two standard variables are in relation RX�Nvar ,and this is easy to check from their de�nitions above and in Section 5.For the case � ` �x : �:M : � ! �0, suppose hd; d0i 2 RX�Y� . We need to showthat hm;m0i 2 RX�Y�0 , wherem = ((M?(�
 �))[expand�i [�][�]xi=xi])(� 7! X?; � 7! Y?)(u j x 7! d),m0 = O[[M ]](X � Y )(O[[�]]eu0jx 7! d0).Here, e : X ! X � Y is the expansion, m is the translation of a �-abstraction, ap-plied in the strict parametricity model to an appropriate world Y? and argument d0,and m0 is obtained from the meaning of �-abstraction in the functor category. Us-ing a substitution lemma for the parametricity model of the linear lambda-calculuswe can inferm = (M?(X? 
 Y?)(xi 7! (expand?�i [X?][Y?](uxi)) ; x 7! d).Further, (O[[�]](e)u0jx 7! d0) is of the form (xi 7! O[[�i]]e(u0xi); x 7! d), so we knowthat the environments (xi 7! (expand?�i [X?][Y?](uxi)) ; x 7! d) and ([[�]](e)u0jx 7!d0) are RX�Y�;x:�0-related, using the Expansion Relatedness Lemma and the assump-tions that u and u0, and d and d0, are related. We can then use the inductionhypothesis to conclude that m and m0 are related.At primitive types this lemma reduces to the following.Proposition 8. (Adequacy with Oles's Model) If ` M : ' in IdealizedAlgol then M?X? = O[[M ]]X.Furthermore, Lent [1993] has veri�ed that Oles's model satis�es an adequacy cor-respondence with a suitable operational semantics, to the e�ect that a closed termof command type converges operationally i� it does not denote ? (and the proofcarries through equally in the presence of expressions with side e�ects). Thus, ad-equacy with respect to Oles's model establishes also adequacy with respect to astandard operational semantics. Note that parametricity has not been used thusfar in this section, and the adequacy result would go through for the unconstrainedmodel of polymorphism, where 8 is simply indexed product over countable, 
atcpo's.The logical relation, however, contains more information than required for ade-quacy, which will be put to use in some technical lemmas at the end of the nextsection.8.2 Basic SCIIt is not di�cult to interpret SCI in Predom�, by mimicking (�)�, and to verify anadequacy correspondence as was done for Idealized Algol. Rather than do this, we



From Algol to Polymorphic Linear Lambda-calculus � 35want to relate the somewhat unusual form of interpretation, where each identi�ergets a separate piece of the store, to structure found in the functor category; seealso [O'Hearn et al. 1999].First, recall the translation of the SCI function type:(� ! �0)�� = 8�: ��� ! �0�(�
 �):We can rewrite this in functorial form as follows: If G;F : � �! Predom arefunctors, then the functor GF is de�ned by the equation(GF )X = Predom�[F ({); G(X � {)]; ordered pointwise:This formula is covariant in X , which gives the action on morphisms.What is the sense in which GF is a function type? One way to explain this wouldbe to �nd a tensor product of functors satisfying the usual adjunction propertyPredom�[E 
 F;G] �= Predom�[E;GF ]:In fact, GF is precisely the exponent of functors described by Day [1970], who alsogives a recipe for obtaining the required tensor products.Another, for our purposes more direct, way is to proceed is to look explicitly atmaps of multiple arity.Definition 9. Suppose F1; : : : ; Fn and G are functors in Predom�. A multi-map � : F1; : : : ; Fn �! Gis a family of continuous functions�[X1; : : : ; Xn] : F1X1 � � � � � FnXn �! G(X1 � � � � �Xn)natural in store shapes X1; : : : ; Xn. (In case n = 0 a multi-map is a function froma one-point cpo to G(1), for 1 a one-point set.)The connection between multi-maps and GF is immediate from the de�nitions.Proposition 10. Given functors F1; : : : ; Fn, F and G, multi-maps� : F1; : : : ; Fn; F �! Gare in bijective correspondence with multi-maps� : F1; : : : ; Fn �! GF .Proposition 10 could be restated in more abstract terms by saying that functorsin Predom�, together with multi-maps, comprise a closed multi-category [Lambek1989]. We regard this as a kind of categorical justi�cation for, or commentary on,the form of the translation of SCI.At this point the reader may be wondering why we arranged the (�)� translationin this multi-map form: It would be more standard to follow the structure of amonoidal closed category, where we would interpret a term using a map out of atensor product. There are two reasons. First, explicitly associating a di�erent pieceof local state with each identi�er is very appealing, as it directly models the ideathat distinct identi�ers don't interfere. Second, it is not clear to us how to describeDay's tensor product of functors in polymorphic linear �-calculus. As a result, ifwe were to add types �
 �0 of noninterfering pairs to SCI, it would not be evidenthow to interpret them in the linear calculus.



36 � P.W. O'Hearn and J.C. Reynolds9. ON NATURALITY AND PARAMETRICITYWe have seen a close relationship between our translations and semantic equationsin a functor-category model. The main di�erence is that functor models requiremeanings to be natural with respect to expansions, where in the strict parametricitymodel we use binary relational parametricity. In this section we explore circum-stances under which the former is implied by the latter. We begin by consideringSCI, where the situation is simpler.9.1 Basic SCIIn SCI, parametricity implies naturality at all types.Theorem 11. (Naturality Theorem for SCI) Any p 2 (�1 ! �2)�S is nat-ural with respect to expansions: for all 
at cpo's S1 and S2,��1(S1)��1(S1 
 S01) ��2(S 
 S1)��2(S 
 S1 
 S01)?expand�1 [S1][S01] -p[S1] -p[S1 
 S01] ?expand�2 [S 
 S1][S01](where we have elided canonical isomorphisms (S 
 S1)
 S2 $ S 
 (S1 
 S2)).Proof: First, it is easy to see that the result holds for �1 ! (�2 � �3) i� it holdsfor �1 ! �2 and �1 ! �3. By an inductive argument we obtain that it su�ces toprove the result for types of the form�1! (�2! � � � (�n! ') � � �):We prove it for ' = comm; the cases of acc and exp are similar. Also, to keepthings simple, we give the proof for the case n = 2. This case shows the key role ofdisjointness between arguments in the proof, and is easily extended to other n.We are required to show that (a)=(b), where(a) = p[S1 
 S01]�expand�1 [S1][S01]a1�[S2]a2 [s; s1; s01; s2](b) = �expand�2!comm[S 
 S1][S01](p[S1]a1)�[S2]a2 [s; s1; s01; s2]for all S2, [s; s1; s01; s2] 2 S 
 S1 
 S01 
 S2, a1 2 ��1S1 and a2 2 ��2S2. It is crucialhere that a2 lives in store shape S2, which is separate from the S01 component; thisallows us to use a relation that �xes S01 below.By the de�nition of expand for procedure types, (b) is equal to(c) = [q; q1; s01; q2], where p[S1]a1[S2]a2[s; s1; s2] = [q; q1; q2].Let R : S1 
 S01 $ S1 be the relation that �xes s01, i.e. it contains h?;?i and allpairs h[x; s01]; xi where x 6= ?. By the Identity Extension property (a special caseof the Isomorphism Functoriality Lemma) we know that(d) ha1; a1i 2 ��1�S1 and ha2; a2i 2 ��2�S2 .Further, we claim that(e) h(expand�1 [S1][S01]a1); a1i 2 ��1R.



From Algol to Polymorphic Linear Lambda-calculus � 37Postponing the proof of (e) for a moment, (d), (e), and parametricity of p implythat (a) and [q; q1; q2] are �S 
R
�S2 -related, and hence by the de�nition of Rthat (a)=(c). Since (b)=(c) we obtain the desired result (a)=(b).Property (e) follows from parametricity of expand�1 : 8�8
: ��1��� ��1(� 
 
).Speci�cally, we noted ha1; a1i 2 ��1�S1 in (d), and taking R0 : S01 $ I as therelation containing h?;?i and hs01;?i, we obtain(f) h(expand�1 [S1][S01]a1); (expand�1 [S1][I ]a1)i 2 ��1(�S1 
R0).Now, R is equal to the composition of �1 
R0 : S1 
S01 $ S1 
 I with the canon-ical isomorphism S1 
 I $ S1. We can then use Isomorphism Functoriality andparametricity of expand�1 once more (with respect to this canonical isomorphism)to obtain (e) from (f).Similarly, we can show that the interpretationx1 : ��1�1; : : : ; xm : ��m�m `M�(�1; : : : ; �n) : ��(�1 
 � � � 
 �m):of a judgement satis�es a naturality property corresponding to De�nition 9.9.2 Idealized AlgolThe proof of the Naturality Theorem for SCI relies on the simpler interpretationof function types, where the state for procedures and arguments is separate. InIdealized Algol, we have only been able to verify the corresponding result for typesof a speci�c form.Theorem 12. (Naturality Theorem for Idealized Algol) If ' is a primitivetype then any p 2 (�1! ')?S is natural with respect to expansions:�?1(S 
 S1)�?1(S 
 S1 
 S01) '?(S 
 S1)'?(S 
 S1 
 S01)?expand�1 [S 
 S1][S01] -p[S1] -p[S1 
 S01] ?expand'[S 
 S1][S01](where we have elided canonical isomorphisms (S 
 S1)
 S01 $ S 
 (S1 
 S01)).The proof can follow the proof of Naturality Theorem in [O'Hearn and Tennent1995], and is essentially similar to the case of �! ' in the proof of Naturality forSCI. The reason that the SCI proof does not generalize can be seen in the case �1!�2! comm. In Idealized Algol the application p[S1
S01](expand[S1][S2]a1)[S2]a2uses an element a2 2 �?2(S 
 S1 
 S01 
 S2) that can change members of S01, thuspreventing the use of a relation that �xes the S01 component in the proof.In [O'Hearn and Tennent 1995], Section 9, there was a counterexample to \para-metricity implies naturality," which showed that this result failed to hold with 'replaced by arbitrary �. But the counterexample there used Weakening and Con-traction and does not exist in the strict parametricity model. As a result, usingthe representation in the Resumption Theorem in Section 10.1, we have been ableto slightly extend Theorem 12 to cases where ' is replaced by a �rst-order type'1 � � � � � 'n! '. The question of whether it holds for all types remains open.Naturality is important, e.g., for proving the isomorphism �1� �2! �3 �= �1 !�2 ! �3 that is characteristic of Cartesian closed categories. So, even though we



38 � P.W. O'Hearn and J.C. Reynoldshave the adequacy result above, we have not veri�ed the indicated CCC isomor-phism at higher types in Idealized Algol.Interesting though the open question may be, it does not pose a fundamentalproblem for our semantics, as it can be dealt with in at least two ways. First,every Idealized Algol type can be converted to a \canonical form" of a product oftypes of the form � ! ', and we could simply use an uncurried presentation ofthe semantics of types (as in [O'Hearn and Tennent 1995], Section 2). The secondoption is to add naturality as an explicit additional requirement (as in [O'Hearnand Tennent 1995], Section 7). In either case, we get an interpretation of IdealizedAlgol using CCC structure, and satisfying all the laws of the typed �-calculus. Sincethese two alternatives are thoroughly examined in [O'Hearn and Tennent 1995], thedetails do not bear repeating here. Instead, we choose to carry working on withthe translation (�)? as de�ned (which we have seen satis�es an adequacy property),and simply note that the naturality properties that we can verify are su�cient tosupport the technical results that we shall prove about low-order types. To thisend, we �nish this section with some technical lemmas that will be needed later, inSection 10.3.9.3 Technical LemmasWe now prove some technical lemmas that will be used to help produce a distin-guishing context during the proof of full abstraction in the next section; the readermay wish to move on and refer back to these lemmas as necessary.The �rst lemma reduces the domain approximation p v q between certain poly-morphic functions to the ordering p[N?] v q[N?] of their instantiations to N?.This is one of the steps which enables us to use a single local variable, which livesin store shape N?, to produce a distinguishing context.The use of I in the lemma corresponds, semantically, to meanings for closed termsof the indicated type.Lemma 13. If p; q 2 �?I, where � = ('1 � � � � � 'n! ')! '0, then p v q i�p[N?] v q[N?].Proof: The only if part is immediate. For the if part, consider any countable, 
atcpo S, and suppose p[N?] v q[N?]. We must show p[S] v q[S] for arbitrary S.If S is f?g then the result is trivial. Otherwise, �rst note that N? and S 
 N?are isomorphic, since both are countably in�nite and 
at. Using the IsomorphismFunctoriality Lemma and parametricity we infer p[S
N?] v q[S
N?]. We knowthat p and q are natural with respect to expansions by Theorem 12, and so wecan then show that p[S] v q[S] using naturality with respect to the expansionS��S 
N? and the easy fact that expansion maps expand'0 [S1][S2] re
ect orderfor primitive types '0.The next lemma refers to the logical relation R between (�)? and O[[�]] de�ned inSection 8.1.Lemma 14. If � = ('1�� � � �'n! ')! '0 then the opposite of relation RX�is single-valued: if pRX� m and p0RX� m then p = p0.The point of this result is that, at �rst order types, the relationship between thetwo models can be described by a partial function; an element in the Oles model



From Algol to Polymorphic Linear Lambda-calculus � 39can correspond to at most one element in the parametricity model (which is moreconstrained).Proof: Assume the antecedent. By Theorem 12 we have an injectioni : (('1 � � � � � 'n)! ')?(X �W )? ,! O[[('1 � � � � � 'n)! ']](X �W );and it is clear that if q 2 (('1�� � ��'n)! ')?(X�W )? then qRX�W'1�����'n!'(iq).By the logical relation property for p and p0 this means that(p[W ]q)RX�W'0 (m[W ](iq)) and (p0[W ]q)RX�W'0 (m[W ](iq)):But the logical relation RX�W'0 at primitive type is an equality relation. Thus, wehave shown that p[W ]q = p0[W ]q for arbitrary W and q, so p = p0.Lemma 15. If ` M : �, where � = ('1 � � � � � 'n ! ') ! '0, then M isnatural: II �?S�?(S 
 S0)?id -M?S -M?(S 
 S0) ?expand�[S][S0]Proof: Let S = X? and S0 = X 0?. From Lemma 7 we know that(M?X?�)RX� (O[[M ]]X�) and (M?(X �X 0)?�)RX�X0� (O[[M ]](X �X 0)�):By Expansion Relatedness (Lemma 6),(expand�[S][S0](M?X?�))RX�X0� (O[[�]] e (O[[M ]]X�));where e : X ! X �X 0 is the expansion. Further, by naturality of O[[M ]] we knowO[[�]] e (O[[M ]]X�) = O[[M ]](X �X 0) � :Naturality follows from these facts together with Lemma 14 and the standard iso-morphism (X �X 0)? �= S 
 S0.The order v on p and q in Lemma 13 is determined pointwise. Likewise, anyderivable judgement � ` M : � in Idealized Algol determines a family of mapsM?({) : �?({)�� �?({) in the strict parametricity model, which we also order point-wise.Lemma 16. If `M;N : �, where � = ('1 � � � � � 'n! ')! '0, thenM? v N? i� M?I v N?I:Proof: The only if part is immediate from the pointwise order for v. For the ifpart, if M?I v N?I we get M?(I 
 S) v N?(I 
 S) from naturality (Lemma 15),and then M?S v N?S using the Isomorphism Functoriality Lemma (Section 6)with the isomorphism S $ I 
 S.



40 � P.W. O'Hearn and J.C. Reynolds10. RESUMPTIONS AND IDEALIZED ALGOLIn this section we show that the meanings of �rst-order types in our model of Ideal-ized Algol may be characterized using domain equations for resumptions. The proofof this result goes by a parametricity argument which characterises the elements ofthese types exactly. Using this characterization, we derive a full abstraction resultfor closed terms of second-order type.We have already seen in Section 7.3 that such representation results do not gothrough in our model of SCI.10.1 A Representation TheoremThe domain equation we give will need to deal with a number of di�erent capabilitiesfor the primitive types, and it will help to look at some instances of it before givingthe general equation.To begin, (comm ! comm)?S is an initial solution of the familiar domainequation for deterministic resumptions [Plotkin 1983]:D �= S�� �S � (S 
D)�;where S is a 
at cpo and � is coalesced sum. Using this domain equation weunderstand a procedure of type comm! comm as follows. A procedure with acommand argument begins by possibly changing the state. It then either terminatesor resumes. Resuming causes the argument to be evaluated once, with the stateresulting from this evaluation fed through as an argument to the resumed procedure.For expressions we augment deterministic resumptions with input and outputcapabilities. The equation for exp! exp isD �= S�� �(S 
N?)� (S 
 (N?��D))�:This equation allows for an output value in the component S 
 N? for the �nalvalue of execution of the resumption, and an input value in N?��D that is obtainedfrom evaluating the input expression once.For acceptors to the left of ! consider a procedure p : acc ! comm. Aprocedure call p(a) is a command which may assign a number of values to a duringits evaluation. The appropriate domain equation is the one for comm! comm,augmented with natural number values to be supplied to the input acceptor onresumption: D �= S�� �S � (S 
D 
N?)�:For acceptors to the right of! consider a procedure p : acc! acc. A procedurecall p(a) is an acceptor, so that it accepts a natural number value and then behaveslike a command, during evaluation of which a can be used a number of times.Accordingly, (acc! acc)?S is isomorphic to N?��D, where D is the domain justgiven for acc! comm.This treatment of acceptors can in fact be regarded as being derived from a viewof acc as an in�nite product of comm; semantically, acc?S is isomorphic to anin�nite product (comm?S)N . For acceptors to the right of!, the domain N?��Dis isomorphic to the in�nite product DN . To the left of ! the term S 
D 
N?in the domain equation can be isomorphically rewritten to �i2NS 
D, for � the



From Algol to Polymorphic Linear Lambda-calculus � 41coalesced sum: Below we will use summation in this way to account for explicitproduct types to the left of!.To formulate the general equation, for each primitive type ' we de�ne functors'in, 'arg and and 'res (for input, argument, and result) on the category of cpo'sand strict continuous functions:expin = ({) exparg = N?�� ({) expres = ({)
N?accin = N?�� ({) accarg = ({)
N? accres = ({)commin = ({): commarg = ({) commres = ({)Now we add the capability to choose among multiple arguments to the domainequations above.Theorem 17. (Resumption Theorem) If '1; :::; 'n; ' are primitive IdealizedAlgol types and S a countable 
at cpo, then('1 � � � � � 'n! ')?Sis isomorphic to 'in(D), where D is an initial solution of the domain equationD �= S�� �'res(S)� (S 
 (�ni=1'argi (D)))�;where � and � are coalesced sum.The summation over i 2 1; :::; n here corresponds to a strong form of sequentialitywhere a resumption must choose a speci�c i, which causes the i'th argument to beevaluated before resuming. This is analogous to strategies for picking sequentialityindices in sequential algorithms [Berry and Curien 1982]: In contrast, Kahn-Plotkinsequential functions require mere existence of a sequentiality index, and as a resultare less distinguishing than the stronger form of sequentiality found in IdealizedAlgol. The weaker sequential-function form of sequentiality is closer to functionsin SCI, where non-interference leads to less dependence on evaluation order thanin Idealized Algol. (So the parallelism in SCI is reminiscent of independence fromevaluation order in PCF, and appears to be actually sequential in this weaker senseof sequentiality.)The proof of the Resumption Theorem is lengthy, and we give it separately inthe following subsection. In describing the proof we have attempted to isolate themore conceptual part, the parametricity argument, from the technical developmentneeded to apply the argument to verify the theorem.10.2 Proof of the TheoremTo keep the notation simple we give the proof for the type exp�exp! exp. Thisrequires us to address the most important issues raised by the domain equation,including multiple arguments and possibly non-trivial input and output values. Theproof for more or fewer than two arguments involving comm or exp is a straightnotational reworking of what follows, and acc requires only minor modi�cations(recall the remarks about acc as a in�nite product of comm above).The relevant cpo in the strict parametricity model isZ = 8�: (S 
 ���S 
 � 
 nat)&(S 
 ���S 
 � 
 nat)! (S 
 ���S 
 � 
 nat):



42 � P.W. O'Hearn and J.C. ReynoldsLet D be an initial solution of the equation D �= TD, where T is the followingfunctor on the category of cpo's and strict continuous functions:T ({) = S��S 
 �N? � (N?�� ({))� (N?�� ({))�:(The functor S�� �(S
N?)�(S
�2i=1(N?�� ({)))� is explicitly given by the state-ment of the theorem, but it is isomorphic to T , which is obtained by distributing� over 
.)Our aim is to show that Z and D are isomorphic. To do this, we proceed in foursteps. First, we describe the structure of D. This is straightforward, and followsfrom standard material on recursive domain equations [Plotkin 1983; Abramskyand Jung 1994]. Second, we give the parametricity argument, which relates uses ofpolymorphic functions to the structure described in the �rst step. Steps three andfour consist of technical results, which use the information from the �rst two stepsto verify that D and Z are isomorphic.Step 1: Structure of D.From the solution of domain equations by the inverse limit construction [Plotkin1983; Abramsky and Jung 1994], we know that D is a bounded complete, algebraiccpo. As a result, any element is the lub of the �nite elements beneath it. The �rststep needed for relating D to Z is to describe this structure explicitly. We do thisusing step functions. If E is a 
at cpo, F is bounded complete and algebraic, e 2 Eis not ?, and f 2 F is �nite, then the step function e& f : E��F is such that(e& f)e0 = � f if e = e0? otherwise.The domain D can be described using special �nite elements, the atoms. Recallthat an atom a in a cpo is an element just above ?, i.e. a 6= ? and 8b: b v a =)b = a _ b = ?. The atoms a 2 D can be generated using step functions as follows:a ::= s& [s0; e] (? 6= s; s0 2 S)e ::= n j 1 : n& a j 2 : n& a (n 2 N)Here, we use n, 1 : n & a and 2 : n & a to indicate elements in respectivecomponents of the coproduct N? �N?��D �N?��D. We will follow the usualpractice of suppressing isomorphisms between D and TD. For instance, s& [s0; n]is, strictly speaking, an element of TD, which we could coerce to D using anisomorphism.It is not di�cult to verify that each element a generated by this grammar isindeed an atom, and also that this exhausts the atoms of D. The role of the atomsin D is summed up by the following lemma.Lemma 18. D is isomorphic to fA � D j A is a pairwise-consistent set of atomsg,ordered by subset inclusion. (That is, D is a coherence space.)Here, two elements are said to be consistent when they have an upper bound. Thelemma can be shown using a routine calculation with the inverse limit construction.Step 2: The Parametricity Argument.



From Algol to Polymorphic Linear Lambda-calculus � 43The essential part of the proof is the following use of parametricity. Supposep 2 Z, E is a 
at cpo, c1; c2 : S 
 E��S 
 E 
 N? and p[E]hc1; c2i[s0; e0] =[s00; e00; n0] 6= ?. We identify an element of D that tracks the calls of c1 and c2.Let L be the 
at cpo whose non-? elements are lists of elements drawn from theset coproduct S0 +N +N , where S0 is the set of non-? elements of S. We use s,1 : n, and 2 : n, with subscripts or superscripts, to range over components of thecoproduct. De�ne R : L$ E to be the smallest strict relation such that(s0)Re0 ci[s; e] = [s0; e0; n] 6= ? and `Re =) (`; s; s0; i : n)Re0:The initial and �nal values of the state on a use of ci[s; e], together with component i(which is 1 or 2) and produced value n, are recorded in (`; s; s0; i : n). (We are usinga comma for appending an element to a list.) R is single-valued and determines afunction fR : L��E, where fR` = e if `Re, and fR` = ? if there is no e such that`Re. For i equal to 1 or 2, de�ne c�i : S
L��S
L
N? to be the function wherec�i [s; `] = let [s0; e; n] be ci[s; fR`] in [s0; (`; s; s0; i : n); n]:This de�nition is such thath(s0); e0i 2 R ^ hc�i ; cii 2 �S 
R���S 
R
�N? :Parametricity of p then implies thath p[L]hc�1; c�2i[s0; (s0)] ; p[E]hc1; c2i[s0; e0]i 2 �S 
R 
�N? :By the de�nition of R, this means p[L]hc�1; c�2i[s0; (s0)] 6= ?. Further, the use of�S 
R
�N? implies that p[L]hc�1; c�2i[s0; (s0)] 2 S 
 L
N? is of the form[s00; (s0; s1; s01; i1 : n1; :::; sk; s0k; ik : nk); n0]for some, possibly empty, list s1; s01; i1 : n1:::; sk; s0k; ik : nk (here s00 and n0 arethe �nal values in p[E]hc1; c2i[s0; e0] = [s00; e00; n0]). From this we can read o� thebehaviour of p[E]hc1; c2i[s0; e0] as a sequence of calls to c1 and c2, together withinitial and �nal states and values produced when each call was made.This determines an atoms0 & [s1; i1 : (n1 & (s01 & � � � [sk; ik : (nk & (s0k & [s00; n0]))] � � �))]in D, which we denote by a(E; p; c1; c2; s0; e0). The logical relation argument wehave just given is a recipe for obtaining a(E; p; c1; c2; s0; e0) from appropriatelytyped E; p; c1; c2; s0; e0, as long as p[E]hc1; c2i[s0; e0] 6= ?.This completes the most important part of the proof. The remainder of the sec-tion consists of technical lemmas, showing how this way of generating atoms in Dfrom elements of Z can be used to establish an isomorphism between D and Z.Step 3: From D to Z.We obtain a map from D to Z using the fact that there is an initial T -algebraTD hD! D, the structure map hD of which is an isomorphism [Abramsky andJung 1994]. Initiality implies that there is a (unique) strict continuous function



44 � P.W. O'Hearn and J.C. Reynolds : D! Z making TDD TZZ?hD -T - ?hZcommute, where the T -algebra structure map TZ hZ! Z is as follows:hZ = �p 2 TZ�� �hc1; c2i : (S 
 ���S 
 � 
 nat)&(S 
 ���S 
 � 
 nat)�[s; b] : S 
 �let [s0; x] be p s incase x ofn 7! [s0; b; n]1 : f 7! (let [s00; b0; n] be c1[s0; b] in (f n)[�]hc1; c2i[s00; b0])2 : g 7! (let [s00; b0; n] be c2[s0; b] in (g n)[�]hc1; c2i[s00; b0]).We are using polymorphic �-calculus notation as a convenient way of de�ning ele-ments of Z in a way that makes the satisfaction of parametricity conditions obvious.The case construct is used to branch on coproduct components, where n, (1 : f),and (2 : g) range over components of N? � (N?��E) � (N?��E). Note that theuse of case is not a problem for parametricity because we are not branching onanything we are required to be parametric in.The map  can be obtained from general considerations ([Abramsky and Jung1994], Lemma 5.3.1) as a least �xed-point: = �g: (h�1D ;T (g);hZ):For concreteness, it will be useful to spell out the action of  on atoms. Consideran atoma = s0 & [s1; i1 : (n1 & (s01 & � � � [sk; ik : (nk & s0k & [s00; n0])] � � �))]in D. Then we de�ne the polymorphic function  (a) 2 Z by induction on the sizeof a. The base case is for atoms of the form s0 & [s00; n0], and  (a) is then thefunction��: �hc1; c2i: �[s; b]: if (s = s0) then [s00; b; n0] else?:For the induction case, suppose that we know the polymorphic function  (a0) cor-responding to the atoma0 = (s01 & � � � [sk; ik : (nk & s0k & [s00; n0])] � � �):Then  (a) is��: �hc1; c2i: �[s; b]:if (s = s0) then�let [s0; b0; n] = ci1 [s1; b] inifn = n1 then (a0)[�]hc1; c2i[s0; b0] else?�else?:



From Algol to Polymorphic Linear Lambda-calculus � 45It is not di�cult to see that this description is consistent with the abstract de�nitionof  as a least �xed-point.From Lemma 18 we know that D is determined by its atoms, and consistencybetween them. A key point is that  respects this consistency structure.Lemma 19. (1) If  d and  d0 are consistent in Z then d and d0 are consistentin D.(2)  re
ects order:  d v  d0 =) d v d0.Proof: For part (1) of the lemma, by Lemma 18 it su�ces to prove the result foratoms only. From the description of atoms in D it is clear that, if d and d0 areinconsistent, then we must have a situation in whichd = s0 & [s1; i1 : (n1 & (s01 & � � � [sk; ik : (nk & s0k & [q; e])] � � �))]d0 = s0 & [s1; i1 : (n1 & (s01 & � � � [sk; ik : (nk & s0k & [q0; e0])] � � �))]where one of three cases must be true:(1) e = m and e0 = n are in the �rst component, and m 6= n,(2) q 6= q0, or(3) e and e0 are in di�erent components.For each case it is straightforward to �nd arguments E, c1, c2 and e0 such that( d)[E]hc1; c2i[s0; e0] and ( d0)[E]hc1; c2i[s0; e0] are unequal and non-?. For in-stance, in the �rst case we can choose E = N?, e0 = 0, and for y equal to 1 or 2de�ne cy to be the least function such that cy[sj ; j� 1] = [s0j ; j; nj ], for 1 < j < k.A routine calculation with the de�nition of  shows that ( d)[E]hc1; c2i[s0; e0] and( d0)[E]hc1; c2i[s0; e0] are inconsistent. The other two cases are similar.Part (2) of the lemma can also be shown straightforwardly by proving the con-trapositive, constructing arguments that show  d 6v  d0 when d 6v d0.From part (2) of this result it follows that  is an an injection that preserves andre
ects order, so that D \sits inside" Z. The next result sets the stage for the proofthat  is bijective; it shows that the behaviour of any polymorphic function p 2 Zis completely determined by elements of the form  (a) lying below it, for a an atomof D.Lemma 20. (1)  (a(E; p; c1; c2; s0; e0))[E]c[s0; e0] = p[E]hc1; c2i[s0; e0](2)  (a(E; p; c1; c2; s0; e0)) v p.Proof: (1) follows straightforwardly from the relational parametricity propertyfor  (a(E; p; c1; c2; s0; e0)), with the relation R used to de�ne a(E; p; c1; c2; s0; e0)above. For (2) we need more work because we must consider cpo's other than E.That is, we must show the following for every 
at cpo B:(a) If  (a(E; p; c1; c2; s0; e0))[B]hh1; h2i[q0; b0] = [q00; b00] 6= ?then p[B]hh1; h2i[q0; b0] = [q00; b00].Fix B and assume the antecedent of (a). Note that we must have s0 = q0, or elsewe would have  (a(E; p; c1; c2; s0; e0))[B]hh1; h2i[q0; b0] = ?.Let L and R : L$ E be as in the parametricity argument that de�ned the atoma(E; p; c1; c2; s0; e0), and de�ne Q : L$ B as the least strict relation such that(s0)Qb0 hi[q; e] = [q0; b0; n] 6= ? ^ `Qb ) (`; q; q0; i : n)Qb0:



46 � P.W. O'Hearn and J.C. ReynoldsWe de�ne fQ and h�i similarly to fR and c�i . Again we haveh(s0); b0i 2 Q ^ hh�i ; hii 2 �S 
Q���S 
Q
�N? ;so, by parametricity (remembering s0 = q0) we obtain(b) h p[L]hh�1; h�2i[s0; (s0)] ; p[B]hh1; h2i[s0; b0]i 2 �S 
Q
�N? ;and(c) 
 (a(E; p; c1; c2; s0; e0))[L]hh�1; h�2i[s0; (s0)]; (a(E; p; c1; c2; s0; e0))[B]hh1; h2i[s0; b0]� 2 �S 
Q
�N? :Then (b) and (c) imply, since Q is single-valued, that to prove (a) it su�ces toshow(d)  (a(E; p; c1; c2; s0; e0))[L]hh�1; h�2i[s0; (s0)] = p[L]hh�1; h�2i[s0; (s0)]:Now, the atom a(E; p; c1; c2; s0; e0) must be of the forms0 & [s1; i1 : (n1 & (s01 & � � � [sk; ik : (nk & s0k & [s00; n0])] � � �))]:Fixing k, for each 0 � j � k de�ne`j = (s0; s1; s01; i1 : n1:::; sj ; s0j ; ij : nj);and, for i equal to 1 or 2, de�ne cmini to be the function wherecmini [sj ; `j�1] = [s0j ; `j ; nj ], for 1 � j � k,and cmini [s; `] = ? in all other cases. De�ne U : L$ L to be the relation containingh?;?i, all pairs h`j ; `ji for 0 � j � k, and h?; `i for all `'s whose length is greaterthan 3k + 1 (which is the length of `k).Intuitively, cmini is like c�i , except that it is just de�ned enough to enable thepolymorphic application p[L]hcmin1 ; cmin2 i[s0; (s0)] to be non-?.More formally, it is easy to see thathcmini ; c�i i 2 �S 
 U���S 
 U 
�N? ;and parametricity then impliesh p[L]hcmin1 ; cmin2 i[s0; (s0)] ; p[L]hc�1; c�2i[s0; (s0)]i 2 �S 
 U 
�N? :We know from the parametricity argument that de�ned a(E; p; c1; c2; s0; e0) thatp[L]hc�1; c�2i[s0; (s0)] = [s00; `k; n0]:Further, the de�nition of U implies thatif h`; `ki 2 U then ` = `k,so we may conclude thatp[L]hcmin1 ; cmin2 i[s0; (s0)] = [s00; `k; n0]:In particular, it is not ?.Next, we claim(e) hcmini ; h�i i 2 �S 
 U���S 
 U 
�N? :



From Algol to Polymorphic Linear Lambda-calculus � 47To see why (e) must hold, consider how cmini is de�ned in terms of the atom. If (e)did not hold then we would have (a(E; p; c1; c2; s0; e0))[L]hh�1; h�2i[s0; (s0)] = ?,and that cannot be the case because, by (c) and the de�nition of Q, it wouldcontradict the assumed antecedent of (a).From (e) and parametricity of p we obtainh p[L]hcmin1 ; cmin2 i[s0; (s0)] ; p[L]hh�1; h�2i[s0; (s0)]i 2 �S 
 U 
�N? :By the de�nition of U and the fact, shown above, that p[L]hcmin1 ; cmin2 i[s0; (s0)] 6= ?,this implies(f) p[L]hcmin1 ; cmin2 i[s0; (s0)] = p[L]hh�1; h�2i[s0; (s0)]:By a similar (but easier) argument, parametricity of  (a(E; p; c1; c2; s0; e0)) withrespect to U implies(g)  (a(E; p; c1; c2; s0; e0))[L]hcmin1 ; cmin2 i[s0; (s0)]=  (a(E; p; c1; c2; s0; e0))[L]hh�1; h�2i[s0; (s0)]:The desired result (d) follows directly from (f) and (g).Step 4: From Z to D.Finally, we de�ne the inverse map � : Z ! D:� p = Gfa 2 D j  a v p and a is an atomg:Lemma 21. � is well-de�ned.Proof: If  d;  d0 v p then d and d0 are consistent by Lemma 19(1). Thus, the setfa 2 D j  a v p and a is an atomg is pairwise consistent, and by Lemma 18 its lubexists.This shows that � is a function but we do not, as yet, claim that it is continuous.Lemma 22. � d = d.Proof: � d = Ffa 2 D j  a v  d and a is an atomg (de�nition)= Ffa 2 D j a v d and a is an atomg (Lemma 19(2))= d (Lemma 18)Lemma 23.  �p = p.Proof: Certainly we have  �p v p by the de�nition of �. Conversely, sup-pose that p[E]hc1; c2i[s0; e0] = [s00; e00] and consider a(E; p; c1; c2; s0; e0) 2 D. Weknow from Lemma 20(1) that  (a(E; p; c1; c2; s0; e0)) v p, and since, by de�nition,a(E; p; c1; c2; s0; e0) is an atom in D, the inequality a(E; p; c1; c2; s0; e0) v  �p fol-lows from the de�nition of �. This and Lemma 20(2) imply the desired equality( �p)[E]hc1; c2i[s0; e0] = [s00; e00], and we are done.



48 � P.W. O'Hearn and J.C. ReynoldsTo prove the Resumption Theorem, note that in the speci�c category of cpo's andstrict continuous functions any order-re
ecting bijection is an isomorphism. Lem-mas 22 and 23 show that  is a bijection, so by Lemma 19 we conclude that it isan isomorphism (and we can �nally infer that � is continuous).This Concludes the Proof of the Resumption TheoremAfter all this work it is reasonable to ask if Theorem 17 could be seen as aninstance of a more general result about relational parametricity in linear type the-ory. In suitably parametric models of (intuitionistic) polymorphic �-calculus typesof the form 8�: (T�! �) ! � denote initial T -algebras, and this paves the wayfor a characterization of all second-order types in prenex form. Plotkin [1993] inlectures has indicated that the corresponding property in linear polymorphic typetheory is that 8�: (T����)! � denotes an initial T -algebra, for covariant functorsT on a \linear" category where morphisms correspond to terms of �� type. It isnot immediately obvious that this implies our result because our translations of�rst-order Idealized Algol types have quite a di�erent form. Further, in contrast tointuitionistic type theory the mixing of intuitionistic and linear facilities blocks anevident reduction of these and other low order types to the form 8�: (T����)! �.Finally, note that the map � in the proof, which essentially gives (weak) initiality,was de�ned using details about the structure of solutions of domain equations inthe category of cpo's and strict continuous functions.10.3 A Full Abstraction ResultWe know from the Resumption Theorem that the �rst-order types have algebraiccpo structure. We show that the �nite elements are de�nable in a suitable sense.(This is related, but not identical, to the argument in [O'Hearn and Reddy 1999],Proposition 5.2.)Let vN? 2 var?N? be the evident variable that directly updates and reads fromN?. It can be obtained from the standard variable v[I ] 2 var?(I 
N?) using thecanonical isomorphism I 
N? $ N?.Lemma 24. (De�nability Lemma) If '1; :::; 'n; ' are primitive Algol typesthen every �nite element d of ('1 � � � �'n ! ')?N? is de�nable by an IdealizedAlgol term x : var `Md : '1 � � � �'n! ';in the sense that (M?dN?) vN? = din the strict parametricity model.In this result (M?dN?) is a map of type var?N?�� ('1 � � � �'n ! ')?N?. Thestandard variable vN? for updating N? is given as the only component in theenvironment, and is denoted by x in (M?dN?) vN? .Proof: Again we concentrate on exp� exp! exp. It is standard that the �niteelements d in the resumption domain can be generated as follows.



From Algol to Polymorphic Linear Lambda-calculus � 49d ::= (s1 & [s01; e1]) t � � � t (sk & [s0k; ek])(where si; s0i 2 N , s1; :::; sk are all distinct)e ::= n j i : (n1 & d1) t � � � t (nm & dm)(where all nj 2 N are distinct, and i = 1 or 2)We de�ne terms Nd, Fe by induction on d and e, wherex : var; c1 : exp; c2 : exp ` Nd : expx : var; c1 : exp; c2 : exp ` Fe : exp.Nd is de�ned byN(s1&[s01;e1])t���t(sk&[s0k ;ek])= if x = s1 then x := s01;Fe1...else if x = sk then x := s0k;Fekelse 
.Fe is de�ned according to the component of e:Fn = nFi:(n1&d1)t���t(nm&dm)= newexp y: y := ci; if y = n1 then Nd1...else if y = nm then Ndmelse 
.Then we set Md = �hc1; c2i: Nd, and it is straightforward to verify that Md de�nesd in the sense of the statement of the Lemma.To formulate the full abstraction result, we will take convergence of closed termsof type comm as the observable. (We could also observe integers generated byterms of type exp, but this would lead to the same contextual equivalence rela-tion.) To de�ne this precisely, �rst note that if M is a closed term of type commin Idealized Algol, the family of maps M?({) : I�� comm?({) is completely de-termined by the component M?I : I��'?I at I . (This follows from the LogicalRelations Lemma, using relations of the form I $ S that �x a state in S.) Theresulting function M?I� : I�� I takes as an argument the state � 2 I and producesas a result either � or ?. We take as observable this �nal value M?I � �, and welook at approximation in all comm-typed contexts.Theorem 25. (Full Abstraction to 2nd order) Suppose `M : � and ` N : �in Idealized Algol where � = ('1 � � � �'n! ')! '0. ThenM? v N? () 8C[�]: C[M ]?I � � v C[N ]?I � �(where C[�] is understood to be a context such that C[M ] and C[N ] are closed termsof type comm).Proof: The =) direction is immediate from compositionality. For (=, supposethat [[M?�]] 6v [[N?�]]. We require a distinguishing context where C[M ]? 6v C[N ]?.



50 � P.W. O'Hearn and J.C. ReynoldsFirst suppose that '0 is comm or exp. By Lemmas 13 and 16, and continuity,there is a �nite element d and n 2 N such that(M?I)[N?]d[�; n] 6v (N?I)[N?]d[�; n]:By the De�nability Lemma (using also an isomorphism N? $ I 
N?) there is aterm Md that de�nes d in an environment where x denotes the standard variablev[I ] for local variables.If '0 is comm then (M?I)[N?]d[�; n] = [�;m] for some m, and a distinguishingcontext isC[�] = new'0 x: x := n; ([�]Md); ifx = m then skipelsediverge:If '0 is exp then (M?I)[N?]d[�; n] = [�;m;m0] for some m and m0, and a distin-guishing context isC[�] = new'0 x: x := n; if ([�]Md) = m0 thenif x = m then skipelsedivergeelsediverge.The proof when '0 is acc is similar, if we observe that assignment to an acceptor isneeded when using continuity and de�nability to generate a distinguishing context.We have formulated the full abstraction result for second-order types of a speci�cform, but it is not di�cult (observing remarks on naturality in Section 9.2) to extendthe argument to all second-order types. We do not know if the result extends tohigher types.11. RELATED WORKThere are two ways to read the contribution of this paper. One has to do withsemantic models of imperative languages, and the other with translating from animperative language to a (linear) purely functional language. From the �rst pointof view the semantics is being used to analyze the imperative source languages,while from the second the translation may be regarded just as much as telling ussomething about the functional target language. In discussing related work weconsider these points of view in turn.This paper builds on prior work on functor category semantics [Reynolds 1981a;Oles 1982; Oles 1997; O'Hearn and Tennent 1995; Sieber 1996], the main technicalimprovement being the elimination of snapback operators. The semantics mayin fact be regarded as a re�nement of the parametric-functor model of O'Hearnand Tennent [1995], obtained by moving from standard to linear polymorphism.Another di�erence with these works is our use of a polymorphic target languagein place of a functor category (an aspect left implicit in the description of theparametric-functor model). This makes the store shape typing information implicitin a functor category more explicit, and statically checkable; we do not yet fullyappreciate the signi�cance of this point.Pitts [1996] has carried out a study of contextual equivalence in Algol-like lan-guages using operational techniques. His work is a good example of useful interplaybetween denotational and operational semantics. He proves a \possible worlds"



From Algol to Polymorphic Linear Lambda-calculus � 51version of the context lemma [Milner 1977], the formulation of which mimicks thestructure of a functor category; it characterizes equivalence of functions in termsof applications to arguments at accessible worlds or store shapes. He uses an op-erational formulation of the relational principles considered here (and in [O'Hearnand Tennent 1995]) to prove his main result. A key point in Pitts's work is that heseparates the use of logical relations as reasoning principles from their use in con-structing a model. This does not lead to representation results, and it de-emphasizesthe connection with linear polymorphic typing, but it does provide a pleasantly sim-ple mathematical expression of the relational principles, and interesting technicalresults.A completely di�erent view of imperative computation is given by implicit-statemodels, which interpret imperative programs using histories of events. The basicconception of this approach is similar to ideas in work on processes (e.g. [Milner1989]), but novel models of Algol-like languages have now been de�ned using de-notational tools. The �rst of these is due to Reddy [1996], who de�ned a model forsyntactic control of interference using coherence spaces; more recently, Abramskyand McCusker [1997] gave a game model of Idealized Algol.Reddy's semantics is similar in spirit to domain-theoretic models of functionallanguages, and is based on a concrete description of domain-theoretic structureassociated with SCI types. It accounts especially well for independence betweenarguments to functions. The model of Abramsky and McCusker is an extension thegame semantics of PCF developed by Hyland and Ong [1994], obtained by droppingthe \innocence" condition; this results in a clear distinction between functionaland imperative behaviours in the model. They show that all �nite elements intheir model are de�nable by terms in essentially the same version of Idealized Algolconsidered here; this leads, after quotienting, to a fully abstract model. Previously,full abstraction had only been obtained up to second-order types [O'Hearn andReddy 1999], which is where our analysis here (which was carried out around thesame time) ends as well.The di�erence between our semantics and implicit-state models is striking. Forus the primitive concepts are sets of states, and the linearly polymorphic waythat states are used. In the implicit models the primitive concepts are events orobservations, and interaction of a program with its environment. The conceptualdistance between the two approaches is thus very great. It is not obvious how toformulate a precise linkage between them, but to do so would be valuable.We now turn to related work on linear functional programming. The informalconnection between imperative-like state transformations and linear functions wasemphasized from the beginning in linear logic. It formed part of the motivationfor a number of linear functional languages [Mackie 1994; Lafont 1988; Holmstr�om1988; Chirimar et al. 1994], where linearity could be used to restrict the number ofpointers to functional values and, in some cases, guarantee the safety of destructivearray update.This connection was illustrated particularly clearly by Wadler [1990], by translat-ing an imperative langauge, without procedures, into a linear functional language.We argued in the Introduction that a language without procedures does not itselfprovide a stringent test for the imperative expressiveness of a linear language, butwe do want to emphasize our debt to the work of Wadler, and to other early works



52 � P.W. O'Hearn and J.C. Reynoldson linear logic, for making the connection between imperative-like state transfor-mations and linear functions. To these works we would add the point that movingfrom simple to polymorphic linear types allows for a treatment of procedures andlocal state, and as a result it becomes possible to cover a much wider range ofimperative programming. We would also add that polymorphism can be used tocapture that a non-linear state be used linearly.Prior to the appearance of linear logic, Schmidt [1985] had already studied therelationship between syntactic restrictions on �-terms and the imperative nature ofstate transformations. His aim was to detect, in a standard denotational de�nition,when a parameter was \single threaded." The idea was that this would enable acompiler generator to detect when the parameter could be implemented in a store-like manner, by overwriting. His aim, and form of analysis, was thus di�erent fromours; in particular, he works with simple types, where polymorphism plays a centralrole here. Some of his basic ideas are re
ected in our translations, but one thatis not is passivity [Reynolds 1978], where multiple copies of a store parameter areallowed in contexts that ensure that they are used in a read-only fashion.12. DISCUSSIONIn the course of the paper we have presented syntactic translations from two Algol-like languages into a polymorphic, linear lambda-calculus, given a semantic modelof the linear language, and used it characterize the cpo structure of a numberof low-order types. We hope particularly to have convinced the reader that thetranslations and semantic model provide simple and e�ective principles that can beutilized in a variety of circumstances. This is highlighted by our work in Section 7,and also by Pitts's work referenced above.The semantic analysis provided by the strict parametricity model is, however,incomplete in come respects. We were in fact surprised to �nd that we could pushthe model as far as we could. To clarify this incompleteness we discuss a numberof unanswered questions.The �rst question arises from the work in Section 9.2: Does parametricity implynaturality with respect to expansions at all types for the Idealized Algol translation?If the answer is no then the translation of Idealized Algol, as it stands, would notverify the isomorphisms of cartesian closed categories at higher types. We indicatedin Section 9.2 that this is not a fundamental problem, as we know a number of waysto overcome it. Furthermore, in Section 8 we veri�ed an adequacy result to the e�ectthat the translation gets convergence at primitive types right, so the translationcan be used to soundly reason about Idealized Algol programs. But the questionis irksome, because one might expect that parametricity should imply naturality[Plotkin and Abadi 1993].Our analysis of equivalence only went as far as second-order types. We havenot found a counterexample to full abstraction at higher types in Idealized Algol,but we did �nd an explicit limitation in the model for SCI in Section 7.3. Onecould consider a more focused study of contextual equivalence, either by usingdi�erent models or by a syntactic analysis of the translations. Independently ofany speci�c model we could ask if the translations are fully abstract, i.e., whetherthey preserve and re
ect appropriate notions of contextual equivalence for sourceand target languages.



From Algol to Polymorphic Linear Lambda-calculus � 53It may have seemed odd that we did use the strict function model, since it isactually a model of relevant lambda-calculus (it models Contraction). We observedthat snapback requires both Contraction and Weakening, so that eliminating onehas the e�ect of banishing snapback operators. But there may be a more com-prehensive explanation than this. For primitive types in the translations there isalways a unique occurrence of any type variable to the left or right of �� : Intu-itively, if you perform a Contraction, copying a value of one of these types, it mustbe followed by a Weakening to preserve the uniqueness property (and conversely ifa Weakening is performed �rst). This leads to the question (which we leave impre-cisely stated) of whether the translations are the same if we take relevant, linear, ora�ne lambda-calculus as the target language. When one moves outside the rangesof our translations, beyond Algol-like types, we expect that linearity would playa more crucial role; we would bene�t from a more precise understanding of thesepoints.With this discussion of technical properties, it is well to remember that theoriginal motivation for semantics based on store shapes was much more basic: Itwas to build a model that made the stack discipline obvious [Reynolds 1981a]. Inparticular, it is clear from the semantics of types that the shape of the store in the�nal state obtained by evaluating a command must be the same as the shape inthe initial state. While the translation for Idealized Algol follows previous functor-category models closely, in SCI store shapes play a further role, making clear thatdi�erent identi�ers work with di�erent pieces of the state. So, more generally,we may say that semantics based on store shapes aims to communicate a spatialintuition: Programs working with di�erent store shapes act on separate parts ofthe store, and consequently don't interfere.Our work here gives an implementation of store shape semantics by translationinto a linear polymorphic functional language. We have, for the most part, con-centrated on what the resulting semantics says about the source languages, but ifwe switch focus to the target language then the translations can just as well beregarded as telling us about it. In particular, since we already understand Algolas an imperative language, the translations (and representation results) give us aprecise imperative way of reading certain linear types. This does not, however, helpus to understand types that lie beyond the ranges of our translations, because therewe do not have a prior understanding of an imperative language to fall back on.A �nal note on the source languages, and limitations. While we concentrateon call-by-name, the adaptation of our semantic methods to a call-by-value settingdoes not appear to raise insuperable di�culties. Much more di�cult is the inclusionof storable procedures or commands. Idealized Algol and SCI allow only statelessentities, such as integers, to be stored, and we do not know how well our methodsmight extend to deal with stateful values in the store.We wonder whether this apparent limitation could be turned into a feature.That is, both Idealized Algol and Basic SCI are higher-order imperative languagesthat obey a stack discipline for variable declarations. While the stack discipline ismade evident by the translations of types, there are other polymorphic types, lyingoutside the ranges of the translations, that display the same stack-like character.This raises the question of whether the stack-like sublanguage could be demarcated,perhaps leading to an imperative language that is more general and 
exible than
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