Kripke-style models for typed lambda calculus

John C. Mitchell
Department of Computer Science
Stanford University

FEugenio Moggi
Department of Computer Science
University of Edinburgh

November 13, 1996

Abstract

The semantics of typed lambda calculus is usually described using Hen-
kin models, consisting of functions over some collection of sets, or concrete
cartesian closed categories, which are essentially equivalent. We describe a
more general class of Kripke-style models. In categorical terms, our Kripke
lambda models are cartesian closed subcategories of the presheaves over a
poset. To those familiar with Kripke models of modal or intuitionistic logics,
Kripke lambda models are likely to seem adequately “semantic.
when viewed as cartesian closed categories, they do not have the property
variously referred to as concreteness, well-pointed-ness, or having enough
points. While the traditional lambda calculus proof system is not complete
for Henkin models that may have empty types, we prove strong complete-
ness for Kripke models. In fact, every set of equations that is closed under
implication is the theory of a single Kripke model. We also develop some
properties of logical relations over Kripke structures, showing that every the-
ory is the theory of a model determined by a Kripke equivalence relation over
a Henkin model. We discuss cartesian closed categories but present the main
definitions and results without the use of category theory.

7 However,

1 Introduction

Lambda calculus is a calculus of functions: we read the lambda term Axz: o.M
as, “the function defined by treating the expression M as a function of the
variable x,” where z:0 indicates that the domain of this function is type
o. Formalizing this reading, it is natural to base a mathematical semantics
of typed lambda calculus on sets of functions. When terms are given func-
tional types in the usual way, it is easy to see how each term defines a set-
theoretic function with the appropriate domain and range. However, classical
set theory! entails some subtle semantic properties which are slightly at odds
with the traditional axiom system.

One way to see the influence of classical principles on the semantic proper-
ties of terms is to consider an implication presented in [MMMSS87]. Suppose
a and b are types and f is a function f: (a—a—a)—b mapping curried two-
argument functions on a into b. Since the two functions

M i = ALIa.\Ya.x
my 1= Ar:iayia.y

both have type a—a—a, we can apply f to either one. We will show, by a
simple case analysis, that

(%) Az:a.fmy = Ax:a.frg implies fm = fmg.

In words, we will show that if the two functions Az:a.fmy and Ax:a.fmo
are equal, then their values fm; and fmy must be equal. The first case to
consider is when the type a has no elements. If this happens, then we have
m = m9, since both expressions denote the empty function, and so it must
be that fm; = fmy. The second case is a not empty, and so there is some
element u of type a. We can apply both functions in the antecedent to wu,
and since “equals applied to equals produce equals,” we obtain fm; = fmo.
Thus regardless of whether a is empty, the implication above is semantically
sound.

Although the traditional axiom system is complete for proving equations
that are valid in all Henkin models, there is a slightly complicated relationship
between the axiom system and semantic implication. In the traditional ax-
iom system, there is no provision for reasoning by cases, and so the argument

1'We use the term set theory to mean any classical set theory, such as ZF. This should be
distinguished from set theories developed in intuitionistic logic. As will become apparent,
our Kripke lambda models are essentially a semantics of typed lambda calculus developed
in a form of intuitionistic set theory.

above cannot be formalized. However, it has been common to assume that
no type is empty. When we make this simplifying assumption, we eliminate
one case, and the inference is easily carried out within the appropriate axiom
system. This leads to the completeness theorems of [Fri75, Hen50, Sta85a].
The drawback, however, is that in many computer science applications it is
not appropriate to assume every type is nonempty (inhabited). This point
is discussed in [MMMS87]. Related discussions of multi-sorted equational
logic appear in [GM82, GM86]. When we reject the nonemptiness assump-
tion and allow types to be empty, we are led to non-equational principles, as
in [MMMS87], which formalize reasoning by cases as above. The extended
axiom system of [MMMS87] is semantically complete, but it has a very differ-
ent flavor from the traditional system. For example, some useful connections
between equational theories and 3, n-conversion fail?. In addition, we give up
the usual “minimal model” property of lambda calculus and equational logic:
with empty types allowed, there is a set of equations which is closed under
semantic implication, but not the theory of any single model.

It is worth noting that these comments hold true whether we describe
models using the language of set theory or category theory. As proposed
in [Sco80, Section 2], one might choose concrete cartesian closed categories,
those satisfying

f=g:A->B iff foa=goaall a:l—=A,

as “models.” (This use of the word concrete has been adopted in much of
the computer science literature, but it is not standard in category theory. An
alternate phrase is to say that 1 is a generator or the category has enough
points.) Since any object A of a concrete category may be identified with
the set of arrows a:1—A from the terminal object, our discussion of Hen-
kin models above applies to concrete cartesian closed categories as well. In
particular, the traditional inference system is not complete for semantic im-
plication over concrete cartesian closed categories when “empty” objects are
allowed.

The goal of the present paper is to give a natural set-like semantic ac-
count of the traditional inference system. To do this, we must find a semantics
which does not support the classically valid justification of (x). Since the ar-
gument assumes that either a is empty or a is not empty, the law of the

*Here is one example, based on the results of [Jac75]. We write M &Y N if there is a
term P with PUV =3, M and PVU =g, M. Then in the traditional inference system

for typed lambda calculus, we have U =V -+ M = N it M &Y &Y% N This fails
when the new inference rules for empty types are added.

excluded middle is used in a critical way. Thus one might expect an in-
tuitionistic semantics to provide a completeness theorem. Since categorical
logic is essentially intuitionistic, the equivalence between typed lambda the-
ories (defined using the traditional axiom system) and arbitrary cartesian
closed categories could be considered an intuitionistic completeness theorem
(see, e.g. , [Fou77, Lam80, LS86]). However, we prefer the completeness the-
orem using only Kripke models for several reasons. For one, Kripke models
are relatively easy to picture, and they seem to support a set-like intuition
about the lambda terms better than arbitrary cartesian closed categories.
In addition, predicate logic may be interpreted over Kripke lambda models,
while there is no analogous interpretation in arbitrary cartesian closed cat-
egories (except indirectly via the Yoneda embedding). A practical advantage
is that it is often easy to devise Kripke counter-models to implications like
(). Finally, the useful techniques of logical relations generalize to Kripke
lambda models without much difficulty and provide an easy way to construct
Kripke lambda models from Henkin-like structures.

We define Kripke lambda models in Section 2 and describe the axiom
system and the semantics of terms in Section 3. In Section 4, we discuss the
relationship between Kripke lambda models and cartesian closed categories
(CCCs): every Kripke model determines a CCC, and (as pointed out to us
by Edmund Robinson and Pino Rosolini) every small CCC may be embed-
ded in a Kripke model. We prove soundness and completeness theorems in
Section 5, along with a correspondence between nonempty types and intu-
itionistically valid propositional formulas. Finally, in Section 6, we turn our
attention to logical relations. We describe some general properties of Kripke
logical relations, which are closely related to I-relations [Plo80], and show
that a general class of Kripke models may be obtained as Kripke quotients
of classical models. As an application of Kripke quotients, we construct a
counter-model to the implication (%) given in the second paragraph of the
paper.

While we began our study of Kripke lambda models by working out a
definition from first principles, our model definition and many of our res-
ults may be developed using a paradigm that is well-known to researchers
in categorical logic. We are grateful to Edmund Robinson and Pino Ro-
solini for some helpful discussion of this point of view, and refer the reader
to [Fou77, Sco80, LS86] for related discussion. In short, the usual defini-
tion of semantics of typed lambda calculus, as in [Bar84, Fri75, Hen50], may
be formalized in the language of set theory: a model is a collection of sets
satisfying several properties easily described by logical formulas. While we

usually interpret this definition in the “standard classical model” of set the-
ory, other interpretations are possible. In particular, our definition of Kripke
lambda model may be viewed as an explicit description of the meaning of
typed lambda model in a class of Kripke-style interpretations of an intuition-
istic set theory. In categorical terms, these interpretations of set theory are
functor (or presheaf) categories Set”, where P is a poset. Since much of
the development seems entirely routine from this point of view, we will use
the Kripke interpretation of logical formulas to motivate part of the model
definition. We should emphasize that in topos theory, a “Kripke model” is
just an interpretation of a first-order signature in a presheaf category over a
poset, as it will become clear from the discussion in Sections 2 and 4.

2 Kripke lambda models

2.1 Possible worlds

As with other Kripke-style semantics, a Kripke lambda model will include
a partially-ordered set W of “possible worlds.” Instead of having a set of
elements of each type, a Kripke lambda model will have a set of elements of
each type at each possible world w € W. The relationship between elements
of type o at worlds w and w' > w is that every a:o at w is associated with
some unique a’: o at w'. Informally, using the common metaphor of < as
relation in time, this means that every element of o at w will continue to
be an element of o in every possible w' > w. As we move from w to a
possible future world w’, two things might happen: we may acquire more
elements, and distinct elements may become identified. These changes may
be explained by saying that as time progresses, we may become aware of (or
construct) more elements of our universe, and we may come to know more
“properties” of elements. In our case, the properties of interest are equations,
and so we may have more equations in future worlds. Since a type o may be
empty at some world w and then become nonempty at w’' > w, some types
may be neither “globally” empty nor nonempty.

2.2 Applicative structures and predicate logic

Kripke lambda models will be defined precisely using the subsidiary notion
of applicative structure. A Kripke applicative structure

A= (Wa Sa {AZ)}a {AppZ;T}a {7‘.";1,11)’}>

consists of
e aset W of “possible worlds” partially-ordered by <,
e a family {A7} of sets indexed by types o and worlds w € W,

e a family {Appd"} of “application maps” ApplT: AJ7T x A9 — Al
indexed by pairs of types o,7 and worlds w € W,

e a family {i

types o and pairs of worlds w < w’

} of “transition functions” if
9

t A7 — A7, indexed by

subject to the following conditions. We want the transition from A to A,
to be the identity

(id) it Ay — Ag, is the identity,

and other transition functions to compose

(comp) i

o1 =10 all w < w' <w"

o o
w! w'! w,w’ w,w’!

o, given for w < w'. We

also require that application and transition commute in a natural way

so that there is exactly one mapping of AJ into A

(nat) Vfe Al7" Va € A

w w*

iy (AP (f,0)) = Appyy ((ig,ar £, (5, @),

which may be drawn

g,T

Appw’

oO—T o T
ATTT X AY——————— AT

ST —T

7 g

A(T—)’T X A;T AT

w) w

Appyy”

and will be described informally below. This completes the definition.

If a € A, and w < w', then we can read i ,,a € A7, as “a viewed
k)
[o,T

at world w'.” The purpose of the application map Appy™ is to associate a

function App7(f,-) from AJ to A], with each element f € A777. Since we

can view f € A%77 as an element at any future world w' > w, the application
map at world w' also associates a function with 753,7)” at w'. The condition
(nat) is intended to give a degree of coherence to the functions associated with
different views of f. Basically, (nat) says that if we apply f to argument a
at world w, and then view the result at a later world w’ > w, then we see the
same value as when we view f and a as elements of world w’, and apply f to
a there.

Kripke applicative structures can also be defined using category-theoretic
concepts. The usual definition of applicative structure (also called a prestruc-
ture; see [Fri75, Sta85a]) may be understood in any cartesian category. The
usual definition of applicative structure is a pair ({ A%}, {App?}), where { A%}
is a family of sets A” indexed by types and {App?} is a family of application
functions

App®T: A7T x A — AT

indexed by pairs of types. We may interpret this definition “inside” a category
C by regarding the word “set” as meaning “object from C” and “function”
as meaning “morphism from C”. Thus an applicative structure in C is a
collection of objects {C?} indexed by types and a collection of morphisms
{App°T} indexed by pairs o,7 of types such that App®” has the domain
and codomain given above. To derive our definition of Kripke applicative
structure from this general idea, we regard a poset (W, <) as a category in
the usual way (see Section 4), and consider the category SettW-<) of functors
from (W, <) to sets. If we work out what applicative structure means in a
category of the form SetW:<) then “sets” will be functors and “functions”
natural transformations. So we end up with exactly the definition of applic-
ative structure spelled out explicitly above. We will say a little more about
functors and natural transformations in Section 4; some related details may
be found in [Sco80, Section 4] and [L.S86, Example 9.5 of Part II].

It is often convenient to omit the application map App, writing fz for
App%T(f,x) when this does not seem confusing.

It is relatively easy to use Kripke applicative structures to interpret a
predicate logic with quantification over all types. A brief discussion of logic
at this point will make it easier to motivate the further conditions needed to
define Kripke lambda models. We will use the notation

wlt=¢ []

for formula ¢ holding at world w relative to variable assignment (environ-
ment) 7, and let A|l-¢ mean w|—¢ [n] for every world w and environment 7.

Equations between expressions without A are easily interpreted, and we will
see how to interpret equations between typed lambda terms in the next sec-
tion. If we take equations as atomic formulas, then conjunction, disjunction
and existential quantification are straightforward. For example,

wl=¢ AP 0] it wl=¢[n] and wl= [n].

Negation is interpreted by taking —¢ = ¢ D L, where by definition L is a
formula that does not hold at any w. As in Kripke semantics of propositional
or first-order logic, implication and quantification make use of the partial
ordering of worlds. For example,

wl-¢ D n] iff V' > w. w'|-¢[n] implies w' |1 [n)].

For this to make sense, we must be able to regard any variable assignment at
w as a variable assignment at w’ > w, a technical detail we will address below.
We will illustrate the interpretation of quantification by example below. More
information about this interpretation of predicate logic in Set<W’5>, which is

entirely standard, may be found in [Sco80, L.S86].

2.3 Extensionality and combinators

A classical applicative structure may fail to be a model for two reasons,
and these reasons apply to Kripke applicative structures as well. The first
possibility is that we may not have enough elements. For example, o—o
might be empty, making it impossible to give meaning to the identity function
Az:o.x. The second problem is that application may not be extensional, i.e.
, we may have two distinct elements of functional type which have the same
functional behavior. Consequently, the meaning of a lambda term Az:o.M
may not be determined uniquely.

The usual statement of extensionality is that f = g whenever fz = gz
for all z of the appropriate type. In Kripke applicative structures, we are
concerned not only with the behavior of elements f,g € A2~7 as functions

w

from AJ to A7, but also as functions from A7, to A7, for all w' > w.

og—T

Therefore, we must specify that for all f,g € A777,

f =g whenever
Vw' > w.¥a € A7, (ig, 7 f)a = (i, 7 g) a.

w' \Yw,w’

This can be said a little more simply by appealing to the interpretation of
predicate logic described above. Specifically, we will say that a Kripke ap-

plicative structure A is extensional if

(ext) AlF-(Vzio. fr=gz) D f=g

where the variables f and g have type o—7. (We will discuss a syntactic
mechanism for specifying the types of free variables in the next section.) It
is a routine calculation to see that (ezt) is equivalent to the more elaborate
statement above with explicit quantification over possible worlds.

There are two common ways of specifying that a classical applicative
structure has enough elements to interpret every lambda term. The environ-
ment model condition uses the inductive definition of the meanings of terms,
while the combinatory model condition uses equationally-defined elements K
and S called combinators (see [Bar84, Chapter 5] or [Mey82]). Since the two
are equivalent (for both Kripke and classical applicative structures), we will
define models using combinators.

For Kripke applicative structures, the description of K and S is simplified
by introducing the notion of global element. A global element a: o of A is a
mapping w — a,, from worlds to elements such that a,, € A9 and, whenever
o w'@w = Gy. Constant symbols in logical formulas denote
global elements; we ’interpret a constant a: o at world w as a,, € AY,. A Kripke
applicative structure A has combinators if, for any types p, o, T there exist
global elements K and S of types o—»7—0 and (p—o—71)—(p—0)—=p—T7
such that

w < w', we have 4

(K) Af K oy=2
(S) AFSzyz=2 2z (y 2).

where we assume variables z,y, z are given the appropriate types, e.g. , z: 0
and y:7 in (K). In more detail, (K) means that for every world w and all
“local” elements a € A9,b € A7, we have w|-K,, a b = a. Condition (S5)
may be spelled out similarly.

We define a Kripke lambda model to be a Kripke applicative structure A

which is extensional and has combinators.

3 Terms, Equations and Interpretation

3.1 Syntax

As usual in typed lambda calculus, we will be interested in equations between
terms of the same type, but not concerned with equations between types.

Since we wish to allow empty types, we will be explicit about the types
assigned to variables (see [MMMS87]). Consequently, terms and their types
are defined using the subsidiary notion of type assignment. A type assignment
I is a finite set of formulas x: 7, with no x occurring twice in I'. The formula
2:7 may be read “the variable z has type 7.” We write ', z: o for the type
assignment

INeio=TU{z: 0},

where, in writing this, we assume that z does not appear in I'. Terms will
be written in the form I' > M: 7, which may be read, “M has type 7 relative
to I'.” Since open terms may define “partial,” or “nonglobal elements,” there
may be some confusion about what it means to use a variable. In contrast
to the logic of partial elements of [Fou77], for example, all of our expressions
will have existential import. When we write z:0 in a type assignment, we
mean that z is defined, or “exists,” and has type o. The symbol “>” acts as
implication with respect to existence, so that z: o> M: 7 says, “for all w, if
denotes an element of type o at world w, then M is defined at w and denotes
an element of type 7.”
The well-typed terms are defined as follows.

(var) TTOET

I'sM:0—7, I'>N:0o

FE
(= B) > MN-7
oo M: 1
— 1 !
() I'sAz:oM:o—T1
I'sM: 7

dd -
(add var) z:o>M:7

An easy induction shows that if I' > M: o is well-typed, then ' must mention
every free variable of M.

It is convenient to omit the empty type assignment when writing closed
terms. In addition, since the type of a closed term is uniquely determined,
we sometimes omit the type as well. For example, it is convenient to write
Az:o.z instead of > \z:0.2: 0—0.

With type assignments as part of the syntactic formulation of terms, it is
natural to write equations in the form

I'sM=N:r

10

where we assume that I'> M:7 and I' > N: 7 are both well-typed. For typo-
graphical reasons, it is sometimes helpful to leave off the types of the terms,
writing ' M = N instead of I'> M = N : 7. We will write [N/z]M for the
result of substituting N for free occurrence of = in M. In defining [N/z] M,
we must be careful to rename bound variables in M to avoid capture, as
usual.

We have the usual axioms for renaming bound variables, evaluating func-
tion application by substitution, and equating extensionally equal functions.

() I Az:0.M = Ay:oly/z|M, for y & FV (M)
(B) I'> (Az:0.M)N = [N/z|M
(n) I'>Az:0.Mz = M, for x ¢ FV (M)

We also need a reflexivity axiom
(ref) 'sM=M:o

and several inference rules. The main inference rules are symmetry and
transitivity

() I'sM=N:o

sym ToN=M:o

(t) 'sM=N:0T>N=P:o0o
rans

I'sM=P:o

as well as congruence with respect to application and lambda abstraction

I'sMy=My:0—17, 'bNy =Ny:0
FDMlleMQNQZT

(cong)

F,.’L’:O’DM:N:T
Lo AdxioM =Xz:0.N 01

(€)

Since type assignments are explicitly included in equations, we also need the
rule

I'sM=N:o

(add var) I'e:roM =N :0

This lets us add additional typing hypotheses to equations. We write £
I'>M = N : o if the equation I'> M = N : ¢ is provable from the equations
in £.

11

A useful fact about typing and equational reasoning is that if I'> M: o is
well-typed, and M 8, n-reduces to IV, then I'> N: o is also well-typed. The
converse fails, however, since when M 3, n-reduces to N, the term M may
have more free variables. Therefore, I' > N: o does not imply I'> M: 0.

To emphasize the difference between our proof system and the proof rules
that apply when types are assumed not empty, it is worth mentioning that
we do not have the rule

Ne:o>M=N:171
I'sM=N:71

(nonempty) x & FV(M,N)
since this inference is sound only if there exists a global element of type o.
It is interesting to observe that we have a Kripke-like structure within the
syntax of terms or equations. We may think of a type assignment I' as the
“possible world” in which the variables appearing in I" “exist,” in the sense
of [Fou77], or “are defined.” We may then read I'> M: o as saying, “M exists
and has type o at world I'."” The natural ordering on type assignments is
containment, and rule (add var) ensures that if M is defined and has type
o at world I', then M “continues” to be a term of type ¢ at every world
[> I'. We can also incorporate equations, and read I'> M = N : 7 as,
“M and N define the same element of type 7 at world I'.” Since more terms
can be defined when we have more variables, it is clear that any IV > T
will have at least the elements of I'. What is perhaps less obvious is that
with respect to certain lambda theories, we may have more equations at
I > I'. To take a simple example, suppose we have a constant ¢: c—o, and
let £ be the single equation {A\z:7.c = Az:7.\y:0.y}. At world T = (), we
cannot prove ¢ = Ay:o.y from £. (This is most easily demonstrated by a
semantic argument, as in Section 6.4.) However, it is easy to see that at
world TV = {2:7} > T, we have £ - "> ¢ = Ay:0.y. Thus the properties
of the transition functions iy, ,, are well-motivated by properties of the proof
system for typed lambda calculus. We will use type assignments as “possible
worlds” in proving the completeness theorem.

3.2 Environments and meanings of terms

An environment n for a Kripke applicative structure A is a partial mapping
from variables and worlds to elements of A such that

(env) If nzw € A% and w' > w, then

USCU)’ = iZ),quf(wa)-

12

Intuitively, an environment 7 maps a variable z to a “partial element” nxz
which may exist (or be defined) at some worlds, but not necessarily all worlds.
Since a type may be empty at one world and then nonempty later, we need to
have environments such that nzw is undefined at some w, and then “becomes”
defined at a later v’ > w. We will return to this point after defining the
meanings of terms.

If is an environment and a € Ay,
identical to n on variables other than z, and with

we write n[a/x] for the environment

(nla/a))zw’ = i 0

for all w’ > w. We take (n[a/z])zw’ to be undefined for w’ not > w.
If) is an environment for applicative structure A, and I is a type assign-
ment, we say w satisfies I' at n, written w|}-T" [n] if

g
w

nzw € A? for all z:0 € T.

Note that if w|-T [n] and w' > w, then w'|-T [n].

For any Kripke model A and environment w|-1I"[n], we define the meaning
[T'> M:o]nw of term I'> M: o in environment 1 at world w by induction on
the structure of terms.

IT > z:onw = nzw
[T'> MN:7]nw =
Appy” ([T'> M:o—=7]nw) ([I'> N:onw)
[T > Az:0.M: 0—7]nw = the unique d € A"
such that for all a € A7, and w' > w,

Appy) (igid)a = [T, z:0 > M:7]nla/z] w'

Combinators and extensionality guarantee that in the I'> Ax: 0.M: 0—7 case,
d exists and is unique. This is proved as in the classical setting, using transla-
tion into combinators [Bar84, HS86, Mey82] for existence, and extensionality
for uniqueness.

We can see the importance of partial environments by looking at the
lambda abstraction case in a little more detail. The meaning of a lambda
abstraction in environment 7 at w is determined by “patched” environments
nla/xz] for a € A9, with w' > w. If AJ
a € AJ,, then A7;”T may be large, and so there are many possible meanings
for Az:0.M. However, every n[a/z] with a € A7, must be partial, since there
is no possible value for x at w. Therefore, we need partial environments to

is empty, but there exist many

determine the meaning of a lambda term uniquely.

13

We say an equation I'> M = N : o holds at w and 7, written
wl-(U> M = N :0) [1]
if, whenever w|}-TI"[n], we have
[T'>M:olpw = [I'> N: o]nw.

This is the base case of the inductive definition of wl|}-¢[n] for formula ¢ of
predicate logic, given earlier. It is an easy exercise, which we leave to the
interested reader, to work out the complete definition of w|¢ [n] for logical
formulas written using type assignments (see [LS86, Sco80] for significant
hints).

A model A satisfies T>M = N : o, written A|FT>M = N : o, if every
w and 7 for A satisfy the equation.

4 Kripke lambda models and cartesian closed cat-
egories

It is easy to extend the definitions of Kripke applicative structure and lambda
model to include cartesian product types ¢ x 7 and a terminal type 1 with
one element at each world. In this section, we will see that any Kripke model
A with products and a terminal type determines a cartesian closed category
Ca. As one would hope, the categorical interpretation of a term in I'> M: o
in C4 coincides with the meaning of I'> M: o in A given above. We will also
sketch the full and faithfull embedding of any small cartesian closed category
into a cartesian closed category determined by a Kripke lambda model. This
embedding preserves the cartesian closed structure, but not necessarily “on
the nose.” Rather than discuss all of the fine points, we will refer to the
appropriate literature. The reader who is unfamiliar with category theory
may skip to the next section without loss of continuity.

We regard a partially-ordered set (W, <) as a category in the usual way.
Specifically, the objects of this category are the elements of W and there is a
unique “less-than-or-equal-to” arrow £, . from w to w' iff w < w’. Since a
category must have identities and be closed under composition, we let £, 4,
be the identity on w and define composition by

gw’,w” o gw,w’ = ew,w”-

14

Given a Kripke applicative structure 4, it is easy to see that each type o
determines a functor @, from (W, <) to sets. Specifically, we take

‘ba(w) = A;Tu
(I)a— (fw,w/) = iZ),w’

and use conditions (id) and (comp) in the definition of Kripke applicative
structure to show that this map is functorial. While it may seem simplest
to use functors ®, as objects of C4, this may identify types in the case
where o # 7 syntactically, but AJ = Aj happen to be the same set. Since
we would not necessarily want to identify application functions on the two
types, this could lead to unnecessary confusion. Therefore, we will use the
type expressions as the objects of C4.

Since each type determines a functor, we will use natural transformations
as the morphisms of C4. For every pair of types o and 7, condition (nat) in
the definition of Kripke applicative structure says that the map w — App?7,
which we shall write simply as App®”, is a natural transformation from
b, X O, to .. Using App”", we can see that every global element a
of type o—7 induces a natural transformation v from ®, to ®.,, namely

vw = AppyT(aw,)

For extensional applicative structures (and hence models), it is easy to see
that if two global elements a and b determine the same natural transformation,
then a,, = b, at every world w. We let the morphisms from o to 7 in Cy
be all natural transformations v : ®,—®. induced by global elements of A
of type o—7 and let composition of morphisms be ordinary composition of
natural transformations in Set{" <),

A routine calculation shows that if A is a Kripke lambda model, then C4 is
a category with an object for each type, and there is a one-one correspondence
between global elements of type o—7 in A and morphisms from o to 7 in C4.
In addition, it is easy to show that C4 is cartesian closed if A has products and
a terminal object. The relationship between the categorical interpretation of
terms, as in [Sco80]?, and the meaning function we have given is summarized

3There is a minor source of confusion in [Sco80, page 413]. In assigning an arrow of
a category to an open term M, we must decide which variables to consider free in M.
In particular, we may want to consider some variables “vacuously” free. Scott’s slightly
informal discussion does not address this point. However, in the formalism of the present
paper, we have explicit type assignments, and so we simply treat all variables in ' as
occurring free in '> M: 0.

15

in the following theorem. Note that with product types, any I'> M: 7 is easily
transformed into a semantically equivalent z:o > M':7 with only one free
variable. (Simply replace the collection of variables in I' by a single variable
of the appropriate product type.)

Theorem 4.1 If A is a Kripke lambda model with products and terminal
type, then the interpretation of z:o > M:7 in Ca, as defined in [Sco80], is
the natural transformation from ®, to @, induced by the global element w —
[Az:0.M:0—71]0w, where O is the empty environment.

Therefore an equation holds in A iff it holds in C4. It should be pointed out
that the functor from C4 to Set<W’5>, mapping 7 to @, is faithful and pre-
serves products, but it may not be full or may not preserve function spaces.
The reason is that a Kripke lambda model is just a first order structure in
a topos of presheaves. Therefore, the interpretation, ®,_,, of o—7 need
not be ®,—®,; extensionality only requires that ®,_,, be a “subfunctor” of
S, —D,.

We now sketch a method for defining a Kripke lambda model from any
small cartesian closed category. More specifically, we assume we are given
an association of type constants to objects and term constants to arrows
of a small cartesian closed category D. Such an association determines an
interpretation of typed lambda calculus in D, in the sense of [Sco80]. We will
show that there exists a Kripke lambda model B satisfying the same equations
as D. In the special case that our categorical interpretation of typed lambda
calculus is the internal language of D (see [LS86]), this construction gives us
a Kripke lambda model B which is equivalent to D (in the usual categorical
sense), but not necessarily isomorphic.

There are three steps from a small CCC to a Kripke lambda model. The
first step transforms our categorical interpretation in D into a categorical
interpretation in SetP””, the topos of presheaves over D. The second takes
any categorical interpretation in a topos of presheaves Set””” and produces an
applicative structure in the same category. This applicative structure satisfies
(K), (S) and extensionality, which are all first-order expressible. The third
step finds an elementarily equivalent applicative structure in Set"V, where W
is a poset with a least element.

The first step uses the Yoneda embedding Yp of D into the topos of
presheaves over D. This produces a categorical interpretation in the topos of
presheaves over D, as spelled out in [Sco80]. For instance, if d is the inter-
pretation of the base type o in D, then we use Y (d) as the interpretation of o
in the topos of presheaves, and similarly for the interpretations of constants.

16

This extends uniquely to all type expressions and terms. Since Yp preserves
the cartesian closed structure, the interpretation of any type and term in the
topos of presheaves is the image (via Yp) of its interpretation in D.

The categorical interpretation in the topos of presheaves over D gives us
an applicative structure A in the same topos. Specifically, A is the applicative
structure with the type o interpreted as a functor ®, from D to Set, and
App®T as the evaluation morphism evalg, ¢, from (®,—®,) x &, to ®,.
(Here we have &, ,; = ®,—®., as sets.) Moreover, the applicative struc-
ture A satisfies the axioms (K), (S) and the extensionality condition (ext),
according to the Kripke-Joyal semantics of formulas in Set””" (see [L.S86]).

We now have a lambda model A in Set”” but not necessarily a Kripke
lambda model since D°? may not be a poset. The third step of the construc-
tion uses the Diaconescu cover. The general construction given in Example
2.8 and Corollary 3.3 of [Joh80] produces a poset W and a functor d: W— D°P
such that any applicative structure A in Set”” is elementarily equivalent to
an applicative structure B in Set"V obtained by composing each functor and
natural transformation in A with d: W—D°. In particular, A and B sat-
isfy the same equations between typed lambda terms. However, it should
be pointed out that, even when A is induced by a categorical interpretation
of lambda terms (i.e. , ®,,, = ®,—d,), it does not follow that B is also
induced by such an interpretation.

In order to prove that D and Cp are equivalent, we show that D is equi-
valent to C4 and C,4 is isomorphic to Cg. However, the latter isomorphism
requires a modification to the Diaconescu cover construction using the ter-
minal object of D. To produce Cp isomorphic to C4, we take W in the
definition of B to be the poset of finite composable sequences of morphisms
in D including the empty sequence L. This set is partially ordered by
wy < wsq iff the sequence wy is an initial segment of ws. This poset W is PP
of Example 2.8 in [Joh80], except that we have added the empty sequence.
The functor d is defined as in [Joh80], extended to 1 by mapping the empty
sequence to the terminal object 1 of D. Note that there is exactly one way to
extend d to morphisms from | to any w € W, because 1 is the initial object
in D°P. More explicitly, d is the functor from W to D such that for any
sequence f1,..., f, of composable maps (object of W), we let

a,T

lifn=20
the codomain of f, in D°P, otherwise.

d(fla---afn) = {

If the sequence w' is w followed by fi,..., f,, then d maps the unique arrow

17

Loy i w — w' of W to

the only morphism from 1 to d(w'), if w = 1
d(ly) = 4 the identity on d(w), if n =0
the composition of f1,..., f,, otherwise.

Since the modified functor d: W— D still satisfies the conditions of Corol-
lary 3.3 in [Joh80], the modified B remains elementarily equivalent to A.
Moreover, the global element of <I>('}_4 in SetP”” are in natural correspondence
with the global elements of ® in Set'V'. In fact, this construction has the

following properties:

Set" (1,®P) = ®P (1) by the Yoneda Lemma,

dB(1) =d4(1) because ® = ®4 0 d and d(L) =1,

SetP” (1, ®4) = ®A(1) again by the Yoneda Lemma.

Therefore the global elements of any type ‘IJf in A are in one-to-one corres-
pondence with the global elements of the corresponding type ®2 in B. Since
the two categories C4 and Cp have the same set of objects, we may conclude
that C4 and Cp are isomorphic. Specifically, the morphisms from o to 7
in either category are in one-one correspondence with the global elements of
®,_,., and we know that the corresponding sets of global elements are in
one-to-one correspondence, by the argument above.

The two cartesian closed categories C4 and D are equivalent via the cor-
respondence that maps an object o of C4 to the interpretation [o] of o in D.
It is easy to see that ®, = Yp([o]) , since this is clearly true for base types
and preserved at higher types because ®,_,; = ®,—®, = Yp([o—7]). By
definition of C4 and ®,_,, = ®,—®,, we have Cx(0,7) = SetP?” (D,, ®,).
Therefore C4(o, 7) is isomorphic to D([o], [7]) by

Ca(o,7) = Set”” (@g, @) = Set”” (Yn([0]), Yo (Ir])) = D([o], [7]).

Thus the cartesian closed categories C4 and D are equivalent. Since C4 is
isomorphic to Cpg, this completes the proof that the original category D and
the category Cp determined by Kripke lambda model B are equivalent.

5 Soundness, Completeness and Inhabitation

Using the relationships between Kripke lambda models and cartesian closed
categories described in the last section, the soundness and completeness the-
orems for Kripke lambda models may be derived from well-known theorems

18

about lambda calculus and cartesian closed categories (see [LS86, Part IJ).
However, we will give a direct completeness proof since it is quite straight-
forward and the construction has other uses.

The following lemmas are easily proved by induction on typed lambda
terms.

Lemma 5.1 (Transition Lemma) Let A be a Kripke lambda model and n an
environment satisfying I' at w. Then for every w' > w, we have

[T > M:o]nw' ([T > M: o]nw).

— 50
- Zw,'w’

Lemma 5.2 (Substitution Lemma) Let A be a Kripke lambda model and n
an environment satisfying I at w. For any well-typed terms I' > N:o and
Iz:o> M: 7, we have

[T> [N/z]M:t]nw = [T, z:0 > M:7](n[[T > N: o]nw/z])w
It is now easy to prove soundness by induction on equational proofs.

Lemma 5.3 (Soundness) Let £ be a set of well-typed equations. If & +
I'>M = N : o, then every model satisfying £ also satisfies '> M = N : 0.

For Kripke lambda models, we prove deductive completeness by showing
the stronger property that every theory has a model.

Theorem 5.4 (Completeness) Let £ be any set of equations closed under .
There is a Kripke lambda model A with A|FT'> M =N 0 iff T> M = N :
ocef.

Proof Sketch: The completeness theorem is proved by constructing a term
model A = (W, <. {A7}}, {Appy;"}. {47, 0 }) in the following way.

e IV is the poset of finite type assignments I' ordered by inclusion. In
what follows, we will write I' for an arbitrary element of W.

e Af is the set of all [I'> M: o], where I' > M: o is well-typed, and
>M:0l={T'>N:og |EFT>M =N :0}
is the equivalence class of I' > M: o with respect to &£.

o App?"([L>M:o—7],[T>N:o])=[[> MN:7]

19

o if p([['> M:io]) =[I">Mo] for I C I”

It is easy to check that the definition make sense, and that we have global
elements K and S at all appropriate types. For example,

K = [Az:0.)\y: 7.7]

The proof of extensionality is a little more interesting. Suppose that [I' >
M:o—7] and [I' > N:o—7] have the same functional behavior, i.e. ; for all
[>T and ' > P: o, we have

"> MP7]=[T"> NP: 7]
Then, in particular, for I = I, z: ¢ with z not in I, we have
Cz:ovMz:7]=[[,z:0> Nz: 7]

and so by rule () and axiom (1), we have [['> M:0—71] = [['> N:o—7].
Thus A is a Kripke lambda model.

It remains to show that A satisfies precisely the equations belonging to £.
We begin by relating the interpretation of a term to its equivalence class. If
I is any type assignment, we may define an environment 7 by

Mpz:o] ifzoel CIY

oI =
e { unde fined otherwise

A straightforward induction on terms shows that for any I D TV D T, we
have
[["> M:o]nl" = [I" > M: 0]

In particular, whenever A satisfies an equation I' > M = N : o, we have
['|F-T'[n] by construction of 1, and so

[>M:0]=[p>N:o]

Since this reasoning applies to every I', every equation satisfied by A must
be provable from £.

While it is possible to show that A satisfies every equation in £ directly,
by similar reasoning, certain complications may be avoided by restricting our
attention to closed terms. There is no loss of generality in doing so, since it
is easy to prove the closed equation

0o Xzi:01.... .z 0p. M = Az1:01. ... A\opi 0. N

20

from the equation
T1:01y..., L. 0k >M=N

between open terms, and vice versa. For any closed equation) > M = N :
T € £, we have
EFToM=N:71

for any I', by rule (add var). Therefore, for every world I' of A, the two
equivalence classes [['> M:7] and [> N:7] will be identical. Since the
meaning of) > M: 7 in any environment 7 at world I' will be [I"> M: 7], and
similarly for) > N: 7, it follows that A satisfies) > M = N : 7. This proves
the theorem. [

One important property of the Kripke term model we construct in the
completeness proof is that A is nonempty for all w € W iff ¢ is an intu-
itionistically provable proposition. Our interest in this property stems from
a well-known syntactic correspondence between typed lambda calculus and
intuitionistic logic, called the formulas-as-types principle, or Curry—Howard
isomorphism [How80]. In this analogy, types correspond to logical formulas
and terms correspond to proofs. We read basic types as atomic proposi-
tions and read the type o—7 of functions from o to 7 as the formula “o
implies 7.” The crucial part of this analogy is that since lambda terms are a
notational variant of intuitionistic natural deduction proofs, there is a closed
term of type o iff ¢ is an intuitionistically provable formula. Based on this
syntactic correspondence between terms and proofs, we might expect there
to be a semantic interpretation in which the nonempty types correspond to
the intuitionistically provable formulas. The term model construction may
be used to prove the following correspondence between provability and type
inhabitation.

Theorem 5.5 (Inhabitation) Let X be a set of typed constants and € an
equational theory over Y. There is a Kripke lambda model A for £ with
the following property: AS, is nonempty for all w € W iff the type o, when
viewed as an implicational formula, is intuitionistically provable from the

types of constants in .

This theorem stands in sharp contrast to the correspondence we achieve
with classical models. To construct a classical model with only the prov-
able types nonempty, we must begin with each base type nonempty, since no
atomic proposition is provable. It is easy to see that if o and 7 each have at

21

most one element, then o—7 has at most one element, and so a straightfor-
ward induction shows that our model must have at most one element of each
type. Consequently, every well-typed equation will be satisfied.

Another way to connect nonemptiness with provability is to consider
classes of models. If we consider the class of full classical type hierarch-
ies, with some base types empty and others not, then the types which are
nonempty in every model are the classical propositional tautologies [Con85].

6 Kripke Logical Relations

6.1 Relations over applicative structures

Logical relations have proven useful in the study of Henkin lambda models.
For example, we may prove the completeness of pure 3, n-conversion (without
equational hypotheses) for many specific classical models, and characterize
the lambda definable elements of certain models using logical relations [P1o80,
Sta82, Sta85b, Sta85a]. In [Plo80], Plotkin introduced I-relations, which
are families of typed relations over a Henkin model, indexed by possible
worlds. In this section, we will consider Kripke logical relations, which are
the straightforward generalization of I-relations to Kripke lambda models.

In the classical model theory of typed lambda calculus, a logical relation
is a family of relations indexed by types which satisfies a condition imply-
ing closure under application and lambda abstraction. The generalization to
Kripke applicative structures involves indexing relations by both types and
possible worlds. We will simplify our presentation by assuming a fixed struc-
ture (W, <) throughout Section 6.

A Kripke logical relation over Kripke applicative structures A and B (us-
ing the same (W, <)) is a family R = {RJ} of relations Rj C A7 x B

indexed by types o and worlds w € W satisfying the following two condi-
tions. The first is a monotonicity condition for any base type ¢

(mon) RS (a,b) implies

C .C .C /
Ry (g 4 @y gy 4 0) for all w < ',

which says that when w < w’, the relation RS is contained in R¢,, modulo

w w'
the transition functions. The second condition

(empre) RS (f,g) iff Vw' > w.Va,b e AJ,.

w

Ry, (a,b) implies Ry, ((ig, u f)a, (ig 1 9)b),

w’ w! \\w,w!

22

called “comprehension”, says that relative to the functions available from A
and B, the relation RJ ™7 contains all functions mapping related arguments
to related results. The two lemmas below are proved using the essentially the

same arguments as outlined in [P1o80].

Lemma 6.1 (Monotonicity) Let R C A x B be a Kripke logical relation.
Then for every type o and pair of worlds w < w', if R} (a,b) then R?,(i% . ,a,i% . b).

w!' \Cw,w™ Yw,w

We say environments 74, 1, are related by R on I at w if R] (nazw, myzw)
for all z:7 in I,

Lemma 6.2 (Fundamental Lemma) If R C AX B is a Kripke logical relation

over models A and B, and environments 1., 1, are related by R on T’ at w,
then for every term I'> M: o, we have R (A[L' > M: o]n,w, B[I' > M: o]nyw)

w

As with many of our other definitions, the definition of Kripke logical rela-
tion may be derived by interpreting the usual definition in the topos SettW-<).
The usual definition of logical relation R C A x B is a family of relations

R C A% x B? such that
(usual) R777(f,q) iff

Ve € ANy € B?. R’ (z,y) D R"(fz,gy).

To re-interpret this condition, we must first say what Kripke relations are.
As we have seen, a type, or “Kripke set,” is a family A = {A,} of sets
indexed by worlds, with transition functions i;ﬁ . for each w < w'. (Or,
equivalently, a functor from (W, <) to sets.) If we have two such Kripke sets
A ={A,} and B = {By}, then a Kripke relation R C A x B is a subset of
Ax B ={A, x By}, ie., afamily R = {R,} of relations R,, C A,, x By,
such that

R, (a,b) implies Rw/(iﬁm)la, iﬁwlb) for all w < w'.
Thus condition (mon) is built into the definition of SetW=) If we now say
that a Kripke logical relation over A and B should be a family of Kripke
relations R C A% x B? satisfying (usual) above, then it only remains to
check (compre). This is obtained by working out the Kripke (i.e. , Set!":<7)
interpretation of the standard comprehension condition (usual).

23

6.2 Partial equivalence relations and quotients

A Kripke logical partial equivalence relation R C A x A is a Kripke logical
relation such that each R is symmetric and transitive. The name partial
equivalence relation comes from the fact that if R is symmetric and transit-
ive, then RJ is an equivalence relation on the set of a with RJ (a,a). We will
abbreviate the cumbersome phrase “Kripke logical partial equivalence rela-
tion” to klper . The following lemma shows that klper ’s may be constructed

by choosing relations at base types.

Lemma 6.3 (Partial Equivalence) Let R C A x A be a Kripke logical rela-
tion. If each R

“w
w € W, then every RY is symmetric and transitive.

1s symmetric and transitive, for each base type ¢ and world

One use of partial equivalence relations is in forming quotient structures.
With partial equivalence relations, reflexivity fails, and so an element need
not have an equivalence class. Therefore, it might be more accurate to call
these “partial quotients.” If

A= (Wa Sa {AZ)}a {AppZ;T}a {iZJ,w’}>

is a Kripke applicative structure and R C A x A is a klper , then we define
the quotient applicative structure

AJR = (W, < { AL/ Ry} A Appy [Ry, {ig, w /B
as follows.
o A7 /R ={[a]r | R} (a,a)}, where [a]g is the equivalence class
[a]r = {d’ € A7, | Rj(a,a")}
e (Appy"/R) lalr [blr = [Appy” a bR
o (17, o0/ R) [a]n = i s]

It is a simple exercise to verify that the quotient structure is well-defined,
and a Kripke applicative structure.

Lemma 6.4 If R C A x A is a Kripke partial equivalence relation over
Kripke applicative structure A, then A/R satisfies the Kripke extensionality
condition (ext).

24

An straightforward induction on terms may be used to prove the following
“quotient model” theorem.

Lemma 6.5 If R C Ax A is aklper over Kripke lambda model A, then A/R
is a Kripke lambda model such that for every environment n with R}, (nzw, nzw)
for all x: 7 in T', we have

(A/R)[I'> M:o]ngw = [A[l'> M:o]nw g,

where the environment ng for A/R is defined by taking nrxw = [nzw|g for
all x and w.

In short, the meaning of a term M in the quotient model A/R is the equi-
valence class of the meaning of M in A. This theorem is an adaptation of
the “characterization theorem” of [Mit86], which appears to be the first use
of the idea.

6.3 Kripke logical relations over classical applicative struc-
tures

We now consider Kripke logical relations over classical applicative structures.
The simplest way to do this is to regard classical structures as a special
case of Kripke structures. To be specific, let A = ({A7}, {App”7"}) be a
classical applicative structure, i.e. , {A%} is a collection of sets indexed by
types and {App” "} is a collection of application functions. We define the
Kripke structure

AW = (W, < ALY A AP Al w})

a,T

o7 = App”™ and transition

by taking sets A, = A“, application functions App
functions i, = identity. It is easy to check that AW is a Kripke lambda
model whenever A is a classical lambda model, and that the meaning of a term
M in AW is essentially the same as the meaning of M in A. In categorical
terms, AW is an applicative structure of constant presheaves.

We say R = {R3} is a Kripke logical relation over classical applicative
structures A and B if R is a Kripke logical relation over AW and BW. This
amounts to the same thing as Plotkin’s definition of I-relation, except for the
minor difference that we have used applicative structures instead of models
(cif. [P1o80]). By Lemma 6.5, we can produce Kripke models by taking Kripke

quotients of classical models.

25

Corollary 6.6 If A is a classical typed lambda model and R is a klper owver
A, then A/R is a Kripke lambda model.

This gives us a fairly simple class of models with intuitionistic properties. In
fact, we can show that every lambda theory is the theory of a model of this
form.

Theorem 6.7 Let £ be any set of equations closed under . There exists a
classical lambda model A and a Kripke partial equivalence relation R such
that A/ R satisfies precisely those equations that belong to £.

Proof Sketch: Let A be the Kripke term model for £, as in the proof
of Theorem 5.4. We will show that A is isomorphic to a quotient of the open
term model B of 8, n-conversion.

We will review the classical term model construction briefly. Let 'y, be
an infinite type assignment that provides infinitely many variables of each
type. For each type o, let B? be the collection of all equivalence classes { M }
with I' > M: o for some finite I' C I'y, and

{M}={N| FI'bM =N :0}

for some I' C I'. Let B = ({B?},{App”7"}) be the applicative structure
with
App”T{M}{N} = {MN}

This is easily shown to be an ordinary typed lambda model. More details of
the term model construction may be found in [Fri75], for example.

Using £, we can define a klper R over B. Since the possible worlds of A
are type assignments, we will use type assignments as the worlds of R. For
each o0 and I, let

RI({M},{N})if T>M"=N":0 €&,

where MV is the (3, p-normal form of M, and similarly for N°. This is well
defined since each { M} has a unique (3, p-normal form, by the Church-Rosser
theorem. Since provable equality is symmetric and transitive with respect
to any I', R is clearly a partial equivalence relation. (In general, R{ will
not be reflexive on BY, since some M" may require variables not in in T'.)
By rule (add var), R satisfies the monotonicity condition (mon). The proof
that R satisfies (compre) is similar to the proof that Kripke term models are
extensional.

26

It remains easy to show that A is isomorphic to B/R. Every B?/R}
equivalence class is characterized by a collection of normal forms that are all
well-typed in I' and provably equal using €. Thus for each B? / R{. equivalence
class { M} /RS, there is a unique [['> M?: 0] € AZ. Conversely, all of the 3, -
normal forms in any [I'> MY: o] will be equivalent modulo RY, and so we have
a straightforward bijection between A? and B?/Rf. It is easy to show that
application behaves appropriately, and so we have an isomorphism between
A and B/R. This proves the theorem.]

However, we can show that some Kripke lambda models are not iso-
morphic to any Kripke quotient of any classical applicative structure.

Theorem 6.8 There is a Kripke lambda model B which is not elementarily
equivalent to A/ R, for any classical applicative structure A and Kripke partial
equivalence relation R.

Proof Sketch: We give a formula ¢ in the predicate logic for applicative
structures with base types p and ¢ which is valid in all quotients A/R but is
not valid in every Kripke lambda model B. Intuitively, ¢ is the formula that
says:

e if empty(p) and ——inhabited(p—q), then inhabited(p—q),

where inhabited(7) = (Jz: 7.2 =) and empty(7) = —inhabited(7) It is easy
to check that this holds in any quotient of a classical applicative structure.

To show that ¢ is not intuitionistically valid, we consider the following
Kripke lambda model B:

e IV is the poset with two elements 0 < 1
e B at 1 is the full type structure with the base types p = () and ¢ = w

e B at 0 is the interior of B at 1, i.e. , the applicative sub-structure whose
elements are interpretations of closed A-terms

e the transition function 4g; is the inclusion

Then A?™? contains exactly one element (the empty function), and therefore
B satisfies =—inhabited(p—q); but A}~ is empty (because there are no
closed terms of that type), so B does not satisfy inhabited(p—q). n

27

6.4 A counter-model to implication (x)

As an application of Kripke quotients, we will show how to construct a
counter-model to the implication (x) given in the second paragraph of the
paper. We will construct a Henkin model A with base types a and b and
give a Kripke logical partial equivalence relation R C A x A such that in the
quotient model A/R, we will have

Az:a.fmy = Az:a.frg but not fmy = fmo.

We let A be a classical term model of 3, n-conversion, as described in the
proof of Theorem 6.7. Since f appears in the equations above, we include
terms with constant f: (a—a—a)—b in constructing A. (The interpretation
of f in A is its equivalence class, modulo -.)

It remains to define the relation R at base types, since this will determine
R at higher types. Since the justification of (x) depends on type a being either
globally empty or globally nonempty, we will make a empty at one world and
nonempty at another. We let W = {0,1} with 0 < 1 and take R} = () and
R{ the identity relation A*. Now, we want to satisfy equation

(E) Az:a.fm = Az:a.fm

at both worlds. This is easy at world 0, since a is empty. We can take Rg
to be the identity relation on A°. To satisfy (E) at world 1 where a is not
empty, we must equate fr; and fms. An easy way to do this is just to take
R) = A" x A’ so that A®/R?% has only one element. Tt is easy to verify that

RSP (\g:a.fry, Az a.fry)

at both worlds w = 0,1, and so these terms are equal in the quotient model.
However, since fm; and fmy are not (3, n-equivalent, they are not related by
RS, and so the equation fm; = fmo does not hold at world 0 in the quotient
model. Consequently, A/R satisfies (F), but not fm = fmo.

7 Conclusion and directions for further investiga-
tion

While the traditional axiom system is not complete for semantic implication
over Henkin models, we have completeness for Kripke models. Since Kripke
models satisfy intuitionistic principles, but not the law of the excluded middle

28

(¢ V —¢), this may be interpreted as evidence that typed lambda calculus is
more an intuitionistic system than a classical one. In addition, we have a
straightforward correspondence between provable propositions and nonempty
types, which suggests that Kripke models may be useful for studying systems
like Martin-Lof’s type theory (cif. [Bee82]). It is easy to see that Kripke
lambda models are more general than classical lambda models, since any
classical lambda model may be be regarded as a Kripke lambda model over
a set W consisting of a single possible world. Kripke models with products
o x 7 and a terminal type 1 are also a special kind of cartesian closed category
and, conversely, any cartesian closed category may be embedded in a Kripke
model.

Although we defined Kripke models without using much category theory,
one way to view our development is as a “worked example” in the use of the
internal language of a topos. Specifically, our Kripke lambda models result
from interpreting the standard classical definition of typed lambda model in
the logic of a topos of presheaves over a poset. In addition, as pointed out
to us by Edmund Robinson and Pino Rosolini, our completeness theorem
may be derived using connections between cartesian closed categories and
presheaf toposes. Our study of Kripke logical relations may also be viewed
this way using the standard notion of relation in the internal logic.

Our brief investigation of Kripke logical relations suggests that many clas-
sical model-theoretic techniques may be adapted to Kripke lambda models,
and demonstrates that Plotkin’s I-relations provide a useful class of “intu-
itionistic” lambda models. We have shown that every typed lambda theory is
the theory of some Kripke quotient of a classical lambda models, but that this
does not carry over to quantified formulas. Specifically, we found a formula
¢ which is valid in Kripke quotient models, but not in all Kripke lambda
models.

In general, our main focus has been on theoretical aspects of Kripke
lambda models. Having found Kripke models relatively natural and easy to
work with, it is worth asking whether Kripke lambda models are appropriate
to computer science applications. For example, do Kripke-like models arise
naturally in the semantics of programming languages? One suggestion that
they do comes from the study of storage allocation in Algol-like languages.
John Reynolds and Frank Oles have proposed functors over “store-shapes” as
a mathematical semantics for languages which admit stack-structured storage
allocation [Rey81, Ole85]. (Some related discussion appears in [Ten85].) In
addition to taking “storage maps” as possible worlds, some other possibil-
ities might be sets of declarations (as in our completeness proof), program

29

contexts, or their meanings. Given the differences between Henkin models
and functor categories, it seems worthwhile to reconsider carefully which are
more natural for the semantics of programs.

Acknowledgments: We are grateful to Edmund Robinson and Pino Rosolini
for very helpful suggestions regarding the relationship between cartesian closed
categories and Kripke lambda models. Thanks also to Peter Freyd, Andre
Scedrov, Philip Scott and an anonymous referee.

References

[Bar84] H.P. Barendregt. The Lambda Calculus: Its Syntax and Se-
mantics. North Holland, 1984.

[Bee82] M. Beeson. Recursive models for constructive set theories. Ann.
Mathematical Logic, 23:127-178, 1982.

[Con85] R.C. Constable. The semantics of evidence. Unpublished, 1985.

[Fou77] M.P. Fourman. The logic of topoi. In Handbook of Mathematical
Logic, pages 1053-1090, North-Holland, 1977.

[Fri75] H. Friedman. Equality between functionals. In R. Parikh, editor,
Logic Collogquium, pages 22 37, Springer-Verlag, 1975.

[GM82] J. Goguen and J. Meseguer. Completeness of many-sorted equa-
tional logic. SIGPLAN Notices, 17:9 17, 1982.

[GM86] J. Goguen and J. Meseguer. Remarks on remarks on many-sorted
equational logic. Bulletin FATCS, 30:66-73, 1986.

[Hen50)] L. Henkin. Completeness in the theory of types. Journal of
Symbolic Logic, 15(2), June 1950. pages 81-91.

[How80] W. Howard. The formulas-as-types notion of construction. In
To H.B. Curry: Essays on Combinatory Logic, Lambda-Calculus
and Formalism, pages 479-490, Academic Press, 1980.

[HS86] J.R. Hindley and J.P. Seldin. Introduction or Combinators and

Lambda Calculus. London Mathematical Society, 1986.

30

[JacT5]

[Joh80]

[Lam80)]

[Lau65]

[Lau70]

[L.S86]

[Mey82]

[Mit86]

[MMMS87]

[Ole85]

G. Jacopini. A condition for identifying two elements of whatever
model of combinatory logic. In C. Bohm, editor, Lambda Calculus
and Computer Science Theory, pages 213 219, Springer-Verlag,
1975.

P. Johnstone. Open maps of toposes. Manuscripta Mathematica,
31:217 247, 1980.

J. Lambek. From lambda calculus to cartesian closed categor-
ies. In To H.B. Curry: Essays on Combinatory Logic, Lambda
Calculus and Formalism, pages 375-402, Academic Press, 1980.

H. Lauchli. Intuitionistic propositional calculus and definably
non-empty terms (abstract). Journal of Symbolic Logic, 30, 1965.
pages 263.

H. Lauchli. An abstract notion of realizability for which intuition-
istic predicate calculus is complete. In Kino Myhill and Vesley,
editors, Intuitionism and Proof Theory: Proc. of the Summer
Conference at Buffalo N.Y., North Holland, 1970. pages 227-
234.

J. Lambek and P.J. Scott. Introduction to Higher-Order Cat-
egorical Logic. Cambridge studies in advanced mathematics 7,
1986.

A.R. Meyer. What is a model of the lambda calculus ? Inform-
ation and Control, 52(1), 1982. pages 87-122.

J.C. Mitchell. A type-inference approach to reduction properties
and semantics of polymorphic expressions. In ACM Conference
on LISP and Functional Programming, pages 308 319, August
1986.

A R. Meyer, J.C. Mitchell, E. Moggi, and R. Statman. Empty
types in polymorphic lambda calculus. In Proc. 14-th ACM
Symp. on Principles of Programming Languages, pages 253 262,
1987.

F.J. Oles. Type algebras, functor categories and block structure.
In M. Nivat and J.C. Reynolds, editors, Algebraic Methods in
Semantics, Cambridge University Press, 1985.

31

[P1080]

[Rey81]

[Sco80]

[Sta82]

[Sta85a]

[Sta85b]

[Ten85]

G.D. Plotkin. Lambda definability in the full type hierarchy. In
To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism, pages 363 373, Academic Press, 1980.

J.C. Reynolds. The essence of algol. In de Bakker and van Vliet,
editors, Algorithmic Languages, pages 345-372, IFIP, North Hol-
land, 1981.

D. Scott. Relating theories of the lambda calculus. In P. Seldin
R. Hindley, editor, To H. B. Curry: essays on combinatory logic,
lambda calculus and formalism, Academic Press, 1980.

R. Statman. Completeness, invariance and lambda-definability.
J. Symbolic Logic, 47:17 26, 1982.

R. Statman. Equality between functionals, revisited. In Harvey
Friedman’s Research on the Foundations of Mathematics, North-
Holland, 1985.

R. Statman. Logical relations and the typed lambda calculus.
Information and Conitrol, 65:85 97, 1985.

R. D. Tennant. Semantical analysis of specification logic. In Lo-
gics of Programs, pages 373 386, Springer Lecture Notes Com-
puter Science 193, Brooklyn, NY, June 1985.

32

