
Kripke-style models for typed lambda alulusJohn C. MithellDepartment of Computer SieneStanford UniversityEugenio MoggiDepartment of Computer SieneUniversity of EdinburghNovember 13, 1996AbstratThe semantis of typed lambda alulus is usually desribed using Hen-kin models, onsisting of funtions over some olletion of sets, or onreteartesian losed ategories, whih are essentially equivalent. We desribe amore general lass of Kripke-style models. In ategorial terms, our Kripkelambda models are artesian losed subategories of the presheaves over aposet. To those familiar with Kripke models of modal or intuitionisti logis,Kripke lambda models are likely to seem adequately \semanti." However,when viewed as artesian losed ategories, they do not have the propertyvariously referred to as onreteness, well-pointed-ness, or having enoughpoints. While the traditional lambda alulus proof system is not ompletefor Henkin models that may have empty types, we prove strong omplete-ness for Kripke models. In fat, every set of equations that is losed underimpliation is the theory of a single Kripke model. We also develop someproperties of logial relations over Kripke strutures, showing that every the-ory is the theory of a model determined by a Kripke equivalene relation overa Henkin model. We disuss artesian losed ategories but present the mainde�nitions and results without the use of ategory theory.
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1 IntrodutionLambda alulus is a alulus of funtions: we read the lambda term �x:�:Mas, \the funtion de�ned by treating the expression M as a funtion of thevariable x," where x:� indiates that the domain of this funtion is type�. Formalizing this reading, it is natural to base a mathematial semantisof typed lambda alulus on sets of funtions. When terms are given fun-tional types in the usual way, it is easy to see how eah term de�nes a set-theoreti funtion with the appropriate domain and range. However, lassialset theory1 entails some subtle semanti properties whih are slightly at oddswith the traditional axiom system.One way to see the inuene of lassial priniples on the semanti proper-ties of terms is to onsider an impliation presented in [MMMS87℄. Supposea and b are types and f is a funtion f : (a!a!a)!b mapping urried two-argument funtions on a into b. Sine the two funtions�1 : : = �x: a:�y: a:x�2 : : = �x: a:�y: a:yboth have type a!a!a, we an apply f to either one. We will show, by asimple ase analysis, that(�) �x: a:f�1 = �x: a:f�2 implies f�1 = f�2:In words, we will show that if the two funtions �x: a:f�1 and �x: a:f�2are equal, then their values f�1 and f�2 must be equal. The �rst ase toonsider is when the type a has no elements. If this happens, then we have�1 = �2, sine both expressions denote the empty funtion, and so it mustbe that f�1 = f�2. The seond ase is a not empty, and so there is someelement u of type a. We an apply both funtions in the anteedent to u,and sine \equals applied to equals produe equals," we obtain f�1 = f�2.Thus regardless of whether a is empty, the impliation above is semantiallysound.Although the traditional axiom system is omplete for proving equationsthat are valid in all Henkin models, there is a slightly ompliated relationshipbetween the axiom system and semanti impliation. In the traditional ax-iom system, there is no provision for reasoning by ases, and so the argument1We use the term set theory to mean any lassial set theory, suh as ZF. This should bedistinguished from set theories developed in intuitionisti logi. As will beome apparent,our Kripke lambda models are essentially a semantis of typed lambda alulus developedin a form of intuitionisti set theory. 2



above annot be formalized. However, it has been ommon to assume thatno type is empty. When we make this simplifying assumption, we eliminateone ase, and the inferene is easily arried out within the appropriate axiomsystem. This leads to the ompleteness theorems of [Fri75, Hen50, Sta85a℄.The drawbak, however, is that in many omputer siene appliations it isnot appropriate to assume every type is nonempty (inhabited). This pointis disussed in [MMMS87℄. Related disussions of multi-sorted equationallogi appear in [GM82, GM86℄. When we rejet the nonemptiness assump-tion and allow types to be empty, we are led to non-equational priniples, asin [MMMS87℄, whih formalize reasoning by ases as above. The extendedaxiom system of [MMMS87℄ is semantially omplete, but it has a very di�er-ent avor from the traditional system. For example, some useful onnetionsbetween equational theories and �; �-onversion fail2. In addition, we give upthe usual \minimal model" property of lambda alulus and equational logi:with empty types allowed, there is a set of equations whih is losed undersemanti impliation, but not the theory of any single model.It is worth noting that these omments hold true whether we desribemodels using the language of set theory or ategory theory. As proposedin [So80, Setion 2℄, one might hoose onrete artesian losed ategories,those satisfying f = g : A!B i� f Æ a = g Æ a all a: 1!A;as \models." (This use of the word onrete has been adopted in muh ofthe omputer siene literature, but it is not standard in ategory theory. Analternate phrase is to say that 1 is a generator or the ategory has enoughpoints.) Sine any objet A of a onrete ategory may be identi�ed withthe set of arrows a: 1!A from the terminal objet, our disussion of Hen-kin models above applies to onrete artesian losed ategories as well. Inpartiular, the traditional inferene system is not omplete for semanti im-pliation over onrete artesian losed ategories when \empty" objets areallowed.The goal of the present paper is to give a natural set-like semanti a-ount of the traditional inferene system. To do this, we must �nd a semantiswhih does not support the lassially valid justi�ation of (�). Sine the ar-gument assumes that either a is empty or a is not empty, the law of the2Here is one example, based on the results of [Ja75℄. We write M U;V ! N if there is aterm P with PUV =�;� M and PV U =�;� M . Then in the traditional inferene systemfor typed lambda alulus, we have U = V ` M = N i� M U;V ! : : : U;V ! N . This failswhen the new inferene rules for empty types are added.3



exluded middle is used in a ritial way. Thus one might expet an in-tuitionisti semantis to provide a ompleteness theorem. Sine ategoriallogi is essentially intuitionisti, the equivalene between typed lambda the-ories (de�ned using the traditional axiom system) and arbitrary artesianlosed ategories ould be onsidered an intuitionisti ompleteness theorem(see, e.g. , [Fou77, Lam80, LS86℄). However, we prefer the ompleteness the-orem using only Kripke models for several reasons. For one, Kripke modelsare relatively easy to piture, and they seem to support a set-like intuitionabout the lambda terms better than arbitrary artesian losed ategories.In addition, prediate logi may be interpreted over Kripke lambda models,while there is no analogous interpretation in arbitrary artesian losed at-egories (exept indiretly via the Yoneda embedding). A pratial advantageis that it is often easy to devise Kripke ounter-models to impliations like(�). Finally, the useful tehniques of logial relations generalize to Kripkelambda models without muh diÆulty and provide an easy way to onstrutKripke lambda models from Henkin-like strutures.We de�ne Kripke lambda models in Setion 2 and desribe the axiomsystem and the semantis of terms in Setion 3. In Setion 4, we disuss therelationship between Kripke lambda models and artesian losed ategories(CCC's): every Kripke model determines a CCC, and (as pointed out to usby Edmund Robinson and Pino Rosolini) every small CCC may be embed-ded in a Kripke model. We prove soundness and ompleteness theorems inSetion 5, along with a orrespondene between nonempty types and intu-itionistially valid propositional formulas. Finally, in Setion 6, we turn ourattention to logial relations. We desribe some general properties of Kripkelogial relations, whih are losely related to I-relations [Plo80℄, and showthat a general lass of Kripke models may be obtained as Kripke quotientsof lassial models. As an appliation of Kripke quotients, we onstrut aounter-model to the impliation (�) given in the seond paragraph of thepaper.While we began our study of Kripke lambda models by working out ade�nition from �rst priniples, our model de�nition and many of our res-ults may be developed using a paradigm that is well-known to researhersin ategorial logi. We are grateful to Edmund Robinson and Pino Ro-solini for some helpful disussion of this point of view, and refer the readerto [Fou77, So80, LS86℄ for related disussion. In short, the usual de�ni-tion of semantis of typed lambda alulus, as in [Bar84, Fri75, Hen50℄, maybe formalized in the language of set theory: a model is a olletion of setssatisfying several properties easily desribed by logial formulas. While we4



usually interpret this de�nition in the \standard lassial model" of set the-ory, other interpretations are possible. In partiular, our de�nition of Kripkelambda model may be viewed as an expliit desription of the meaning oftyped lambda model in a lass of Kripke-style interpretations of an intuition-isti set theory. In ategorial terms, these interpretations of set theory arefuntor (or presheaf) ategories SetP , where P is a poset. Sine muh ofthe development seems entirely routine from this point of view, we will usethe Kripke interpretation of logial formulas to motivate part of the modelde�nition. We should emphasize that in topos theory, a \Kripke model" isjust an interpretation of a �rst-order signature in a presheaf ategory over aposet, as it will beome lear from the disussion in Setions 2 and 4.2 Kripke lambda models2.1 Possible worldsAs with other Kripke-style semantis, a Kripke lambda model will inludea partially-ordered set W of \possible worlds." Instead of having a set ofelements of eah type, a Kripke lambda model will have a set of elements ofeah type at eah possible world w 2W . The relationship between elementsof type � at worlds w and w0 � w is that every a:� at w is assoiated withsome unique a0:� at w0. Informally, using the ommon metaphor of � asrelation in time, this means that every element of � at w will ontinue tobe an element of � in every possible w0 � w. As we move from w to apossible future world w0, two things might happen: we may aquire moreelements, and distint elements may beome identi�ed. These hanges maybe explained by saying that as time progresses, we may beome aware of (oronstrut) more elements of our universe, and we may ome to know more\properties" of elements. In our ase, the properties of interest are equations,and so we may have more equations in future worlds. Sine a type � may beempty at some world w and then beome nonempty at w0 � w, some typesmay be neither \globally" empty nor nonempty.2.2 Appliative strutures and prediate logiKripke lambda models will be de�ned preisely using the subsidiary notionof appliative struture. A Kripke appliative strutureA = hW ;�; fA�wg; fApp�;�w g; fi�w;w0gi5



onsists of� a set W of \possible worlds" partially-ordered by �,� a family fA�wg of sets indexed by types � and worlds w 2W ,� a family fApp�;�w g of \appliation maps" App�;�w :A�!�w � A�w ! A�windexed by pairs of types �; � and worlds w 2W ,� a family fi�w;w0g of \transition funtions" i�w;w0:A�w ! A�w0 indexed bytypes � and pairs of worlds w � w0subjet to the following onditions. We want the transition from A�w to A�wto be the identity(id) i�w;w:A�w ! A�w is the identity,and other transition funtions to ompose(omp) i�w0;w00 Æ i�w;w0 = i�w;w00 all w � w0 � w00so that there is exatly one mapping of A�w into A�w0 given for w � w0. Wealso require that appliation and transition ommute in a natural way(nat) 8f 2 A�!�w :8a 2 A�w:i�w;w0(App�;�w (f; a)) = App�;�w0 ((i�!�w;w0f); (i�w;w0a));whih may be drawn
A�!�w �A�w A�w
A�!�w0 �A�w0 A�w06 6-

-i�!� � i� i�App�;�w0
App�;�wand will be desribed informally below. This ompletes the de�nition.If a 2 A�w and w � w0, then we an read i�w;w0a 2 A�w0 as \a viewedat world w0." The purpose of the appliation map App�;�w is to assoiate afuntion App�;�w (f; �) from A�w to A�w with eah element f 2 A�!�w . Sine we6



an view f 2 A�!�w as an element at any future world w0 � w, the appliationmap at world w0 also assoiates a funtion with i�!�w;w0f at w0. The ondition(nat) is intended to give a degree of oherene to the funtions assoiated withdi�erent views of f . Basially, (nat) says that if we apply f to argument aat world w, and then view the result at a later world w0 � w, then we see thesame value as when we view f and a as elements of world w0, and apply f toa there.Kripke appliative strutures an also be de�ned using ategory-theoretionepts. The usual de�nition of appliative struture (also alled a prestru-ture; see [Fri75, Sta85a℄) may be understood in any artesian ategory. Theusual de�nition of appliative struture is a pair hfA�g; fApp�gi, where fA�gis a family of sets A� indexed by types and fApp�g is a family of appliationfuntions App�;� :A�!� �A� ! A�indexed by pairs of types. We may interpret this de�nition \inside" a ategoryC by regarding the word \set" as meaning \objet from C" and \funtion"as meaning \morphism from C". Thus an appliative struture in C is aolletion of objets fC�g indexed by types and a olletion of morphismsfApp�;�g indexed by pairs �; � of types suh that App�;� has the domainand odomain given above. To derive our de�nition of Kripke appliativestruture from this general idea, we regard a poset hW ;�i as a ategory inthe usual way (see Setion 4), and onsider the ategory SethW ;�i of funtorsfrom hW ;�i to sets. If we work out what appliative struture means in aategory of the form SethW ;�i, then \sets" will be funtors and \funtions"natural transformations. So we end up with exatly the de�nition of appli-ative struture spelled out expliitly above. We will say a little more aboutfuntors and natural transformations in Setion 4; some related details maybe found in [So80, Setion 4℄ and [LS86, Example 9.5 of Part II℄.It is often onvenient to omit the appliation map App; writing fx forApp�;�w (f; x) when this does not seem onfusing.It is relatively easy to use Kripke appliative strutures to interpret aprediate logi with quanti�ation over all types. A brief disussion of logiat this point will make it easier to motivate the further onditions needed tode�ne Kripke lambda models. We will use the notationwk�� [�℄for formula � holding at world w relative to variable assignment (environ-ment) �, and let Ak�� mean wk�� [�℄ for every world w and environment �.7



Equations between expressions without � are easily interpreted, and we willsee how to interpret equations between typed lambda terms in the next se-tion. If we take equations as atomi formulas, then onjuntion, disjuntionand existential quanti�ation are straightforward. For example,wk�� ^  [�℄ i� wk�� [�℄ and wk� [�℄:Negation is interpreted by taking :� � � � ?, where by de�nition ? is aformula that does not hold at any w. As in Kripke semantis of propositionalor �rst-order logi, impliation and quanti�ation make use of the partialordering of worlds. For example,wk�� �  [�℄ i� 8w0 � w: w0k�� [�℄ implies w0k� [�℄:For this to make sense, we must be able to regard any variable assignment atw as a variable assignment at w0 � w, a tehnial detail we will address below.We will illustrate the interpretation of quanti�ation by example below. Moreinformation about this interpretation of prediate logi in Set hW ;�i, whih isentirely standard, may be found in [So80, LS86℄.2.3 Extensionality and ombinatorsA lassial appliative struture may fail to be a model for two reasons,and these reasons apply to Kripke appliative strutures as well. The �rstpossibility is that we may not have enough elements. For example, �!�might be empty, making it impossible to give meaning to the identity funtion�x:�:x. The seond problem is that appliation may not be extensional, i.e., we may have two distint elements of funtional type whih have the samefuntional behavior. Consequently, the meaning of a lambda term �x:�:Mmay not be determined uniquely.The usual statement of extensionality is that f = g whenever fx = gxfor all x of the appropriate type. In Kripke appliative strutures, we areonerned not only with the behavior of elements f; g 2 A�!�w as funtionsfrom A�w to A�w, but also as funtions from A�w0 to A�w0 for all w0 � w.Therefore, we must speify that for all f; g 2 A�!�w ,f = g whenever8w0 � w:8a 2 A�w0 : (i�!�w;w0f) a = (i�!�w;w0 g) a:This an be said a little more simply by appealing to the interpretation ofprediate logi desribed above. Spei�ally, we will say that a Kripke ap-8



pliative struture A is extensional if(ext) Ak�(8x:�: f x = g x) � f = gwhere the variables f and g have type �!� . (We will disuss a syntatimehanism for speifying the types of free variables in the next setion.) Itis a routine alulation to see that (ext) is equivalent to the more elaboratestatement above with expliit quanti�ation over possible worlds.There are two ommon ways of speifying that a lassial appliativestruture has enough elements to interpret every lambda term. The environ-ment model ondition uses the indutive de�nition of the meanings of terms,while the ombinatory model ondition uses equationally-de�ned elements Kand S alled ombinators (see [Bar84, Chapter 5℄ or [Mey82℄). Sine the twoare equivalent (for both Kripke and lassial appliative strutures), we willde�ne models using ombinators.For Kripke appliative strutures, the desription of K and S is simpli�edby introduing the notion of global element. A global element a:� of A is amapping w 7! aw from worlds to elements suh that aw 2 A�w and, wheneverw � w0, we have i�w;w0aw = aw0 . Constant symbols in logial formulas denoteglobal elements; we interpret a onstant a:� at world w as aw 2 A�w. A Kripkeappliative struture A has ombinators if, for any types �; �; � there existglobal elements K and S of types �!�!� and (�!�!�)!(�!�)!�!�suh that(K) Ak�K x y = x(S) Ak�S x y z = x z (y z):where we assume variables x; y; z are given the appropriate types, e.g. , x:�and y: � in (K). In more detail, (K) means that for every world w and all\loal" elements a 2 A�w; b 2 A�w, we have wk�Kw a b = a. Condition (S)may be spelled out similarly.We de�ne a Kripke lambda model to be a Kripke appliative struture Awhih is extensional and has ombinators.3 Terms, Equations and Interpretation3.1 SyntaxAs usual in typed lambda alulus, we will be interested in equations betweenterms of the same type, but not onerned with equations between types.9



Sine we wish to allow empty types, we will be expliit about the typesassigned to variables (see [MMMS87℄). Consequently, terms and their typesare de�ned using the subsidiary notion of type assignment. A type assignment� is a �nite set of formulas x: � , with no x ourring twie in �. The formulax: � may be read \the variable x has type � ." We write �; x:� for the typeassignment �; x:� = � [ fx:�g;where, in writing this, we assume that x does not appear in �. Terms willbe written in the form � . M : � , whih may be read, \M has type � relativeto �." Sine open terms may de�ne \partial," or \nonglobal elements," theremay be some onfusion about what it means to use a variable. In ontrastto the logi of partial elements of [Fou77℄, for example, all of our expressionswill have existential import. When we write x:� in a type assignment, wemean that x is de�ned, or \exists," and has type �. The symbol \." ats asimpliation with respet to existene, so that x:� .M : � says, \for all w, if xdenotes an element of type � at world w, thenM is de�ned at w and denotesan element of type � ."The well-typed terms are de�ned as follows.(var) x: � . x: �(! E) � . M :�!�; � . N :�� . MN : �(! I) �; x:� .M : �� . �x:�:M :�!�(add var) � . M : ��; x:� .M : �An easy indution shows that if � .M :� is well-typed, then � must mentionevery free variable of M .It is onvenient to omit the empty type assignment when writing losedterms. In addition, sine the type of a losed term is uniquely determined,we sometimes omit the type as well. For example, it is onvenient to write�x:�:x instead of ; . �x:�:x:�!�.With type assignments as part of the syntati formulation of terms, it isnatural to write equations in the form� . M = N : �10



where we assume that � . M : � and � . N : � are both well-typed. For typo-graphial reasons, it is sometimes helpful to leave o� the types of the terms,writing � . M = N instead of � . M = N : � . We will write [N=x℄M for theresult of substituting N for free ourrene of x in M . In de�ning [N=x℄M ,we must be areful to rename bound variables in M to avoid apture, asusual.We have the usual axioms for renaming bound variables, evaluating fun-tion appliation by substitution, and equating extensionally equal funtions.(�) � . �x:�:M = �y:�[y=x℄M; �for y 62 FV (M)(�) � . (�x:�:M)N = [N=x℄M(�) � . �x:�:Mx =M; �for x 62 FV (M)We also need a reexivity axiom(ref ) � . M =M : �and several inferene rules. The main inferene rules are symmetry andtransitivity(sym) � . M = N : �� . N =M : �(trans) � . M = N : �;� . N = P : �� . M = P : �as well as ongruene with respet to appliation and lambda abstration(ong) � . M1 =M2 : �!�; � . N1 = N2 : �� . M1N1 =M2N2 : �(�) �; x:� .M = N : �� . �x:�:M = �x:�:N : �!� :Sine type assignments are expliitly inluded in equations, we also need therule(add var) � . M = N : ��; x: � . M = N : �This lets us add additional typing hypotheses to equations. We write E `� . M = N : � if the equation � . M = N : � is provable from the equationsin E . 11



A useful fat about typing and equational reasoning is that if � .M :� iswell-typed, and M �; �-redues to N , then � . N :� is also well-typed. Theonverse fails, however, sine when M �; �-redues to N , the term M mayhave more free variables. Therefore, � . N :� does not imply � . M :�.To emphasize the di�erene between our proof system and the proof rulesthat apply when types are assumed not empty, it is worth mentioning thatwe do not have the rule(nonempty) �; x:� .M = N : �� . M = N : � x 62 FV (M;N)sine this inferene is sound only if there exists a global element of type �.It is interesting to observe that we have a Kripke-like struture within thesyntax of terms or equations. We may think of a type assignment � as the\possible world" in whih the variables appearing in � \exist," in the senseof [Fou77℄, or \are de�ned." We may then read �.M :� as saying, \M existsand has type � at world �." The natural ordering on type assignments isontainment, and rule (add var) ensures that if M is de�ned and has type� at world �, then M \ontinues" to be a term of type � at every world�0 � �. We an also inorporate equations, and read � . M = N : � as,\M and N de�ne the same element of type � at world �." Sine more termsan be de�ned when we have more variables, it is lear that any �0 � �will have at least the elements of �. What is perhaps less obvious is thatwith respet to ertain lambda theories, we may have more equations at�0 � �. To take a simple example, suppose we have a onstant :�!�, andlet E be the single equation f�x: �: = �x: �:�y:�:yg. At world � = ;, weannot prove  = �y:�:y from E . (This is most easily demonstrated by asemanti argument, as in Setion 6.4.) However, it is easy to see that atworld �0 = fz: �g � �, we have E ` �0 .  = �y:�:y. Thus the propertiesof the transition funtions i�w;w0 are well-motivated by properties of the proofsystem for typed lambda alulus. We will use type assignments as \possibleworlds" in proving the ompleteness theorem.3.2 Environments and meanings of termsAn environment � for a Kripke appliative struture A is a partial mappingfrom variables and worlds to elements of A suh that(env) If �xw 2 A�w and w0 � w; then�xw0 = i�w;w0(�xw):12



Intuitively, an environment � maps a variable x to a \partial element" �xwhih may exist (or be de�ned) at some worlds, but not neessarily all worlds.Sine a type may be empty at one world and then nonempty later, we need tohave environments suh that �xw is unde�ned at some w, and then \beomes"de�ned at a later w0 � w. We will return to this point after de�ning themeanings of terms.If � is an environment and a 2 A�w, we write �[a=x℄ for the environmentidential to � on variables other than x, and with(�[a=x℄)xw0 = i�w;w0afor all w0 � w. We take (�[a=x℄)xw0 to be unde�ned for w0 not � w.If � is an environment for appliative struture A, and � is a type assign-ment, we say w satis�es � at �, written wk�� [�℄ if�xw 2 A�w for all x:� 2 �:Note that if wk�� [�℄ and w0 � w, then w0k�� [�℄.For any Kripke model A and environment wk�� [�℄, we de�ne the meaning[[� . M :�℄℄�w of term � . M :� in environment � at world w by indution onthe struture of terms.[[� . x:�℄℄�w = �xw[[� . MN : � ℄℄�w =App�;�w ([[� . M :�!� ℄℄�w) ([[� . N :�℄℄�w)[[� . �x:�:M :�!� ℄℄�w = the unique d 2 A�!�wsuh that for all a 2 A�w0 and w0 � w;App�;�w0 (i�!�w;w0d)a = [[�; x:� . M : � ℄℄�[a=x℄ w0Combinators and extensionality guarantee that in the �.�x:�:M :�!� ase,d exists and is unique. This is proved as in the lassial setting, using transla-tion into ombinators [Bar84, HS86, Mey82℄ for existene, and extensionalityfor uniqueness.We an see the importane of partial environments by looking at thelambda abstration ase in a little more detail. The meaning of a lambdaabstration in environment � at w is determined by \pathed" environments�[a=x℄ for a 2 A�w0 with w0 � w. If A�w is empty, but there exist manya 2 A�w0 , then A�!�w0 may be large, and so there are many possible meaningsfor �x:�:M . However, every �[a=x℄ with a 2 A�w0 must be partial, sine thereis no possible value for x at w. Therefore, we need partial environments todetermine the meaning of a lambda term uniquely.13



We say an equation � . M = N : � holds at w and �, writtenwk�(� . M = N : �) [�℄if, whenever wk�� [�℄, we have[[� . M :�℄℄�w = [[� . N :�℄℄�w:This is the base ase of the indutive de�nition of wk�� [�℄ for formula � ofprediate logi, given earlier. It is an easy exerise, whih we leave to theinterested reader, to work out the omplete de�nition of wk�� [�℄ for logialformulas written using type assignments (see [LS86, So80℄ for signi�anthints).A model A satis�es � .M = N : �, written Ak�� . M = N : �, if everyw and � for A satisfy the equation.4 Kripke lambda models and artesian losed at-egoriesIt is easy to extend the de�nitions of Kripke appliative struture and lambdamodel to inlude artesian produt types � � � and a terminal type 1 withone element at eah world. In this setion, we will see that any Kripke modelA with produts and a terminal type determines a artesian losed ategoryCA. As one would hope, the ategorial interpretation of a term in � . M :�in CA oinides with the meaning of � . M :� in A given above. We will alsosketh the full and faithfull embedding of any small artesian losed ategoryinto a artesian losed ategory determined by a Kripke lambda model. Thisembedding preserves the artesian losed struture, but not neessarily \onthe nose." Rather than disuss all of the �ne points, we will refer to theappropriate literature. The reader who is unfamiliar with ategory theorymay skip to the next setion without loss of ontinuity.We regard a partially-ordered set hW ;�i as a ategory in the usual way.Spei�ally, the objets of this ategory are the elements of W and there is aunique \less-than-or-equal-to" arrow `w;w0 from w to w0 i� w � w0. Sine aategory must have identities and be losed under omposition, we let `w;wbe the identity on w and de�ne omposition by`w0;w00 Æ `w;w0 = `w;w00:14



Given a Kripke appliative struture A, it is easy to see that eah type �determines a funtor �� from hW ;�i to sets. Spei�ally, we take��(w) = A�w��(`w;w0) = i�w;w0and use onditions (id) and (omp) in the de�nition of Kripke appliativestruture to show that this map is funtorial. While it may seem simplestto use funtors �� as objets of CA, this may identify types in the asewhere � 6= � syntatially, but A�w = A�w happen to be the same set. Sinewe would not neessarily want to identify appliation funtions on the twotypes, this ould lead to unneessary onfusion. Therefore, we will use thetype expressions as the objets of CA.Sine eah type determines a funtor, we will use natural transformationsas the morphisms of CA. For every pair of types � and � , ondition (nat) inthe de�nition of Kripke appliative struture says that the map w 7! App�;�w ,whih we shall write simply as App�;� , is a natural transformation from��!� � �� to �� . Using App�;� , we an see that every global element aof type �!� indues a natural transformation � from �� to �� , namely�w = App�;�w (aw; � )For extensional appliative strutures (and hene models), it is easy to seethat if two global elements a and b determine the same natural transformation,then aw = bw at every world w. We let the morphisms from � to � in CAbe all natural transformations � : ��!�� indued by global elements of Aof type �!� and let omposition of morphisms be ordinary omposition ofnatural transformations in SethW ;�i.A routine alulation shows that if A is a Kripke lambda model, then CA isa ategory with an objet for eah type, and there is a one-one orrespondenebetween global elements of type �!� in A and morphisms from � to � in CA.In addition, it is easy to show that CA is artesian losed if A has produts anda terminal objet. The relationship between the ategorial interpretation ofterms, as in [So80℄3, and the meaning funtion we have given is summarized3There is a minor soure of onfusion in [So80, page 413℄. In assigning an arrow ofa ategory to an open term M , we must deide whih variables to onsider free in M .In partiular, we may want to onsider some variables \vauously" free. Sott's slightlyinformal disussion does not address this point. However, in the formalism of the presentpaper, we have expliit type assignments, and so we simply treat all variables in � asourring free in � . M :�. 15



in the following theorem. Note that with produt types, any �.M : � is easilytransformed into a semantially equivalent x :� . M 0: � with only one freevariable. (Simply replae the olletion of variables in � by a single variableof the appropriate produt type.)Theorem 4.1 If A is a Kripke lambda model with produts and terminaltype, then the interpretation of x :� . M : � in CA, as de�ned in [So80℄, isthe natural transformation from �� to �� indued by the global element w 7![[�x:�:M :�!� ℄℄;w, where ; is the empty environment.Therefore an equation holds in A i� it holds in CA. It should be pointed outthat the funtor from CA to SethW ;�i, mapping � to �� , is faithful and pre-serves produts, but it may not be full or may not preserve funtion spaes.The reason is that a Kripke lambda model is just a �rst order struture ina topos of presheaves. Therefore, the interpretation, ��!� of �!� neednot be ��!�� ; extensionality only requires that ��!� be a \subfuntor" of��!�� .We now sketh a method for de�ning a Kripke lambda model from anysmall artesian losed ategory. More spei�ally, we assume we are givenan assoiation of type onstants to objets and term onstants to arrowsof a small artesian losed ategory D. Suh an assoiation determines aninterpretation of typed lambda alulus in D, in the sense of [So80℄. We willshow that there exists a Kripke lambda model B satisfying the same equationsas D. In the speial ase that our ategorial interpretation of typed lambdaalulus is the internal language of D (see [LS86℄), this onstrution gives usa Kripke lambda model B whih is equivalent to D (in the usual ategorialsense), but not neessarily isomorphi.There are three steps from a small CCC to a Kripke lambda model. The�rst step transforms our ategorial interpretation in D into a ategorialinterpretation in SetDop , the topos of presheaves over D. The seond takesany ategorial interpretation in a topos of presheaves SetDop and produes anappliative struture in the same ategory. This appliative struture satis�es(K), (S) and extensionality, whih are all �rst-order expressible. The thirdstep �nds an elementarily equivalent appliative struture in SetW , where Wis a poset with a least element.The �rst step uses the Yoneda embedding YD of D into the topos ofpresheaves over D. This produes a ategorial interpretation in the topos ofpresheaves over D, as spelled out in [So80℄. For instane, if d is the inter-pretation of the base type � in D, then we use YD(d) as the interpretation of �in the topos of presheaves, and similarly for the interpretations of onstants.16



This extends uniquely to all type expressions and terms. Sine YD preservesthe artesian losed struture, the interpretation of any type and term in thetopos of presheaves is the image (via YD) of its interpretation in D.The ategorial interpretation in the topos of presheaves over D gives usan appliative struture A in the same topos. Spei�ally, A is the appliativestruture with the type � interpreted as a funtor �� from Dop to Set , andApp�;� as the evaluation morphism eval�� ;�� from (��!�� ) � �� to �� .(Here we have ��!� �= ��!�� , as sets.) Moreover, the appliative stru-ture A satis�es the axioms (K), (S) and the extensionality ondition (ext),aording to the Kripke-Joyal semantis of formulas in SetDop (see [LS86℄).We now have a lambda model A in SetDop , but not neessarily a Kripkelambda model sine Dop may not be a poset. The third step of the onstru-tion uses the Diaonesu over. The general onstrution given in Example2.8 and Corollary 3.3 of [Joh80℄ produes a posetW and a funtor d :W!Dopsuh that any appliative struture A in SetDop is elementarily equivalent toan appliative struture B in SetW obtained by omposing eah funtor andnatural transformation in A with d :W!Dop. In partiular, A and B sat-isfy the same equations between typed lambda terms. However, it shouldbe pointed out that, even when A is indued by a ategorial interpretationof lambda terms (i.e. , ��!� �= ��!�� ), it does not follow that B is alsoindued by suh an interpretation.In order to prove that D and CB are equivalent, we show that D is equi-valent to CA and CA is isomorphi to CB . However, the latter isomorphismrequires a modi�ation to the Diaonesu over onstrution using the ter-minal objet of D. To produe CB isomorphi to CA, we take W in thede�nition of B to be the poset of �nite omposable sequenes of morphismsin Dop, inluding the empty sequene ?. This set is partially ordered byw1 � w2 i� the sequene w1 is an initial segment of w2. This poset W is P opof Example 2.8 in [Joh80℄, exept that we have added the empty sequene.The funtor d is de�ned as in [Joh80℄, extended to ? by mapping the emptysequene to the terminal objet 1 of D. Note that there is exatly one way toextend d to morphisms from ? to any w 2W , beause 1 is the initial objetin Dop. More expliitly, d is the funtor from W to Dop suh that for anysequene f1; : : : ; fn of omposable maps (objet of W ), we letd(f1; : : : ; fn) = ( 1 if n = 0the odomain of fn in Dop, otherwise.If the sequene w0 is w followed by f1; : : : ; fn, then d maps the unique arrow17



`w;w0:w ! w0 of W tod(`w;w0) = 8><>: the only morphism from 1 to d(w0), if w = ?the identity on d(w), if n = 0the omposition of f1; : : : ; fn, otherwise.Sine the modi�ed funtor d :W!Dop still satis�es the onditions of Corol-lary 3.3 in [Joh80℄, the modi�ed B remains elementarily equivalent to A.Moreover, the global element of �A� in SetDop are in natural orrespondenewith the global elements of �B� in SetW . In fat, this onstrution has thefollowing properties:SetW (1;�B� ) �= �B� (?) by the Yoneda Lemma,�B� (?) = �A� (1) beause �B� = �A� Æ d and d(?) = 1,SetDop(1;�A� ) �= �A� (1) again by the Yoneda Lemma.Therefore the global elements of any type �A� in A are in one-to-one orres-pondene with the global elements of the orresponding type �B� in B . Sinethe two ategories CA and CB have the same set of objets, we may onludethat CA and CB are isomorphi. Spei�ally, the morphisms from � to �in either ategory are in one-one orrespondene with the global elements of��!� , and we know that the orresponding sets of global elements are inone-to-one orrespondene, by the argument above.The two artesian losed ategories CA and D are equivalent via the or-respondene that maps an objet � of CA to the interpretation [[�℄℄ of � in D.It is easy to see that �� = YD([[�℄℄) , sine this is learly true for base typesand preserved at higher types beause ��!� = ��!�� = YD([[�!� ℄℄). Byde�nition of CA and ��!� = ��!�� , we have CA(�; �) �= SetDop(��;�� ).Therefore CA(�; �) is isomorphi to D([[�℄℄; [[� ℄℄) byCA(�; �) �= SetDop(��;�� ) = SetDop(YD([[�℄℄); YD([[� ℄℄)) �= D([[�℄℄; [[� ℄℄):Thus the artesian losed ategories CA and D are equivalent. Sine CA isisomorphi to CB , this ompletes the proof that the original ategory D andthe ategory CB determined by Kripke lambda model B are equivalent.5 Soundness, Completeness and InhabitationUsing the relationships between Kripke lambda models and artesian losedategories desribed in the last setion, the soundness and ompleteness the-orems for Kripke lambda models may be derived from well-known theorems18



about lambda alulus and artesian losed ategories (see [LS86, Part I℄).However, we will give a diret ompleteness proof sine it is quite straight-forward and the onstrution has other uses.The following lemmas are easily proved by indution on typed lambdaterms.Lemma 5.1 (Transition Lemma) Let A be a Kripke lambda model and � anenvironment satisfying � at w. Then for every w0 � w, we have[[� . M :�℄℄�w0 = i�w;w0([[� . M :�℄℄�w):Lemma 5.2 (Substitution Lemma) Let A be a Kripke lambda model and �an environment satisfying � at w. For any well-typed terms � . N :� and�; x:� .M : � , we have[[� . [N=x℄M : � ℄℄�w = [[�; x:� .M : � ℄℄(�[[[� . N :�℄℄�w=x℄)wIt is now easy to prove soundness by indution on equational proofs.Lemma 5.3 (Soundness) Let E be a set of well-typed equations. If E `� . M = N : �, then every model satisfying E also satis�es � . M = N : �.For Kripke lambda models, we prove dedutive ompleteness by showingthe stronger property that every theory has a model.Theorem 5.4 (Completeness) Let E be any set of equations losed under `.There is a Kripke lambda model A with Ak�� . M = N : � i� � . M = N :� 2 E.Proof Sketh: The ompleteness theorem is proved by onstruting a termmodel A = hW ;�; fA�wg; fApp�;�w g; fi�w;w0gi in the following way.� W is the poset of �nite type assignments � ordered by inlusion. Inwhat follows, we will write � for an arbitrary element of W .� A�� is the set of all [� . M :�℄, where � . M :� is well-typed, and[� . M :�℄ = f� . N :� j E ` � . M = N : �gis the equivalene lass of � . M :� with respet to E .� App�;�� ([� . M :�!� ℄; [� . N :�℄) = [� . MN : � ℄19



� i��;�0([� . M :�℄) = [�0 . M�℄ for � � �0It is easy to hek that the de�nition make sense, and that we have globalelements K and S at all appropriate types. For example,K = [�x:�:�y: �:x℄The proof of extensionality is a little more interesting. Suppose that [� .M :�!� ℄ and [� . N :�!� ℄ have the same funtional behavior, i.e. , for all�0 � � and �0 . P :�, we have[�0 . MP� ℄ = [�0 . NP : � ℄Then, in partiular, for �0 � �; x:� with x not in �, we have[�; x:� . Mx: � ℄ = [�; x:� . Nx: � ℄and so by rule (�) and axiom (�), we have [� . M :�!� ℄ = [� . N :�!� ℄.Thus A is a Kripke lambda model.It remains to show that A satis�es preisely the equations belonging to E .We begin by relating the interpretation of a term to its equivalene lass. If� is any type assignment, we may de�ne an environment � by�x�0 = � [�0 . x:�℄ if x:� 2 � � �0undefined otherwiseA straightforward indution on terms shows that for any �00 � �0 � �, wehave [[�0 . M :�℄℄��00 = [�00 . M :�℄In partiular, whenever A satis�es an equation � . M = N : �, we have�k��[�℄ by onstrution of �, and so[� . M :�℄ = [� . N :�℄Sine this reasoning applies to every �, every equation satis�ed by A mustbe provable from E .While it is possible to show that A satis�es every equation in E diretly,by similar reasoning, ertain ompliations may be avoided by restriting ourattention to losed terms. There is no loss of generality in doing so, sine itis easy to prove the losed equation; . �x1:�1: : : : �xk:�k:M = �x1:�1: : : : �xk:�k:N20



from the equation x1:�1; : : : ; xk:�k . M = Nbetween open terms, and vie versa. For any losed equation ; . M = N :� 2 E , we have E ` � . M = N : �for any �, by rule (add var). Therefore, for every world � of A, the twoequivalene lasses [� . M : � ℄ and [� . N : � ℄ will be idential. Sine themeaning of ; . M : � in any environment � at world � will be [� . M : � ℄, andsimilarly for ; . N : � , it follows that A satis�es ; . M = N : � . This provesthe theorem.One important property of the Kripke term model we onstrut in theompleteness proof is that A�w is nonempty for all w 2 W i� � is an intu-itionistially provable proposition. Our interest in this property stems froma well-known syntati orrespondene between typed lambda alulus andintuitionisti logi, alled the formulas-as-types priniple, or Curry{Howardisomorphism [How80℄. In this analogy, types orrespond to logial formulasand terms orrespond to proofs. We read basi types as atomi proposi-tions and read the type �!� of funtions from � to � as the formula \�implies � ." The ruial part of this analogy is that sine lambda terms are anotational variant of intuitionisti natural dedution proofs, there is a losedterm of type � i� � is an intuitionistially provable formula. Based on thissyntati orrespondene between terms and proofs, we might expet thereto be a semanti interpretation in whih the nonempty types orrespond tothe intuitionistially provable formulas. The term model onstrution maybe used to prove the following orrespondene between provability and typeinhabitation.Theorem 5.5 (Inhabitation) Let � be a set of typed onstants and E anequational theory over �. There is a Kripke lambda model A for E withthe following property: A�w is nonempty for all w 2 W i� the type �, whenviewed as an impliational formula, is intuitionistially provable from thetypes of onstants in �.This theorem stands in sharp ontrast to the orrespondene we ahievewith lassial models. To onstrut a lassial model with only the prov-able types nonempty, we must begin with eah base type nonempty, sine noatomi proposition is provable. It is easy to see that if � and � eah have at21



most one element, then �!� has at most one element, and so a straightfor-ward indution shows that our model must have at most one element of eahtype. Consequently, every well-typed equation will be satis�ed.Another way to onnet nonemptiness with provability is to onsiderlasses of models. If we onsider the lass of full lassial type hierarh-ies, with some base types empty and others not, then the types whih arenonempty in every model are the lassial propositional tautologies [Con85℄.6 Kripke Logial Relations6.1 Relations over appliative struturesLogial relations have proven useful in the study of Henkin lambda models.For example, we may prove the ompleteness of pure �; �-onversion (withoutequational hypotheses) for many spei� lassial models, and haraterizethe lambda de�nable elements of ertain models using logial relations [Plo80,Sta82, Sta85b, Sta85a℄. In [Plo80℄, Plotkin introdued I-relations, whihare families of typed relations over a Henkin model, indexed by possibleworlds. In this setion, we will onsider Kripke logial relations, whih arethe straightforward generalization of I-relations to Kripke lambda models.In the lassial model theory of typed lambda alulus, a logial relationis a family of relations indexed by types whih satis�es a ondition imply-ing losure under appliation and lambda abstration. The generalization toKripke appliative strutures involves indexing relations by both types andpossible worlds. We will simplify our presentation by assuming a �xed stru-ture hW ;�i throughout Setion 6.A Kripke logial relation over Kripke appliative strutures A and B (us-ing the same hW ;�i) is a family R = fR�wg of relations R�w � A�w � B�windexed by types � and worlds w 2 W satisfying the following two ondi-tions. The �rst is a monotoniity ondition for any base type (mon) Rw(a; b) impliesRw0(iw;w0a; iw;w0b) for all w � w0;whih says that when w � w0, the relation Rw is ontained in Rw0 , modulothe transition funtions. The seond ondition(mpre) R�!�w (f; g) i� 8w0 � w:8a; b 2 A�w0 :R�w0(a; b) implies R�w0((i�!�w;w0f)a; (i�!�w;w0 g)b);22



alled \omprehension", says that relative to the funtions available from Aand B , the relation R�!�w ontains all funtions mapping related argumentsto related results. The two lemmas below are proved using the essentially thesame arguments as outlined in [Plo80℄.Lemma 6.1 (Monotoniity) Let R � A � B be a Kripke logial relation.Then for every type � and pair of worlds w � w0, if R�w(a; b) then R�w0(i�w;w0a; i�w;w0b).We say environments �a; �b are related by R on � at w if R�w(�axw; �bxw)for all x: � in �.Lemma 6.2 (Fundamental Lemma) If R � A�B is a Kripke logial relationover models A and B, and environments �a; �b are related by R on � at w,then for every term � .M :�, we have R�w(A[[� .M :�℄℄�aw;B [[� .M :�℄℄�bw)As with many of our other de�nitions, the de�nition of Kripke logial rela-tion may be derived by interpreting the usual de�nition in the topos Set hW ;�i.The usual de�nition of logial relation R � A � B is a family of relationsR� � A� �B� suh that(usual) R�!� (f; g) i�8x 2 A�:8y 2 B�: R�(x; y) � R� (fx; gy):To re-interpret this ondition, we must �rst say what Kripke relations are.As we have seen, a type, or \Kripke set," is a family A = fAwg of setsindexed by worlds, with transition funtions iAw;w0 for eah w � w0. (Or,equivalently, a funtor from hW ;�i to sets.) If we have two suh Kripke setsA = fAwg and B = fBwg, then a Kripke relation R � A� B is a subset ofA � B = fAw � Bwg, i.e. , a family R = fRwg of relations Rw � Aw � Bwsuh that Rw(a; b) implies Rw0(iAw;w0a; iBw;w0b) for all w � w0:Thus ondition (mon) is built into the de�nition of SethW ;�i. If we now saythat a Kripke logial relation over A and B should be a family of Kripkerelations R� � A� � B� satisfying (usual) above, then it only remains tohek (ompre). This is obtained by working out the Kripke (i.e. , SethW ;�i)interpretation of the standard omprehension ondition (usual).23



6.2 Partial equivalene relations and quotientsA Kripke logial partial equivalene relation R � A � A is a Kripke logialrelation suh that eah R�w is symmetri and transitive. The name partialequivalene relation omes from the fat that if R�w is symmetri and transit-ive, then R�w is an equivalene relation on the set of a with R�w(a; a). We willabbreviate the umbersome phrase \Kripke logial partial equivalene rela-tion" to klper . The following lemma shows that klper 's may be onstrutedby hoosing relations at base types.Lemma 6.3 (Partial Equivalene) Let R � A � A be a Kripke logial rela-tion. If eah Rw is symmetri and transitive, for eah base type  and worldw 2W, then every R�w is symmetri and transitive.One use of partial equivalene relations is in forming quotient strutures.With partial equivalene relations, reexivity fails, and so an element neednot have an equivalene lass. Therefore, it might be more aurate to allthese \partial quotients." IfA = hW ;�; fA�wg; fApp�;�w g; fi�w;w0giis a Kripke appliative struture and R � A � A is a klper , then we de�nethe quotient appliative strutureA=R = hW ;�; fA�w=R�wg; fApp�;�w =Rg; fi�w;w0=Rgias follows.� A�w=R�w = f [a℄R j R�w(a; a) g, where [a℄R is the equivalene lass[a℄R = f a0 2 A�w j R�w(a; a0) g� (App�;�w =R) [a℄R [b℄R = [App�;�w a b℄R� (i�w;w0=R) [a℄R = [i�w;w0 a℄RIt is a simple exerise to verify that the quotient struture is well-de�ned,and a Kripke appliative struture.Lemma 6.4 If R � A � A is a Kripke partial equivalene relation overKripke appliative struture A, then A=R satis�es the Kripke extensionalityondition (ext). 24



An straightforward indution on terms may be used to prove the following\quotient model" theorem.Lemma 6.5 If R � A�A is a klper over Kripke lambda model A, then A=Ris a Kripke lambda model suh that for every environment � with R�w(�xw; �xw)for all x: � in �, we have(A=R)[[� . M :�℄℄�Rw = [A[[� . M :�℄℄�w ℄R;where the environment �R for A=R is de�ned by taking �Rxw = [�xw℄R forall x and w.In short, the meaning of a term M in the quotient model A=R is the equi-valene lass of the meaning of M in A. This theorem is an adaptation ofthe \haraterization theorem" of [Mit86℄, whih appears to be the �rst useof the idea.6.3 Kripke logial relations over lassial appliative stru-turesWe now onsider Kripke logial relations over lassial appliative strutures.The simplest way to do this is to regard lassial strutures as a speialase of Kripke strutures. To be spei�, let A = hfA�g; fApp�;�gi be alassial appliative struture, i.e. , fA�g is a olletion of sets indexed bytypes and fApp�;�g is a olletion of appliation funtions. We de�ne theKripke struture AW = hW ;�; fA�wg; fApp�;�w g; fi�w;w0giby taking setsA�w = A� , appliation funtionsApp�;�w = App�;� and transitionfuntions i�w;w0 = identity. It is easy to hek that AW is a Kripke lambdamodel whenever A is a lassial lambda model, and that the meaning of a termM in AW is essentially the same as the meaning of M in A. In ategorialterms, AW is an appliative struture of onstant presheaves.We say R = fR�wg is a Kripke logial relation over lassial appliativestrutures A and B if R is a Kripke logial relation over AW and BW . Thisamounts to the same thing as Plotkin's de�nition of I-relation, exept for theminor di�erene that we have used appliative strutures instead of models(if. [Plo80℄). By Lemma 6.5, we an produe Kripke models by taking Kripkequotients of lassial models. 25



Corollary 6.6 If A is a lassial typed lambda model and R is a klper overA, then A=R is a Kripke lambda model.This gives us a fairly simple lass of models with intuitionisti properties. Infat, we an show that every lambda theory is the theory of a model of thisform.Theorem 6.7 Let E be any set of equations losed under `. There exists alassial lambda model A and a Kripke partial equivalene relation R suhthat A=R satis�es preisely those equations that belong to E.Proof Sketh: Let A be the Kripke term model for E , as in the proofof Theorem 5.4. We will show that A is isomorphi to a quotient of the openterm model B of �; �-onversion.We will review the lassial term model onstrution briey. Let �1 bean in�nite type assignment that provides in�nitely many variables of eahtype. For eah type �, let B� be the olletion of all equivalene lasses fMgwith � . M :� for some �nite � � �1, andfMg = fN j ` � . M = N : �gfor some � � �1. Let B = hfB�g; fApp�;�gi be the appliative struturewith App�;�fMgfNg = fMNgThis is easily shown to be an ordinary typed lambda model. More details ofthe term model onstrution may be found in [Fri75℄, for example.Using E , we an de�ne a klper R over B. Sine the possible worlds of Aare type assignments, we will use type assignments as the worlds of R. Foreah � and �, let R��(fMg; fNg) i� � . M0 = N0 : � 2 E ;where M0 is the �; �-normal form of M , and similarly for N0. This is wellde�ned sine eah fMg has a unique �; �-normal form, by the Churh-Rossertheorem. Sine provable equality is symmetri and transitive with respetto any �, R is learly a partial equivalene relation. (In general, R�� willnot be reexive on B�, sine some M0 may require variables not in in �.)By rule (add var), R satis�es the monotoniity ondition (mon). The proofthat R satis�es (ompre) is similar to the proof that Kripke term models areextensional. 26



It remains easy to show that A is isomorphi to B=R. Every B�=R��equivalene lass is haraterized by a olletion of normal forms that are allwell-typed in � and provably equal using E . Thus for eah B�=R�� equivalenelass fMg=R��, there is a unique [�.M0:�℄ 2 A��. Conversely, all of the �; �-normal forms in any [�.M0:�℄ will be equivalent modulo R��, and so we havea straightforward bijetion between A� and B�=R��. It is easy to show thatappliation behaves appropriately, and so we have an isomorphism betweenA and B=R. This proves the theorem.However, we an show that some Kripke lambda models are not iso-morphi to any Kripke quotient of any lassial appliative struture.Theorem 6.8 There is a Kripke lambda model B whih is not elementarilyequivalent to A=R, for any lassial appliative struture A and Kripke partialequivalene relation R.Proof Sketh: We give a formula � in the prediate logi for appliativestrutures with base types p and q whih is valid in all quotients A=R but isnot valid in every Kripke lambda model B . Intuitively, � is the formula thatsays:� if empty(p) and ::inhabited(p!q), then inhabited(p!q),where inhabited(�) � (9x: �:x = x) and empty(�) � :inhabited(�) It is easyto hek that this holds in any quotient of a lassial appliative struture.To show that � is not intuitionistially valid, we onsider the followingKripke lambda model B :� W is the poset with two elements 0 < 1� B at 1 is the full type struture with the base types p = ; and q = !� B at 0 is the interior of B at 1, i.e. , the appliative sub-struture whoseelements are interpretations of losed �-terms� the transition funtion i0;1 is the inlusionThen Ap!q1 ontains exatly one element (the empty funtion), and thereforeB satis�es ::inhabited(p!q); but Ap!q0 is empty (beause there are nolosed terms of that type), so B does not satisfy inhabited(p!q).
27



6.4 A ounter-model to impliation (�)As an appliation of Kripke quotients, we will show how to onstrut aounter-model to the impliation (�) given in the seond paragraph of thepaper. We will onstrut a Henkin model A with base types a and b andgive a Kripke logial partial equivalene relation R � A�A suh that in thequotient model A=R, we will have�x: a:f�1 = �x: a:f�2 but not f�1 = f�2:We let A be a lassial term model of �; �-onversion, as desribed in theproof of Theorem 6.7. Sine f appears in the equations above, we inludeterms with onstant f : (a!a!a)!b in onstruting A. (The interpretationof f in A is its equivalene lass, modulo `.)It remains to de�ne the relation R at base types, sine this will determineR at higher types. Sine the justi�ation of (�) depends on type a being eitherglobally empty or globally nonempty, we will make a empty at one world andnonempty at another. We let W = f0; 1g with 0 � 1 and take Ra0 = ; andRa1 the identity relation Aa. Now, we want to satisfy equation(E) �x: a:f�1 = �x: a:f�2at both worlds. This is easy at world 0, sine a is empty. We an take Rb0to be the identity relation on Ab. To satisfy (E) at world 1 where a is notempty, we must equate f�1 and f�2. An easy way to do this is just to takeRb1 = Ab �Ab so that Ab=Rb1 has only one element. It is easy to verify thatRa!bw (�x: a:f�1; �x: a:f�2)at both worlds w = 0; 1, and so these terms are equal in the quotient model.However, sine f�1 and f�2 are not �; �-equivalent, they are not related byRb0, and so the equation f�1 = f�2 does not hold at world 0 in the quotientmodel. Consequently, A=R satis�es (E), but not f�1 = f�2.7 Conlusion and diretions for further investiga-tionWhile the traditional axiom system is not omplete for semanti impliationover Henkin models, we have ompleteness for Kripke models. Sine Kripkemodels satisfy intuitionisti priniples, but not the law of the exluded middle28



(� _ :�), this may be interpreted as evidene that typed lambda alulus ismore an intuitionisti system than a lassial one. In addition, we have astraightforward orrespondene between provable propositions and nonemptytypes, whih suggests that Kripke models may be useful for studying systemslike Martin-L�of's type theory (if. [Bee82℄). It is easy to see that Kripkelambda models are more general than lassial lambda models, sine anylassial lambda model may be be regarded as a Kripke lambda model overa set W onsisting of a single possible world. Kripke models with produts��� and a terminal type 1 are also a speial kind of artesian losed ategoryand, onversely, any artesian losed ategory may be embedded in a Kripkemodel.Although we de�ned Kripke models without using muh ategory theory,one way to view our development is as a \worked example" in the use of theinternal language of a topos. Spei�ally, our Kripke lambda models resultfrom interpreting the standard lassial de�nition of typed lambda model inthe logi of a topos of presheaves over a poset. In addition, as pointed outto us by Edmund Robinson and Pino Rosolini, our ompleteness theoremmay be derived using onnetions between artesian losed ategories andpresheaf toposes. Our study of Kripke logial relations may also be viewedthis way using the standard notion of relation in the internal logi.Our brief investigation of Kripke logial relations suggests that many las-sial model-theoreti tehniques may be adapted to Kripke lambda models,and demonstrates that Plotkin's I-relations provide a useful lass of \intu-itionisti" lambda models. We have shown that every typed lambda theory isthe theory of some Kripke quotient of a lassial lambda models, but that thisdoes not arry over to quanti�ed formulas. Spei�ally, we found a formula� whih is valid in Kripke quotient models, but not in all Kripke lambdamodels.In general, our main fous has been on theoretial aspets of Kripkelambda models. Having found Kripke models relatively natural and easy towork with, it is worth asking whether Kripke lambda models are appropriateto omputer siene appliations. For example, do Kripke-like models arisenaturally in the semantis of programming languages? One suggestion thatthey do omes from the study of storage alloation in Algol-like languages.John Reynolds and Frank Oles have proposed funtors over \store-shapes" asa mathematial semantis for languages whih admit stak-strutured storagealloation [Rey81, Ole85℄. (Some related disussion appears in [Ten85℄.) Inaddition to taking \storage maps" as possible worlds, some other possibil-ities might be sets of delarations (as in our ompleteness proof), program29
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