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ien
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tThe semanti
s of typed lambda 
al
ulus is usually des
ribed using Hen-kin models, 
onsisting of fun
tions over some 
olle
tion of sets, or 
on
rete
artesian 
losed 
ategories, whi
h are essentially equivalent. We des
ribe amore general 
lass of Kripke-style models. In 
ategori
al terms, our Kripkelambda models are 
artesian 
losed sub
ategories of the presheaves over aposet. To those familiar with Kripke models of modal or intuitionisti
 logi
s,Kripke lambda models are likely to seem adequately \semanti
." However,when viewed as 
artesian 
losed 
ategories, they do not have the propertyvariously referred to as 
on
reteness, well-pointed-ness, or having enoughpoints. While the traditional lambda 
al
ulus proof system is not 
ompletefor Henkin models that may have empty types, we prove strong 
omplete-ness for Kripke models. In fa
t, every set of equations that is 
losed underimpli
ation is the theory of a single Kripke model. We also develop someproperties of logi
al relations over Kripke stru
tures, showing that every the-ory is the theory of a model determined by a Kripke equivalen
e relation overa Henkin model. We dis
uss 
artesian 
losed 
ategories but present the mainde�nitions and results without the use of 
ategory theory.
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1 Introdu
tionLambda 
al
ulus is a 
al
ulus of fun
tions: we read the lambda term �x:�:Mas, \the fun
tion de�ned by treating the expression M as a fun
tion of thevariable x," where x:� indi
ates that the domain of this fun
tion is type�. Formalizing this reading, it is natural to base a mathemati
al semanti
sof typed lambda 
al
ulus on sets of fun
tions. When terms are given fun
-tional types in the usual way, it is easy to see how ea
h term de�nes a set-theoreti
 fun
tion with the appropriate domain and range. However, 
lassi
alset theory1 entails some subtle semanti
 properties whi
h are slightly at oddswith the traditional axiom system.One way to see the in
uen
e of 
lassi
al prin
iples on the semanti
 proper-ties of terms is to 
onsider an impli
ation presented in [MMMS87℄. Supposea and b are types and f is a fun
tion f : (a!a!a)!b mapping 
urried two-argument fun
tions on a into b. Sin
e the two fun
tions�1 : : = �x: a:�y: a:x�2 : : = �x: a:�y: a:yboth have type a!a!a, we 
an apply f to either one. We will show, by asimple 
ase analysis, that(�) �x: a:f�1 = �x: a:f�2 implies f�1 = f�2:In words, we will show that if the two fun
tions �x: a:f�1 and �x: a:f�2are equal, then their values f�1 and f�2 must be equal. The �rst 
ase to
onsider is when the type a has no elements. If this happens, then we have�1 = �2, sin
e both expressions denote the empty fun
tion, and so it mustbe that f�1 = f�2. The se
ond 
ase is a not empty, and so there is someelement u of type a. We 
an apply both fun
tions in the ante
edent to u,and sin
e \equals applied to equals produ
e equals," we obtain f�1 = f�2.Thus regardless of whether a is empty, the impli
ation above is semanti
allysound.Although the traditional axiom system is 
omplete for proving equationsthat are valid in all Henkin models, there is a slightly 
ompli
ated relationshipbetween the axiom system and semanti
 impli
ation. In the traditional ax-iom system, there is no provision for reasoning by 
ases, and so the argument1We use the term set theory to mean any 
lassi
al set theory, su
h as ZF. This should bedistinguished from set theories developed in intuitionisti
 logi
. As will be
ome apparent,our Kripke lambda models are essentially a semanti
s of typed lambda 
al
ulus developedin a form of intuitionisti
 set theory. 2



above 
annot be formalized. However, it has been 
ommon to assume thatno type is empty. When we make this simplifying assumption, we eliminateone 
ase, and the inferen
e is easily 
arried out within the appropriate axiomsystem. This leads to the 
ompleteness theorems of [Fri75, Hen50, Sta85a℄.The drawba
k, however, is that in many 
omputer s
ien
e appli
ations it isnot appropriate to assume every type is nonempty (inhabited). This pointis dis
ussed in [MMMS87℄. Related dis
ussions of multi-sorted equationallogi
 appear in [GM82, GM86℄. When we reje
t the nonemptiness assump-tion and allow types to be empty, we are led to non-equational prin
iples, asin [MMMS87℄, whi
h formalize reasoning by 
ases as above. The extendedaxiom system of [MMMS87℄ is semanti
ally 
omplete, but it has a very di�er-ent 
avor from the traditional system. For example, some useful 
onne
tionsbetween equational theories and �; �-
onversion fail2. In addition, we give upthe usual \minimal model" property of lambda 
al
ulus and equational logi
:with empty types allowed, there is a set of equations whi
h is 
losed undersemanti
 impli
ation, but not the theory of any single model.It is worth noting that these 
omments hold true whether we des
ribemodels using the language of set theory or 
ategory theory. As proposedin [S
o80, Se
tion 2℄, one might 
hoose 
on
rete 
artesian 
losed 
ategories,those satisfying f = g : A!B i� f Æ a = g Æ a all a: 1!A;as \models." (This use of the word 
on
rete has been adopted in mu
h ofthe 
omputer s
ien
e literature, but it is not standard in 
ategory theory. Analternate phrase is to say that 1 is a generator or the 
ategory has enoughpoints.) Sin
e any obje
t A of a 
on
rete 
ategory may be identi�ed withthe set of arrows a: 1!A from the terminal obje
t, our dis
ussion of Hen-kin models above applies to 
on
rete 
artesian 
losed 
ategories as well. Inparti
ular, the traditional inferen
e system is not 
omplete for semanti
 im-pli
ation over 
on
rete 
artesian 
losed 
ategories when \empty" obje
ts areallowed.The goal of the present paper is to give a natural set-like semanti
 a
-
ount of the traditional inferen
e system. To do this, we must �nd a semanti
swhi
h does not support the 
lassi
ally valid justi�
ation of (�). Sin
e the ar-gument assumes that either a is empty or a is not empty, the law of the2Here is one example, based on the results of [Ja
75℄. We write M U;V ! N if there is aterm P with PUV =�;� M and PV U =�;� M . Then in the traditional inferen
e systemfor typed lambda 
al
ulus, we have U = V ` M = N i� M U;V ! : : : U;V ! N . This failswhen the new inferen
e rules for empty types are added.3



ex
luded middle is used in a 
riti
al way. Thus one might expe
t an in-tuitionisti
 semanti
s to provide a 
ompleteness theorem. Sin
e 
ategori
allogi
 is essentially intuitionisti
, the equivalen
e between typed lambda the-ories (de�ned using the traditional axiom system) and arbitrary 
artesian
losed 
ategories 
ould be 
onsidered an intuitionisti
 
ompleteness theorem(see, e.g. , [Fou77, Lam80, LS86℄). However, we prefer the 
ompleteness the-orem using only Kripke models for several reasons. For one, Kripke modelsare relatively easy to pi
ture, and they seem to support a set-like intuitionabout the lambda terms better than arbitrary 
artesian 
losed 
ategories.In addition, predi
ate logi
 may be interpreted over Kripke lambda models,while there is no analogous interpretation in arbitrary 
artesian 
losed 
at-egories (ex
ept indire
tly via the Yoneda embedding). A pra
ti
al advantageis that it is often easy to devise Kripke 
ounter-models to impli
ations like(�). Finally, the useful te
hniques of logi
al relations generalize to Kripkelambda models without mu
h diÆ
ulty and provide an easy way to 
onstru
tKripke lambda models from Henkin-like stru
tures.We de�ne Kripke lambda models in Se
tion 2 and des
ribe the axiomsystem and the semanti
s of terms in Se
tion 3. In Se
tion 4, we dis
uss therelationship between Kripke lambda models and 
artesian 
losed 
ategories(CCC's): every Kripke model determines a CCC, and (as pointed out to usby Edmund Robinson and Pino Rosolini) every small CCC may be embed-ded in a Kripke model. We prove soundness and 
ompleteness theorems inSe
tion 5, along with a 
orresponden
e between nonempty types and intu-itionisti
ally valid propositional formulas. Finally, in Se
tion 6, we turn ourattention to logi
al relations. We des
ribe some general properties of Kripkelogi
al relations, whi
h are 
losely related to I-relations [Plo80℄, and showthat a general 
lass of Kripke models may be obtained as Kripke quotientsof 
lassi
al models. As an appli
ation of Kripke quotients, we 
onstru
t a
ounter-model to the impli
ation (�) given in the se
ond paragraph of thepaper.While we began our study of Kripke lambda models by working out ade�nition from �rst prin
iples, our model de�nition and many of our res-ults may be developed using a paradigm that is well-known to resear
hersin 
ategori
al logi
. We are grateful to Edmund Robinson and Pino Ro-solini for some helpful dis
ussion of this point of view, and refer the readerto [Fou77, S
o80, LS86℄ for related dis
ussion. In short, the usual de�ni-tion of semanti
s of typed lambda 
al
ulus, as in [Bar84, Fri75, Hen50℄, maybe formalized in the language of set theory: a model is a 
olle
tion of setssatisfying several properties easily des
ribed by logi
al formulas. While we4



usually interpret this de�nition in the \standard 
lassi
al model" of set the-ory, other interpretations are possible. In parti
ular, our de�nition of Kripkelambda model may be viewed as an expli
it des
ription of the meaning oftyped lambda model in a 
lass of Kripke-style interpretations of an intuition-isti
 set theory. In 
ategori
al terms, these interpretations of set theory arefun
tor (or presheaf) 
ategories SetP , where P is a poset. Sin
e mu
h ofthe development seems entirely routine from this point of view, we will usethe Kripke interpretation of logi
al formulas to motivate part of the modelde�nition. We should emphasize that in topos theory, a \Kripke model" isjust an interpretation of a �rst-order signature in a presheaf 
ategory over aposet, as it will be
ome 
lear from the dis
ussion in Se
tions 2 and 4.2 Kripke lambda models2.1 Possible worldsAs with other Kripke-style semanti
s, a Kripke lambda model will in
ludea partially-ordered set W of \possible worlds." Instead of having a set ofelements of ea
h type, a Kripke lambda model will have a set of elements ofea
h type at ea
h possible world w 2W . The relationship between elementsof type � at worlds w and w0 � w is that every a:� at w is asso
iated withsome unique a0:� at w0. Informally, using the 
ommon metaphor of � asrelation in time, this means that every element of � at w will 
ontinue tobe an element of � in every possible w0 � w. As we move from w to apossible future world w0, two things might happen: we may a
quire moreelements, and distin
t elements may be
ome identi�ed. These 
hanges maybe explained by saying that as time progresses, we may be
ome aware of (or
onstru
t) more elements of our universe, and we may 
ome to know more\properties" of elements. In our 
ase, the properties of interest are equations,and so we may have more equations in future worlds. Sin
e a type � may beempty at some world w and then be
ome nonempty at w0 � w, some typesmay be neither \globally" empty nor nonempty.2.2 Appli
ative stru
tures and predi
ate logi
Kripke lambda models will be de�ned pre
isely using the subsidiary notionof appli
ative stru
ture. A Kripke appli
ative stru
tureA = hW ;�; fA�wg; fApp�;�w g; fi�w;w0gi5




onsists of� a set W of \possible worlds" partially-ordered by �,� a family fA�wg of sets indexed by types � and worlds w 2W ,� a family fApp�;�w g of \appli
ation maps" App�;�w :A�!�w � A�w ! A�windexed by pairs of types �; � and worlds w 2W ,� a family fi�w;w0g of \transition fun
tions" i�w;w0:A�w ! A�w0 indexed bytypes � and pairs of worlds w � w0subje
t to the following 
onditions. We want the transition from A�w to A�wto be the identity(id) i�w;w:A�w ! A�w is the identity,and other transition fun
tions to 
ompose(
omp) i�w0;w00 Æ i�w;w0 = i�w;w00 all w � w0 � w00so that there is exa
tly one mapping of A�w into A�w0 given for w � w0. Wealso require that appli
ation and transition 
ommute in a natural way(nat) 8f 2 A�!�w :8a 2 A�w:i�w;w0(App�;�w (f; a)) = App�;�w0 ((i�!�w;w0f); (i�w;w0a));whi
h may be drawn
A�!�w �A�w A�w
A�!�w0 �A�w0 A�w06 6-

-i�!� � i� i�App�;�w0
App�;�wand will be des
ribed informally below. This 
ompletes the de�nition.If a 2 A�w and w � w0, then we 
an read i�w;w0a 2 A�w0 as \a viewedat world w0." The purpose of the appli
ation map App�;�w is to asso
iate afun
tion App�;�w (f; �) from A�w to A�w with ea
h element f 2 A�!�w . Sin
e we6




an view f 2 A�!�w as an element at any future world w0 � w, the appli
ationmap at world w0 also asso
iates a fun
tion with i�!�w;w0f at w0. The 
ondition(nat) is intended to give a degree of 
oheren
e to the fun
tions asso
iated withdi�erent views of f . Basi
ally, (nat) says that if we apply f to argument aat world w, and then view the result at a later world w0 � w, then we see thesame value as when we view f and a as elements of world w0, and apply f toa there.Kripke appli
ative stru
tures 
an also be de�ned using 
ategory-theoreti

on
epts. The usual de�nition of appli
ative stru
ture (also 
alled a prestru
-ture; see [Fri75, Sta85a℄) may be understood in any 
artesian 
ategory. Theusual de�nition of appli
ative stru
ture is a pair hfA�g; fApp�gi, where fA�gis a family of sets A� indexed by types and fApp�g is a family of appli
ationfun
tions App�;� :A�!� �A� ! A�indexed by pairs of types. We may interpret this de�nition \inside" a 
ategoryC by regarding the word \set" as meaning \obje
t from C" and \fun
tion"as meaning \morphism from C". Thus an appli
ative stru
ture in C is a
olle
tion of obje
ts fC�g indexed by types and a 
olle
tion of morphismsfApp�;�g indexed by pairs �; � of types su
h that App�;� has the domainand 
odomain given above. To derive our de�nition of Kripke appli
ativestru
ture from this general idea, we regard a poset hW ;�i as a 
ategory inthe usual way (see Se
tion 4), and 
onsider the 
ategory SethW ;�i of fun
torsfrom hW ;�i to sets. If we work out what appli
ative stru
ture means in a
ategory of the form SethW ;�i, then \sets" will be fun
tors and \fun
tions"natural transformations. So we end up with exa
tly the de�nition of appli
-ative stru
ture spelled out expli
itly above. We will say a little more aboutfun
tors and natural transformations in Se
tion 4; some related details maybe found in [S
o80, Se
tion 4℄ and [LS86, Example 9.5 of Part II℄.It is often 
onvenient to omit the appli
ation map App; writing fx forApp�;�w (f; x) when this does not seem 
onfusing.It is relatively easy to use Kripke appli
ative stru
tures to interpret apredi
ate logi
 with quanti�
ation over all types. A brief dis
ussion of logi
at this point will make it easier to motivate the further 
onditions needed tode�ne Kripke lambda models. We will use the notationwk�� [�℄for formula � holding at world w relative to variable assignment (environ-ment) �, and let Ak�� mean wk�� [�℄ for every world w and environment �.7



Equations between expressions without � are easily interpreted, and we willsee how to interpret equations between typed lambda terms in the next se
-tion. If we take equations as atomi
 formulas, then 
onjun
tion, disjun
tionand existential quanti�
ation are straightforward. For example,wk�� ^  [�℄ i� wk�� [�℄ and wk� [�℄:Negation is interpreted by taking :� � � � ?, where by de�nition ? is aformula that does not hold at any w. As in Kripke semanti
s of propositionalor �rst-order logi
, impli
ation and quanti�
ation make use of the partialordering of worlds. For example,wk�� �  [�℄ i� 8w0 � w: w0k�� [�℄ implies w0k� [�℄:For this to make sense, we must be able to regard any variable assignment atw as a variable assignment at w0 � w, a te
hni
al detail we will address below.We will illustrate the interpretation of quanti�
ation by example below. Moreinformation about this interpretation of predi
ate logi
 in Set hW ;�i, whi
h isentirely standard, may be found in [S
o80, LS86℄.2.3 Extensionality and 
ombinatorsA 
lassi
al appli
ative stru
ture may fail to be a model for two reasons,and these reasons apply to Kripke appli
ative stru
tures as well. The �rstpossibility is that we may not have enough elements. For example, �!�might be empty, making it impossible to give meaning to the identity fun
tion�x:�:x. The se
ond problem is that appli
ation may not be extensional, i.e., we may have two distin
t elements of fun
tional type whi
h have the samefun
tional behavior. Consequently, the meaning of a lambda term �x:�:Mmay not be determined uniquely.The usual statement of extensionality is that f = g whenever fx = gxfor all x of the appropriate type. In Kripke appli
ative stru
tures, we are
on
erned not only with the behavior of elements f; g 2 A�!�w as fun
tionsfrom A�w to A�w, but also as fun
tions from A�w0 to A�w0 for all w0 � w.Therefore, we must spe
ify that for all f; g 2 A�!�w ,f = g whenever8w0 � w:8a 2 A�w0 : (i�!�w;w0f) a = (i�!�w;w0 g) a:This 
an be said a little more simply by appealing to the interpretation ofpredi
ate logi
 des
ribed above. Spe
i�
ally, we will say that a Kripke ap-8



pli
ative stru
ture A is extensional if(ext) Ak�(8x:�: f x = g x) � f = gwhere the variables f and g have type �!� . (We will dis
uss a synta
ti
me
hanism for spe
ifying the types of free variables in the next se
tion.) Itis a routine 
al
ulation to see that (ext) is equivalent to the more elaboratestatement above with expli
it quanti�
ation over possible worlds.There are two 
ommon ways of spe
ifying that a 
lassi
al appli
ativestru
ture has enough elements to interpret every lambda term. The environ-ment model 
ondition uses the indu
tive de�nition of the meanings of terms,while the 
ombinatory model 
ondition uses equationally-de�ned elements Kand S 
alled 
ombinators (see [Bar84, Chapter 5℄ or [Mey82℄). Sin
e the twoare equivalent (for both Kripke and 
lassi
al appli
ative stru
tures), we willde�ne models using 
ombinators.For Kripke appli
ative stru
tures, the des
ription of K and S is simpli�edby introdu
ing the notion of global element. A global element a:� of A is amapping w 7! aw from worlds to elements su
h that aw 2 A�w and, wheneverw � w0, we have i�w;w0aw = aw0 . Constant symbols in logi
al formulas denoteglobal elements; we interpret a 
onstant a:� at world w as aw 2 A�w. A Kripkeappli
ative stru
ture A has 
ombinators if, for any types �; �; � there existglobal elements K and S of types �!�!� and (�!�!�)!(�!�)!�!�su
h that(K) Ak�K x y = x(S) Ak�S x y z = x z (y z):where we assume variables x; y; z are given the appropriate types, e.g. , x:�and y: � in (K). In more detail, (K) means that for every world w and all\lo
al" elements a 2 A�w; b 2 A�w, we have wk�Kw a b = a. Condition (S)may be spelled out similarly.We de�ne a Kripke lambda model to be a Kripke appli
ative stru
ture Awhi
h is extensional and has 
ombinators.3 Terms, Equations and Interpretation3.1 SyntaxAs usual in typed lambda 
al
ulus, we will be interested in equations betweenterms of the same type, but not 
on
erned with equations between types.9



Sin
e we wish to allow empty types, we will be expli
it about the typesassigned to variables (see [MMMS87℄). Consequently, terms and their typesare de�ned using the subsidiary notion of type assignment. A type assignment� is a �nite set of formulas x: � , with no x o

urring twi
e in �. The formulax: � may be read \the variable x has type � ." We write �; x:� for the typeassignment �; x:� = � [ fx:�g;where, in writing this, we assume that x does not appear in �. Terms willbe written in the form � . M : � , whi
h may be read, \M has type � relativeto �." Sin
e open terms may de�ne \partial," or \nonglobal elements," theremay be some 
onfusion about what it means to use a variable. In 
ontrastto the logi
 of partial elements of [Fou77℄, for example, all of our expressionswill have existential import. When we write x:� in a type assignment, wemean that x is de�ned, or \exists," and has type �. The symbol \." a
ts asimpli
ation with respe
t to existen
e, so that x:� .M : � says, \for all w, if xdenotes an element of type � at world w, thenM is de�ned at w and denotesan element of type � ."The well-typed terms are de�ned as follows.(var) x: � . x: �(! E) � . M :�!�; � . N :�� . MN : �(! I) �; x:� .M : �� . �x:�:M :�!�(add var) � . M : ��; x:� .M : �An easy indu
tion shows that if � .M :� is well-typed, then � must mentionevery free variable of M .It is 
onvenient to omit the empty type assignment when writing 
losedterms. In addition, sin
e the type of a 
losed term is uniquely determined,we sometimes omit the type as well. For example, it is 
onvenient to write�x:�:x instead of ; . �x:�:x:�!�.With type assignments as part of the synta
ti
 formulation of terms, it isnatural to write equations in the form� . M = N : �10



where we assume that � . M : � and � . N : � are both well-typed. For typo-graphi
al reasons, it is sometimes helpful to leave o� the types of the terms,writing � . M = N instead of � . M = N : � . We will write [N=x℄M for theresult of substituting N for free o

urren
e of x in M . In de�ning [N=x℄M ,we must be 
areful to rename bound variables in M to avoid 
apture, asusual.We have the usual axioms for renaming bound variables, evaluating fun
-tion appli
ation by substitution, and equating extensionally equal fun
tions.(�) � . �x:�:M = �y:�[y=x℄M; �for y 62 FV (M)(�) � . (�x:�:M)N = [N=x℄M(�) � . �x:�:Mx =M; �for x 62 FV (M)We also need a re
exivity axiom(ref ) � . M =M : �and several inferen
e rules. The main inferen
e rules are symmetry andtransitivity(sym) � . M = N : �� . N =M : �(trans) � . M = N : �;� . N = P : �� . M = P : �as well as 
ongruen
e with respe
t to appli
ation and lambda abstra
tion(
ong) � . M1 =M2 : �!�; � . N1 = N2 : �� . M1N1 =M2N2 : �(�) �; x:� .M = N : �� . �x:�:M = �x:�:N : �!� :Sin
e type assignments are expli
itly in
luded in equations, we also need therule(add var) � . M = N : ��; x: � . M = N : �This lets us add additional typing hypotheses to equations. We write E `� . M = N : � if the equation � . M = N : � is provable from the equationsin E . 11



A useful fa
t about typing and equational reasoning is that if � .M :� iswell-typed, and M �; �-redu
es to N , then � . N :� is also well-typed. The
onverse fails, however, sin
e when M �; �-redu
es to N , the term M mayhave more free variables. Therefore, � . N :� does not imply � . M :�.To emphasize the di�eren
e between our proof system and the proof rulesthat apply when types are assumed not empty, it is worth mentioning thatwe do not have the rule(nonempty) �; x:� .M = N : �� . M = N : � x 62 FV (M;N)sin
e this inferen
e is sound only if there exists a global element of type �.It is interesting to observe that we have a Kripke-like stru
ture within thesyntax of terms or equations. We may think of a type assignment � as the\possible world" in whi
h the variables appearing in � \exist," in the senseof [Fou77℄, or \are de�ned." We may then read �.M :� as saying, \M existsand has type � at world �." The natural ordering on type assignments is
ontainment, and rule (add var) ensures that if M is de�ned and has type� at world �, then M \
ontinues" to be a term of type � at every world�0 � �. We 
an also in
orporate equations, and read � . M = N : � as,\M and N de�ne the same element of type � at world �." Sin
e more terms
an be de�ned when we have more variables, it is 
lear that any �0 � �will have at least the elements of �. What is perhaps less obvious is thatwith respe
t to 
ertain lambda theories, we may have more equations at�0 � �. To take a simple example, suppose we have a 
onstant 
:�!�, andlet E be the single equation f�x: �:
 = �x: �:�y:�:yg. At world � = ;, we
annot prove 
 = �y:�:y from E . (This is most easily demonstrated by asemanti
 argument, as in Se
tion 6.4.) However, it is easy to see that atworld �0 = fz: �g � �, we have E ` �0 . 
 = �y:�:y. Thus the propertiesof the transition fun
tions i�w;w0 are well-motivated by properties of the proofsystem for typed lambda 
al
ulus. We will use type assignments as \possibleworlds" in proving the 
ompleteness theorem.3.2 Environments and meanings of termsAn environment � for a Kripke appli
ative stru
ture A is a partial mappingfrom variables and worlds to elements of A su
h that(env) If �xw 2 A�w and w0 � w; then�xw0 = i�w;w0(�xw):12



Intuitively, an environment � maps a variable x to a \partial element" �xwhi
h may exist (or be de�ned) at some worlds, but not ne
essarily all worlds.Sin
e a type may be empty at one world and then nonempty later, we need tohave environments su
h that �xw is unde�ned at some w, and then \be
omes"de�ned at a later w0 � w. We will return to this point after de�ning themeanings of terms.If � is an environment and a 2 A�w, we write �[a=x℄ for the environmentidenti
al to � on variables other than x, and with(�[a=x℄)xw0 = i�w;w0afor all w0 � w. We take (�[a=x℄)xw0 to be unde�ned for w0 not � w.If � is an environment for appli
ative stru
ture A, and � is a type assign-ment, we say w satis�es � at �, written wk�� [�℄ if�xw 2 A�w for all x:� 2 �:Note that if wk�� [�℄ and w0 � w, then w0k�� [�℄.For any Kripke model A and environment wk�� [�℄, we de�ne the meaning[[� . M :�℄℄�w of term � . M :� in environment � at world w by indu
tion onthe stru
ture of terms.[[� . x:�℄℄�w = �xw[[� . MN : � ℄℄�w =App�;�w ([[� . M :�!� ℄℄�w) ([[� . N :�℄℄�w)[[� . �x:�:M :�!� ℄℄�w = the unique d 2 A�!�wsu
h that for all a 2 A�w0 and w0 � w;App�;�w0 (i�!�w;w0d)a = [[�; x:� . M : � ℄℄�[a=x℄ w0Combinators and extensionality guarantee that in the �.�x:�:M :�!� 
ase,d exists and is unique. This is proved as in the 
lassi
al setting, using transla-tion into 
ombinators [Bar84, HS86, Mey82℄ for existen
e, and extensionalityfor uniqueness.We 
an see the importan
e of partial environments by looking at thelambda abstra
tion 
ase in a little more detail. The meaning of a lambdaabstra
tion in environment � at w is determined by \pat
hed" environments�[a=x℄ for a 2 A�w0 with w0 � w. If A�w is empty, but there exist manya 2 A�w0 , then A�!�w0 may be large, and so there are many possible meaningsfor �x:�:M . However, every �[a=x℄ with a 2 A�w0 must be partial, sin
e thereis no possible value for x at w. Therefore, we need partial environments todetermine the meaning of a lambda term uniquely.13



We say an equation � . M = N : � holds at w and �, writtenwk�(� . M = N : �) [�℄if, whenever wk�� [�℄, we have[[� . M :�℄℄�w = [[� . N :�℄℄�w:This is the base 
ase of the indu
tive de�nition of wk�� [�℄ for formula � ofpredi
ate logi
, given earlier. It is an easy exer
ise, whi
h we leave to theinterested reader, to work out the 
omplete de�nition of wk�� [�℄ for logi
alformulas written using type assignments (see [LS86, S
o80℄ for signi�
anthints).A model A satis�es � .M = N : �, written Ak�� . M = N : �, if everyw and � for A satisfy the equation.4 Kripke lambda models and 
artesian 
losed 
at-egoriesIt is easy to extend the de�nitions of Kripke appli
ative stru
ture and lambdamodel to in
lude 
artesian produ
t types � � � and a terminal type 1 withone element at ea
h world. In this se
tion, we will see that any Kripke modelA with produ
ts and a terminal type determines a 
artesian 
losed 
ategoryCA. As one would hope, the 
ategori
al interpretation of a term in � . M :�in CA 
oin
ides with the meaning of � . M :� in A given above. We will alsosket
h the full and faithfull embedding of any small 
artesian 
losed 
ategoryinto a 
artesian 
losed 
ategory determined by a Kripke lambda model. Thisembedding preserves the 
artesian 
losed stru
ture, but not ne
essarily \onthe nose." Rather than dis
uss all of the �ne points, we will refer to theappropriate literature. The reader who is unfamiliar with 
ategory theorymay skip to the next se
tion without loss of 
ontinuity.We regard a partially-ordered set hW ;�i as a 
ategory in the usual way.Spe
i�
ally, the obje
ts of this 
ategory are the elements of W and there is aunique \less-than-or-equal-to" arrow `w;w0 from w to w0 i� w � w0. Sin
e a
ategory must have identities and be 
losed under 
omposition, we let `w;wbe the identity on w and de�ne 
omposition by`w0;w00 Æ `w;w0 = `w;w00:14



Given a Kripke appli
ative stru
ture A, it is easy to see that ea
h type �determines a fun
tor �� from hW ;�i to sets. Spe
i�
ally, we take��(w) = A�w��(`w;w0) = i�w;w0and use 
onditions (id) and (
omp) in the de�nition of Kripke appli
ativestru
ture to show that this map is fun
torial. While it may seem simplestto use fun
tors �� as obje
ts of CA, this may identify types in the 
asewhere � 6= � synta
ti
ally, but A�w = A�w happen to be the same set. Sin
ewe would not ne
essarily want to identify appli
ation fun
tions on the twotypes, this 
ould lead to unne
essary 
onfusion. Therefore, we will use thetype expressions as the obje
ts of CA.Sin
e ea
h type determines a fun
tor, we will use natural transformationsas the morphisms of CA. For every pair of types � and � , 
ondition (nat) inthe de�nition of Kripke appli
ative stru
ture says that the map w 7! App�;�w ,whi
h we shall write simply as App�;� , is a natural transformation from��!� � �� to �� . Using App�;� , we 
an see that every global element aof type �!� indu
es a natural transformation � from �� to �� , namely�w = App�;�w (aw; � )For extensional appli
ative stru
tures (and hen
e models), it is easy to seethat if two global elements a and b determine the same natural transformation,then aw = bw at every world w. We let the morphisms from � to � in CAbe all natural transformations � : ��!�� indu
ed by global elements of Aof type �!� and let 
omposition of morphisms be ordinary 
omposition ofnatural transformations in SethW ;�i.A routine 
al
ulation shows that if A is a Kripke lambda model, then CA isa 
ategory with an obje
t for ea
h type, and there is a one-one 
orresponden
ebetween global elements of type �!� in A and morphisms from � to � in CA.In addition, it is easy to show that CA is 
artesian 
losed if A has produ
ts anda terminal obje
t. The relationship between the 
ategori
al interpretation ofterms, as in [S
o80℄3, and the meaning fun
tion we have given is summarized3There is a minor sour
e of 
onfusion in [S
o80, page 413℄. In assigning an arrow ofa 
ategory to an open term M , we must de
ide whi
h variables to 
onsider free in M .In parti
ular, we may want to 
onsider some variables \va
uously" free. S
ott's slightlyinformal dis
ussion does not address this point. However, in the formalism of the presentpaper, we have expli
it type assignments, and so we simply treat all variables in � aso

urring free in � . M :�. 15



in the following theorem. Note that with produ
t types, any �.M : � is easilytransformed into a semanti
ally equivalent x :� . M 0: � with only one freevariable. (Simply repla
e the 
olle
tion of variables in � by a single variableof the appropriate produ
t type.)Theorem 4.1 If A is a Kripke lambda model with produ
ts and terminaltype, then the interpretation of x :� . M : � in CA, as de�ned in [S
o80℄, isthe natural transformation from �� to �� indu
ed by the global element w 7![[�x:�:M :�!� ℄℄;w, where ; is the empty environment.Therefore an equation holds in A i� it holds in CA. It should be pointed outthat the fun
tor from CA to SethW ;�i, mapping � to �� , is faithful and pre-serves produ
ts, but it may not be full or may not preserve fun
tion spa
es.The reason is that a Kripke lambda model is just a �rst order stru
ture ina topos of presheaves. Therefore, the interpretation, ��!� of �!� neednot be ��!�� ; extensionality only requires that ��!� be a \subfun
tor" of��!�� .We now sket
h a method for de�ning a Kripke lambda model from anysmall 
artesian 
losed 
ategory. More spe
i�
ally, we assume we are givenan asso
iation of type 
onstants to obje
ts and term 
onstants to arrowsof a small 
artesian 
losed 
ategory D. Su
h an asso
iation determines aninterpretation of typed lambda 
al
ulus in D, in the sense of [S
o80℄. We willshow that there exists a Kripke lambda model B satisfying the same equationsas D. In the spe
ial 
ase that our 
ategori
al interpretation of typed lambda
al
ulus is the internal language of D (see [LS86℄), this 
onstru
tion gives usa Kripke lambda model B whi
h is equivalent to D (in the usual 
ategori
alsense), but not ne
essarily isomorphi
.There are three steps from a small CCC to a Kripke lambda model. The�rst step transforms our 
ategori
al interpretation in D into a 
ategori
alinterpretation in SetDop , the topos of presheaves over D. The se
ond takesany 
ategori
al interpretation in a topos of presheaves SetDop and produ
es anappli
ative stru
ture in the same 
ategory. This appli
ative stru
ture satis�es(K), (S) and extensionality, whi
h are all �rst-order expressible. The thirdstep �nds an elementarily equivalent appli
ative stru
ture in SetW , where Wis a poset with a least element.The �rst step uses the Yoneda embedding YD of D into the topos ofpresheaves over D. This produ
es a 
ategori
al interpretation in the topos ofpresheaves over D, as spelled out in [S
o80℄. For instan
e, if d is the inter-pretation of the base type � in D, then we use YD(d) as the interpretation of �in the topos of presheaves, and similarly for the interpretations of 
onstants.16



This extends uniquely to all type expressions and terms. Sin
e YD preservesthe 
artesian 
losed stru
ture, the interpretation of any type and term in thetopos of presheaves is the image (via YD) of its interpretation in D.The 
ategori
al interpretation in the topos of presheaves over D gives usan appli
ative stru
ture A in the same topos. Spe
i�
ally, A is the appli
ativestru
ture with the type � interpreted as a fun
tor �� from Dop to Set , andApp�;� as the evaluation morphism eval�� ;�� from (��!�� ) � �� to �� .(Here we have ��!� �= ��!�� , as sets.) Moreover, the appli
ative stru
-ture A satis�es the axioms (K), (S) and the extensionality 
ondition (ext),a

ording to the Kripke-Joyal semanti
s of formulas in SetDop (see [LS86℄).We now have a lambda model A in SetDop , but not ne
essarily a Kripkelambda model sin
e Dop may not be a poset. The third step of the 
onstru
-tion uses the Dia
ones
u 
over. The general 
onstru
tion given in Example2.8 and Corollary 3.3 of [Joh80℄ produ
es a posetW and a fun
tor d :W!Dopsu
h that any appli
ative stru
ture A in SetDop is elementarily equivalent toan appli
ative stru
ture B in SetW obtained by 
omposing ea
h fun
tor andnatural transformation in A with d :W!Dop. In parti
ular, A and B sat-isfy the same equations between typed lambda terms. However, it shouldbe pointed out that, even when A is indu
ed by a 
ategori
al interpretationof lambda terms (i.e. , ��!� �= ��!�� ), it does not follow that B is alsoindu
ed by su
h an interpretation.In order to prove that D and CB are equivalent, we show that D is equi-valent to CA and CA is isomorphi
 to CB . However, the latter isomorphismrequires a modi�
ation to the Dia
ones
u 
over 
onstru
tion using the ter-minal obje
t of D. To produ
e CB isomorphi
 to CA, we take W in thede�nition of B to be the poset of �nite 
omposable sequen
es of morphismsin Dop, in
luding the empty sequen
e ?. This set is partially ordered byw1 � w2 i� the sequen
e w1 is an initial segment of w2. This poset W is P opof Example 2.8 in [Joh80℄, ex
ept that we have added the empty sequen
e.The fun
tor d is de�ned as in [Joh80℄, extended to ? by mapping the emptysequen
e to the terminal obje
t 1 of D. Note that there is exa
tly one way toextend d to morphisms from ? to any w 2W , be
ause 1 is the initial obje
tin Dop. More expli
itly, d is the fun
tor from W to Dop su
h that for anysequen
e f1; : : : ; fn of 
omposable maps (obje
t of W ), we letd(f1; : : : ; fn) = ( 1 if n = 0the 
odomain of fn in Dop, otherwise.If the sequen
e w0 is w followed by f1; : : : ; fn, then d maps the unique arrow17



`w;w0:w ! w0 of W tod(`w;w0) = 8><>: the only morphism from 1 to d(w0), if w = ?the identity on d(w), if n = 0the 
omposition of f1; : : : ; fn, otherwise.Sin
e the modi�ed fun
tor d :W!Dop still satis�es the 
onditions of Corol-lary 3.3 in [Joh80℄, the modi�ed B remains elementarily equivalent to A.Moreover, the global element of �A� in SetDop are in natural 
orresponden
ewith the global elements of �B� in SetW . In fa
t, this 
onstru
tion has thefollowing properties:SetW (1;�B� ) �= �B� (?) by the Yoneda Lemma,�B� (?) = �A� (1) be
ause �B� = �A� Æ d and d(?) = 1,SetDop(1;�A� ) �= �A� (1) again by the Yoneda Lemma.Therefore the global elements of any type �A� in A are in one-to-one 
orres-ponden
e with the global elements of the 
orresponding type �B� in B . Sin
ethe two 
ategories CA and CB have the same set of obje
ts, we may 
on
ludethat CA and CB are isomorphi
. Spe
i�
ally, the morphisms from � to �in either 
ategory are in one-one 
orresponden
e with the global elements of��!� , and we know that the 
orresponding sets of global elements are inone-to-one 
orresponden
e, by the argument above.The two 
artesian 
losed 
ategories CA and D are equivalent via the 
or-responden
e that maps an obje
t � of CA to the interpretation [[�℄℄ of � in D.It is easy to see that �� = YD([[�℄℄) , sin
e this is 
learly true for base typesand preserved at higher types be
ause ��!� = ��!�� = YD([[�!� ℄℄). Byde�nition of CA and ��!� = ��!�� , we have CA(�; �) �= SetDop(��;�� ).Therefore CA(�; �) is isomorphi
 to D([[�℄℄; [[� ℄℄) byCA(�; �) �= SetDop(��;�� ) = SetDop(YD([[�℄℄); YD([[� ℄℄)) �= D([[�℄℄; [[� ℄℄):Thus the 
artesian 
losed 
ategories CA and D are equivalent. Sin
e CA isisomorphi
 to CB , this 
ompletes the proof that the original 
ategory D andthe 
ategory CB determined by Kripke lambda model B are equivalent.5 Soundness, Completeness and InhabitationUsing the relationships between Kripke lambda models and 
artesian 
losed
ategories des
ribed in the last se
tion, the soundness and 
ompleteness the-orems for Kripke lambda models may be derived from well-known theorems18



about lambda 
al
ulus and 
artesian 
losed 
ategories (see [LS86, Part I℄).However, we will give a dire
t 
ompleteness proof sin
e it is quite straight-forward and the 
onstru
tion has other uses.The following lemmas are easily proved by indu
tion on typed lambdaterms.Lemma 5.1 (Transition Lemma) Let A be a Kripke lambda model and � anenvironment satisfying � at w. Then for every w0 � w, we have[[� . M :�℄℄�w0 = i�w;w0([[� . M :�℄℄�w):Lemma 5.2 (Substitution Lemma) Let A be a Kripke lambda model and �an environment satisfying � at w. For any well-typed terms � . N :� and�; x:� .M : � , we have[[� . [N=x℄M : � ℄℄�w = [[�; x:� .M : � ℄℄(�[[[� . N :�℄℄�w=x℄)wIt is now easy to prove soundness by indu
tion on equational proofs.Lemma 5.3 (Soundness) Let E be a set of well-typed equations. If E `� . M = N : �, then every model satisfying E also satis�es � . M = N : �.For Kripke lambda models, we prove dedu
tive 
ompleteness by showingthe stronger property that every theory has a model.Theorem 5.4 (Completeness) Let E be any set of equations 
losed under `.There is a Kripke lambda model A with Ak�� . M = N : � i� � . M = N :� 2 E.Proof Sket
h: The 
ompleteness theorem is proved by 
onstru
ting a termmodel A = hW ;�; fA�wg; fApp�;�w g; fi�w;w0gi in the following way.� W is the poset of �nite type assignments � ordered by in
lusion. Inwhat follows, we will write � for an arbitrary element of W .� A�� is the set of all [� . M :�℄, where � . M :� is well-typed, and[� . M :�℄ = f� . N :� j E ` � . M = N : �gis the equivalen
e 
lass of � . M :� with respe
t to E .� App�;�� ([� . M :�!� ℄; [� . N :�℄) = [� . MN : � ℄19



� i��;�0([� . M :�℄) = [�0 . M�℄ for � � �0It is easy to 
he
k that the de�nition make sense, and that we have globalelements K and S at all appropriate types. For example,K = [�x:�:�y: �:x℄The proof of extensionality is a little more interesting. Suppose that [� .M :�!� ℄ and [� . N :�!� ℄ have the same fun
tional behavior, i.e. , for all�0 � � and �0 . P :�, we have[�0 . MP� ℄ = [�0 . NP : � ℄Then, in parti
ular, for �0 � �; x:� with x not in �, we have[�; x:� . Mx: � ℄ = [�; x:� . Nx: � ℄and so by rule (�) and axiom (�), we have [� . M :�!� ℄ = [� . N :�!� ℄.Thus A is a Kripke lambda model.It remains to show that A satis�es pre
isely the equations belonging to E .We begin by relating the interpretation of a term to its equivalen
e 
lass. If� is any type assignment, we may de�ne an environment � by�x�0 = � [�0 . x:�℄ if x:� 2 � � �0undefined otherwiseA straightforward indu
tion on terms shows that for any �00 � �0 � �, wehave [[�0 . M :�℄℄��00 = [�00 . M :�℄In parti
ular, whenever A satis�es an equation � . M = N : �, we have�k��[�℄ by 
onstru
tion of �, and so[� . M :�℄ = [� . N :�℄Sin
e this reasoning applies to every �, every equation satis�ed by A mustbe provable from E .While it is possible to show that A satis�es every equation in E dire
tly,by similar reasoning, 
ertain 
ompli
ations may be avoided by restri
ting ourattention to 
losed terms. There is no loss of generality in doing so, sin
e itis easy to prove the 
losed equation; . �x1:�1: : : : �xk:�k:M = �x1:�1: : : : �xk:�k:N20



from the equation x1:�1; : : : ; xk:�k . M = Nbetween open terms, and vi
e versa. For any 
losed equation ; . M = N :� 2 E , we have E ` � . M = N : �for any �, by rule (add var). Therefore, for every world � of A, the twoequivalen
e 
lasses [� . M : � ℄ and [� . N : � ℄ will be identi
al. Sin
e themeaning of ; . M : � in any environment � at world � will be [� . M : � ℄, andsimilarly for ; . N : � , it follows that A satis�es ; . M = N : � . This provesthe theorem.One important property of the Kripke term model we 
onstru
t in the
ompleteness proof is that A�w is nonempty for all w 2 W i� � is an intu-itionisti
ally provable proposition. Our interest in this property stems froma well-known synta
ti
 
orresponden
e between typed lambda 
al
ulus andintuitionisti
 logi
, 
alled the formulas-as-types prin
iple, or Curry{Howardisomorphism [How80℄. In this analogy, types 
orrespond to logi
al formulasand terms 
orrespond to proofs. We read basi
 types as atomi
 proposi-tions and read the type �!� of fun
tions from � to � as the formula \�implies � ." The 
ru
ial part of this analogy is that sin
e lambda terms are anotational variant of intuitionisti
 natural dedu
tion proofs, there is a 
losedterm of type � i� � is an intuitionisti
ally provable formula. Based on thissynta
ti
 
orresponden
e between terms and proofs, we might expe
t thereto be a semanti
 interpretation in whi
h the nonempty types 
orrespond tothe intuitionisti
ally provable formulas. The term model 
onstru
tion maybe used to prove the following 
orresponden
e between provability and typeinhabitation.Theorem 5.5 (Inhabitation) Let � be a set of typed 
onstants and E anequational theory over �. There is a Kripke lambda model A for E withthe following property: A�w is nonempty for all w 2 W i� the type �, whenviewed as an impli
ational formula, is intuitionisti
ally provable from thetypes of 
onstants in �.This theorem stands in sharp 
ontrast to the 
orresponden
e we a
hievewith 
lassi
al models. To 
onstru
t a 
lassi
al model with only the prov-able types nonempty, we must begin with ea
h base type nonempty, sin
e noatomi
 proposition is provable. It is easy to see that if � and � ea
h have at21



most one element, then �!� has at most one element, and so a straightfor-ward indu
tion shows that our model must have at most one element of ea
htype. Consequently, every well-typed equation will be satis�ed.Another way to 
onne
t nonemptiness with provability is to 
onsider
lasses of models. If we 
onsider the 
lass of full 
lassi
al type hierar
h-ies, with some base types empty and others not, then the types whi
h arenonempty in every model are the 
lassi
al propositional tautologies [Con85℄.6 Kripke Logi
al Relations6.1 Relations over appli
ative stru
turesLogi
al relations have proven useful in the study of Henkin lambda models.For example, we may prove the 
ompleteness of pure �; �-
onversion (withoutequational hypotheses) for many spe
i�
 
lassi
al models, and 
hara
terizethe lambda de�nable elements of 
ertain models using logi
al relations [Plo80,Sta82, Sta85b, Sta85a℄. In [Plo80℄, Plotkin introdu
ed I-relations, whi
hare families of typed relations over a Henkin model, indexed by possibleworlds. In this se
tion, we will 
onsider Kripke logi
al relations, whi
h arethe straightforward generalization of I-relations to Kripke lambda models.In the 
lassi
al model theory of typed lambda 
al
ulus, a logi
al relationis a family of relations indexed by types whi
h satis�es a 
ondition imply-ing 
losure under appli
ation and lambda abstra
tion. The generalization toKripke appli
ative stru
tures involves indexing relations by both types andpossible worlds. We will simplify our presentation by assuming a �xed stru
-ture hW ;�i throughout Se
tion 6.A Kripke logi
al relation over Kripke appli
ative stru
tures A and B (us-ing the same hW ;�i) is a family R = fR�wg of relations R�w � A�w � B�windexed by types � and worlds w 2 W satisfying the following two 
ondi-tions. The �rst is a monotoni
ity 
ondition for any base type 
(mon) R
w(a; b) impliesR
w0(i
w;w0a; i
w;w0b) for all w � w0;whi
h says that when w � w0, the relation R
w is 
ontained in R
w0 , modulothe transition fun
tions. The se
ond 
ondition(
mpre) R�!�w (f; g) i� 8w0 � w:8a; b 2 A�w0 :R�w0(a; b) implies R�w0((i�!�w;w0f)a; (i�!�w;w0 g)b);22




alled \
omprehension", says that relative to the fun
tions available from Aand B , the relation R�!�w 
ontains all fun
tions mapping related argumentsto related results. The two lemmas below are proved using the essentially thesame arguments as outlined in [Plo80℄.Lemma 6.1 (Monotoni
ity) Let R � A � B be a Kripke logi
al relation.Then for every type � and pair of worlds w � w0, if R�w(a; b) then R�w0(i�w;w0a; i�w;w0b).We say environments �a; �b are related by R on � at w if R�w(�axw; �bxw)for all x: � in �.Lemma 6.2 (Fundamental Lemma) If R � A�B is a Kripke logi
al relationover models A and B, and environments �a; �b are related by R on � at w,then for every term � .M :�, we have R�w(A[[� .M :�℄℄�aw;B [[� .M :�℄℄�bw)As with many of our other de�nitions, the de�nition of Kripke logi
al rela-tion may be derived by interpreting the usual de�nition in the topos Set hW ;�i.The usual de�nition of logi
al relation R � A � B is a family of relationsR� � A� �B� su
h that(usual) R�!� (f; g) i�8x 2 A�:8y 2 B�: R�(x; y) � R� (fx; gy):To re-interpret this 
ondition, we must �rst say what Kripke relations are.As we have seen, a type, or \Kripke set," is a family A = fAwg of setsindexed by worlds, with transition fun
tions iAw;w0 for ea
h w � w0. (Or,equivalently, a fun
tor from hW ;�i to sets.) If we have two su
h Kripke setsA = fAwg and B = fBwg, then a Kripke relation R � A� B is a subset ofA � B = fAw � Bwg, i.e. , a family R = fRwg of relations Rw � Aw � Bwsu
h that Rw(a; b) implies Rw0(iAw;w0a; iBw;w0b) for all w � w0:Thus 
ondition (mon) is built into the de�nition of SethW ;�i. If we now saythat a Kripke logi
al relation over A and B should be a family of Kripkerelations R� � A� � B� satisfying (usual) above, then it only remains to
he
k (
ompre). This is obtained by working out the Kripke (i.e. , SethW ;�i)interpretation of the standard 
omprehension 
ondition (usual).23



6.2 Partial equivalen
e relations and quotientsA Kripke logi
al partial equivalen
e relation R � A � A is a Kripke logi
alrelation su
h that ea
h R�w is symmetri
 and transitive. The name partialequivalen
e relation 
omes from the fa
t that if R�w is symmetri
 and transit-ive, then R�w is an equivalen
e relation on the set of a with R�w(a; a). We willabbreviate the 
umbersome phrase \Kripke logi
al partial equivalen
e rela-tion" to klper . The following lemma shows that klper 's may be 
onstru
tedby 
hoosing relations at base types.Lemma 6.3 (Partial Equivalen
e) Let R � A � A be a Kripke logi
al rela-tion. If ea
h R
w is symmetri
 and transitive, for ea
h base type 
 and worldw 2W, then every R�w is symmetri
 and transitive.One use of partial equivalen
e relations is in forming quotient stru
tures.With partial equivalen
e relations, re
exivity fails, and so an element neednot have an equivalen
e 
lass. Therefore, it might be more a

urate to 
allthese \partial quotients." IfA = hW ;�; fA�wg; fApp�;�w g; fi�w;w0giis a Kripke appli
ative stru
ture and R � A � A is a klper , then we de�nethe quotient appli
ative stru
tureA=R = hW ;�; fA�w=R�wg; fApp�;�w =Rg; fi�w;w0=Rgias follows.� A�w=R�w = f [a℄R j R�w(a; a) g, where [a℄R is the equivalen
e 
lass[a℄R = f a0 2 A�w j R�w(a; a0) g� (App�;�w =R) [a℄R [b℄R = [App�;�w a b℄R� (i�w;w0=R) [a℄R = [i�w;w0 a℄RIt is a simple exer
ise to verify that the quotient stru
ture is well-de�ned,and a Kripke appli
ative stru
ture.Lemma 6.4 If R � A � A is a Kripke partial equivalen
e relation overKripke appli
ative stru
ture A, then A=R satis�es the Kripke extensionality
ondition (ext). 24



An straightforward indu
tion on terms may be used to prove the following\quotient model" theorem.Lemma 6.5 If R � A�A is a klper over Kripke lambda model A, then A=Ris a Kripke lambda model su
h that for every environment � with R�w(�xw; �xw)for all x: � in �, we have(A=R)[[� . M :�℄℄�Rw = [A[[� . M :�℄℄�w ℄R;where the environment �R for A=R is de�ned by taking �Rxw = [�xw℄R forall x and w.In short, the meaning of a term M in the quotient model A=R is the equi-valen
e 
lass of the meaning of M in A. This theorem is an adaptation ofthe \
hara
terization theorem" of [Mit86℄, whi
h appears to be the �rst useof the idea.6.3 Kripke logi
al relations over 
lassi
al appli
ative stru
-turesWe now 
onsider Kripke logi
al relations over 
lassi
al appli
ative stru
tures.The simplest way to do this is to regard 
lassi
al stru
tures as a spe
ial
ase of Kripke stru
tures. To be spe
i�
, let A = hfA�g; fApp�;�gi be a
lassi
al appli
ative stru
ture, i.e. , fA�g is a 
olle
tion of sets indexed bytypes and fApp�;�g is a 
olle
tion of appli
ation fun
tions. We de�ne theKripke stru
ture AW = hW ;�; fA�wg; fApp�;�w g; fi�w;w0giby taking setsA�w = A� , appli
ation fun
tionsApp�;�w = App�;� and transitionfun
tions i�w;w0 = identity. It is easy to 
he
k that AW is a Kripke lambdamodel whenever A is a 
lassi
al lambda model, and that the meaning of a termM in AW is essentially the same as the meaning of M in A. In 
ategori
alterms, AW is an appli
ative stru
ture of 
onstant presheaves.We say R = fR�wg is a Kripke logi
al relation over 
lassi
al appli
ativestru
tures A and B if R is a Kripke logi
al relation over AW and BW . Thisamounts to the same thing as Plotkin's de�nition of I-relation, ex
ept for theminor di�eren
e that we have used appli
ative stru
tures instead of models(
if. [Plo80℄). By Lemma 6.5, we 
an produ
e Kripke models by taking Kripkequotients of 
lassi
al models. 25



Corollary 6.6 If A is a 
lassi
al typed lambda model and R is a klper overA, then A=R is a Kripke lambda model.This gives us a fairly simple 
lass of models with intuitionisti
 properties. Infa
t, we 
an show that every lambda theory is the theory of a model of thisform.Theorem 6.7 Let E be any set of equations 
losed under `. There exists a
lassi
al lambda model A and a Kripke partial equivalen
e relation R su
hthat A=R satis�es pre
isely those equations that belong to E.Proof Sket
h: Let A be the Kripke term model for E , as in the proofof Theorem 5.4. We will show that A is isomorphi
 to a quotient of the openterm model B of �; �-
onversion.We will review the 
lassi
al term model 
onstru
tion brie
y. Let �1 bean in�nite type assignment that provides in�nitely many variables of ea
htype. For ea
h type �, let B� be the 
olle
tion of all equivalen
e 
lasses fMgwith � . M :� for some �nite � � �1, andfMg = fN j ` � . M = N : �gfor some � � �1. Let B = hfB�g; fApp�;�gi be the appli
ative stru
turewith App�;�fMgfNg = fMNgThis is easily shown to be an ordinary typed lambda model. More details ofthe term model 
onstru
tion may be found in [Fri75℄, for example.Using E , we 
an de�ne a klper R over B. Sin
e the possible worlds of Aare type assignments, we will use type assignments as the worlds of R. Forea
h � and �, let R��(fMg; fNg) i� � . M0 = N0 : � 2 E ;where M0 is the �; �-normal form of M , and similarly for N0. This is wellde�ned sin
e ea
h fMg has a unique �; �-normal form, by the Chur
h-Rossertheorem. Sin
e provable equality is symmetri
 and transitive with respe
tto any �, R is 
learly a partial equivalen
e relation. (In general, R�� willnot be re
exive on B�, sin
e some M0 may require variables not in in �.)By rule (add var), R satis�es the monotoni
ity 
ondition (mon). The proofthat R satis�es (
ompre) is similar to the proof that Kripke term models areextensional. 26



It remains easy to show that A is isomorphi
 to B=R. Every B�=R��equivalen
e 
lass is 
hara
terized by a 
olle
tion of normal forms that are allwell-typed in � and provably equal using E . Thus for ea
h B�=R�� equivalen
e
lass fMg=R��, there is a unique [�.M0:�℄ 2 A��. Conversely, all of the �; �-normal forms in any [�.M0:�℄ will be equivalent modulo R��, and so we havea straightforward bije
tion between A� and B�=R��. It is easy to show thatappli
ation behaves appropriately, and so we have an isomorphism betweenA and B=R. This proves the theorem.However, we 
an show that some Kripke lambda models are not iso-morphi
 to any Kripke quotient of any 
lassi
al appli
ative stru
ture.Theorem 6.8 There is a Kripke lambda model B whi
h is not elementarilyequivalent to A=R, for any 
lassi
al appli
ative stru
ture A and Kripke partialequivalen
e relation R.Proof Sket
h: We give a formula � in the predi
ate logi
 for appli
ativestru
tures with base types p and q whi
h is valid in all quotients A=R but isnot valid in every Kripke lambda model B . Intuitively, � is the formula thatsays:� if empty(p) and ::inhabited(p!q), then inhabited(p!q),where inhabited(�) � (9x: �:x = x) and empty(�) � :inhabited(�) It is easyto 
he
k that this holds in any quotient of a 
lassi
al appli
ative stru
ture.To show that � is not intuitionisti
ally valid, we 
onsider the followingKripke lambda model B :� W is the poset with two elements 0 < 1� B at 1 is the full type stru
ture with the base types p = ; and q = !� B at 0 is the interior of B at 1, i.e. , the appli
ative sub-stru
ture whoseelements are interpretations of 
losed �-terms� the transition fun
tion i0;1 is the in
lusionThen Ap!q1 
ontains exa
tly one element (the empty fun
tion), and thereforeB satis�es ::inhabited(p!q); but Ap!q0 is empty (be
ause there are no
losed terms of that type), so B does not satisfy inhabited(p!q).
27



6.4 A 
ounter-model to impli
ation (�)As an appli
ation of Kripke quotients, we will show how to 
onstru
t a
ounter-model to the impli
ation (�) given in the se
ond paragraph of thepaper. We will 
onstru
t a Henkin model A with base types a and b andgive a Kripke logi
al partial equivalen
e relation R � A�A su
h that in thequotient model A=R, we will have�x: a:f�1 = �x: a:f�2 but not f�1 = f�2:We let A be a 
lassi
al term model of �; �-
onversion, as des
ribed in theproof of Theorem 6.7. Sin
e f appears in the equations above, we in
ludeterms with 
onstant f : (a!a!a)!b in 
onstru
ting A. (The interpretationof f in A is its equivalen
e 
lass, modulo `.)It remains to de�ne the relation R at base types, sin
e this will determineR at higher types. Sin
e the justi�
ation of (�) depends on type a being eitherglobally empty or globally nonempty, we will make a empty at one world andnonempty at another. We let W = f0; 1g with 0 � 1 and take Ra0 = ; andRa1 the identity relation Aa. Now, we want to satisfy equation(E) �x: a:f�1 = �x: a:f�2at both worlds. This is easy at world 0, sin
e a is empty. We 
an take Rb0to be the identity relation on Ab. To satisfy (E) at world 1 where a is notempty, we must equate f�1 and f�2. An easy way to do this is just to takeRb1 = Ab �Ab so that Ab=Rb1 has only one element. It is easy to verify thatRa!bw (�x: a:f�1; �x: a:f�2)at both worlds w = 0; 1, and so these terms are equal in the quotient model.However, sin
e f�1 and f�2 are not �; �-equivalent, they are not related byRb0, and so the equation f�1 = f�2 does not hold at world 0 in the quotientmodel. Consequently, A=R satis�es (E), but not f�1 = f�2.7 Con
lusion and dire
tions for further investiga-tionWhile the traditional axiom system is not 
omplete for semanti
 impli
ationover Henkin models, we have 
ompleteness for Kripke models. Sin
e Kripkemodels satisfy intuitionisti
 prin
iples, but not the law of the ex
luded middle28



(� _ :�), this may be interpreted as eviden
e that typed lambda 
al
ulus ismore an intuitionisti
 system than a 
lassi
al one. In addition, we have astraightforward 
orresponden
e between provable propositions and nonemptytypes, whi
h suggests that Kripke models may be useful for studying systemslike Martin-L�of's type theory (
if. [Bee82℄). It is easy to see that Kripkelambda models are more general than 
lassi
al lambda models, sin
e any
lassi
al lambda model may be be regarded as a Kripke lambda model overa set W 
onsisting of a single possible world. Kripke models with produ
ts��� and a terminal type 1 are also a spe
ial kind of 
artesian 
losed 
ategoryand, 
onversely, any 
artesian 
losed 
ategory may be embedded in a Kripkemodel.Although we de�ned Kripke models without using mu
h 
ategory theory,one way to view our development is as a \worked example" in the use of theinternal language of a topos. Spe
i�
ally, our Kripke lambda models resultfrom interpreting the standard 
lassi
al de�nition of typed lambda model inthe logi
 of a topos of presheaves over a poset. In addition, as pointed outto us by Edmund Robinson and Pino Rosolini, our 
ompleteness theoremmay be derived using 
onne
tions between 
artesian 
losed 
ategories andpresheaf toposes. Our study of Kripke logi
al relations may also be viewedthis way using the standard notion of relation in the internal logi
.Our brief investigation of Kripke logi
al relations suggests that many 
las-si
al model-theoreti
 te
hniques may be adapted to Kripke lambda models,and demonstrates that Plotkin's I-relations provide a useful 
lass of \intu-itionisti
" lambda models. We have shown that every typed lambda theory isthe theory of some Kripke quotient of a 
lassi
al lambda models, but that thisdoes not 
arry over to quanti�ed formulas. Spe
i�
ally, we found a formula� whi
h is valid in Kripke quotient models, but not in all Kripke lambdamodels.In general, our main fo
us has been on theoreti
al aspe
ts of Kripkelambda models. Having found Kripke models relatively natural and easy towork with, it is worth asking whether Kripke lambda models are appropriateto 
omputer s
ien
e appli
ations. For example, do Kripke-like models arisenaturally in the semanti
s of programming languages? One suggestion thatthey do 
omes from the study of storage allo
ation in Algol-like languages.John Reynolds and Frank Oles have proposed fun
tors over \store-shapes" asa mathemati
al semanti
s for languages whi
h admit sta
k-stru
tured storageallo
ation [Rey81, Ole85℄. (Some related dis
ussion appears in [Ten85℄.) Inaddition to taking \storage maps" as possible worlds, some other possibil-ities might be sets of de
larations (as in our 
ompleteness proof), program29




ontexts, or their meanings. Given the di�eren
es between Henkin modelsand fun
tor 
ategories, it seems worthwhile to re
onsider 
arefully whi
h aremore natural for the semanti
s of programs.A
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