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Abstract

We study the reasoning process people utilize to reach a decision an environ-
ment where nal choices are well understood, the associated theoris procedural,
and the decision-making process is observable. In particular, we iroduce a two-
person \beauty contest" game played spatially on a two-dimensional plane Players
choose locations and are rewarded by hitting \targets" dependent on oppoents' lo-
cations. By tracking subjects' eye movements (termed the lookup), we infer their
reasoning process and classify subjects into various types based oreael-k model.
More than half of the subjects' classi cations coincide with their classi cations us-
ing nal choices alone, supporting a literal interpretation of the level-k model for
subject's reasoning process. When choice data is noisy, lookup datuld provide
additional separation of types.
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| Introduction

Since Samuelson [1938] developed the theory of revealedgmences, economic theory has
been focusing on interpreting people's observed choices aedly re ecting their personal
preferences, usually unobserved by outsiders. Based on theoretical predictions, empir-
ical researchers then collect data either from natural ocoing or controlled environments,
and construct econometric models to analyze it. The revedlgreference approach has
achieved tremendous success by simply assuming utility apization. Nonetheless, this
focus on nal choices (and the preferences they re ect) doe®texclude the possibility
of analyzing the decision-making process in the middle. Juas modern theories of the
rm open up the black box of pro t maximization and explore the e ect of contracts and
organizational structures within the rm, there is no reasa why economic theory cannot
consider the reasoning process prior to the nal decision,pecially when it is potentially
observable and can help make better predictions.

In many cases, the economic theory could potentially sugges procedure by which
people calculate and reason to determine what is the best. Wheconomic theories
provide clear predictions on the underlying decision-makinprocess, it is natural to ask
whether one could test these predictions using some form ofigirical data. For example,
in extensive form games, subgame perfect equilibrium is tgally solved by backward
induction, a procedure that can be carried out (and therefer tested) step-by-step by
players of the game. Hence, Camerer et al. [1993] and Johnsorakt[2002] employ a
mouse-tracking technology called \mouselab" to test prediions of backward induction,
and nd evidence against it even in three-stage bargaining gees. In addition to testing
predictions, one could also use a procedural theory to anagyhow di erent reasoning
processes can lead to systematically di erent behavior. Fexample, Krajbich, Armel and
Rangel [2010] consider an attentional drift-di usion modeand demonstrate how di erent
decision thresholds can lead to speci ¢ premature choicesan individual decision-making
problem. More recently, Koszegi and Szeidl [2013] considbe possibility that people
focus on certain attributes of available options, and hencbecome prone to present bias
and time inconsistency problems.

In this paper, we attempt to study the reasoning process as lvas nal choices in
a game-theoretic environment. In particular, we consider theeasoning process people
utilize to reach a decision, in which they perform di erent évels of strategic reasoning.
To conduct this alternative research strategy of studyinghe decision-making process,
there are three important requirements on the task to use. Ft, we need a setting in
which nal choices are well understood and mature theoriexist to explain how choices
are made. This is because if there is still no consensus retyag which theory best explains
nal choices and why, it is conceivably harder to come up wittsatisfactory hypotheses
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on reasoning processes to base tests on. Secondly, to make agiide hypothesis on
reasoning, we want the associated economic theory to be mgmocedural. In other
words, there is room that if the theory is taken literally, it makes predictions on not only
choices, but also a particular reasoning process that leatdsthe nal choice. Finally, we
require some data collection method that will allow us to olesve the reasoning process
and for that purpose the task used has to suit the method.

We design a new set of games, termed two-person spatial beaatntest games, to
analyze individual's reasoning process by observing lookygatterns with video-based
eyetracking, meeting all three requirements as follows. Thnew set of games, as its
name suggests, is essentially a graphical simpli cation dfie p-beauty contest games
for two players! It is known that initial responses in the p-beauty contest games can
be well explained by theories of heterogeneous levels ofisatlity such as the levek
model? Since levelk models can predict choices well in these guessing games, tisé
requirement that mature theory exists to explai nal choicess met. Logically the next
question should be on whether they can also predict the reasag processes. A key in
the levelk model is that players of higher levels of rationality best mgpond to players of
lower levels, who in turn best respond to players of even lowkevels and so on. This
best response procedural hierarchy is the perfect candiddi modeling the reasoning
process of a subject prior to making the nal choice, since ia two-person game, the
nal choice should be a best response to the subject's belrelgarding the other player's
choice, which in turn is a best response to the subject's bafliabout the other player's
belief about her choice, and so oh.In other words, to gure out which choice to make,
a subject has to go through a particular best response hiechical procedure. Thus, the
second requirement is squarely met since by taking the ledlemodel procedurally, one can
come up with a natural hypothesis regarding the reasoning press. Lastly, the graphical
representation of the spatial beauty contest games inducesbjects to go through this
hierarchical procedure of best responses by counting on thengputer screen (instead of
reasoning in their minds), leaving footprints that the expementer can trace, and thus
the third requirement is met.

We eyetrack each subject's reasoning process by recordimg tentire sequence of lo-
cations she looks at. In other words, we record not only her ai choice, but also every

INagel [1995], Ho, Camerer and Weigelt [1998] studied the-beauty contest game. Variants of two-
person guessing games are studied by Costa-Gomes and Crawford [2006] and Gkog$ and Nagel [2008].
However, unlike the two person guessing game considered in Grosskagrfid Nagel [2008], choosing the
boundary is not a dominant strategy in our spatial beauty contest game.

2Levelk models are proposed and applied by Stahl and Wilson [1995], Nagel [1995], and Costa-Gesn
and Crawford [2006]. A related model, the cognitive hierarchy model is ppposed by Camerer, Ho and
Chong [2004].

3To avoid confusion, the subject is denoted by her while her opponenis denoted by him.



location the subject has ever xated at in an experimental tal real-time. Following the
convention, we call this real-time xation data the \lookups" even though there is really
nothing to be looked up in our experiment. When a subject reass through a particular
best response hierarchy, designated by her ledekype, each step of thinking is charac-
terized as a \state." To describe changes between the thinilgnstates of a subject, we
construct a constrained Markov-switching model between #se states. Eye xations con-
ditional on each thinking state are then modeled to allow fdiogit errors due to imprecise
eyetracking or peripheral vision. We classify subjects iatvarious levelk types based on
maximum likelihood estimation using individual lookup daa. Moreover, we adopt an
empirical likelihood ratio test for non-nested but overlaping models proposed by Vuong
[1989] to ensure the distinctive separation of the estimategpe from other competing
types. Results show that among the seventeen subjects wedkad, one follows the level-
0 (LO) best response hierarchy the closest with her lookups, $ollow the level-1 (1)
hierarchy, four follow the level-2 [ 2) hierarchy, another four follow the level-31(3) hier-
archy, and the remaining two follow the equilibrium EQ) best response hierarchy, which
coincides with level-4 [4) hierarchy in most games of our experiment. Treating thEQ
type as having a thinking step of 4, the average thinking steis 200, in line with results
of other p-beauty contest games.

If the level-k model can predict not only choices but also reasoning processvell, the
estimated level of a player when we analyze her lookups stbwoincide with her level
when we analyze her choices alone sinkeae ects her strategic sophistication. To check
whether the lookup data indeed align well with choice data, evclassify subjects by using
their nal choice data only. We nd that choice-based and lookip-based classi cations are
pretty consistent, classifying ten of the seventeen subjscs the same type. Consistency
between choice-based and lookup-based classi cations gests that for a high percentage
of subjects, if their lookups are classi ed as a particularelelk type, their nal choices
follow the prediction of that levelk type as well. This is a strong support to a literal
interpretation of the levelk model to explain subjects’ reasoning process and nal cheic
altogether in the spatial beauty contest game. It means thathe corresponding best
response hierarchy implied by each lev&ltype is literally carried out by subjects.

We look further into the subtle di erence between lookup andhoice data even though
for the majority of subjects they align well. Among the sevenubjects whose two clas-
si cations di er, for all but one subject, the choice-basedevelk types are not robust to
a (nonparametric) bootstrap procedure, having a misclasgiation rate of at least 18% if
one resamples the choice data and performs the same estimati On the other hand,
for the ten subjects whose two classi cations are the samdje average misclassi cation
rate is less than 5%. The di erence is signi cant, having g@-value of Q0123 according to



the Mann-Whitney-Wilcoxon rank sum test. In other words, wherthe two classi cations
di er, it is when the choice data is noisy. When the two classications agree, choice data
is quite robust. This leaves open the possibility that lookp data may help classify sub-
jects more sharply since when they di er, choice data is ngisand thus there is room to
improve choice estimation.

Even when the level based on lookups and that based on choidesr, the level based
on lookups does a reasonable job in predicting choices andhgs a viable alternative to
the choice-based type. In fact, for six out of seven subjeatose two classi cations dif-
fer, their types based on analyzing lookups predict nal choes reasonably well, ranking
second in terms of likelihood. According to a bootstrap procedure, their lookup-based
types are also the second most successful types in predigtemoices. Moreover, we demon-
strate how lookups indeed provide better classi cation whechoice-based estimation is
not robust through an out-of-sample prediction exercise. ®/estimate the models with
2=3 of the trials and predict the nal choices of the remaining tials on the nine subjects
whose nal choices are not robust according to the bootstraprocedure. We show that
the lookup-based model is superior in terms of both mean sgaaerrors and economic
value (Camerer, Ho and Chong, 2004). To sum up, when the clagstions based on
lookups and choices di er, the lookup type predicts choicagasonably well. Moreover,
when the choice data is noisy, we can predict the later chogef a subject better by her
earlier lookup data than by her earlier choice data. In othewords, looking into players'
reasoning process gives us valuable information if we aredassify them properly?

In the related literature, some experimental studies do attept to investigate \infor-
mation search” patterns in games, in order to capture part ahe reasoning process. In
addition to Camerer et al. [1993] and Johnson et al. [2002], &ta-Gomes, Crawford and
Broseta [2001] and Costa-Gomes and Crawford [2006] also @ypthe mouse-tracking
technology \mouselab” to study payo lookups in normal formgames and information
search in two-person guessing games. Gabaix, Laibson, Mbo®and Weinberg [2006] also
use mouselab to observe information acquisition and anaé/aggregate information search
patterns to test a heuristic \directed cognition" model. Mae recently, Wang, Spezio and
Camerer [2010] employ eyetracking to observe the decisimaking process of a deceptive
sender in sender-receiver games. In all these studies sonfermation must be withheld,
and \looked-up" by subjects during the experiment. Hence, tse studies rely on informa-
tion search to infer certain stages of the reasoning processstead of directly observing
the entire process itself. Our paper di ers from these preous attempts by observing

4The last subject's type based on lookups ranked third. The most suaessful type is of course the one
based on analyzing choices.

SEven if we focus on the seven subjects whose two classi cations dér, the lookup-based model is still
superior in terms of mean square errors and is comparable in economic value



lookup patterns when there is no explicit hidden informatin to be acquired. We directly
observe the reasoning process instead of making an infeeermn it. To the best of our
knowledge, this is the rst paper analyzing the reasoning prcess directly and comparing
it with nal choice. Speci cally, it is the graphical feature of our design that makes direct
observations of reasoning processes possible. This potatgshe importance of tailoring
games for tracking decision-making. The structure of thg-beauty contest games implies
a best response hierarchy of reasoning which can be fully ®ifed in our spatial design.
In other less-structured games, some viable hypotheses ceming the reasoning process
have to be formed and speci ¢ designs have to be tailor made 8wt these reasoning
processes can be directly observed. This leaves open an ed#ing direction for future
research’

The remaining of the paper is structured as follows: SectioA describes the spatial
beauty contest game and its theoretical predictions; Seoti B describes details of the
experiment; Section Il reports aggregate statistics on ékups; Section IV reports classi-
cation results from the Markov-switching model based on lokups; Section V compares
classi cation results with those based on nal choices al@ Section VI concludes.

Il The Experiment

A The Spatial Beauty Contest Game

We now introduce our design, the equilibrium prediction, tb prediction by the levelk
model and formulate the hypotheses which will be tested. Tareate a spatial version
of the p-beauty contest game, we reduce the number of players to tweg that we can
display the action space of all players on the computer screersually. Players choose
locations (instead of numbers) simultaneously on a 2-dimsional plane attempting to hit
one's target location determined by the opponent's choic&.he target location is de ned
as a relative location to the other player's choice of locatn by a pair of coordinates
(X;y¥). We use the standard Euclidean coordinate system. For irestce, (Q 2), means
the target location of a player is \two steps below the oppomg,” and ( 4;0) means
the target location of a player is \four steps to the left of tle opponent.” These targets
are common knowledge to the players. Payo s are determined bow \far" (the sum of
horizontal distance and vertical distance) a player is awafrom the target. The larger
this distance is, the lower her payo is. Players can only cluse locations on a given grid

6Several recent levek papers estimate population mixture models to infer the fraction of level-k types
within the population (Burchardi and Penczynski [2011]). Instead of investigating the population mixture
of types, we focus on how well individual lookup patterns correspondo a particular level-k best response
hierarchy in an environment where we already know the levek model predicts aggregate subject behavior
fairly well.



map, though one's target may fall outside if the opponent is @se to or on the boundary.
For example, consider the 7 7 grid map in Figure I. For the purpose of illustration,
suppose a player's opponent has chosen the center locatiabdled O ((Q0)) and the
player's target is ( 4;0). Then to hit her target, she has to choose location (4;0). But
location ( 4;0) is not on the map, while choosing location (3;0) is optimal among all
49 feasible choices because location3; 0) is the only feasible location that is one step
from location ( 4;0).8

The spatial beauty contest game is essentially a spatial won of Costa-Gomes and
Crawford [2006]'s asymmetric two-person guessing gameaswhich one subject would like
to choose of her opponent's choice and her opponent would like to chaos of her choice.
Hence, similar to Costa-Gomes and Crawford [2006], the eghrium prediction of this
spatial beauty contest game is determined by the targets obth players. For example, if
the targets of the two players are (02) and (4; 0) respectively, the equilibrium consists of
both players choosing the Top-Right corner of the map. This caeptually coincides with
a player hitting the lower bound in the two-person guessingagne of Costa-Gomes and
Crawford [2006] where s less than 1, or all choosing zero in thebeauty contest game
wherep is less than 12 Note that in general the equilibrium need not be at the corner
since targets can have opposite signs. For example, when tiaggets are (4 2) and
( 2;4) played ona 7 7 grid map, the equilibrium locations for the two players aréoth
two steps away from the corner (labeled as E1 and E2 for the tvpdayers respectively in
Figure 1).

We derive the equilibrium predictions for the general case dsllows. Formally, con-
sider a spatial beauty contest game with targetsag; ) and (ay; ). With some abuse of
notation, suppose playei chooses locationx;;y;) on a map G satisfying (x;;y;) 2 G
f X; X+1;:5;Xg f Y, Y+1;::;,Ygwhere (Q0) is the center of the map. For
instance, &i;y;) = ( X;Y ) means playeri chooses the Top-Right corner of the map. The
other player i also chooses a locationx(i;y i) on the same map: X i;y i) 2 G. The
payo to player i in this game is:

piyisx sy sash)=s (xi (xi+a)i+iy  (yi+h)j

wheres is a constant. Notice that payo s are decreasing in the numbeaf steps a player is
away from her target, which in turn depends on the choice of éhother player. There is no

’Similar designs of 3 3 games could also be found in Kuo et al. [2009]. They addressed di erent
issues.

8For instance, to go from location ( 3;1) to ( 4;0), one has to travel one step left and one step down
and hence the distance is 2.

9However, choosing the Top-Right corner isnot a dominant strategy, unlike in the symmetric two-
person guessing game analyzed by Grosskopf and Nagel [2008].



interaction between the choices of; and y;. Hence the maximization can be obtained by
choosingx; andy; separately to minimize the two absolute value terms. We thusonsider
the case forx; only. The case fory; is analogous-

To ensure uniqueness, in all our experimental trials; + a ; 6 0. Without loss of
generality, we assume thal, + a ; < 0 so that the overall trend is to move leftward?
Supposea; < 0. If aya, < 0, implying player 1 would like to move leftward but player 2
would like to move rightward, since the overall trend is to mee leftward, it is straight-
forward to see that the force of equilibrium would make playel hit the lower bound
while player 2 will best respond to that. The equilibrium chees of both, denoted by

(x§;x8), are characterized byxS = X andx§ = X + a.® If aja, 0, since both
players would like to move leftward, they will both hit the laver bound. The equilibrium
is characterized byx{ = x§ = X. To summarize, whena; + a, < 0, only the player

whose target is greater than zero will not hit the lower bound.Therefore, as a spatial
analog to Observation 1 of Costa-Gomes and Crawford [200%f obtain:

Proposition 1

In a spatial beauty contest game with targetsd;; b;) and (ay; b,) where two players each
choose a locationX;;y;) 2 G satisfyingG f X; X +1;:;Xgf Y; Y+1;::Y0,

2X ap; a 2X and 2Y b ; b 2Y, the equilibrium choices 7;y7) are
characterized by: (fg is the indicator function)

xf= X+a Ifgg>09 ifa+a ;<0
Xi=X+ag Ifa<0g ifa+a;>0

and
y*= Y+h If>0g ifh+b;<0

y'=Y+h Ifhb<0g ifh+b;>0

In addition to the equilibrium prediction, one may also specyf various levelk pre-
dictions. First, we need to determine the anchorindg.O player who is non-strategic or

10As an illustrative example, considera; = 2 and a, = +1, indicating that player 1 wants to be two
steps to the left of player 2, while player 2 wants to be one step tohe right of player 1.

1Supposea; = 2 anda, = +2. Any location where player 1 is two steps to the left of player 2 is an
equilibrium since player 2 is then two steps to the right of player 1. Note that this corresponds to the case
where =1 in the two-person guessing game of Costa-Gomes and Crawford [2006].4f = a ; = a,
any feasiblex;;x ; satisfying x; x ; = a constitutes an equilibrium.

121n the illustrative example of a; = 2 anday, =+1, ( 2)+1 < 0. Due to symmetry, all other cases
are isomorphic to this case.

Bin the illustrative example of a; = 2 and a, = +1, the equilibrium is ( x§;x§) =( X; X +1). We
imposea; 2X for all games in the experiment, thus we do not need to worry about the pasibility that
Xf lies outside the upper boundX (i.e., xf = X + & > X ). In general, if & > 2X, player i would hit
the upper bound and thus x{ = X. Similarly, we assume 2X a;, SO we need not worry about the
possibility that x{ lies outside the lower bound X (i.e., xf = X + & < X).

8



nawve. This is usually done by assuming players choosing rasmly.’* In a spatial set-
ting, Reutskaja et al. [2011] nd the center location focal, Wile Crawford and Iriberri
[2007&] de ne LO players as being drawn toward focal points in the non-neutraisplay
of choices. In addition, due to a drift-correction procedw of the eyetracker ( xating on
a dot at the center and hitting a button or key) prior to every trial, the center location
is the rst xation of every trial. Therefore, a natural assumption here is that an L0
player will either choose any location on the map randomly ¢@ording to the uniform
distribution), which is on average the center (00), or will simply choose the center. An
L1 playeri with target (&;h) would best respond to arL0 opponent who either chooses
the center on average or exactly chooses the center, and as a M®eumann-Morgenstern
utility maximizer, would choose the same location against #se two opponent$® If an
LO player chooses (on average) the center, to best respond Ldnplayer would choose the
location (a;; ) unlessX, Y is too small so that it is not feasible’® Similarly, for an L2
opponentj with the target (g;;l) to best respond to anL 1 playeri who chooses4; h),
he would choosed; + a;;h + ) when X, Y is large enough. Repeating this procedure,
one can determine the best responses of all higher lekglkk) types. Figure | shows the
various levelk predictions of a 7 7 spatial beauty contest game for two players with
targets (4 2) and ( 2;4).

To account for the possibility that one's target may fall ouside the map, we de ne
the adjusted choiceR(X;Y ;(x;y)). Formally, the adjusted choice is given by

ROXGY;(xy) (minfX; maxf X;xgg;minfY;maxf Y;ygg):

In words, if the ideal best response which hits the target i®tation (x;y), the adjusted
choice &y)  R(X;Y;(X;y)) gives us the closest feasible location on the map so the
choice &y is constrained to lie withinthe rangex2 f  X; X+1;:;Xg, y2f Y; Y+
1,::;;Yg. This adjusted choice is the best feasible choice on the mapce payo s are
decreasing in the distance between the ideal best responsadet) and the nal choice.
Moreover, as shown in Supplementary Appendix A2, since the dnmap is of a nite size,
eventually whenk for a levelk type is large enough, theLk prediction will coincide with
the equilibrium. To summarize, we have

Proposition 2

l4See Costa-Gomes, Crawford and Broseta [2001], Camerer, Ho and Chong [2004], CoSames and
Crawford [2006] and Crawford and Iriberri [2007)].

15See proof in Supplementary Appendix A1.This is true because our payostructure is point symmetric
by (0;0) over the grid map. Hence, it makes no di erence for anL 1 opponent whether we assume ah 0
player chooses exactly the center, or randomly (on average the cenferin our estimation, we assumelL 0
chooses the center but incorporates randonb. 0 as a special case (when the logit parameter is zero).

181n this case, anL 1 player would choose the closest feasible location.



Consider a spatial beauty contest game with targetsa(; ;) and (ay; ) where two
players choose locationsx(; yi), (X2;Y2) satisfying (x;;yi) 2 G f X; X +1;::;Xg

f Y, Y+1;:5Y9 2X aja 2X and 2Y bbb 2Y. Denote the choice of
a levelk playeri by (x¥;y¥), then (x%;y?) = (x%;y9)  (0;0) and

1. X5y =R X Y;(a+xLh+y ) fork=1;2::

2. there exists a smallest positive integds such that for all k Kk, (x¥;y¥) = (x&; y®).

Proof.
See Supplementary Appendix A2.

In Table | we list all the 24 spatial beauty contest games usead the experiment, their
various levelk predictions, equilibrium predictions and the minimumk's. Notice that in
the rst 12 games, targets of each player are 1 dimensional win the last 12 games,
targets are 2 dimensional. Also, Gamesif2 1) and (2n) (wherem =1;2;:::;12) are
the same but with reversed roles of the two players, so for irstce, Games 1 and 2 are
the same, Games 3 and 4 are the same, etc.

The k's for our 24 games are almost always 4, but some are 3 (GamedaQ, 17), 5
(Games 5, 11, 12) or 6 (Game 6). This indicates that as long a®wclude levelk types
with k up to 3 and the equilibrium type, we will not miss the higher leel-k types much
since higher types coincide with the equilibrium most of théime. Moreover, as evident
in Table I, di erent levels make di erent predictions. In other words, various levels are
strongly separated on the mag’ The levelk model predicts what nal choices are made
for each levelk. This is formulated in Hypothesis 1.

Hypothesis 1 (Final Choice) Consider a series of one-shot spatial beauty contest games

without feedbackn = 1;2;:::; N, each with targets(a;.n; bi.n) and (azn; b.n) where two

players choose locationéXi.n; Yin), (X2:n; Y2in) satisfying (Xin;Vin) 2 Gn X, Xp+

1; Xng f O Ya Y, +1; 'Yn0, 2Xn  @rnja@xn  2Xn, and  2Y,  bin by

2Y,. A levelk subjecti's choice for gamen, denoted(x¥, ; y&,) is (XK, ; Y5 ) = R(Xn; Ya; (a0 +
Lh, + y"i;r})) as de ned in Proposition 2, and thisk is constant across games.

k
X in
Since our games are spatial, players can literally count agi their eyes how many steps
on the map they have to move to hit their targets. Thus, a naturbway to use lookups is
to take the levelk reasoning processes literally in the following sense. Tadwe L2 player
as an example, the levek- model implies that she best responds to anl opponent, who

in turn best responds to anL0. Therefore, for theL2 player to make a nal choice, she

"The only exceptions areL3 and EQ in Games 1, 10, 17,L.2 and L3 in Games 2, 6, 9, andL2 and
EQ in Game 18. See the underlined predictions in Table I.
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has to rst gure out what an L0 would choose since her opponent thinks of her as .
She then needs to gure out what her opponent, ah 1, would choose. Finally, she has to
make a choice as ah2. It is possible that this process is carried out solely in gamind of
a player. Yet since the games are spatial, one can simply guall these out by looking
at and counting on the map. This has the advantage of reducinguch memory load and
being much more straightforward. If this hypothesis is truean L2 player would look
at the center (where anL O player would choose), her opponentls1 choice and her own
nal choice as anL2. In other words, the hotspots of arl.2 player in her lookups would
consist of these three locations on the map. This is probablydmost natural prediction
on the lookup data one can make when the underlying model isgtevelk model. Hence
we formulate Hypothesis 2 and base our econometric analysidaokups on this.

Hypothesis 2 (Lookup) Consider a series of one-shot spatial beauty contest games with
targets (ay.n; bi.n) and (azn; ) where two players choose locatiori®1.n; Y1n), (X2:n: Yain)
satisfying(Xin;Vin) 2 Gn £ Xn; Xp+1; Xng f o Yar Yo+l i Yng, 2Xi,
Qn;8n  2X,, and  2Y, bunbn  2Y, played without feedback. Denote the choice
of a levelk playeri by (x}fn ;yi'fn). Assuming one carries out the reasoning process on the
map, a levelk subjecti will also:

a. (Duration of Lookups):  Fixate at the following locations in the levekt- best response
hierarchy (x%,;¥%,) (LO player's choices), ..., (xf, % yK, %) (own L(k  2) player's
choice), (xki;ﬁ;y"i;r}) (opponentL(k 1) player's choice),(x!fn ;yi'fn) (own Lk player's

choice) associated with that particulak longer than random?®

b. (Sequence of Lookups): Have xation sequences for each ganrewith many tran-
sitions from (x5 y<.,h) to (XK ;yK) for K = k;k  2::; and transitions from
(X 5y D to (XK, yK,) for K = k Lk 3 (steps of the associated level-
k best response hierarchy).

B Experimental Procedure

We conduct 24 spatial beauty contest games (with various tagts and map sizes) ran-
domly ordered without feedback at the Social Science Experental Laboratory (SSEL),
California Institute of Technology. Each game is played twe, once on the two-dimensional
grid map as shown in Figure Il (which we denote as the GRAPH pres&tion), the other
time as two one-dimensional choices chosen separately (5&gure 1ll, denoted as the
SEPARATE presentation).® Half of the subjects are shown the two-dimensional grid

18The player subscript of (x%,;y®,) is dropped since bothL0 players choose the center.
19Note that these two presentations are mathematically identical. Howeve, the GRAPH presentation
allows us to trace the decision-making process through observing éhlookups.
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maps rst in trials 1-24 and the two one-dimensional choicelater in trials 25-48, while

the rest are shown the two one-dimensional choices rst (trig 1-24) and the maps later
(trials 25-48). The results of the two presentations are qué similar, so we focus on the
results of the two-dimensional presentatioA’

In addition to recording subjects' nal choices, we also enigy Eyelink Il eyetrackers
(SR-research Inc.) to track the entire decision process beé the nal choice is made. The
experiment is programmed using the Psychophysics Toolbox Mftlab (Brainard, 1997),
which includes the Video Toolbox (Pelli, 1997) and the Eyelln Toolbox (Cornelissen
et al., 2002). For every 4 milliseconds, the eyetracker reds the location one's eyes are
looking at on the screen and one's pupil sizes. Location acaay is guaranteed by rst
calibrating subjects’ eyetracking patterns (video imagesw cornea re ections of the eyes)
when they xate at certain locations on the screen (typicayt 9 points), interpolating this
calibration to all possible locations, and validating it wih another set of similar locations.
Since there is no hidden information in this game, the main gbof eyetracking is not to
record information search. Instead, the goal is to captureow subjects reason before
making their decision and to test whether they think throughthe best response hierarchy
implied by a literal interpretation of the levelk model.

Before each game, a drift correction is performed in whichlsjects xate at the center
of the screen and hit a button (or space bar). This realigns ¢hcalibration at the center
of the screen. During each game, when subjects use their ej@sxate at a location,
the eyetracker sends the current location back to the disptacomputer, and the display
computer lights up the location (real time) in red (as Figure® and 3 show). Seeing
this red location, if subjects decide to choose that locatigmhey could hit the space bar.
Subjects are then asked to con rm their choices (\Are you suf¥). They then have a
chance to con rm their choice (\YES") or restart the process (NO") by looking at the
bottom left or right corners of the screen.

In each session, two subjects were recruited to be eyetradkeSince there was no
feedback, each subject was eyetracked in a separate roomividually and their results
were matched with the other subject at end of the experimeniThree trials were randomly
drawn from the 48 trials played to be paid. Average payment is $85.24 plus a show-up
fee of U$20. A sample of the instructions can be found in the Supplemery Appendix.
Due to insu cient showup of eligible subjects, three sessis were conducted with only
one subject eyetracked, and their results matched with a sjdrt from a di erent session.
Hence, we have eyetracking data for 17 subjects.

20A comparison of the nal choices under these two representations is siwn in Supplementary Table
2. None of the subjects' two sets of nal choices di er signi cantly.
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Il Lookup Summary Statistics

We rst summarize subjects' lookups to test Hypothesis 2a, maely, subjects do look at
and count on the map during their reasoning process. Then, waayze subjects' lookups
with a constrained Markov-switching model to classify thenmnto various levelk types to
test Hypothesis 2b. As a part of the estimation, we employ Vuorgtest for non-nested
but overlapping models to ensure separation between comef types.

According to Hypothesis 2a, subjects will spend more time atdations corresponding
to the thinking steps of a particular best response hierargh We present aggregate data
regarding empirical lookups for all 24 Spatial Beauty Contéggames in Supplementary
Figures 1 through 24. For each game, we calculate the percegeaof time a subject spent
on each location. The radius of the circle is proportional tthe average percentage of time
spent on each location, so bigger circles indicate longem# spent. The levek choice
predictions are labeled as O, L1, L2, L3, E for each game.

If Hypothesis 2a were true, the empirical lookups would condeate on locations
predicted by the levelk best response hierarchy. For some games, many big circles in
Supplementary Figures 1{24 do fall on various locations casponding to the thinking
steps of the levek best response hierarch§: However, there seems to be a lot of noise in
the lookup data: Many locationsother than those speci ed in the best response hierarchy
are also looked up.

We attempt to quantify this concentration of attention. First, we de ne Hit area for
every levelk type as the minimal convex set enveloping the locations prieted by this
levelk type's best response hierarchy in game. For instance, for anL 2 subjecti (with
opponent i), the best response hierarchy consists os{%;y?n), <t Yhn ) (xﬁn TV
Thus we can construct a minimal convex set enveloping theskrée locations. We then
take the union of Hit areas of all levek types and see if subjects’ lookups are indeed
within the union. Figure IV shows an example oHit areas for various levek types in a
7 7 spatial beauty contest game with target (4 2) and the opponent's target ( 2;4)
(Game 16).

Figure V shows the empirical percentage of time spent on the iom of Hit areas,
or hit time, denoted ash;. Across the 24 games, average hit time is@2, ranging from
h; = 0:81 (in Game 9), toh; = 0:36 (in Game 21). However, hit time depends on the

2However, not all locations are looked up. This is likely because the eor structure of high speed
video-based eyetracking is very di erent from the error structure of mouse-tracking (such as MouseLab).
In particular, eyetrackers have imprecise spatial resolution due & imperfect calibration and peripheral
vision, but little temporal error (usually 250 or more samples per secony In contrast, mouse-tracking
has very precise spatial resolution for cursor locations and mouse cks, but movements of the mouse
cursor need not correspond to movements of the eye. Hybrid methods ara promising direction for future
research.
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size of the area. Even if subjects scan over the map uniformijne empirical hit time
would not be zero. Instead, it would be proportional to the ge percentage of the union
of Hit areas, or hit area size, denoted ds,s. To correct for this hit area size bias, we
calculate Selten [1991]'s linear \di erence measure of @heted success,'h; hg, i.e. the
di erence between empirical hit time and hit area size, andeport it in Figure VI. Note
that if subjects scan randomly over the map, the percentagd time she spends on the
union of the Hit areas will roughly equal the hit area size. By subtracting & hit area
size, we can evaluate how high the empirical hit time is comped with random scanning
over the map. These measures are all positive (except for Gag1g, strongly rejecting the
null hypothesis of random lookups. The-value of one sample t-test is:0001, suggesting
that subjects indeed spend a disproportionately long timenothe union of Hit areas.
In fact, sometimes subjects have hit time nearly 1. For exan® Figure VII shows the
lookups of subject 2 in round 17, acting as a Member B. The diater of each xation
circle is proportional to the length of each lookup. Note thathese circles fall almost
exclusively on the best response hierarchy of dn2, which is exactly her levek type
(based on lookups) according to the fth column of Table II.

To sum up, the aggregate result is largely consistent with Hypthesis 2a that subjects
look at locations of the levek best response hierarchy longer than random scanning
would imply, although the data is noisy. We next turn to test Hyothesis 2b and consider
whether individual lookup data can be used to classify suljes into various levelk types.

IV A Markov-Switching Model for Level- K
Reasoning

A The State Space

According to Hypothesis 2b, a levek type subjecti goes through a particular best re-
sponse hierarchy associated with her levkltype during the reasoning process, and carries
out transitions from x5 y<..b to xK;yK ,forK = k;k 2, and transitions from
Xt Lyl bt x5y, forK =k Lk 3 . Taking level-2 as an example, the
two key transition steps are from ((i?n ;yi?n) to (x*;,;y*in), thinking as a level-1 opponent,
best-responding to her as a level-0 player and fronx'(,,;y*;,) to (xZ,;y%,), thinking
as a level-2 player, best-responding to a level-1 opponeiiience, the reasoning process
of a level-2 subjecti consists of three stages. First, she would xate atx(?n ;yi?n) since
she believes her opponent is level-1, who believes she isH8veThen, she would xate
at (x*;.,;y%,), thinking through her opponent's choice as a level-1 bestsponding to a
level-0. Finally, she would best respond to the belief that lheopponent is a level-1 by
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making her choice xating at (xZ,;yZ,). These reasoning processes are gone through in
the mind of a subject and may be re ected in her lookups.

We de ne each stage of the reasoning process as a state. Thaedare in the mind of
a subject. If she is a level-2, then according to the best rempse hierarchy of reasoning, in
her mind, there are three states. To distinguish a state regding beliefs about self from
beliefs about the opponent, if a state is about the opponentye indicate it by a minus
sign. Thus, for a level-2 player, three states, namely = O ( xating at the location of
(xi?n ;yi?n) since she thinks her opponent thinks she is a level-3,= 1 ( xating at the
location of (x*;,,;y";,) since she thinks her opponent is a level-1), argl= 2 ( xating at
the location of (xZ,;yZ,) since she is a level-2), are expected to be passed throughiriy
the reasoning process of a level-2 subject. We hasten to gant that these states are in
the mind of a subject. It is not the level of a player. Take a lel-2 subject as an example.
Her level, according to the levek model, is 2. But there are three statess=0, s= 1,
and s = 2, in her mind. Which state she is in depends on what she is cemtly reasoning
about. A level-2 subject could be at statess = 1 because at that point of time, she is
thinking about what her opponent would choose, who is a lev&l according to the best
response hierarchy. However, this state = 1 is not to be confused withk = 1 for a
level-1 subject (whose states of thinking consist sf= 0 ands = 1).

More generally, for a levek subject, de ne s = k as the highest state indicating that
she is contemplating a choice by xating at the location >(}fn ;yi'fn), best responding to an
opponent of level-k 1). Imagining what an opponent of level{ 1) would do, state
s= (k 1)is dened as the second highest state when her xation is d@he location
(x* i;r:1L ; yki;r}) contemplating her opponent's choice by best responding teerself as a level-
(k  2).22 Lower statess= k 2;s= (k 3);::; etc. are de ned similarly. Then, steps
of reasoning of a subject's best response hierarchy of Hypesis 2b (associated with a
particular \ k") can be expressed as \0::;k 2, (k 1);k." We regard these k + 1)
steps of reasoning as thek(+ 1) states of the mind for a levelk playeri. Hence, for a
levelk subject, state space i consists of all thinking steps in the best response hieragch
of this particular levelk type. Thus, = f0;::;; (k 3k 2, (k 1);kg.

B The Constrained Markov Transition Process

To account for the transitions of states within a subject's nmd, we employ a Markov-
switching model by Hamilton [1989] and characterize the trasition of states by a Markov
transition matrix. Instead of requiring a levelk subject to \strictly" obey a monotonic
order of levelk thinking going from lower states to higher states, we allowmubjects to

22\We use the minus sign () to refer to players contemplating about their opponent. Note that the
lowest state 0 can be about one's own or the opponent. Thus the state 0 and0 should be distinguished.
For the ease of exposition, we do not make this distinction and call the lwest state 0.
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move back from higher states to lower states. This is to accauior the possibilities that
subjects may go back to double check as may be typical in expeents. However, since a
levelk player best responds to a levelk( 1) opponent, it is di cult to imagine a subject
jumping from the reasoning state of sag = (k 2) to that of s = k without rst going
through the reasoning state os = (k 1). Thus, we restrict the probabilities for all
transitions that involve a jump in states to be zerd?

Speci cally, suppose the subject is a particular levé’: Let S; be the random variable
representing subject's state at time, drawn from the state space

k=10 (ko 3k 2 (k 1);kg:

Let the realization of the state at timet be s;. Denote the state history up to timet
by St f si;:ns 1;50.24 Since lookups may be serially correlated, we model this by
estimating a constrained Markov stationary transition matix of states. Let the transition
probability from state S; ;= s; 110 S; = s be

Pr(St = sijSt 1= St 1) = s 1t - (1)

Thus, the state transition matrices  for levelk types fork 2 f 0; 1; 2; 3; 4g are

| 0
: o0 o 1 0
oo o1
0=( oo0)=(1); 1= ;2:%) 10 1 1 1!22;
10 11
21 0 2 1 22
0
0 1 oo o 1 O 0 0
o 0 o 1 0
10 o1 12 0 0
_ 10 11 12 0 _
3= ;4= 21 0 2 1 21 2 2 3 0
21 0 21 2 2 21 3
30 31 32 3 3 3 4
30 31 3 2 33
4 0 a1 4 2 4 3 4 4

Note that the upper triangle where the column number is greatdhan one plus the row
number is restricted to zero since we do not allow for jumps.

C From States to Lookups

When a subject is in a particular state, her reasoning will beerected in the lookups which
we can track. Recall that for each gama, G, is the map on which she can xate at.

23Estimation results without such restrictions are similar to the results presented below and are provided
in Supplementary Table 4: 12 of the 17 subjects are classi ed as the samevelk lookup type.

24In the experiment, subjects could look at the entire computer sceen. Here, we only consider lookups
that fall on the grid map and drop the rest.
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De ne a state-to-lookup mappingl¥ : ! G, which assigns each statea corresponding
lookup location on the mapG,, according to the levelk model?® Suppose a level-2 player
is inferred to be in states = 1, then by the mappingl2, her lookup should fall exactly
on the locationl2( 1). In words, when a level-2 player is in state = 1, she is thinking
about what her opponent as a level-1 would choose. Hence, thats-to-lookup mapping
12( 1) should be on the location a level-1 opponent would choosk.her lookup is not
on that location, we interpret this as an error. We assume adg error structure so that
looking at locations farther away froml2( 1) is less likely.

Formally, the lookup sequence in triah is a time series ovet = 1;:::; T, whereT, is
the number of her lookups in this gamen. Because of the logit error, a level- subject
may not look at a location with certainty. Therefore, at thet-th lookup, let the random
variable R!, be the probabilistic lookup location inG,, and its realization ber!. Denote

Conditional on S; = s;, the probability distribution of a level-k subject's probabilistic
lookup R!, is assumed to follow a logit error quantal response model Gtered at 1X(s,)),
independent of lookup historyR!, 1. In other words,

X ri, 1K
Pr(Rf, = rijS = syRL 1) = Pk o In(S)

exp( vkg TE(SK)" @)

ngn

where 2 [0;1 ) is the precision parameter. If ( = 0, the subject randomly looks
at locations inG,. As ! 1 , her lookups concentrate on the lookup locatiotf(s;)
predicted by the states; of a levelk.

Combining the state transition matrix and the logit error, we can calculate the prob-
ability of observing lookupr!, conditional on past lookup historyR!, *:

X
PRy = ryjRp )= Pr(S = iRy 1) Pr(Ry = rijSi= suRy ) (1)

St2 k

25For instance, if a level-2 player with target (4; 2) in gamen = 16 (player 1 as shown in Figure 1)
is at state s = 0 at a point of time, the mapping 12, would give us the location125(0) = (0 ; 0) which a
level-0 player would choose (O in Figure I) since at this particularpoint of time, she is thinking about
what her opponent thinks she would choose as a level-0. Similarly, if evel-2 player is in state 1, then
the 125 mapping would give us the locationl?s( 1) = ( 2; 3) which a level-1 opponent would choosel(l ,
in Figure 1) since at this particular point of time, she is thinking ab out what her opponent would choose
as a level-1. Finally, if a level-2 player 1 is in state 2, then the maping |2, would give us the location
125(2) = (2;1) which a level-2 subject would choosel(2; in Figure I) since at this particular point of
time, she is thinking about her choice as a level-2.
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where

Pr(S = sjRp 1)
= Pr(St 1= s 1jRy 1) PH(S = &St 1= s 1;R; )
S[)&Z Kk
= Pr(St 1= S'[ 1JR}’1 1) st 1! St
St 12

_ X Pr(Sua= s ajRE PR M= S 1= s Ry ) o
B Pr(RL L= rt 4Rt 2) st st (2

St 12 «

The second equality in equation (2) follows since accordirig the Markov property,
St 1= St 1issucientto predict S; = s;. Note that equation (2) depends on the Markov
transition matrix. Meanwhile, the second term on the right land side of equation (1)
(Pr(RY = rtjS; = si;RY 1)) depends on the logit error. Notice that all the terms on the
last line of equation (2) are now expressed with the time indemoving backwards by one
period. Hence, for a given game, coupled with the initial distribution of states, the joint
density of a levelk subject's empirical lookups, denoted by

fXrl et Loplny o Pr(rlonete pln)
= Pr(r)Pr(r2jrtyPr(rdjrl vy Pr(rirjri; e, eI 1y
can be derivecf® The log likelihood over all 24 trials is thus
" v ”
LCw W=In iy ) 3
n=1

Since levelk reasoning starts from the lowest state (here state 0), we asse this
initial distribution of states degenerates to a mass pointtahe lowest state corresponding
to level-0 (of herself ifk is even and of her opponent ik is odd). With this assumption,
we estimate the precision parametery and the constrained Markov transition matrix
using maximum likelihood estimation for eactk, and classify subjects into the particular
levelk type which has the largest likelihood.

To summarize, for each levek, we estimate a state transition matrix and a precision
parameter for the logit error. Thus for a given initial distibution of the states, we know
the probability distribution of states at any point of time using the state transition matrix.
Moreover, at any point of time, the mappingl¥ from the state to the lookup gives us the
lookup location corresponding to any state when there is norer. Coupled with the error

26See Supplementary Appendix A3 for a formal derivation.
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structure, we can calculate the probability distribution of \arious errors and therefore the
distribution of predicted lookup locations. We then maximie the likelihood to explain
the entire observed sequence of lookups. We do this for varsolevels. The nal step is
to select thek in various levelk types to best explain the observed sequence of lookups
for each subject.

D Vuong's Test for Non-Nested but Overlapping Models

The above econometric model may be plagued by an over tting pblem since higher level-
k types have more states and hence more parameters. It is not@using if one discovers
that models with more parameters t better. In particular, the Markov-switching model
for levglk has k + 1) states with a (k +1) (k + 1) transition matrix. This gives the
model @ parameters in the transition matrix alone?’ For example, a level-2 subject
has 3 states 0, 1, and 2 and ve (Markov) parameters, but a level-1 subject hasnly 2
states 0 and 1 and two (Markov) parameters. Hence, we need to keasure our estimation
does not select higher levels merely because it contains metates and more parameters.
However, usual tests for model restrictions may not apply, reie the parameters involved
in di erent level-k types could be non-nested. In particular, the state space aflevel-2
subjectfO; 1;2g and the states of a level-1 subjedtO; 1g are not nested. Yet, the state
space of a level-1 typef 0; 1g, is nested in the state space of a level-3 typ€0; 1, 2;3g.
In order to evaluate the classi cation, we use Vuong's tesbf non-nested but overlapping
models (1989)8

Let Lk be the type which has the largest likelihood with correspomuy parameters
( x; k) Let Lk? be an alternative type with corresponding parameters (a; ga). In
our caseLk is the type with the largest likelihood based on lookups. Thalternative
type Lk? is the type having the next largest likelihood among all lowdevel types?® If
according to Vuong's test,Lk is a better model thanLk?, we can be assured that the
maximum likelihood criterion does not pick up the reportedytpe by mere chance. Thus,
we conclude that the lookup-based type itk . If instead we nd that according to
Vuong's test, Lk and Lk? are equally good, then we conservatively classify the subje
as the second largest lower typkek?.

Table Il shows the results of the maximum likelihood estim&n and Vuong's test

27Since each row sums up to one and elements with the column index greatthan the row index plus
one are zero, we have in total K + 1)(k+1) (k+1) [k(k 1)]=2 =[k(k + 3)] =2 parameters.

28See Supplementary Appendix A4 for the details of Vuong's test for non-ngted but overlapping models.
Note that this is the generalized version of the well-known \nested" \uong's test.

29Recall that the reason why we look at Vuong's test is to avoid over tting. Hence, if the alternative
type has a larger transition matrix (more parameters) but a lower likelihood, there is no point to perform
a test, sinceLk will not su er from the problem of over tting because it has fewer par ameters but has
a higher likelihood. This leads us to consider only lower level tpes as the alternative type.
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for each subject. For each subject, we list hertk type, her Lk? type, her Vuong's
test statistic, and her lookup-based type according to Vua's test in order. Six of the
seventeen subjects (subjects 1, 5, 6, 8, 11, 13) pass Vuong& and have their lookup-
based type asLk . The remaining eleven subjects are conservatively classdl asLk?.
The overall results are summarized in column (A) of Table IllAfter employing Vuong's
test, the type distribution for (LO;L1;L2;L3;EQ) is (1;6;4;4;2).3° The distribution is
slightly higher than typical type distributions reported in previous studies. In particular,
there are twoEQ's and fourL 3's, accounting for more than one third of the data. Treating
the EQ type as having a thinking step of 4, we nd that the average nutmer of thinking
steps is 200, in line with results of the standardp-beauty contest games using Caltech
subjects, but higher than normal subjects! Neither employing Hansen [1992]'s test
(to avoid nuisance parameter problems), nor iteratively agping Vuong's test (until the
likelihood of the current type is signi cantly higher than that of the next alternative)
alters the distribution of levelk types by much (see A4 and Supplementary Table 3).
Up to now, we have shown that lookups do fall on the hotspots ohé best response
hierarchy (Hypothesis 2a). Classifying subjects based onokups (Hypothesis 2b) gives
us a reasonable level of sophistication as argued above. Hasve one might still wonder
whether the results reported in Table Il is due to a misspeciation of possible types.
After all, many assumptions are required for Hypothesis 2b todid. We take up this
issue now. Our argument is that if we take the leve{-theory literally to interpret under-
lying reasoning process, the classi cation based on loolaighould match well with the
classi cation using nal choices alone since the levéd re ects a player's sophistication.

V  Matching Up with Final Choices

We rst classify subjects using their nal choices and compa classi cations based on
choices to those based on lookups. We point out the similaribetween these two clas-
si cation results. Finally we address how lookup data coulddip classify subjects when
the choice data is noisy.

Following the literature, we classify individual subjects ito various levelk types based
on nal choices alone. Supplementary Appendix A5 provides dats of the maximum

301gnoring the two pseudo-17 subjects (subjects 3 and 17, both classi eds L1) whose choices sug-
gest non-compliance to levek theory, the type distribution for ( LO;L1;L2;L3;EQ) is (1;4; 4, 4;2). For
pseudotypes, refer to Costa-Gomes and Crawford [2006].

3lCamerer [1997] reports that Caltech students play an average of 288 in ap-beauty contest game with
p=0:7. This is betweenL?2's choice of 245 and L 3's choice of 1715. Higher than typical distributions
could also result from the spatial beauty contest game being intuitiveand not requiring mathematical
multiplication (as compared with say, the standard p-beauty contest game), as Chou et al. [2009] show
that a graphical presentation of the standard p-beauty contest game yields results closer to equilibrium.
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likelihood estimation and pseudotype test we adopt from CtsGomes and Crawford
[2006], and subject-by-subject results are reported in th@xth column of Table Il. The
idea of the pseudotype is to treat each subject's choices ag@assible type. This is to
examine whether there are clusters of subjects whose cheicesemble each other's and
thus predict other's choices in the cluster better than the gi@-specied level-k types.
Since we have 17 subjects, we include 17 pseudotypes, eactstrtocted from one of our
subject's choices in 24 trials. The aggregate distributionf types (with or without the
pseudotype test) are reported in column (B) and (C) of Table Il In Table IlI, the choice-
based and lookup-based classi cation results look similarThe choice results indicate
slightly more steps of reasoning (22 2:13 for choice-based types instead of(® for
lookup-based types). This suggests that the lookup-basestienation (and the underlying
Hypothesis 2b) is in the right ballpark. In fact, if we considethe classi cation results
on a subject-by-subject basis, the similarity between themo estimations are even more
evident. As reported in Table II, overall, for ten out of the seenteen subjects, their
lookup-based types and the choice-based types are the sanme.other words, for most
subjects, when their choices re ect a particular level of ghistication, their lookup data
suggests the same level of sophistication. Such alignmentadlassi cation results would
be surprising if one thought Hypothesis 2b was too strong a ata This supports a literal
interpretation of the levelk model. When a subject's choice data indicates a particular
level of sophistication, her lookups suggest that the besésponse hierarchy of that level
Is carried out when she reasons.

Since the classi cation based on lookups and that based on otes align, we next turn
to discuss the subtle di erences between them. We evaluathe robustness of individual
choice-based classi cation by performing bootstrap. Thigs a departure from past lit-
erature such as Costa-Gomes and Crawford [2006], as they du nonsider whether the
maximum likelihood estimation has enough power to distingsin between various types.
For example, reading from Supplementary Table 1, for subjed#, the log likelihood is

9889 forLO, 8417 forL1l, 9699 forL2, 7667 forL3, and 7445 forEQ. Maxi-
mum likelihood estimation classi es her aEQ, although the likelihood ofL 3 is also close.
In this case, classifying this subject aEQ based on maximum likelihood alone may be
guestionable. To the best of our knowledge, there has not lmeany proposed test in
experimental economics for evaluating the robustness of manim likelihood-based type
classi cations. Hence we propose a bootstrap procedure (&fr [1979]; Efron and Tib-
shirani [1994]) to deal with the issue of robustnes$$. Imagine that from the maximum
likelihood estimation, a subject is classi ed as a particulatevelk type with the logit

32Costa-Gomes and Crawford [2006] do use various information criteria to peofm the horse-race.
However, this still fails to address how much the runner-up is \cbse" to the winner.
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error parameter . Draw (with replacement) 24 new trials out of the original déaset
and re-estimate herk and . We do this 1000 times to generate the discrete distribu-
tion of k and the distribution of . Then, we evaluate the robustness d€ by looking
at the distribution of k. Each levelk type estimated from a re-sampled dataset that is
not the same as her original levet-type is viewed as a \misclassi cation," and counted
against the original classi cationk. By calculating the total misclassi cation rate (out
of 1000 re-samples), we can measure the robustness of theioaigclassi cation. This
bootstrap procedure is in the spirit of the test reported in &mon [2001], which evaluates
the robustness of the parameters estimated in a EWA learningiodel using simulated
data.

The results of this bootstrap procedure are listed in TableM. For each subject, we
report the bootstrap distribution of k (the number of times a subject is classi ed intd.0,
L1,L2, L3 orEQ inthe 1000 resampled datasets). The bootstrap misclassitian rate
(percentage of times classifying the subject as a type dient from her original type) is
listed in the last column. For example, subject 14 is origitlg classi ed as EQ, but is
only re-classi ed asEQ 587 times during the bootstrap procedure. Subject 14 is inste
classi ed asL3 228 times and ad. 1 185 times. Hence, the distribution on the number
of times that subject 14 is classied intoLO, L1, L2, L3 or EQ in the 1000 resampled
datasets is (9185 0; 228 587) and the corresponding misclassi cation rate is:413.

The bootstrap results align surprisingly well with whether he lookup-based classi-
cations match their choice-based types. In particular, forthe ten subjects whose two
classi cations match, all but three of them have (choice-lsed) bootstrap misclassi cation
rates lower than 005, suggesting that their classi cations are truly sharg® In contrast,
for six of the remaining seven subjects whose two classi eats do not match, their
choice-based type have bootstrap misclassi cation ratesghmer than 184%, suggesting
that misclassifying these subjects into the wrong types ugj choice data alone (due to in-
signi cantly larger likelihoods) is possible. The di ererce is signi cant, having ap-value
of 0:0123 according to Mann-Whitney-Wilcoxon rank sum test. To sunup, when the
lookup-based types match the choice-based types, it is whtre choice-based classi ca-
tion is quite sharp. In contrast, when they di er, the classication based on choice is not
that sharp, suggesting that for these subjects, choice dataay not be enough.

In this case, one wonders whether lookup data could provide atidnal separation of
types to predict choices. A closer look at Table IV (see the pe underlined) indicates for
ten subjects, when we resample their choices, the level thase most frequently classi ed
into in the 1000 resampled choice datasets is exactly theievel classi ed using their

330ne of these three subjects (subject 17) fails the pseudotype tesind is unlikely to resemble any of
the levelk types. The remaining two subjects (subjects 2 and 4) have a misaksi cation rate of 0:076
and 0:110. These are marginally higher than @5.
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lookups3* For six other subjects, their lookup-based type is the one ¢y are second most
frequently classi ed into® In fact, these subjects' lookup-based type also rank secoimd
terms of likelihood based on choice$. A subject's lookup-based type is classi ed using
her lookups, not using her choices. The high predictabilityf@hoices by her lookup-based
type suggests that the lookup-based type is a viable altertinze for predicting choices even
when the lookup-based types di er from the choice-based tgs.

In order to evaluate whether lookup data can indeed improveassi cation, we perform
an out-of-sample prediction horse-race between the lookupd®ed and choice-based types.
Note that our lookup-based model makes predictions on looksipnot on nal choice per
se. However, we can rst classify individual subjects into agticular level-k type based
on either lookups or choices using two thirds of the trials,ral see how well the classi ed
levelk type predicts the nal choices of the remaining one third ofrials. In particular,
for each subject, we classify her as a levéls type based on lookups (using the rst 16
sequences of lookups) and a lev€]; type based on nal choices (using the rst 16 nal
choices) respectively. We then use these particul&r's (one for lookup, the other for
choice) to predict nal choices of the last eight trials. Sine we are mainly interested in
how lookup data can provide additional separation of typesd predict behavior) when
choice data is insu cient, we group subjects into those whaschoice-based classi cation
Is robust (having bootstrap misclassi cation rates greatethan 0:05 as reported in the
right panel of Table Il), and those who is not.

To compare the prediction power of the two models, we report @an square errors
of the predicted choices for the lookup-based and choiceskbd models. In particular,
suppose a subject chose locatiogy, = (X,;Yn) in trial n, while the lookup-based and
choice-based models predicted!(;y!) and (x¢;yS). Then, the mean square errors of the
two models arex,  x. g Yo  Yh 2 andjx, xﬁ,j2+jyn yﬁj2 respectively. As reported
in Table V, though overall performance of the two models are ogparable, among the nine
subjects whose choice-based types are not robust, the lopkeased model has a better
mean square error of 5 (compared with 867 for the choice-based model) predicting
the last eight trials.3” A Wilcoxon sign rank test shows that this di erence is margindy
signi cant (p=0:0781)3®

To see how signi cant this gain in prediction power is, we callate the \economic

34They are subjects 1, 2, 4, 5, 7, 10, 12, 13, 16, 17 (those whose two classi cations majkch

35They are subjects 3, 6, 8, 9, 11, 15.

36Refer to the likelihood double underlined in Supplementary Tabe 1.

87Even among the \robust" subjects, subject 7 is the only one whose loakp-based model has a much
larger mean square error than the choice-based model.

38f we focus only on the seven subjects whose two classi cations die the lookup-based model still
has a better mean square error of 6.55 (compared with 8.68 for the choice-baksenodel), though not
statistically signi cant.
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value" (cf. Camerer, Ho and Chong, 2004) of the two models, &valuate how much these
predictions could potentially add to the opponent's payo s In particular, we calculate
the opponent's payo s had they followed these models and liegsponded to the model
predictions, Fo°" and see how much an opponent can gain in addition to his aclua
payos, “ in the experiment. The economic value is the percentage dfis gain,
compared with the maximum gain possible, BR: (Note that economic values could be
negative if the model performs worse than actual subjects.)

Follow Actual

EV = BR Actual

Results in the last two columns of Table V show that both choe:based and lookup-
based models have good predictive power (compared to actislbjects) and can (on
average) increase opponent payo s by 3941%. Moreover, the bootstrap robustness test
indeed evaluates choice-based models well|the second pdre Table V show that for
the robustness subjects, the average economic value for tiice-based model is 58%,
higher than the lookup-based model (42%). On the other hand, the lookup-based model
is a good compliment, especially when choice data is not goedough: As shown in the
the rst panel of Table V, for the non-robust subjects, the aveage economic value for the
lookup-based model is 48%, compared with 243% for the choice-based model. In other
words, among the subjects whose choice-based type is notusbto bootstrap, had the
opponent known her lookup-based level, his payo s could badreased by 4@%. As a
comparison, had the opponent known her choice-based leveg payo s could be increased
by 24:3%.

To summarize, these results show that lookup data can help asn rm classi cation
results based on choices alone and even provide better dlassion results when choice-
based classi cations are not robust. Moreover, lookup datprovide a chance to put the
levelk model to an ultimate test, asking if the model can not only predt nal choices,
but also describe the decision-making process employed bpjects by going through the
best response hierarchy specied in Hypothesis 2b. Results Tlable Il show that the
levelk model does indeed hold up under this test for our spatial begucontest games.
One ought to keep in mind that explaining the reasoning proes is a hard one, if not
harder than explaining choices. Seeing in our dataset, forome than a half of subjects,
their lookup-based types are aligned with their choice-bad types should be read as a
strong support to the levelk model. This may be due to the graphical nature of the spatial
beauty contest games. How general this result is should betes in future experiments
in which the reasoning process can somehow be analyzed.
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VI  Conclusion

We introduce a new spatial beauty contest game in which the pcess of reasoning can
be tracked, and provide theoretical predictions based on ¢hequilibrium and a literal
interpretation of the levelk theory. The theoretical predictions of the levek model yield
a plausible hypothesis on the decision-making process whbe game is actually played.
We then conduct laboratory experiments using video-basededracking technology to
test this conjecture, and t the eyetracking data on lookupsusing a constrained Markov-
switching model of levelk reasoning. Results show that based on lookups, experimdnta
subjects' lookup sequences could be classi ed into followgi various levelk best response
hierarchies, which for more than a half of them coincide wittypes that they were classi ed
into using nal choices alone. Moreover, when the two clasgiations di er, most of the
choice-based types are not robust to bootstrap, indicatinfat we might have misclassi ed
them due to insigni cantly larger likelihoods. In fact, lokup-based types often come out
second (if not rst) in the bootstrap procedure. Finally, for all subjects whose choice-
based models are not robust to bootstrap, an out of sample plietion exercise shows
that lookup-based models predict nal choices better. Thisuggests that studying the
reasoning process (such as through eyetracking lookupshdadeed help us understand
economic behavior (such as individual's nal choices) bett.

Analyzing reasoning processes is a hard task. The spatial bgacontest game is
designed to fully exploit the structure of thep-beauty contest so that subjects are induced
to literally count on the map to carry out their reasoning as irplied by the best response
hierarchy of a levelk theory. The high percentage of subjects whose classi cati® based
on lookups and choices align could be read as a support to tleedlk model as a complete
theory of reasoning and choice altogether in the spatial beilgucontest game. Whether
this holds true for more general games remains to be seen. N#éweless, the paper points
out a possibility of analyzing reasoning before arriving athoices. A design exploiting
the structure of the game and is ideal for the tracking techrnogy used seems to be
indispensable.

Pennsylvania State University
National Taiwan University
National Taiwan University
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