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Abstract. Of the five AES finalists four—MARS, RC6, Rijndael, Twofish—
have not only (expected) good security but also exceptipagbrmance on the
PC platforms, especially on those featuring the Pentium #m® NIST AES
analysis platform. In the current paper we present new padace numbers
of the mentioned four ciphers resulting from our carefulptimized assembly-
language implementations on the Pentium Il, the succesgbedentium Pro.
All our implementations follow well-defined API and timingventions and
sensible guidelines, like no using of self-modifying codel &ey-specific static
data — i.e., tricks that speed up the implementation buteaséme time restrict
the field of application. Our implementations are uR&6 percent faster than
previous implementations. Our work also shows how a simpknge (inclu-
sion of the MMX technology) in the analysis platform can ieftce the relative
encryption speed of different ciphers. To enable everyorminpare their imple-
mentations to ours, we also fully specify our proceduresi usebtain the speed
numbers.

1 Introduction

For more thar20 years, DES [FIP77] has been a widely employed cryptogragthit-
dard. While the best cryptanalytic attacks against DESgifitial and linear cryptanal-
ysis) are still highly impractical, during the last years ®Ras became obsolete for its
too short key and block sizes, not withstanding the currdwéaces in computing tech-
nology. Motivated by this, NIST initiated a new effort to tape DES as a standarzll
algorithms were submitted arid algorithms were accepted as AESivanced Encryp-
tion Standard candidates, of which candidates—MARS [BCD98], RC6 [RRSY9§],
Rijndael [DR98], Serpent [ABK98], Twofish [SKW99b]—were chosen to the second
round.

However, the AES process was started not only due to thedlieakreasons: there
are a few well-known constructions, including 3DES, th&trsdo have very good secu-
rity margins. Unfortunately, 3DES, based on the hardwarented DES, is unsatisfy-
ingly slow on the moderfi2- and64-bit computer architectures: modern block ciphers
are up tol 0 times faster than 3DES. Regardless of these ciphers hamjrgpven (even
by time) security properties, they are widely used in theustdy by pragmatic reasons:
hardware applications liké GBits/s Ethernet or on-the-fly encryption t60 MByte/s



SCSI hard disks are requesting for faster ciphers. Cle#ly,situation of having a
(moderately) secure and (moderately) fdstjure standard DES, a (probably) secure
and (clearly) slonde factostandard 3DES and some fast but with unknown security
marginde factostandards is not acceptable: there should be a single sthtigd is
both secure and fast. This is one of the reasons why, whetinigithe public to pro-
pose candidates for the AES, NIST explicitly stated thatrtbes standard should be
both “more secure and faster” than 3DES.

While security of the candidates cannot be exactly quadtifiethe currently known
methods, it seems to be easier to measure their speed. Howame is still a lot of
ambiguity in answering the question what AES candidate ésféstest. Several pa-
pers (including [Lip99,SKWW99a]) have compared AES candidates speed, but since
the implementations quoted in them are often incomparaislbgsed on pure estima-
tions), one cannot make direct conclusions about the effigi®f the ciphers based
on the published papers. Incomparability stems from thiedint implementation as-
sumptions, API's, hardware (e.g., processors) and soé&eug., compilers) used by
implementers. Even more, some of the timings presentediquis papers correspond
to “show-case” (as opposed to practically applicable) enpdntations, some exam-
ples of those being the fastest implementation of TwofishVi8%9b] that uses self-
modifying code and Brian Gladman’s implementations of ABSdidates [Gla99] that
use a number of key-specific static variables instead otafing a register to address
them, therefore effectively freeing some registers foreotlses. Especially in the case
of the Pentium family, where the number of available regssie very restricted, such
implementations may result in a huge speed up. However tipp#s of implementation
tricks restrict the application area of the implementation

In the current paper we try to give a satisfactory answerégjtinestion “what cipher
is the fastest on the Pentium II” by carefully optimizing thfastest AES candidates—
MARS, RC6, Rijndael and Twofish—in Pentium Il assembly, ggor all implementa-
tions exactly the same, reasonable in practice, API anddspeasurement conditions
for all the ciphers. Due to this, our results are much fainant most of the previously
known ones: our implementations can be seen as black bopésatpe in almost any
possible application of block ciphers on an environmentuiéag Pentium Il. Addi-
tionally, careful optimization process resulted in impkamations that are clearly faster
than the previously known implementations. (Except for figlg which has still a faster
“show-case” implementation.)

We start the paper by describing our platform of choice (8e@), implementation
philosophy and API (Section 3). Section 4 briefly surveys msults, and Section 5
gives more details on the problems encountered when impigngethe ciphers. More
information about the Pentium Il is given in the Appendices.

2 Choice of the Platform

Ouir first principal choice was the decision what processast By purely pragmatic
reasons we decided that the implementation environmeipgqn Intel Pentium family
CPU: while this family is not the most modern processor fgrailailable, it is the most
widespread one at the moment of writing this paper and madigily also during the



next few years. Therefore, since in the foreseeable futwstmof the software-based
commercial security applications run on the Pentium farfalyrecognized also by the
AES finalists designers), this family has the most directaotn the choice of a cipher
by security consumers.

At second, from the Pentium family we decided to choose tmti&ra Il processor.
At first, it is a more advanced processor than Pentium ProN#t&T AES analysis
platform: the Pentium Il provides (twice) larger registpase due to the added MMX
technology, and many new MMX-specific commands. ComparagHadentium Pro,
the Pentium Il is also easier to obtain at the current stagee fentium Pro has been
out of the manufacturing for a while. On the other hand, thetigen 1l was preferred
by the authors to the Pentium Il since the latter is somewd@mhew and controversial
due to the privacy issues.

Another reason to choose Pentium Il was that as the succektoe NIST AES
analysis platform, implementing the AES candidates on #wiBm Il could provide
some insights on how generally suitable are the candidstese of which were specif-
ically optimized for the Pentium Pro, on future processasgihg features unpredicted
by algorithm designers. While this is not as crucial as withding the “future attacks”,
it still gives some ideas about the possible longevity ofdipder. (We clearly would
not want the AES ir20 years to have the role the 3DES has today!)

As shown in [Lip98], the MMX technology can seriously spe@d DEA ([LM90],
[LMM94]), one of the believably most secure block ciphershwg4-bit block size. As
stated in [Lip98], this can be done since IDEA has its keyilaites similar to those
of multimedia applications, for which the MMX technology svariginally created. An
open question posed in [Lip98] was how much would the MMX tethgy help imple-
menting other ciphers, including the AES candidates. IrfaHewing we will partially
answer to that question, showing that also some cipherg asily “simple” operations
can greatly benefit from the added MMX technology. A shortraiewv of Pentium Il
that is necessary forimplementers and for cryptographbosdesign ciphers optimized
for this platform is given in Appendix A. We refer for Intel maals for a more complete
overview.

3 Implementation Considerations

Several papers (including, in particular, [Lip99,SK\89a]) have compared AES can-
didates speed, but since the implementations quoted in énewften incomparable (or
based on pure estimations), one cannot make direct connkiabout the efficiency of
these algorithms based on the published papers. Inconifigratems from the differ-
ent implementation assumptions, API’s, hardware (prams$sand software (compil-
ers) platforms used by implementers. Even more, some ofithiers there correspond
to the “show-case” (as opposed to practically applicabtg)lémentations; including
the bizarre case that one candidate was claimed to be tlesfast its inventors laptop
under some suitable conditions.

As another example of the unsuitability of some “show-casgilementations, the
fastest implementation of Twofish [SK¥@9b] uses self-modifying code and therefore
cannot be used in a number of applications, while Brian GEalsimplementations of



AES candidates [Gla99] use a number of key-specific statieltes instead of allo-
cating a register to address them, therefore effectivelgifry some registers for other
uses. Especially in the case of the Pentium family, wherentineber of available reg-
isters is very restricted, such implementations may rasudt huge speed up. On the
other hand, Gladman'’s implementations cannot be usedaemplications, including
multithreaded programs and SMP (symmetric multi-procegssystems.

Most of the security customers need however speed numbyglisape in whatever
product they use in whatever environment in runs (for exampl a Linux kernel-
supported IPSEC implementation, secure login or multatesl access to encrypted
storage arrays). For users it is necessary to know in what@ment the measured
speed numbers were obtained, to be able to calculate théleosficiency of the
ciphers in their own environments. Additionally, full spigzation is important for other
implementers to be able to compare their implementatiotfseurs. Hence, apart from
providing “clean” implementations under some reasonabldip assumptions, we shall
also next fully specify these assumptions:

— We do not use self-modifying code (“‘code compilation” [SK®8b]) since it
makes the implementation inapplicable in a number of sitnat e.g., in operation-
system kernel and ROM-based applications.

— We additionally decided not to use key-specific static agdiase then the imple-
mentation could not be used, e.g., in SMP-capable systedhsatithreaded pro-
grams.

— We decided to maximally use the MMX technology since it sdawdt be forbidden
in any reasonable modern environment. (While using selflifging code and key-
specific static areas is generally considered to be a badgroging practice.)

— We decided to use exactly the same API (specified later ind@®e8tl) in all our
implementations.

— A number of well-understood assumptions that 1) improvesipeed and can be
easily followed by implementers or 2) are essential to ewealtle to measure the
speed:

e All codes and data are correctly aligned.

e Input and output texts and codes are preloaded to L1 cacheeipdssible
extent to reduce the number of cache misses.

e Simplicity of code: we tried to reduce time spent during imgtand optimiz-
ing the code. In particular, all our implementations usehhjigptimized but
round-number independent round macros. (Hence, our sssalild be slightly
bettered if every round would optimized separately to aveid., delays in
fetching stage.)

3.1 API

Since a different API can be influence the speed of an impléatien severely, we also
decided to fully specify the API used by us to make for the oitmplementers easier
to compare their implementations to the ours. We felt thatithnecessary, since AES
candidate implementations reported in [Lip99] vary gneatltheir API’s.



void xxKS(char *master, uint32 bitLen, char *eKey);

void xxEnc(char *inBlk, uint32 lenBIk, char *eKey,
char *outBIK);

void xxDec(char *inBlk, uint32 lenBlk, char *eKey,
char *outBIK);

where

xX is algorithm name (e.gRijndael ).

xXKS is key scheduling subroutine.

xXEnc is encryption subroutine that encrydenBlk blocks of plaintext starting from the
addressnBIk to the ciphertext locatiooutBlk , by using extended kegKey, in ECB
block cipher mode.

xxDec is decryption subroutine with the same input conventionsx&sc .

ui nt 32 is the type of32-bit unsigned integers (in the case of Pentium I, equairtsigned
long in the case of most compilers).

mast er is pointer to the master key bits.

bi t Len is the bit length of a master key.

eKey is pointer to subkeys and other initialization data, uséef lay encryption and decryption.

i nBl k is pointer to input texts to be encrypted in the casgxiinc and to be decrypted in the
case ofxxDec .

out BI k is pointer to the corresponding output texts.

| enBl k is number of blocks to be encrypted or decrypted.

Fig. 1. Specification of our API.

Note that our API, depicted in Figure 1, is essentially eglgt to the API's used
in most of the commercial applications, specifying onlysddnputs and outputs to the
algorithms that are really needed by the algorithms. (Navh#®e subroutines and their
parameters of course do not affect the speed, of course ABvas fixed for the key
length of 128-bits due to the feeling that at the time when greater keyssimrome
necessary, our implementation platform would already bistaty.

Here, the key schedule and decryption subroutines arefsggbonly for complete-
ness. Since in the current paper we are not interested inpti@iaation of these sub-
routines, we almost do not mention decryption and key sdeschereafter.

3.2 How to Measure a Number of Cycles

Different time measurement methods may change the speeteararmquite dramati-
cally. As in the case of the API's, we decided to use one, bmpublished andully
specifiedconvention (specified in Figure 2) for all the implementatio(Note that this
wrapping corresponds almost exactly to the method spedifigfebg00], to which the
reader is referred for a throughout explanation of the megithdhe inputs and key of
the cipher are generated randomly before the measuremgimtshbéo prevent “opti-
mization” for specific class of keys. The input varialdaBlk was chosen to be equal
to 8000 so that the input and output texts would not fit in the L1 ca&iso, time is

a work area of typ&int32 , used in later calculations.



movd mmO, dword ptr [time]; /* warm cache and set MMX stat®
XOr eax, eax;

cpuid; 1* serialize instructions*/
rdtsc; I* read time-stamp countet/
mov dword ptr [time], eax; /* save counter*/

Xor eax, eax;

cpuid; I* serialize instructions*/

I*  xxEnc() or xxDec() */
Xor eax, eax;

cpuid; I* serialize instructions*/
rdtsc; /* read time-stamp countet/
sub dword ptr [time], eax; /* compute the difference/
emms; /*  empty MMX state */

Note thattime is a4 bytes work area.

Fig. 2. Time measurement code

/* push all used registers/
cmp dword ptr [lenBIK], O;
jz L1;
align 16;
LO:
dec dword ptr [lenBIK];
jnz LO;
L1:
/*  pop these registers once moré

Fig. 3. Null function

Note that this method has some overhead, due to both higiclatef therdtsc
instructions and also the overhead caused by looping itt&ns likejnz which are
not formally part of the cipher itself. (Looping instructie can be seen as a part of
the block cipher mode, however.) We measure this overheasiog the null function
shown in Fig. 3 obtaining a valuailltime , and then we subtract it from the value of
time obtained by measuring the speeds of different encryptasmigtion procedures.
Finally, this result is divided by the number of blocks emad. Intuitively, by using
this method we obtain the number of cycles correspondingtolied implementation
of the block cipher, or to the implementation where we onlyecabout the time en-
crypting one block takes without adding any extra overh@adte that the subtracted
overhead number was equal406 in the casex = 8000. One could easily add this
number to those presented later to get the number of cydgthoverhead.)

Chosen time measurement method is also reasonable ingaraefiien the value
of lenBlk was chosen to be different, for most of the implementationsli{ding
the implementation of null cipher), the execution timeséased by almost the same
constant. Hence, the null cipher proved experimentallyataviell-defined.



Cipher Mbits/s on a 45(Cycles pefBest previous resybpeedup
MHz Pentium Il |block

Null ciphen— 6 — —

RC6 258 Mbits/s 223 243 [Riv98] 8%

Rijndael |243 Mbits/s 237 320 [DR98] 26%

Twofish  |204 Mbits/s 282 315 [SKWT99D] 11%

MARS 188 Mbits/s 306 390 [BCD'98] 22%

Table 1. Performance in clock cycles per block of output of four AES&fists. (Only encryption
considered)

Finally, we did a loop o500 times over the described measurements and then chose
the smallest number for every cipher, since that correspandst likely to the case
where most of the data and code are in L1 cache and the braedkciion works suc-
cessfully: i.e., to the bulk encryption speed of the cipksslf.

4 Implementation Results

From the five AES finalists, one (Serpent) is regarded as a s@ngervative design
but at the same time also being clearly slower than the otlS finalists. Rest of the
finalists have comparable timings on most of the modern caenplatforms, where
one of the ciphers is the fastest in one platform, and anatherin another platform.
Since also on the Pentium Il processor, Serpent seems taysloer by the published
data, we decided postpone its implementation to the futtdecancentrate on the fast
ciphers.

Timings, obtained by measuring the speed of implementatipnfollowing pre-
viously specified procedures are summarized in TabléThe numbers in the middle
columns show how many cycles it takes to encrypt b2t bit block by using the cho-
sen cipher with d28-bit key. These results indicate that the chosen four AESisiisa
are extremely fast. For comparison, the standard hashitdgpSHA-1 hashesa 512-
bit block in837 cycles (i.e.,13.1 cycles per byte) and DES and 3DES encryptiebit
block respectively ir840 and928 cycles (resp42.5 and116 cycles per byte) [PRB98],
while RC6 and Rijndael respectively encrypii28-bit block in 223 and 237 cycles
(resp.,13.9 and14.8 cycles per byte). However, note that the cited timings inBBB]
were obtained on a plain Pentium and therefore could modigty be improved on
the Pentium II.

Our results seem to indicate, that the speed differencedeatwlifferent ciphers is
less than expected: as before, RC6 is still the fastest cipinéhe Pentium 11, but the
difference between it and Rijndael has decreased seriddslyce we hesitate to say
that RC6 is the fastest cipher. However, based on the cisdtse we can classify the
ciphers to two groups: blastingly fast ciphers RC6 and Rigichnd somewhat slower,
but still very fast ciphers Twofish and MARS.

1 \We also started to code the decryption routines, finishings R€cryption 209 cycles per
block) and Twofish decryptior2{6 cycles per block).



However, one has to keep in mind that RC6 and MARS have designres that
make them specifically efficient on the Pentium Pro (and itcessors), while their
performance seriously degrades on other processors [|$O&* 99a]. This is due to
the use of complex instruction82-bit multiplication and data-dependent rotation) that
are cheap on the P6 family (Pentium Pro, Pentium II, Celexaon and Pentium III)
but very expensive on most of the other platforms. Intenggdfi also the next generation
Pentium processor (code-named “Willamette”, [Int00]) hetency 10 multiplication
and latency or 4 shifts, as compared to latend¢ynultiplication and latency shifts on
the P6 family [Int00, Section 4.1.3]. Hence, RC6 and MARS ldaonsiderably slow
down on the Willamette, the next generation Pentium familycpssor. On the other
hand, Rijndael and Twofish are based on simple operatiomsrianequally well on
all platforms. The speed ratio between Rijndael and Twofestrss be remaialmost
the same on the other platforms [Lip99] (namely, Rijndaehgé . .. 25% faster than
Twofish).

Note that the speed up percents in Table 1 correspond to thievad speed ups
compared to the fastest “clean” implementations (i.e s¢hwot using key-specific static
data or self-modifying code). However, these percents doalveays mean that our
implementation techniques were exactly as much betteeXample, the best previous
implementation of Rijndael was done for the plain Pentiuat ftot for the Pentium Pro:
a factor that may have negatively affected its performambe. best previous “clean”
implementation of MARS was written in C, and therefore hagbad relatively slow
performance. However, our own C implementation of MARS &acly faster than the
one given in Table 1. In the case of Rijndael, most of the &tadbn Rijndael is due
to the efficient use MMX technology. In general, speed up comainly from better
optimization (elaborated tradeoff between processoratpey stages) and full usage of
the Pentium Il possibilities (i.e., the MMX technology).

To further clarify how does the Pentium Il architecture iropte speed, Table 2
shows the detailed information of our implementations iorgption mode in the micro-
operation level. Usage of the table is simple. For exampléhé intersection point of
“@round” row and “port01” column in TwofishEnc table one would find 9. That
means that there ai@ poperations in the round function @fvofishEnc  which will
be executed on pottor port1.

Interestingly, our implementations of MARS, Rijndael angofish all require ap-
proximately the same number pbperations, while RC6 is about two times “better”
in this category. On the other hand, RC6 is also the worstetipt parallelize: while
in Rijndael, more thaR.5 poperations are executed per a cycle, RC6 can only mildly
use the super-scalar parallelism of Pentium Il. More ciggpacific comments will be
given in the next.

5 Cipher-Specific Comments

51 MARS

In the case of MARS [BCD98], the speed difference between a carefully optimized
C implementation (using a recent snapshot ofghe compiler) and an optimized as-
sembly language implementation is only abat® on the Pentium Il. The speedup



[Iport Ofport 1Jport 0Z]port Zport port 4total

MARS encryption (.87 pops/cycle)
prewhitening 5 8 13
forward mixing 16 77 32 125
@core x16) 6 9 3 18
backward mixingg 16 85 32 125
postwhitening 1 8 4 4 4] 21
total 12 1 319 12 4 4{| 572
RC6 encryption 1.47 pops/cycle)
prewhitening 2 7 9
@round (x20) 8 5 2 15
postwhitening 1 4 5 5 5 20
total 16 1 10 52 5 5| 329
Rijndael encryption 4.54 pops/cycle)
whitening 1 8 6 15
@round &9) 4 1 34, 19 58
last round 4 3 31 20 3 3| 64
total 400 13 345 197 3 3|| 601
Twofish encryption %.11 pops/cycle)
prewhitening 5 8 13
first round 5 19) 10 34
@round (x15) 6 190 10 35
postwhitening 2 1 8 4 4 4]l 23
total 97 1 317 17 4 4{| 595

Table 2. Number ofuoperations in our implementations

comes mainly from a slightly more efficient allocation of th&eger registers and some
(minimal) usage of the MMX instructions in the assembly iempkntation. However,
the MMX technology is only moderately useful for MARS, sirtbe complex instruc-
tions performed in MARS (i.e., 32-bit multiplication, dadependent rotation and S-
box lookups) are not available for the MMX registers. Adulitally, due to the high
data-dependency there is very limited freedom in meanihgfascheduling the in-
structions in MARS, which also means that one cannot avadithaldelays on all the
processor operating stages.

Another drawback is that during MARS encryption, some ekeoports are con-
siderably more overloaded than others. Namely, more ti&®of noperations go either
to port0 or 1. The most overloaded is pdit sincel28 poperations go only to this port
— including16 multiplications and extensively used rotations.

5.2 RC6

From implementers point of view, problems arising when mjzing an RC6 imple-
mentation are similar to those arising when coding MARS imynaspects: both ci-
phers rely on the same complex instructions, have longcatifiaths and overloaded



port 0. However, since RC6 uses multiplications even more extehsiit is even less
parallelizable. Table 2 shows that our implementationlidek160 port0 poperations,
which includest0 multiplications with latency.

RC6 is a very Pentium ll-friendly cipher, and it is very easycbde it even in the
assembly language. It can also be very efficiently implee@m C: the speed differ-
ence between a C implementation and an assembly implerimenigaboutl8%. (The
difference is bigger than in the case of MARS simue , the test compiler, performs
very poorly in translating the quadratic formulas of type(2z + 1) to the Pentium I
assembly language.) It is straightforward to obtain anmiziéd assembly language
implementation from the C implementation: one does not lmagay possibilities to
reschedule the code.

5.3 Rijndael

As opposed to MARS and RC6, Rijndael [DR98] is not C-frienglyleast nogcc -
friendly) in the sense that assembly implementation is aHdi% slower thangcc -
implementation of the same cipher. It is however mainly duthe inefficiency of the
gcc compiler: our implementation of Rijndael makes very heagg of the MMX
technology, but also of 8-bit instructions provided by Remtfamily. Howevergcc
cannot efficiently use either of these.

Rijndael can effectively use the MMX since Rijndael is basaly on most simple
imaginable operationddqad , xor ), all of which are supported by the MMX technol-
ogy. Additionally, since Rijndael has large internal platidm (at least four-times, but
partially up to16-times parallelism!), there is a large number of possibiito resched-
ule its code. Our implementation was obtained by doing soviythat all the delays
in the different stages of the Pentium Il operation would beimized. The final result
is very impressive for the Pentium Il: it execute§4 poperations per a cycle.

Not the last factor that makes Rijndael suitable for the emtl is the fact that
almost exactly one third of thgoperations in our implementation of Rijndael go to
port 2, while the remainin@/3 of poperations go to port8 and 1. Due to this and
parallelism we get that during the Rijndael encryptiomoperations could be executed
in parallel almost all the time. However, this (not to mentadher aspects like decoding
and fetching delays) also mak28 cycles per round a lower bound for Rijndael and
shows that our result may be very close to the optimal oneatgiitte more efficient
implementations, the Pentium Il should feature three AL concurrent memory
access ports and also more decoders and retirement uitarés that are not cipher-
specific and would improve the speed of most of the applinatio

Finally, we measured the timings ofround Rijndael for variable without any
additional fine-tuning: those implementations are unojzét since they use the same
round macros as thi)-round Rijndael without any additional effort to optimizeem
to reduce, say, fetching delays. In particular it turnedtbat8-round Rijndael (essen-
tially equivalent to the cipher Square [DKR97] from the implenters point of view)
encrypts a block il 93 cycles.192-bit Rijndael (12 rounds) took286 cycles, and256-
bit Rijndael (14 rounds)—333 cycles. Note that since2-round Rijndael is very similar
to Crypton [Lim98],286 cycles is also a (hopefully) close approximation for theespe
of latter.
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5.4 Twofish

Twofish is designed to be well-suited on multiple platforimgluding also the Pen-

tium Il. From the implementers point of view it resemblesrRel in many aspects, by
using only simple instructions but also some large-scatepmments of the latter (e.g.,
MDS, to provide diffusion). Due to the use of low-level insttions, Twofish is also

relatively slow in C compared to the assembly (the diffeseiscabouB7%).

Main difference for implementers between Rijndael and Tsfofs the inclusion
of the Pseudo-Hadamard Transformation that somehow coatp$ Rijndael’'s clear
structure and makes it less parallelizable: while the nurobgoperations in our im-
plementation of Twofish is less than in our implementatiofiRghdael, it turned out
to be very difficult to use the MMX technology to optimize Tws¥fi Hence, Twofish
is only moderately parallelizable, although the paraleliof our implementatior2(11
poperations per cycle) is relatively good.

6 Conclusion and Work in Progress

We achieved the fastest implementations of four of the AE8lifits on the Pentium Il
processor, obtaining speedi(f . . . 26% compared to the previously known implemen-
tations. Since all implementations were coded by using a@ingessensible assumptions,
they provide a more adequate efficiency comparison of the #iflists than the pre-
vious papers. We demonstrated that MMX can be quite effigiarged to speedup
Rijndael, but is only moderately useful for other ciphetdoyever, our implemen-
tations depend on the availability of MMX technology to askesor greater extent
and in general do not run on the Pentium Pro.) We providedsfuicification on our
time-measurement conditions to simplify for the future lerpenters to compare their
implementations to ours.

Our implementations are not the final: we continue optingzihem. Up-to-date
results will be available at the AES efficiency table [Lip99]
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A Pentium Il for Cipher Designers and Implementers

A.l1 MMX Technology

The Pentium Il has8 integer (including stack pointer) arflnew MMX registers; the
latter were not present in the Pentium Pro. While there iseatgnumber of opera-
tions available on the integer registers, MMX registersratech more “RISCy”: only a
few instructions affect them, including move, Boolean @pieins,16-bit arithmetic and
shifts. Available set of instructions does not include salveperations used in the mod-
ern block cipher design, including rotation a3tbit multiplication. On the other hand,
the MMX technology provide$§4-bit versions of Boolean operations and data moves
(i.e., the simplest possible operations), and also parkleay addition and multiplica-
tion of 16-bit data.16-bit multiplication is currently used in a very few ciphetat as
shown in [Lip98], ciphers that base their security on extenase of16-bit multiplica-
tion can be speed up considerably if using the MMX technalogy

Despite of MMX's attractiveness, at the current state otiffigirs many C compilers
(forexamplegcc , the standard compiler for Linux machines) do not yet predddiX
code. Hence, for the Pentium Il the assembly implementstaye potentially more
efficient than C-language implementations. Partially big tleason, many designers
and implementers of AES candidates seem not to know about MiveX.

A.2 Processor stages.

The Pentium Il processor (as other processors in the P6 fawmjlerates in several
stages. At first the instructions are fetched from the maimory and then broken
down (decoded) intgoperations (simple instructions consist of only qraperation,
while complex instruction have moyeperations). Thereafter, theoperations go via
a short queue to the register allocation table that allowsster renaming. After that,
instructions go to reorder buffer that enables out-of-oml@cution. There it stays un-
til the operands it needs are available. Ready-for-exenutbperations are sent to the
execution units, and thereafter retired [INt99,Fog00]riBg the optimization one has
to count on all different stages of processor operation t firgood tradeoff between
the delays introduced in them. The technicalities presenégeafter could be most in-
teresting for the implementers, but also for the cipher glesis who want to create
ciphers optimized for the Pentium Il. The most importans@sfrom the next is that
fixing any processor stages (e.g., decoding), suitableleziorg of the instructions can
considerably reduce the delays at this stage. Howeverathe seordering usually intro-
duces additional delays in some other stages and therefmde, reordering is always
a complicated tradeoff. To achieve really fast implemeatet, a cipher should have
great internal parallelism that provides many differerstinction reordering possibil-
ities, from what the best could be found after possibly estiae search. Of course,
one could design a cipher that would have only one possilderaf instructions, op-
timized specifically for Pentium Il. However, such cipheutmbslow down severely
if even slightest modifications would be introduced to thegessor. Moreover, paral-
lelism is necessary anyways, since already in the neardysrocessor could have
dozens simultaneously working executing units.
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Note that our survey is far from being complete, we refer aargsted reader to
[Int99,Fog00]. However, during finishing our implementets we found that also the
official Pentium family optimization manual published bydhInt99] is far from being
complete. We encountered many problems that could not hese foreseen by using
only the official manuals. Often more accurate (althougb afst complete) information
about the Pentium Il was found in [Fog00]. In several pladesus implementations
we performed partial exhaustive search to optimally schesthe instructions. A lot of
experience and luck is necessary in optimizing for Pentilihdne desires to avoid
exhaustive search himself.

In-Order Decoding. Up to 3 instructions can be decoded goperations at time, but
only the first decoder can handle instructions with more tha@uoperation. It is rec-
ommended to order the instructions in thd-1 sequence, which means that only ev-
ery third instruction could combine in itself of more thanegmoperation [Int99]. By
this reason, algorithms using only “simple operations” barpotentially implemented
faster than those consisting of “complex instructions”wiéwer, in some circuimstances
it would also beneficial to have at least some complex insbms. Namely, if the code
is properly scheduled in a way that exactly (almost) evemdtimstruction has more
than oneuoperation, the decoder will feed the out-of-order exegufpool with pace
more than3 poperations per cycle. Now, if in some later stage less thaoperations
per cycle are fed to the execution unit (say due to the defajetching), this unit will
not idle waiting for the next instructions from the decoder.

Instruction In-Order Fetching. The Pentium Il ha$6-byte internalfetch bufferavith
the peculiarity that a new buffer is forced to start at begigrof an instruction. The first
instruction of the ifetch buffer will be always decoded bydder), even if the previous
instruction was decoded by the same decoder and hence,dsheders would stay
idle. Hence, code reordering and possible use of semadgtidahtical instructions (in
general, but not alwayshorterinstructions: for examplenov eax,[ebx+0]  with
mov eax,[ebx] ) with differentlength could reduce the number of delaysidticed
in this stage.

Register In-Order Renaming. Pentium Il hast0 hardware registers. The software
registers are renamed to hardware registers after a writgrtead from) the software
register. After a register has not been used for a while, tivmatically retires and the
nexttime the same register is used, a new renaming is pegfibritis important to know
thatonly two register renamings can be done during one machiokechn particular
this means that generally it is beneficial to gather all indions operating on some
fixed data chunk together (i.e., to reorder the code in a lsleitavay). However, it is
extremely difficult to detect and remove delays introducegdHis stage, and therefore
this stage may really becortteebottleneck in optimization: subtle modification of code
may introduce long delays in this stage. We refer to [Fogb0hiore information.

Out-of-Order Execution. Pentium Il hass execution ports (port O, port 1, ..., port
4) that can execute instructions out-of-order. Every pas Bome specific meaning.
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PortsO and1 are ALUs (they can perform arithmetic on operands in regs3igort2
performs memory loads. Every memory write counts as pgperations, one in port
3 (address calculation) and another one in gloftmemory write). Up to3 ports can
execute an instruction in parallel. There are a number dfiauétic instructions that
can only run in port) (most importantly, multiplication, rotation and integegister
shifts — instructions that are widely used by some AES fitgljsvhile some other
instructions (most importantly, MMX register shifts) canlgrun in port1. To obtain
a throughput near t8 poperations per cycle, the instructions should be distefuso
that no more thag/3 of them are arithmetic, no more thag3 are memory loads and
no more thanl/3 are memory writes: a condition that is very difficult to fulfih a
practical application.

In-Order Retirement After executionuoperations will retire in-order. During retire-
ment, hardware registers will be written back to softwagisters and th@operations
leave the instruction pool. Since this is done in-ordergsghdelays can occur, e.g., if
speculative out-of-order execution of some earlier lortgriay instruction is not fin-
ished at the moment of retirement.
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