
Space and Time Improvements for Indexing inInformation RetrievalWillie Rogers, Gerald Candela, and Donna HarmanNational Institute of Standards & TechnologyBuilding 225, Room A216Gaithersburg, MD 20899frogers, harman, jerryg@magi.ncsl.nist.govAbstractWhen indexing large text collectionsminimizing the indexing time and the diskstorage used to create an index remains im-portant. Indexing optimizations applied to aprototype retrieval system at NIST are dis-cussed in this paper. These include the or-ganization of the index, the use of virtualmemory facilities to improve indexing time,an index addressing scheme to decrease in-dex size, and the implementation of termposition information extensions using com-pression. These improvements provided alarge decrease in indexing time and moder-ate decrease in index size for indices with-out term position extensions. Indices usingterm position extensions had a more mod-erate increase in space/time e�ciency.1 IntroductionAs computers grow exponentially faster,and disk drives become more compact andinexpensive, it seems that e�ciency shouldbe less important. However, this is not so,at least in the information retrieval commu-nity. If available disk space is growing, sois the amount of text to process. Whereas25 years ago it was a major undertakingto process the 1400 Cran�eld abstracts, to-

day research involves test collections of overa million documents and real-world appli-cations process far larger amounts of text.The space and time optimization issues re-main important.The need for time optimization is themost obvious. Users expect very fast searchresponse times, on the order of 1 or 2 sec-onds. But equally critical is the need foroptimization of indexing time.E�ciency of creating (as opposed to up-dating) an index is certainly necessary forprocessing the large TIPSTER collection(Harman 1993). Indexing runs taking sev-eral days are prone to system problems, andliable to impede research. In real-world ap-plications, the ability to quickly re-indexlarge collections overnight or over a week-end means that most data can be viewed asnearly-static, allowing e�ciencies in indexstorage space.Indexing time has two particular com-ponents: the time to create an index andthe time to update such an index. This pa-per addresses only the �rst component, as-suming a static or nearly static data collec-tion. For approaches to indexing highly dy-namic collections, see Sch�auble (1993) andAnick and Flynn (1993).In addition to time optimization, there



are space optimization issues to consider,both in memory and disk storage. Most re-searchers (and many users) rely on worksta-tions with 16 or 32 megabytes of memory,and disk space seldom seems adequate forindexing. This means that the space neededto create the index must be minimized andthe space needed to store the �nal indicesshould be as small as possible. The size ofthe �nal index impacts the search time andalso determines the hardware needs for re-trieval. For example, distributed searchingis most \usable" if the index can be dis-tributed across multiple workstations (elim-inating heavy network tra�c). Also, ap-plications using CD-ROM require small in-dices for most e�ective use.The prototype retrieval system beingdeveloped at the National Institute of Stan-dards and Technology (NIST) has alwaysemphasized the need for small indices, min-imal memory and disk requirements for in-dex creation, and minimal search time. Sec-tion 2 of this paper describes the basic NISTsystem (the PRISE system), including theindexing techniques. The TIPSTER collec-tion was much larger than collections pre-viously indexed using the PRISE indexingprograms. To build the index in a reason-able amount of time, the indexing programsrequired much faster routines than the cur-rent system provided. The techniques in-volved to do this are described in section 3.The very large number of documents in theTIPSTER collection caused an explosion ofthe �nal index size, and section 4 discusseshow this problem was resolved. Section 5discusses the inclusion of positional infor-mation in the index, and section 6 discussesthe e�ect of these inclusions on search time.2 Indexing in The NISTPRISE SystemThe NIST PRISE system was initiallydeveloped as a prototype testing vehicle for

demonstrating that the statistical rankingtechniques developed in past laboratory ex-periments (Salton and McGill 1983) couldbe implemented e�ciently, and that userswould accept this manner of text retrieval(Harman and Candela 1990). The e�ciencypart of this work required devising fast in-dexing algorithms that operated from work-stations (without tape drives) and creatingfast searching operations (with 1 second re-sponse time for about 1 gigabyte of textsearching).The PRISE indexing technique is basedon a two-step process that does not need anexplicit sorting step. The �rst step parsesthe text of the collection and produces thebasic inverted �le (intermediate postings�le) and binary term tree (intermediate dic-tionary); and the second step adds the termweights to the inverted �le and reorganizesthat �le for maximum e�ciency (see Figure1). The creation of the basic inverted �leavoids the use of an explicit sort by usinga term-based right-threaded binary searchtree (Knuth 1973). As each term is identi-�ed by the text parsing program (build), itis looked up in the binary tree, and either isadded to the tree, along with related data,or causes tree data to be updated. The datacontained in each binary tree node is thecurrent number of postings (the number ofrecords containing one or more instances ofthe term) and an o�set to where the post-ings for that term begin. Each node alsocontains a left link and a right link thatpoint to other nodes in the tree.Figure 2 shows an illustration of theright-threaded tree. The root node of thetree contains the term \high" which occurstwice in the text of the collection. The post-ings for that term start at the o�set 1464 inthe postings �le. Similarly, the node refer-enced by the left link of the root node con-tains the term \billion" which also occurstwice. The postings for that term start at4549.Space and Time Improvements for Indexing in Information Retrieval



Right-threadedBinary TreeMultiple LinkedListsOrderedSequential FileAlphabetically ??? HHHHHHHHHHHH -TextTerm TreeDictionaryPostings File recno freqdocno weight previousTemporaryTerm PostingsParser
Figure 1: Flowchart of PRISE Indexing Method

1464high 2

about 3211

billion 2 4549

year 4 2232

2who 3351

3old 234

26161

nil

nil

nil nil

reject
nil

2 1254managFigure 2: Right-Threaded Binary TreeWillie Rogers, Gerald Candela, Donna Harman



The postings are stored as multiplelinked lists, one linked list for each term,with the lists stored in one large postings�le. Each element in the postings �le con-sists of a record address (the location ofa given term), the term frequency in thatrecord, and a pointer to the previous ele-ment in the linked list for that given term(the �rst element has a null pointer). Bystoring the postings in a single �le, the post-ings are easily accessed by following thelinks. As the postings for each term arestored in reverse order, the entire list doesnot need to be read for each addition, butonly once for use in creating the �nal post-ings �le (step two).Note that both the binary tree andthe postings list are capable of furthergrowth. This is important in indexing largedatabases where data is usually processedfrom multiple separate �les over a short pe-riod of time. The use of the binary tree andlinked postings list could be considered asan updatable inverted �le. Although thesestructures are not as e�cient to search, thismethod could be used for creating and stor-ing supplemental indices for use betweenupdates to the primary index.The binary tree and postings �le aresaved for use by the term weighting rou-tine called rebuild (step two). This rou-tine walks the binary tree and the linkedpostings list to create an alphabetical termlist (dictionary) and a sequentially-stored�nal postings �le. To do this, each termis consecutively read from the binary tree(this automatically puts the list in alpha-betical order), along with its related data.A new sequentially stored postings �le isallocated, with two elements per posting.The linked postings list is then traversed,with the frequencies being used to calculatethe term weights. The last step writes therecord and corresponding term weights tothe newly-created sequential postings �le.This �nal �le only needs two elements perposting (document number & weight) since

no link pointer is required. Using a sequen-tially stored postings list in place of a linkedlist saves storage and reduces access time,as input can be read in multi-record bu�ers,one bu�er usually holding all records for agiven term. The sequentially{stored post-ings could not be created in step one be-cause the number of postings is unknownat that point in processing, and input orderis text order, not inverted �le order.The �nal index �les therefore consist ofthe dictionary and the sequential postings�le. Each element of the dictionary con-tains the term, its IDF (inverse documentfrequency) weight, the number of postingsof the term in the entire text collection,and the location of its postings in the post-ings �le. Each element in the postings �lecontains a record identi�er and the termweighting for the given term in that record.Table 1 gives some statistics showingthe di�erences between the \old" and thenew (PRISE) indexing schemes. The \old"indexing scheme refers to a version of a tra-ditional indexing method in which recordsare parsed into a list of words within recordlocations, the list is inverted by sorting, and�nally the term weights are added.Note that the size of the �nal index �leis relatively small, approximately 8% of theinput text size for a 50 megabyte database,and around 14% of the input text size forthe 806 megabytes2. This size remains con-stant when using the new indexing methodas the format of the �nal indexing �les isunchanged. p The working storage (thestorage needed to build the index �les) forthe new indexing method is not much largerthan the size of the �nal index �les them-selves, and substantially smaller than thesize of the input text. However, the amountof working storage needed by the old in-dexing method would have been approxi-2The 359 megabyte text collection is one of thesubsets of the full 806 megabyte text collection, seeHarman and Candela 1990 for more details of thesedata sets.Space and Time Improvements for Indexing in Information Retrieval



Indexing StatisticsText Size Indexing Time Working Storage Index Storage(megabytes) (hours) (megabytes) (megabytes)old new old new old new1.6 0.25 0.50 4.0 0.7 0.4 0.450.0 8.00 10.50 132.0 6.0 4.0 4.0359.0 N/A1 137.00 - 70.0 52.0 52.0806.0 - 313.00 - 163.0 112.0 112.0Table 1: Indexing Statisticsmately 933 megabytes for the 359 megabytedatabase, and over 2 gigabytes for the 806megabyte database, an amount of storagebeyond the capacity of many environments.The new method takes more time for thevery small (1.6 megabyte) database becauseof the method's additional processing over-head. As the size of the database increases,however, the process time has an n logn re-lationship to the size of the database. Thetraditional method contains a sort whichis n logn (best case) to n2 squared (worstcase), making processing of the very largedatabases likely to have taken longer usingthe old method, and considerably longer if atape sort was required because of the largeamount of working storage.3 A Method for faster in-dexing through the use ofvirtual memory facilitiesIndexing the TIPSTER collection uncov-ered many de�ciencies in the PRISE sys-tem's indexing routines. Optimizationswere applied to both the �rst phrase of in-dexing (performed by the build program)and the second phase of indexing (per-formed by the rebuild program.)Several simple optimizations were ap-plied to the build program including the

use of bu�ered I/O routines to speed upreading the input text and the use of aDFA scanner to speed up elimination ofstop words(Fox 1992).The rebuild program was somewhatharder to optimize; the rebuild program'smethod of randomly accessing the disk-based intermediate postings �le made it rel-atively immune to the optimizations whichimproved the speed of the build program.This was primarily due to the large numberof seeks required to traverse the linked listsin the postings �le.This postings traversal becomes veryslow as the index becomes larger. In thiscase, the primary performance inhibitor isthe I/O system interface used to accessthe postings �le. Because the addressesof posting entries for a particular term areusually far apart in the intermediate post-ings �le (due to the order of occurrence ofcorresponding terms in the original text),straight-forward optimizations such as theuse of a bu�ered I/O system are ine�ective.Using virtual memory facilities providesa method of optimizing production of in-verted �le indexes by optimizing disk ac-cess. Virtual memory systems are com-monly used in operating systems to al-low computers to run programs larger thanavailable memory. This is achieved throughthe use of external storage; only the partsWillie Rogers, Gerald Candela, Donna Harman



character temporary postingspattern �lea[a�m] tpost00a[n�z] tpost01b tpost02c[a�m] tpost03c[n�z] tpost04d tpost05... ...v tpost24w tpost25x tpost26y tpost26z tpost26Table 2: Mapping of terms to corre-sponding postings �les.of the program currently being accessed bythe computer's cpu reside in physical mem-ory. To improve the response time of suchprograms when external storage is accessed,optimal caching and disk access algorithmshave been developed. These algorithms area common feature of modern operating sys-tems. Many operating system manufac-turers have provided program interfaces tothese virtual memory systems to reduce theoverhead of traditional I/O services and tospeed access to �les and data on external(random access) storage devices. The use ofthese optimal (virtual memory) algorithmscan signi�cantly decrease the time neces-sary to create an inverted �le index.The BSD Unix(tm)3 virtual memorysystem uses the mmap() system call to mapa �le into memory allowing it to be accessedas if it were memory, utilizing the faster,low-level paging facilities of the operatingsystem. This avoids the overhead of exe-cuting calls supplied by a higher level I/Osystem.3Unix is a trademark of AT&T

Initially, the BSD Unix(tm) system callmmap() was employed to speed up thebuilding of the �nal postings �le by mem-ory mapping the intermediate postings �le.When mapped, the postings �le can be ac-cessed as if it were a linked list of postings inmemory. On small databases (of less than10 megabytes), this new version of rebuildproved to be very fast, up to an orderof magnitude faster than the non{memoryversion. Unfortunately, this performancedegraded signi�cantly for databases above100 megabytes. The performance loss wasso great that the non{memory mapped ver-sion was faster! It is likely that the degra-dation in performance was the result ofthe small memory size of the machine (32megabytes) and the large distance betweenthe locations of the postings (sometimesacross many page boundaries) causing alarge number of page faults.The solution to the large database prob-lem was to lexically separate the �le intosmaller sections that could be mapped andaccessed with a minimum of page faults.During the build phase, the postings ofeach term were placed in one of a num-ber of temporary postings �les based onthe ordinal value of the term. The lexi-cal grouping of the posting �les is basedloosely on frequency of words in the Englishlanguage. Table 2 shows a partial map-ping of term patterns to the correspond-ing temporary postings �le. In this tablethe �rst and second characters of the termare used to determine the �le in which thepostings of the term will be placed. For ex-ample, the postings for terms aardvark, ab-bie, airstream and ambassador would be in-serted in the �le tpost00. while angeles, as-sault, ayatollah, and aztec would be placedin the �le tpost01. Similarly, the terms xe-rograph, yorktown, zeppelin would be placedin tpost26.This is not an optimal mapping for allindices but works reasonably well for many.It is likely that with more investigation, aSpace and Time Improvements for Indexing in Information Retrieval



better mapping for general indices could befound. For example, a mapping could bebased on the frequency of words in a dic-tionary created from a random sample ofdocuments in the collection to be indexed.The size of the temporary postings �lesare such that no single �le is greater thantwice the memory size of the machine. Dur-ing the second phase (rebuild), the tree istraversed lexically to create the �nal dictio-nary and consolidate the posting lists. Dur-ing this traversal each temporary postings�le is memory mapped and visited once (inlexical order) as the dictionary tree is tra-versed. This is similar to distribution sort-ing using binary search trees proposed byCooper and Lynch (1984) and an earliermethod proposed by Cooper, Dicker, andLynch (1980) except that during the readphrase of sorting the postings �le is mem-ory mapped.Only one �le is mapped at a time; the�le is loaded as program memory pages andis accessed that way, utilizing the speedof direct memory access. Because each�le is mapped almost entirely in memory,random access performance is greatly en-hanced. Build and rebuild use a commonset of routines to implement the groupingof the postings �les.By modifying a single mapping table inthe mmap support module and recompilingboth programs, the grouping of the postings�les can be changed consistently. A startup�le containing the �le groupings can be usedinstead to allow more exibility. Figure 3shows the full index creation procedure.Table 3 lists the timing results of in-dex creation using various methods of in-dexing on the Cran�eld collection, Fed-eral Register(TIPSTER Disk 1), and WallStreet Journal(TIPSTER Disk 1). Mostof the experiments were executed on aSPARCstation4 10 with 32MB of main4NIST does not in any way endorse the SunSPARCstation series of workstations. SPARC-station is a trademark of Sun Microsystems

memory. Final products of index cre-ation were independent of the optimiza-tion methods used. The disk-based ver-sion reects system timings using the im-provements shown in Table 1. Note thatwhereas the memory mapped version (sec-ond row) worked well for the small col-lection, it degraded for larger collections.The �nal indexing version (multiple mem-ory mapped) solved the indexing problemfor larger collections with a small increasein build time and a signi�cant decrease inrebuilding time. Because of its larger num-ber of records, the Wall Street Journal tooktwice as long to index as the Federal Regis-ter.Care must be taken when using virtualmemory routines with other memory allo-cation routines on BSD Unix(tm) systems.The use of mmap can often conict withthese routines. Programs are also very sen-sitive to memory usage by other programson the same machine. This can be allevi-ated somewhat by using more (i.e. smaller)intermediate postings �les.Programs using mmap() may not beportable to other operating systems. How-ever, similar functionality is available inVAX/VMS and Unix(TM) System V Re-lease 4. More recently, (Krieger andStumm 1994) have proposed a generalizedapplication-level interface to exploit I/Operformance improvements such as mapped�le I/O.4 A Smaller UncompressedIndex FormatIn the original postings format the systemused 32 bits for each document posting, 16bits for the document number and 16 bitsfor the document's weight. This alloweddocument numbers and weights as large as65535 decimal.Corporation.Willie Rogers, Gerald Candela, Donna Harman



build2 rebuild6 ??
-?buildtreepostingsdictionary
tpost0 - tpostn

Figure 3: New index creation procedureCran�eld Federal Register Wall Street Journal1.6 megabytes 258 megabytes 276 megabytesmethod build rebuild build rebuild build rebuilddisk 16s 26s 22m 18s 6h 10m 3s 34m 21s 2d 3h 2m 8s abasedmemory 15s 4s 22m 18s 6h 43m 5s -mappedmultiplememory 18s 5s 21m 18s 6m 35s 48m 17s 13m 52smappedaThe index for this collection was produced on a Sparcstation 2 that is roughly 2.5 times slowerthan the Sparcstation 10 used to produce the other results.Table 3: Indexing times of disk based, memory mapped, and multiple memorymapped indexing methods. posting �eld widthsversion document index maximum weight �eld maximum�eld width document index width weight1 16 bits 65535 16 bits 655352 32 bits 4294967296 32 bits 42949672963 20 bits 1048576 12 bits 4096Table 4: largest integers expressable by supported posting �eld widths.Space and Time Improvements for Indexing in Information Retrieval



Cran�eld Federal Register Wall Street Journalpostings 1400 records 26207 records 98736 recordsorganization 1.6 megabytes 258 megabytes 276 megabytesdocno weight dictionary postings dictionary postings dictionary postings(bits) (bits) (5059 terms) (86155 terms) (95839 terms)16 16 128290 319272 2431248 19538384 - -32 16 128768 478908 2446406 29307576 2769398 10080398420 12 128290 319272 2431248 19538384 2748387 65155176Table 5: Actual Dictionary and Posting SizesThe original postings format was laterrevised for large databases; in this case, thesize of a document posting was increasedto 64 bits, 32 bits for the document num-ber and 32 bits for the document's weight(see Table 4.) This allowed indexing of col-lections with more than 65535 records suchas the Department Of Energy (DOE) ab-stracts on TIPSTER Disk 1 which contains226,087 records, and Wall Street Journalarticles from Disk 1 which contains 98,736records (Harman 1993). Both of these col-lections were too large for the previous for-mat to handle (see Table 5.)A newer posting format tailored forTIPSTER databases was implemented inthe Fall of 1992. The size of a documentposting was reduced back to 32 bits; thedocument number �eld has been reducedto 20 bits, and the weight �eld to 12 bits.The document number �eld is large enough(220 = 1048576) to produce an index forall the data of both TIPSTER disks. Thispostings scheme allows postings �le sizes ofthe same order as the original scheme withmuch larger collections.5 Modi�cations for TermPosition InformationThe indexing described in sections 2-4 con-tained minimal information about each doc-ument. As the documents were indexed,

only the total frequency of each term wassaved; no term position information waspreserved. This allowed a very small in-dex, with only a single weight per documentterm, and only one posting of a term perdocument, even if a term appeared multi-ple times. The large-granularity indexingproduced using this method is adequate forstatistical ranking systems where e�ectiveretrieval is not dependent on the positionalinformation that is critical to Boolean re-trieval systems. However, occasionally sit-uations requiring a �ner granularity of in-dexing can occur (Burkowski 1990). Addi-tionally, research has been started at NISTusing Natural Language Processing (NLP)techniques that require positional informa-tion.A recent extension to the index formathas been the addition of term position in-formation. Whereas the current index for-mat could have been extended to includeterm position information, it was felt thatonly minimal index growth should occur.It was decided to adapt the term positioncompression techniques described by Lino�and Stan�ll to the existing PRISE indexingtechnique. Lino� and Stan�ll use a variablelength numerical (n-s) encoding suggestedby Elias (1975) for use in representing listsof increasing integers. This encoding allowsthe packing of values into a smaller spacethan would be otherwise possible, and isWillie Rogers, Gerald Candela, Donna Harman



especially useful when the values encodedare fairly small. Similar encodings havebeen suggested by Mo�at and Zobel (1992a,1992b).The positional information for eachterm is placed in a �le separate from theposting �le described in section 2 and theaddress of that information is placed in anaddress �eld in the posting entry in theterm's posting list. This separation al-lows searching using docno/weight informa-tion only or with additional term positioninformation. With minimal modi�cation,the existing search engine works with thenew index (using docno/weight informationonly). The separation also simpli�es con-struction of the indexing programs. Theformat of the modi�ed postings record isshown in the top part of �gure 4. The bot-tom part of �gure 4 shows the new posi-tional information entry. The position in-formation entry contains the byte length ofthe term position record, the number of in-tegers encoded, and the encoded term po-sition information. Term position informa-tion consists of a list of position addresses inthe form of a tag followed by correspondingaddress information. The address informa-tion consists either the section number andword position number or the word positionnumber alone (for words occurring multi-ple times in the same section). A tag pre-ceding the address determines what kind ofaddress follows. The tags are used to deter-mine when redundant information has beenomitted. This method of encoding is calledthe Pre�x Omission Method (POM). Theprimary di�erence between this format andthe one described by Lino� and Stan�ll isthat only section and word position infor-mation is encoded 5.The following example in �gure 5 illus-trates the format for two terms in a fourparagraph document. The term AIDS oc-5Lino� and Stan�ll's term position format en-codes paragraph, sentence, and word positions.

curs four times: in the second and eleventhwords of the �rst paragraph, the nineteenthword of second paragraph, and the thir-teenth word of the fourth paragraph6. Thepositions of the term would be representedby these four sub-sequences of integers:f2,1,2g, f1,11g, f2,2,19g, f2,4,13g. The�rst number in each sub-sequence is the tagdenoting the information contained in thesub-sequence. The tag 2 denotes sectionand word position information, and the tag1 denotes word position information only.To prepare the data for the n-s en-coding the position data is converted torun-lengths. Values of corresponding non-initial positions are replaced by the dif-ferences between adjacent positions (Lino�and Stan�ll 1993). This increases the fre-quency of low-valued integers, which im-proves the e�ectiveness of the n-s encod-ing technique. The integer sub-sequencesare now: f2,1,2g, f1,9g, f2,1,19g, f2,2,13g.The number of integers in all three sub-sequences is eleven. The �nal sequenceof integers that represents the position in-formation is: f11,2,1,2,1,9,2,1,19,2,2,13g.These integers in the sequence are encodedand then the length of the encoded infor-mation in bytes followed by the encoded se-quence is written to the �le containing thepositions.The encoding procedure follows thesesteps: �rst create integer sequences usingtags and Pre�x Omission Method, thenreduce magnitude variation through run-length encoding, and then compress usingn-s encoding.The indexing routines used to imple-ment term position information are not op-timized. In particular, the overhead of en-coding the positional information increasesindexing time in the build phase. Addi-tionally, the modi�ed postings entries arememory mapped in the rebuild phase butthe term position information is not. Ta-6positions of punctuation are not counted.Space and Time Improvements for Indexing in Information Retrieval



docno weight PI ptr section position tag� -byte length # of integers20 bits 32 bits12 bits32 bits encodedPositional Information Entry (PI)Main Postings Entry
tag more ...encodedFigure 4: positional information format

ARC - AIDS Related Complex. A set of symptomssimilar to AIDS.AZT - Azidothymidine, a drug for the treatment ofAcquired Immune De�ciency Syndrome, its re-lated pneumonia, and for severe AIDS RelatedComplex.TPA - Tissue Plasminogen Activator - a blood clot-dissolving drug.treatment - any drug or procedure used to reducethe debilitating e�ects of AIDS or ARC. term section word sequenceAIDS 1 2 f2,1,2g11 f1,11g2 19 f2,2,19g4 13 f2,4,13gdrug 2 4 f2,2,4g3 9 f2,3,9g4 3 f2,4,3gFigure 5: Sample text accompanied by a table listing two terms occurring inthe text and their corresponding tpi sequencesWillie Rogers, Gerald Candela, Donna Harman



ble 6 shows the di�erence in times betweenthe Multiple Memory Mapping and Multi-ple Memory Mapped with Unmapped TermPosition Information. The addition of po-sitional information increases the size of in-dex signi�cantly. The positional indices canbe as large as 50% to 100% of the size of thecorpus text. Table 7 show the di�erence insizes between old indices and indices con-taining term position information.6 The E�ect of Index Mod-i�cations on Search E�-ciencyThe indices created using the multiplememory map techniques are identical to theones created using the older methods, andtherefore, the search times for these indicesare the same as times of indices created us-ing the older methods. The use of bitmasksin the search engine to support the 20-16bit postings format has a negligible e�ecton search time. Similarly, due to the struc-ture of the postings �le, the search timesof indices constructed with positional infor-mation are minimally a�ected when not us-ing positional information, although the useof positional information in the future willcertainly increase search time.7 ConclusionThe indexing method using term-based par-titioning and virtual memory I/O has sig-ni�cantly decreased the time necessary toindex large collections. Also, the modi�edpostings format has allowed the size of anindividual posting to remain the same asthe �rst posting format while addressing alarger number of documents.The current implementation of term po-sition information provides reasonable com-pression. Further space saving could begained by using the same encoding to com-

press the document numbers (and possiblyweights and term position information ad-dresses) in the primary postings �le.These changes were implemented withminimal or no e�ect on search e�ciency.Future work will focus on improving thespeed of dictionary lookup and documentaccumulation in the search engine.ReferencesAnick, P. and R. A. Flynn (1993). In-tegrating a dynamic lexicon with a dy-namic full-text retrieval system. InR. Korfhage, E. Rasmussen, and P. Wil-lett (Eds.), SIGIR 93: Proceedings ofSixteenth Annual International ACM SI-GIR Conference on Research and Devel-opment in Information Retrieval, NewYork, NY, pp. 136{145. Association forComputing Machinery: ACM Press.Burkowski, F. J. (1990, September). Sur-rogate subsets: A free space manage-ment strategy for the index of a text re-trieval system. In J.-L. Vidick (Ed.), SI-GIR 90: 13th International Conferenceon Research and Development in Infor-mation Retrieval, Brussels, Belgium, pp.211{226. Association for Computing Ma-chinery: Presses Universitaires De Brux-elles.Cooper, D., M. E. Dicker, and M. F.Lynch (1980). Sorting of textual databases: A variety generation approach todistribution sorting. Information Pro-cessing & Management 16 (1), 49{56.Cooper, D. and M. F. Lynch (1984). Theuse of binary search trees in external dis-tribution sorting. Information Processing& Management 20 (4), 547{557.Elias, P. (1975, March). Universal code-word sets and representations of the inte-gers. IEEE Transactions on InformationTheory 21 (2), 194{203.Space and Time Improvements for Indexing in Information Retrieval



Cran�eld Federal Register Wall Street Journaltext size 1.6 megabytes 258 megabytes 276 megabytesmethod build rebuild build rebuild build rebuildmultiplememory 18s 5s 21m 18s 6m 35s 48m 17s 13m 52smappedabove withterm position - - 4h 12m 51s 37m 17s 9h 39m 16s 1h 41m 7sinformationTable 6: Indexing Times of Memory Mapped with and without UnmappedTerm Position InformationCran�eld Federal Register Wall Street Journal1400 records 26207 records 98736 recordstext size 1.6 megabytes 258 megabytes 276 megabytespostings dictionary postings dictionary postings dictionary postingsorganization 5059 terms 86155 terms 95839 termsoriginal 128290 319272 2431248 19538384 2748387 65155176positional 129101 1249393 2460425 125083992 2794646 278061746Table 7: Positional Dictionary and Postings SizesFox, C. (1992). Lexical analysis and sto-plists. In W. B. Frakes and R. Baeza-Yates (Eds.), Information Retrieval,Data Structures and Algorithms, Chap-ter 7, pp. 102{130. Englewood Cli�s, NewJersey 07632: Prentice Hall.Harman, D. (1993). Overview of the FirstText REtrieval Conference (TREC-1). InD. K. Harman (Ed.), The First TextREtrieval Conference (TREC-1), pp. 1{20. National Institute of Standards andTechnology.Harman, D. and G. Candela (1990).Retrieving Records from a Gigabyte ofText on a Minicomputer using StatisticalRanking. Journal of the American Soci-ety for Information Science 41 (8), 581{589.Knuth, D. E. (1973). The Art of Com-puter Programming, Fundamental Al-
gorithms, Volume 1. Reading, Mas-sachusetts: Addison Wesley.Krieger, O. and M. Stumm (1994,March). The Alloc Stream Facility: Aredesign of application-level stream i/o.Computer 27 (3), 75{82.Lino�, G. and C. Stan�ll (1993). Com-pression of indexes with full positional in-formation in very large text databases. InSIGIR 93: Proceedings of Sixteenth An-nual International ACM SIGIR Confer-ence on Research and Development in In-formation Retrieval, pp. 88{95. Associa-tion for Computing Machinery.Mo�at, A. and J. Zobel (1992a, March).Coding for compression in full-text re-trieval systems. In Proceedings IEEEData Compression Conference (Snow-bird, Utah), pp. 23{32. IEEE.Willie Rogers, Gerald Candela, Donna Harman



Mo�at, A. and J. Zobel (1992b, June).Parameterized compression for sparsebitmaps. In Proceedings, SIGIR (Copen-hagen, Denmark), pp. 274{285. Associa-tion for Computing Machinery.Salton, G. and M. J. McGill (1983). In-troduction to Modern Information Re-trieval. New York, NY: McGraw-HillBook Company.Sch�auble, P. (1993). Spider: A mul-tiuser information retrieval system forsemistructured and dynamic data. InR. Korfhage, E. Rasmussen, and P. Wil-lett (Eds.), SIGIR '93: Proceedings ofSixteenth Annual International ACM SI-GIR Conference on Research and Devel-opment in Information Retrieval, NewYork, NY, pp. 318{327. Association forComputing Machinery: ACM Press.

Space and Time Improvements for Indexing in Information Retrieval


