Space and Time Improvements for Indexing in

Information Retrieval

Willie Rogers, Gerald Candela, and Donna Harman
National Institute of Standards & Technology
Building 225, Room A216
Gaithersburg, MD 20899

{rogers, harman, jerry } @magi.ncsl.nist.gov

Abstract

When indexing large text collections
minimizing the indexing time and the disk
storage used to create an index remains im-
portant. Indexing optimizations applied to a
prototype retrieval system at NIST are dis-
cussed in this paper. These include the or-
ganization of the index, the use of virtual
memory facilities to improve indexing time,
an index addressing scheme to decrease in-
dex size, and the implementation of term
position information extensions using com-
pression. These itmprovements provided a
large decrease in indexing time and moder-
ate decrease in index size for indices with-
out term position extensions. Indices using
term position extensions had a more mod-
erate increase in space/time efficiency.

1 Introduction

As computers grow exponentially faster,
and disk drives become more compact and
inexpensive, it seems that efficiency should
be less important. However, this is not so,
at least in the information retrieval commu-
nity. If available disk space is growing, so
is the amount of text to process. Whereas
25 years ago it was a major undertaking
to process the 1400 Cranfield abstracts, to-

day research involves test collections of over
a million documents and real-world appli-
cations process far larger amounts of text.
The space and time optimization issues re-
main important.

The need for time optimization is the
most obvious. Users expect very fast search
response times, on the order of 1 or 2 sec-
onds. But equally critical is the need for
optimization of indexing time.

Efficiency of creating (as opposed to up-
dating) an index is certainly necessary for
processing the large TIPSTER collection
(Harman 1993). Indexing runs taking sev-
eral days are prone to system problems, and
liable to impede research. In real-world ap-
plications, the ability to quickly re-index
large collections overnight or over a week-
end means that most data can be viewed as
nearly-static, allowing efficiencies in index
storage space.

Indexing time has two particular com-
ponents: the time to create an index and
the time to update such an index. This pa-
per addresses only the first component, as-
suming a static or nearly static data collec-
tion. For approaches to indexing highly dy-
namic collections, see Schduble (1993) and
Anick and Flynn (1993).

In addition to time optimization, there

are space optimization issues to consider,
both in memory and disk storage. Most re-
searchers (and many users) rely on worksta-
tions with 16 or 32 megabytes of memory,
and disk space seldom seems adequate for
indexing. This means that the space needed
to create the index must be minimized and
the space needed to store the final indices
should be as small as possible. The size of
the final index impacts the search time and
also determines the hardware needs for re-
trieval. For example, distributed searching
is most “usable” if the index can be dis-
tributed across multiple workstations (elim-
inating heavy network traffic). Also, ap-
plications using CD-ROM require small in-
dices for most effective use.

The prototype retrieval system being
developed at the National Institute of Stan-
dards and Technology (NIST) has always
emphasized the need for small indices, min-
imal memory and disk requirements for in-
dex creation, and minimal search time. Sec-
tion 2 of this paper describes the basic NIST
system (the PRISE system), including the
indexing techniques. The TIPSTER collec-
tion was much larger than collections pre-
viously indexed using the PRISE indexing
programs. To build the index in a reason-
able amount of time, the indexing programs
required much faster routines than the cur-
rent system provided. The techniques in-
volved to do this are described in section 3.
The very large number of documents in the
TIPSTER collection caused an explosion of
the final index size, and section 4 discusses
how this problem was resolved. Section 5
discusses the inclusion of positional infor-
mation in the index, and section 6 discusses
the effect of these inclusions on search time.

2 Indexing in The NIST
PRISE System

The NIST PRISE system was initially
developed as a prototype testing vehicle for

demonstrating that the statistical ranking
techniques developed in past laboratory ex-
periments (Salton and McGill 1983) could
be implemented efficiently, and that users
would accept this manner of text retrieval
(Harman and Candela 1990). The efficiency
part of this work required devising fast in-
dexing algorithms that operated from work-
stations (without tape drives) and creating
fast searching operations (with 1 second re-
sponse time for about 1 gigabyte of text
searching).

The PRISE indexing technique is based
on a two-step process that does not need an
explicit sorting step. The first step parses
the text of the collection and produces the
basic inverted file (intermediate postings
file) and binary term tree (intermediate dic-
tionary); and the second step adds the term
weights to the inverted file and reorganizes
that file for maximum efficiency (see Figure
1).

The creation of the basic inverted file
avoids the use of an explicit sort by using
a term-based right-threaded binary search
tree (Knuth 1973). As each term is identi-
fied by the text parsing program (build), it
is looked up in the binary tree, and either is
added to the tree, along with related data,
or causes tree data to be updated. The data
contained in each binary tree node is the
current number of postings (the number of
records containing one or more instances of
the term) and an offset to where the post-
ings for that term begin. Fach node also
contains a left link and a right link that
point to other nodes in the tree.

Figure 2 shows an illustration of the
right-threaded tree. The root node of the
tree contains the term “high” which occurs
twice in the text of the collection. The post-
ings for that term start at the offset 1464 in
the postings file. Similarly, the node refer-
enced by the left link of the root node con-
tains the term “billion” which also occurs
twice. The postings for that term start at
4549.

Space and Time Improvements for Indexing in Information Retrieval

Right-threaded A 4

Binary Tree Term Tree

Temporary
Multiple Linked

Term Postings \
Lists

T T "
l recno ' freq ' PTEVIOUS —P=

Alphabetically
Ordered

Sequential File

Y

Dictionary

Postings File

1
docno ' weight |

Figure 1: Flowchart of PRISE Indexing Method

 —
A
billion[2 4549 | ..~ who |2 | 3351
L— | =" L— |
1 \\
about [1] 321] .~ od]2 [2 N [yer [4[22%2
L T — 1T —] \ L -
A ‘:
manag| 2 | 1254 ,/'/ reject [1 [2616
I o[¢

Figure 2: Right-Threaded Binary Tree

Willie Rogers, Gerald Candela, Donna Harman

The postings are stored as multiple
linked lists, one linked list for each term,
with the lists stored in one large postings
file. Fach element in the postings file con-
sists of a record address (the location of
a given term), the term frequency in that
record, and a pointer to the previous ele-
ment in the linked list for that given term
(the first element has a null pointer). By
storing the postings in a single file, the post-
ings are easily accessed by following the
links. As the postings for each term are
stored in reverse order, the entire list does
not need to be read for each addition, but
only once for use in creating the final post-
ings file (step two).

Note that both the binary tree and
the postings list are capable of further
growth. This is important in indexing large
databases where data is usually processed
from multiple separate files over a short pe-
riod of time. The use of the binary tree and
linked postings list could be considered as
an updatable inverted file. Although these
structures are not as efficient to search, this
method could be used for creating and stor-
ing supplemental indices for use between
updates to the primary index.

The binary tree and postings file are
saved for use by the term weighting rou-
tine called rebuild (step two). This rou-
tine walks the binary tree and the linked
postings list to create an alphabetical term
list (dictionary) and a sequentially-stored
final postings file. To do this, each term
is consecutively read from the binary tree
(this automatically puts the list in alpha-
betical order), along with its related data.
A new sequentially stored postings file is
allocated, with two elements per posting.
The linked postings list is then traversed,
with the frequencies being used to calculate
the term weights. The last step writes the
record and corresponding term weights to
the newly-created sequential postings file.
This final file only needs two elements per
posting (document number & weight) since

no link pointer is required. Using a sequen-
tially stored postings list in place of a linked
list saves storage and reduces access time,
as input can be read in multi-record buffers,
one buffer usually holding all records for a
given term. The sequentially—stored post-
ings could not be created in step one be-
cause the number of postings is unknown
at that point in processing, and input order
is text order, not inverted file order.

The final index files therefore consist of
the dictionary and the sequential postings
file. Each element of the dictionary con-
tains the term, its IDF (inverse document
frequency) weight, the number of postings
of the term in the entire text collection,
and the location of its postings in the post-
ings file. Each element in the postings file
contains a record identifier and the term
weighting for the given term in that record.

Table 1 gives some statistics showing
the differences between the “old” and the
new (PRISE) indexing schemes. The “old”
indexing scheme refers to a version of a tra-
ditional indexing method in which records
are parsed into a list of words within record
locations, the list is inverted by sorting, and
finally the term weights are added.

Note that the size of the final index file
is relatively small, approximately 8% of the
input text size for a 50 megabyte database,
and around 14% of the input text size for
the 806 megabytes?. This size remains con-
stant when using the new indexing method
as the format of the final indexing files is
unchanged. p The working storage (the
storage needed to build the index files) for
the new indexing method is not much larger
than the size of the final index files them-
selves, and substantially smaller than the
size of the input text. However, the amount
of working storage needed by the old in-
dexing method would have been approxi-

2The 359 megabyte text collection is one of the
subsets of the full 806 megabyte text collection, see
Harman and Candela 1990 for more details of these
data sets.

Space and Time Improvements for Indexing in Information Retrieval

Indexing Statistics
Text Size | Indexing Time | Working Storage | Index Storage
(megabytes) (hours) (megabytes) (megabytes)
old new old new old new
1.6 | 0.25 0.50 4.0 0.7 0.4 0.4
50.0 | 8.00 | 10.50 | 132.0 6.0 4.0 4.0
359.0 | N/AL | 137.00 - 70.0 | 52.0 52.0
806.0 - | 313.00 - 163.0 | 112.0 | 112.0

Table 1: Indexing Statistics

mately 933 megabytes for the 359 megabyte
database, and over 2 gigabytes for the 806
megabyte database, an amount of storage
beyond the capacity of many environments.

The new method takes more time for the
very small (1.6 megabyte) database because
of the method’s additional processing over-
head. As the size of the database increases,
however, the process time has an nlogn re-
lationship to the size of the database. The
traditional method contains a sort which
is nlogn (best case) to n? squared (worst
case), making processing of the very large
databases likely to have taken longer using
the old method, and considerably longer if a
tape sort was required because of the large
amount of working storage.

3 A Method for faster in-
dexing through the use of
virtual memory facilities

Indexing the TIPSTER collection uncov-
ered many deficiencies in the PRISE sys-
tem’s indexing routines. Optimizations
were applied to both the first phrase of in-
dexing (performed by the build program)
and the second phase of indexing (per-
formed by the rebuild program.)

Several simple optimizations were ap-
plied to the build program including the

use of buffered 1/O routines to speed up
reading the input text and the use of a
DFA scanner to speed up elimination of
stop words(Fox 1992).

The rebuild program was somewhat
harder to optimize; the rebuild program’s
method of randomly accessing the disk-
based intermediate postings file made it rel-
atively immune to the optimizations which
improved the speed of the build program.
This was primarily due to the large number
of seeks required to traverse the linked lists
in the postings file.

This postings traversal becomes very
slow as the index becomes larger. In this
case, the primary performance inhibitor is
the I/O system interface used to access
the postings file. Because the addresses
of posting entries for a particular term are
usually far apart in the intermediate post-
ings file (due to the order of occurrence of
corresponding terms in the original text),
straight-forward optimizations such as the
use of a buffered 1/0 system are ineffective.

Using virtual memory facilities provides
a method of optimizing production of in-
verted file indexes by optimizing disk ac-
Virtual memory systems are com-
monly used in operating systems to al-
low computers to run programs larger than
available memory. This is achieved through
the use of external storage; only the parts

cess.

Willie Rogers, Gerald Candela, Donna Harman

character | temporary postings
pattern file
a[a—m] tpost00
a[n—z] tpost01
b tpost02
c[a—m] tpost03
c[n—z] tpost04
d tpost05
Y tpost24
w tpost25
X tpost26
v tpost26
7 tpost26

Table 2: Mapping of terms to corre-
sponding postings files.

of the program currently being accessed by
the computer’s cpu reside in physical mem-
ory. To improve the response time of such
programs when external storage is accessed,
optimal caching and disk access algorithms
have been developed. These algorithms are
a common feature of modern operating sys-
tems. Many operating system manufac-
turers have provided program interfaces to
these virtual memory systems to reduce the
overhead of traditional I/O services and to
speed access to files and data on external
(random access) storage devices. The use of
these optimal (virtual memory) algorithms
can significantly decrease the time neces-
sary to create an inverted file index.

The BSD Unix(tm)® virtual memory
system uses the mmap () system call to map
a file into memory allowing it to be accessed
as if it were memory, utilizing the faster,
low-level paging facilities of the operating
system. This avoids the overhead of exe-
cuting calls supplied by a higher level 1/0
system.

SUnix is a trademark of AT&T

Initially, the BSD Unix(tm) system call
mmap() was employed to speed up the
building of the final postings file by mem-
ory mapping the intermediate postings file.
When mapped, the postings file can be ac-
cessed as if it were a linked list of postings in
memory. On small databases (of less than
10 megabytes), this new version of rebuild
proved to be very fast, up to an order
of magnitude faster than the non—-memory
version. Unfortunately, this performance
degraded significantly for databases above
100 megabytes. The performance loss was
so great that the non—-memory mapped ver-
sion was faster! It is likely that the degra-
dation in performance was the result of
the small memory size of the machine (32
megabytes) and the large distance between
the locations of the postings (sometimes
across many page boundaries) causing a
large number of page faults.

The solution to the large database prob-
lem was to lexically separate the file into
smaller sections that could be mapped and
accessed with a minimum of page faults.
During the build phase, the postings of
each term were placed in one of a num-
ber of temporary postings files based on
the ordinal value of the term. The lexi-
cal grouping of the posting files is based
loosely on frequency of words in the English
language. Table 2 shows a partial map-
ping of term patterns to the correspond-
ing temporary postings file. In this table
the first and second characters of the term
are used to determine the file in which the
postings of the term will be placed. For ex-
ample, the postings for terms aardvark, ab-
bie, airstream and ambassador would be in-
serted in the file tpost00. while angeles, as-
sault, ayatollah, and aztec would be placed
in the file tpost01. Similarly, the terms ze-
rograph, yorktown, zeppelin would be placed
in tpost26.

This is not an optimal mapping for all
indices but works reasonably well for many.
It is likely that with more investigation, a

Space and Time Improvements for Indexing in Information Retrieval

better mapping for general indices could be
found. For example, a mapping could be
based on the frequency of words in a dic-
tionary created from a random sample of
documents in the collection to be indexed.

The size of the temporary postings files
are such that no single file is greater than
twice the memory size of the machine. Dur-
ing the second phase (rebuild), the tree is
traversed lexically to create the final dictio-
nary and consolidate the posting lists. Dur-
ing this traversal each temporary postings
file is memory mapped and visited once (in
lexical order) as the dictionary tree is tra-
versed. This is similar to distribution sort-
ing using binary search trees proposed by
Cooper and Lynch (1984) and an earlier
method proposed by Cooper, Dicker, and
Lynch (1980) except that during the read
phrase of sorting the postings file is mem-
ory mapped.

Only one file is mapped at a time; the
file is loaded as program memory pages and
is accessed that way, utilizing the speed
of direct memory access. Because each
file is mapped almost entirely in memory,
random access performance is greatly en-
hanced. Build and rebuild use a common
set of routines to implement the grouping
of the postings files.

By modifying a single mapping table in
the mmap support module and recompiling
both programs, the grouping of the postings
files can be changed consistently. A startup
file containing the file groupings can be used
instead to allow more flexibility. Figure 3
shows the full index creation procedure.

Table 3 lists the timing results of in-
dex creation using various methods of in-
dexing on the Cranfield collection, Fed-
eral Register(TIPSTER Disk 1), and Wall
Street Journal(TIPSTER Disk 1). Most
of the experiments were executed on a
SPARCstation* 10 with 32MB of main

“NIST does not in any way endorse the Sun
SPARCstation series of workstations. SPARC-

station is a trademark of Sun Microsystems

Willie Rogers, Gerald Candela, Donna Harman

memory. Final products of index cre-
ation were independent of the optimiza-
tion methods used. The disk-based ver-
sion reflects system timings using the im-
provements shown in Table 1. Note that
whereas the memory mapped version (sec-
ond row) worked well for the small col-
lection, it degraded for larger collections.
The final indexing version (multiple mem-
ory mapped) solved the indexing problem
for larger collections with a small increase
in build time and a significant decrease in
rebuilding time. Because of its larger num-
ber of records, the Wall Street Journal took
twice as long to index as the Federal Regis-
ter.

Care must be taken when using virtual
memory routines with other memory allo-
cation routines on BSD Unix(tm) systems.
The use of mmap can often conflict with
these routines. Programs are also very sen-
sitive to memory usage by other programs
on the same machine. This can be allevi-
ated somewhat by using more (i.e. smaller)
intermediate postings files.

Programs using mmap() may not be
portable to other operating systems. How-
ever, similar functionality is available in
VAX/VMS and Unix(TM) System V Re-
lease 4. More recently, (Krieger and
Stumm 1994) have proposed a generalized
application-level interface to exploit 1/0
performance improvements such as mapped

file /0.

4 A Smaller Uncompressed
Index Format

In the original postings format the system
used 32 bits for each document posting, 16
bits for the document number and 16 bits
for the document’s weight. This allowed
document numbers and weights as large as
65535 decimal.

Corporation.

tpost0 - tpostn
build?2 P P

tree

Y

rebuild

!

postings
dictionary

Figure 3: New index creation procedure

Cranfield Federal Register Wall Street Journal
1.6 megabytes 258 megabytes 276 megabytes
method | build | rebuild build rebuild build rebuild
disk 16s 265 22m 18s | 6h 10m 3s || 34m 21s | 2d 3h 2m 8s ¢
based
memory | 15s 4s 22m 18s | 6h 43m 5s -
mapped
multiple
memory | 18s 5s 21m 18s 6m 35s 48m 17s 13m 52s
mapped

“The index for this collection was produced on a Sparcstation 2 that is roughly 2.5 times slower
than the Sparcstation 10 used to produce the other results.

Table 3: Indexing times of disk based, memory mapped, and multiple memory
mapped indexing methods.

posting field widths
version | document index maximuim weight field | maximum
field width document index width weight
1 16 bits 65535 16 bits 65535
32 bits 4294967296 32 bits 4294967296
3 20 bits 1048576 12 bits 4096

Table 4: largest integers expressable by supported posting field widths.

Space and Time Improvements for Indexing in Information Retrieval

Cranfield Federal Register Wall Street Journal
postings 1400 records 26207 records 98736 records

organization 1.6 megabytes 258 megabytes 276 megabytes
docno | weight dictionary postings dictionary postings dictionary postings
(bits) | (bits) | (5059 terms) (86155 terms) (95839 terms)

16 16 128290 319272 2431248 19538384 - -

32 16 128768 478908 2446406 29307576 2769398 100803984

20 12 128290 319272 2431248 19538384 2748387 65155176

Table 5: Actual Dictionary and Posting Sizes

The original postings format was later
revised for large databases; in this case, the
size of a document posting was increased
to 64 bits, 32 bits for the document num-
ber and 32 bits for the document’s weight
(see Table 4.) This allowed indexing of col-
lections with more than 65535 records such
as the Department Of Energy (DOE) ab-
stracts on TIPSTER Disk 1 which contains
226,087 records, and Wall Street Journal
articles from Disk 1 which contains 98,736
records (Harman 1993). Both of these col-
lections were too large for the previous for-
mat to handle (see Table 5.)

A newer posting format tailored for
TIPSTER databases was implemented in
the Fall of 1992. The size of a document
posting was reduced back to 32 bits; the
document number field has been reduced
to 20 bits, and the weight field to 12 bits.
The document number field is large enough
(220 = 1048576) to produce an index for
all the data of both TIPSTER disks. This
postings scheme allows postings file sizes of
the same order as the original scheme with
much larger collections.

5 Modifications for Term
Position Information

The indexing described in sections 2-4 con-
tained minimal information about each doc-

ument. As the documents were indexed,

only the total frequency of each term was
saved; no term position information was
preserved. This allowed a very small in-
dex, with only a single weight per document
term, and only one posting of a term per
document, even if a term appeared multi-
ple times. The large-granularity indexing
produced using this method is adequate for
statistical ranking systems where effective
retrieval is not dependent on the positional
information that is critical to Boolean re-
trieval systems. However, occasionally sit-
uations requiring a finer granularity of in-
dexing can occur (Burkowski 1990). Addi-
tionally, research has been started at NIST
using Natural Language Processing (NLP)
techniques that require positional informa-
tion.

A recent extension to the index format
has been the addition of term position in-
formation. Whereas the current index for-
mat could have been extended to include
term position information, it was felt that
only minimal index growth should occur.
It was decided to adapt the term position
compression techniques described by Linoff
and Stanfill to the existing PRISE indexing
technique. Linoff and Stanfill use a variable
length numerical (n-s) encoding suggested
by Elias (1975) for use in representing lists
of increasing integers. This encoding allows
the packing of values into a smaller space
than would be otherwise possible, and is

Willie Rogers, Gerald Candela, Donna Harman

especially useful when the values encoded
are fairly small. Similar encodings have
been suggested by Moffat and Zobel (1992a,
1992b).

The positional information for each
term is placed in a file separate from the
posting file described in section 2 and the
address of that information is placed in an
address field in the posting entry in the
term’s posting list. This separation al-
lows searching using docno/weight informa-
tion only or with additional term position
information. With minimal modification,
the existing search engine works with the
new index (using docno/weight information
only). The separation also simplifies con-
struction of the indexing programs. The
format of the modified postings record is
shown in the top part of figure 4. The bot-
tom part of figure 4 shows the new posi-
tional information entry. The position in-
formation entry contains the byte length of
the term position record, the number of in-
tegers encoded, and the encoded term po-
sition information. Term position informa-
tion consists of a list of position addresses in
the form of a tag followed by corresponding
address information. The address informa-
tion consists either the section number and
word position number or the word position
number alone (for words occurring multi-
ple times in the same section). A tag pre-
ceding the address determines what kind of
address follows. The tags are used to deter-
mine when redundant information has been
omitted. This method of encoding is called
the Prefix Omission Method (POM). The
primary difference between this format and
the one described by Linoff and Stanfill is
that only section and word position infor-
mation is encoded 5.

The following example in figure 5 illus-
trates the format for two terms in a four
paragraph document. The term AIDS oc-

5Linoff and Stanfill’s term position format en-
codes paragraph, sentence, and word positions.

curs four times: in the second and eleventh
words of the first paragraph, the nineteenth
word of second paragraph, and the thir-
teenth word of the fourth paragraph®. The
positions of the term would be represented
by these four sub-sequences of integers:
{2,1,2}, {1,11}, {2,2,19}, {2,4,13}. The
first number in each sub-sequence is the tag
denoting the information contained in the
sub-sequence. The tag 2 denotes section
and word position information, and the tag
1 denotes word position information only.

To prepare the data for the n-s en-
coding the position data is converted to
run-lengths. Values of corresponding non-
initial positions are replaced by the dif-
ferences between adjacent positions (Linoff
and Stanfill 1993). This increases the fre-
quency of low-valued integers, which im-
proves the effectiveness of the n-s encod-
ing technique. The integer sub-sequences
arenow: {2,1,2}, {1,9}, {2,1,19}, {2,2,13}.
The number of integers in all three sub-
sequences is eleven. The final sequence
of integers that represents the position in-
formation is: {11,2,1,2,1,9,2,1,19,2,2,13}.
These integers in the sequence are encoded
and then the length of the encoded infor-
mation in bytes followed by the encoded se-
quence is written to the file containing the
positions.

The encoding procedure follows these
steps: first create integer sequences using
tags and Prefix Omission Method, then
reduce magnitude variation through run-
length encoding, and then compress using
n-s encoding.

The indexing routines used to imple-
ment term position information are not op-
timized. In particular, the overhead of en-
coding the positional information increases
indexing time in the build phase. Addi-
tionally, the modified postings entries are
memory mapped in the rebuild phase but
the term position information is not. Ta-

6 .. .
positions of punctuation are not counted.

Space and Time Improvements for Indexing in Information Retrieval

Main Postings Entry

20 bits

12 bits

32 bits

docno

weight

PI ptr

Positional Information Entry (PI)

Le
I

Y

32 bits encoded encoded

byte length tag section |position | tag more ...

of integers

Figure 4: positional information format

ARC - AIDS Related Complex. A set of symptoms
similar to AIDS.

AZT - Azidothymidine, a drug for the treatment of
Acquired Immune Deficiency Syndrome, its re-

‘ term ‘ section ‘ word ‘ sequence ‘

lated pneumonia, and for severe AIDS Related AIDS 1 2| {2,1,2}
Complex. 11 {1,11}

2 19 | {2,2,19}

TPA - Tiss.ue Plasminogen Activator - a blood clot- 4 13 | {2,4,13}
dissolving drug. drug 5 1] 224
treatment - any drug or procedure used to reduce 3 9 1{2,3,9}
the debilitating effects of AIDS or ARC. 4 3 {243}

Figure 5: Sample text accompanied by a table listing two terms occurring in
the text and their corresponding tpi sequences

Willie Rogers, Gerald Candela, Donna Harman

ble 6 shows the difference in times between
the Multiple Memory Mapping and Multi-
ple Memory Mapped with Unmapped Term
Position Information. The addition of po-
sitional information increases the size of in-
dex significantly. The positional indices can
be as large as 50% to 100% of the size of the
corpus text. Table 7 show the difference in
sizes between old indices and indices con-
taining term position information.

6 The Effect of Index Mod-
ifications on Search Effi-
ciency

The indices created using the multiple
memory map techniques are identical to the
ones created using the older methods, and
therefore, the search times for these indices
are the same as times of indices created us-
ing the older methods. The use of bitmasks
in the search engine to support the 20-16
bit postings format has a negligible effect
on search time. Similarly, due to the struc-
ture of the postings file, the search times
of indices constructed with positional infor-
mation are minimally affected when not us-
ing positional information, although the use
of positional information in the future will
certainly increase search time.

7 Conclusion

The indexing method using term-based par-
titioning and virtual memory I/O has sig-
nificantly decreased the time necessary to
index large collections. Also, the modified
postings format has allowed the size of an
individual posting to remain the same as
the first posting format while addressing a
larger number of documents.

The current implementation of term po-
sition information provides reasonable com-
pression. Further space saving could be
gained by using the same encoding to com-

press the document numbers (and possibly
weights and term position information ad-
dresses) in the primary postings file.

These changes were implemented with
minimal or no effect on search efficiency.
Future work will focus on improving the
speed of dictionary lookup and document
accumulation in the search engine.

References

Anick, P. and R. A. Flynn (1993). In-
tegrating a dynamic lexicon with a dy-
namic full-text retrieval system. In
R. Korfhage, E. Rasmussen, and P. Wil-
lett (Eds.), SIGIR 93: Proceedings of
Sizteenth Annual International ACM S1-
GIR Conference on Research and Devel-
opment in Information Retrieval, New
York, NY, pp. 136-145. Association for
Computing Machinery: ACM Press.

Burkowski, F. J. (1990, September). Sur-
rogate subsets: A free space manage-
ment strategy for the index of a text re-
trieval system. In J.-L. Vidick (Ed.), SI-
GIR 90: 13th International Conference
on Research and Development in Infor-
mation Retrieval, Brussels, Belgium, pp.
211-226. Association for Computing Ma-
chinery: Presses Universitaires De Brux-
elles.

Cooper, D.; M. E. Dicker, and M. F.
Lynch (1980). Sorting of textual data
bases: A variety generation approach to
distribution sorting. Information Pro-
cessing & Management 16(1), 49-56.

Cooper, D. and M. F. Lynch (1984). The
use of binary search trees in external dis-
tribution sorting. Information Processing
& Management 20(4), 547-557.

Elias, P. (1975, March). Universal code-
word sets and representations of the inte-

gers. IEFE Transactions on Information
Theory 21(2), 194-203.

Space and Time Improvements for Indexing in Information Retrieval

Cranfield Federal Register Wall Street Journal
text size 1.6 megabytes 258 megabytes 276 megabytes
method build | rebuild build rebuild build rebuild
multiple
memory 18s 5s 21m 18s 6m 35s 48m 17s 13m 52s
mapped

above with
term position - - 4h 12m 51s | 37m 17s || 9h 39m 16s | 1h 41m 7s
information

Table 6: Indexing Times of Memory Mapped with and without Unmapped
Term Position Information

Cranfield Federal Register Wall Street Journal
1400 records 26207 records 98736 records
text size 1.6 megabytes 258 megabytes 276 megabytes
postings dictionary | postings dictionary postings dictionary postings
organization | 5059 terms 86155 terms 95839 terms
original 128290 319272 2431248 19538384 2748387 65155176
positional 129101 1249393 2460425 125083992 2794646 278061746

Table 7: Positional Dictionary and Postings Sizes

Fox, C. (1992). Lexical analysis and sto-
plists. In W. B. Frakes and R. Baeza-
Yates (Eds.), Information Retrieval,
Data Structures and Algorithms, Chap-
ter 7, pp. 102-130. Englewood Cliffs, New
Jersey 07632: Prentice Hall.

Harman, D. (1993). Overview of the First
Text REtrieval Conference (TREC-1). In
D. K. Harman (Ed.), The First Text
RFEtrieval Conference (TREC-1), pp. 1-
20. National Institute of Standards and
Technology.

Harman, D. and G. Candela (1990).
Retrieving Records from a Gigabyte of
Text on a Minicomputer using Statistical
Ranking. Journal of the American Soci-
ety for Information Science 41(8), 581
589.

Knuth, D. E. (1973). The Art of Com-

puter Programming, Fundamental Al-

Willie Rogers, Gerald Candela, Donna Harman

gorithms, Volume 1. Reading, Mas-
sachusetts: Addison Wesley.

Krieger, 0. and M. Stumm (1994,
March). The Alloc Stream Facility: A
redesign of application-level stream i/o.
Computer 27(3), 75-82.

Linoff, G. and C. Stanfill (1993). Com-
pression of indexes with full positional in-
formation in very large text databases. In
SIGIR 93: Proceedings of Sixteenth An-
nual International ACM SIGIR Confer-
ence on Research and Development in In-
formation Retrieval, pp. 88-95. Associa-
tion for Computing Machinery.

Moffat, A. and J. Zobel (1992a, March).
Coding for compression in full-text re-
trieval systems. In Proceedings IEEFE

Data Compression Conference (Snow-
bird, Utah), pp. 23-32. IEEE.

Moffat, A. and J. Zobel (1992b, June).
Parameterized compression for sparse
bitmaps. In Proceedings, SIGIR (Copen-
hagen, Denmark), pp. 274-285. Associa-
tion for Computing Machinery.

Salton, G. and M. J. McGill (1983). In-
troduction to Modern Information Re-
trieval. New York, NY: McGraw-Hill
Book Company.

Schéuble, P. (1993). Spider: A mul-
tiuser information retrieval system for
semistructured and dynamic data. In
R. Korfhage, E. Rasmussen, and P. Wil-
lett (Eds.), SIGIR °93: Proceedings of
Sizteenth Annual International ACM S1-
GIR Conference on Research and Devel-
opment in Information Retrieval, New
York, NY, pp. 318-327. Association for
Computing Machinery: ACM Press.

Space and Time Improvements for Indexing in Information Retrieval

