
Representing Control in the Presence of First-Class Continuations �Robert Hieb, R. Kent Dybvig, Carl BruggemanIndiana UniversityComputer Science DepartmentLindley Hall 101Bloomington IN 47405AbstractLanguages such as Scheme and Smalltalk that providecontinuations as �rst-class data objects present a chal-lenge to e�cient implementation. Allocating activationrecords in a heap has proven unsatisfactory because ofincreased frame linkage costs, increased garbage collec-tion overhead, and decreased locality of reference. How-ever, simply allocating activation records on a stack andcopying them when a continuation is created results inunbounded copying overhead. This paper describes anew approach based on stack allocation that does notrequire the stack to be copied when a continuation iscreated and that allows us to place a small upper boundon the amount copied when a continuation is reinstated.This new approach is faster than the naive stack alloca-tion approach, and it does not su�er from the problemsassociated with unbounded copying. For continuation-intensive programs, our approach is at worst a constantfactor slower than the heap allocation approach, andfor typical programs, it is signi�cantly faster. An im-portant additional bene�t is that recovery from stackoverow is handled gracefully and e�ciently.1 IntroductionStacks have traditionally been used to implement bothactivation records and local environments in languagesthat support recursive procedure calls [5]. Stacks al-low rapid allocation and deallocation of call frames and�This material is based on work supported in part by theNational Science Foundation under grant number CCR-8803432.To appear in Proceedings of the SIGPLAN '90 Conference onProgramming Language Design and Implementation.

e�cient linkage on calls and returns. On modern ar-chitectures with hierarchical memory, stacks also helpmaintain locality of memory operations.Traditional stack management techniques are inad-equate for some modern languages, however. If a lan-guage is to allow arbitrarily deep recursion, some meansfor detecting and recovering from stack overow is nec-essary. Since multiple control threads in the same ad-dress space require multiple control stacks, it must bepossible to scatter stacks throughout memory and eachmust occupy a bounded amount of space. Further com-plications result when a language provides a means forcapturing, storing and reinstating control stacks, suchas Scheme's �rst-class continuations [14] and Smalltalk'scontext objects [9].The need to support continuations or contexts as ob-jects with inde�nite extent precludes the use of a simplestack-based implementation of call frames. A continua-tion represents the rest of the computation from a givenpoint. Since the \rest of the computation" is determinedby the current chain of activation records, when a con-tinuation is captured, the current chain of activationrecords must be preserved, and when a continuation isreinstated, the current chain of activation records mustbe replaced with a previously captured chain so thatthe computation can continue from the point at whichthe continuation was captured. Since the same contin-uation may be reinstated more than once, reinstating acontinuation cannot be accomplished by simply switch-ing control back to the old stack area, since this wouldoverwrite the saved activation records.Stack overow has traditionally been handled by lo-cating the stack in an area of memory that can be ex-tended inde�nitely. A standard approach is to locatethe heap at one end of memory and the stack at theother end of memory, and let them grow toward eachother. Often, the memorymanagement system can thenbe used to trap stack overow. However, multiple exe-cution threads require multiple stacks; such stacks can-not be easily extended if overow occurs, and it may1

not be possible to use the memory system to trap stackoverow. Simply restricting the size of the stack areafor a given control thread, either automatically or byprogrammer control, is unsatisfactory in languages thatsupport and encourage the use of recursive programs.Since stack overow and underow can be thought ofas continuation capture and reinstatement, it is not sur-prising that a method that allows e�cient continuationoperations also provides the means for handling stackoverow and underow e�ciently.The simplest way to allow continuation operationsand multiple control threads, and at the same timeavoid stack overow problems, is to allocate activationrecords as a linked list in the heap. Such an approachhas the virtue of simplicity, but the price is increasedallocation and more expensive linkage at procedure calland return. In this paper we show how stacks can beused to implement activation records in a way that iscompatible with continuation operations, multiple con-trol threads, and deep recursion. Our approach allowsa small upper bound to be placed on the cost of con-tinuation operations and stack overow and underowrecovery. Since we do so while retaining the bene�ts oftraditional stack management, ordinary procedure callsand returns are not adversely a�ected. Although thecost of continuation operations is greater than it wouldbe in a heap model, the increased cost is defrayed by theless expensive procedure call interface. One importantfeature of our method is that the stack is not copiedwhen a continuation is captured. Consequently, captur-ing a continuation is very e�cient, and objects that areknown to have dynamic extent can be stack-allocatedand modi�ed since they remain in the locations in whichthey were originally allocated. By copying only a smallportion of the stack when a continuation is reinstated,reinstatement costs are bounded by a small constant.In the next section we provide some background forour work. We discuss the use and importance of �rstclass continuations and review other methods for im-plementing them. In Section 3 we describe our stackmodel. In Section 4 we use this model to develop tech-niques for continuation capture and restoration. In Sec-tion 5 we show how these techniques can be used tohandle stack overow and underow, and we presentan e�cient method for detecting stack overow in theabsence of hardware and operating system support.2 BackgroundWe have used our stack management techniques for im-plementing Scheme on several machines and operatingsystems. Scheme is a good test bed for these techniquesbecause it relies heavily on procedure calls and providesaccess to continuations as �rst-class objects. In fact,

conditionals, procedure calls, and continuations are theonly control operations provided by Scheme. Looping isaccomplished by tail-recursive procedure calls, and sup-port for exception handling and \gotos" is provided bycontinuations.Continuations in Scheme are procedure objects thatrepresent the remainder of a computation from a givenpoint in the computation. The procedure call-with-current-continuation, commonlyabbreviated call/cc, al-lows a program to obtain the current continuation.When given a procedure of one argument, call/cc cre-ates a continuation procedure and passes it to the ar-gument procedure. The procedure created by call/ccrepresents the continuation of the call to call/cc.When the continuation procedure is invoked, it re-turns its argument to the continuation of the call tocall/cc that created it. In essence, the argument passedto the continuation procedure is returned as the re-sult of the call to call/cc. If control has not otherwisepassed out of the call to call/cc, invoking the continua-tion merely results in a nonlocal exit. If control has al-ready passed out of the call to call/cc, the continuationmay still be invoked, but the result is to restart the com-putation at a point from which the system has alreadyreturned. This feature may be used to implement manyinteresting control structures, including loops, nonblindbacktracking [16], coroutines [8], and engines [10, 7].The continuation of a procedure call is nothing morethan the control stack of procedure activation records.If continuations were used only for nonlocal exits, as inCommon Lisp [15], then the essence of a continuationobject would be a pointer into the control stack. How-ever, because continuations can outlive the context oftheir capture, continuation objects have inde�nite ex-tent and a pointer into the stack is not su�cient. Ifcontrol passes out of the context where the continua-tion was created, the stack may be overwritten by otherprocedure activation records, and the information re-quired to return to the continuation will be lost.The simplest way to support continuation operationsis to abandon the use of a reusable stack to store acti-vation records and to maintain activation records as alinked list in the heap (see Figure 1). In this model, pre-vious activation records are never overwritten; instead,a new activation record is allocated for each call. Onreturn, the activation record is not automatically deallo-cated, since if a continuation has been captured it maybe needed later. Instead, a storage manager reclaimsthe record when it is no longer reachable. The chief ad-vantage of this approach is that the capture and invoca-tion of a continuation is quick and easy. A continuationmay be captured or reinstated for little more than thecost of an ordinary procedure call. Also, there is no2

Current Continuation

Figure 1. The heap model provides the simplest method for supporting constant-time continuationoperations. An activation record is allocated in the heap and linked to the current activation recordbefore a call is made. The called procedure uses the link to restore the old frame pointer before returning.Continuation operations involve saving or restoring a pointer to the current frame.need for a separate stack overow detection and recov-ery mechanism; stack overow is simply a special case ofheap overow. Multiple control threads are also easilyaccommodated. The disadvantage is that ordinary pro-cedure calls may be slowed down by the increased over-head caused by allocating the activation records in theheap and by more complicated activation record link-ages. Furthermore, the storage manager must do morework to reclaim abandoned activation records.Appel [1] points out that heap allocation and the as-sociated cost of garbage collection can be made compet-itive with stack allocation by using large physical mem-ories. The argument is based on the fact that a copyingcollector takes time proportional to the amount of re-tained data rather than discarded data. Thus, if mem-ory is su�ciently large in comparison to the amount ofretained data, the cost of garbage collection becomesinsigni�cant. In fact, assuming that each stack framemust be explicitly deallocated (popped), the overall costof heap allocation operations can actually be made lessthan that of stack allocation operations. Unfortunately,this argument may not apply to all memory systems,since it assumes that arbitrarily large amounts of mem-ory can be used without penalty, whereas hierarchicalmemory systems that use caches and virtual memorypenalize programs that use large amounts of memorywithout a high degree of locality.Since in the heap model frames are not contiguous inmemory, the frame pointer must be saved and restoredon each call, resulting in an extra memory write and

read for each recursive call. The stack model (see Fig-ure 2), on the other hand, can combine frame allocation,deallocation and linkage by adjusting the frame pointerby a small constant on procedure call and return. Also,since the heap model must assume that a frame maybe captured as part of a continuation, the frame cannotbe reused or modi�ed. With the stack model, on theother hand, portions of a frame may be reused for localstorage or subordinate calls.In order to preserve the bene�ts of stack managementof activation records, some implementors have used acopy strategy. The copy strategy uses ordinary stackmanagement techniques until a continuation is capturedor invoked. When a continuation is captured, the stackis copied into the heap and a pointer to the heap copyis stored in a continuation structure. When a continu-ation is invoked, the stack image in the heap is copiedinto the stack area, where it is treated as an ordinarystack of activation records. The �rst reference we havefound to this approach is by McDermott [12], who sug-gests copying continuations to and from a control stackso that only programs that actually use �rst class con-tinuations need pay for the cost of supporting them.Unless continuation operations are relatively rare orthe size of the stack is usually quite small, the cost ofcopying stack images makes continuation operations in-ordinately expensive. It is possible to construct pro-grams that cause the naive copy model to behave verypoorly, since the cost of a continuation operation is pro-portional to the size of the stack. Furthermore, sincemany copies of an arbitrarily large continuation may be3

fp

Stack

Control

base

Top FrameFigure 2. The traditional stack model provides the least expensive frame linkage. Since frames arephysically adjacent, frame links can be maintained by simple register adjustments. However, since con-tinuation operations require time proportional to the size of the active portion of the stack, the amountof time required is e�ectively unbounded.retained if the same continuation is captured and savedrepeatedly, a large amount of memory may be wasted,resulting in much worse memory usage than the sup-posedly memory-intensive heap model.Since allocation and reclamation on a stack is inex-pensive, objects that are known to have dynamic extent,that is, do not survive the call frame in which they areallocated, are often allocated on the stack as part of thecall frame. However, under the copy model this sort ofstack allocation is not likely to be useful. It is not pos-sible, in general, to retain pointers to such objects or tomodify their contents, because the stack in which theyare allocated may be moved out of the stack area andinto the heap, perhaps more than once.Much recent work has been devoted to developingtechniques that allow the stack model to be used with-out making the use of continuations too expensive. Forinstance, Bartley and Jenson [2] \optimistically" stack-allocate control frames, but temper their optimism byusing a stack cache of limited size. This places abound on the worst-case costs of continuation captureand reinstatement, since a bounded amount of mem-ory is copied. Since all but the top frame of the stackcache can be copied into the heap on stack overow|essentially forcing a continuation capture|deep recur-sion is still possible. However, there is a direct relation-ship between the bound on the cost of continuation op-erations and the bound on the depth of recursion with-out stack overows. Since handling stack overow andunderow is expensive compared with the cost of or-dinary procedure calls, a small stack size can lead toa substantial decrease in the performance of recursiveprograms. In the worst case, a \bouncing" phenomenon

may occur. If a program makes just enough recursivecalls to place the stack on the verge of overow andthen enters a loop that causes the stack to repeatedlyoverow and underow, the worst-case cost of recursiveprocedure calls can become the average-case cost, mak-ing calls as expensive as continuation operations.Our method for representing control threads also lim-its the amount of memory copied by continuation opera-tions without requiring the small stack size that resultsin increased overow and underow overhead for pro-grams that do not use continuations.3 The Control StackIn our model, the control stack is represented as a linkedlist of stack segments (see Figure 3). Each stack seg-ment is structured as a true stack of frames (activationrecords), with one frame for each procedure call. A stackrecord associated with each stack segment contains in-formation about the stack segment, including:1. a pointer to the base of the stack segment,2. a pointer to the next stack record,3. the size of the stack segment, and4. the return address for the topmost frame.Each frame consists of a sequence of machine words.The �rst word at the base of the frame is the returnaddress of the current active procedure. The next nwords contain the n actual parameters of the procedure,or pointers to cells in the heap containing the actual4

base

N1

Segment
Stack

Current

Segment

Stack

N1

record
stack
current

N2 RA

fp return address

argument 1

local value 1

local value M

argument N

N2

Top Frame

Previous

Figure 3. The segmented stack model is a simple generalization of the traditional stack model. Byimplementing the control stack as a linked list of stack segments, continuation operations are boundedby the size of the top segment instead of the size of the entire control stack.parameters if the parameters are assignable [6, 13]. (Itis also possible to pass the return address and the �rstfew arguments in registers, leaving a hole in the framein which the return address can be placed if the calledroutine itself makes a recursive call.) The remainingwords in the frame contain the values of local variables,compiler temporaries, and partial frames for procedurecalls initiated but not yet completed. A frame pointerregister, fp, points to the base of the current frame,which is always in the topmost stack segment.No separate stack pointer is maintained to point tothe topmost word on the stack, so there is often a gapbetween the frame pointer and the topmost word. Thisdoes not create any di�culties as long as this stack isnot used for any other purpose (such as asynchronousinterrupt handling). Using a frame pointer instead of astack pointer simpli�es argument and local variable ac-cess and eliminates register increments and decrementsused to support stack \push" and \pop" operations.This savings is more important on architectures, such asRISC architectures, that do not support auto-incrementand auto-decrement addressing modes.No explicit links are formed between frames on thestack. Many compilers place the current frame pointerinto each stack frame before adjusting the frame pointerto point to the new frame. This saved pointer, or dy-namic link , is used by the called routine to reset the

frame pointer and by various tools, e.g., exception han-dlers and debuggers, to \walk" the stack. In our model,the frame pointer is adjusted just prior to a procedurecall to point to the new frame, and is adjusted after thecalled routine returns to point back to the old frame. Inorder for this to work, the frame pointer must still (oragain) point to the called routine's frame on return. Thecompiler generating code for the calling procedure mustkeep track of the displacement between the start of thecalling procedure's frame and the start of the called pro-cedure's frame in order to adjust the frame pointer bothbefore and after the call. In both cases, the adjustmentis performed by a single instruction to add (subtract)the displacement to (from) the frame pointer.Exception handlers, debuggers, and other tools thatneed to walk through the frames on the stack must havesome way to get from each frame to the preceding frame.Our continuation mechanism also requires this abilityin order to �nd an appropriate place at which to splitthe stack (see Section 4). In the place of an explicitdynamic link, the compiler places a word in the codestream that contains the size of the frame. This wordis placed immediately before the return point so stackwalkers can use the return address to �nd the size of thenext stack frame (see Figure 4). If the return addressitself is always placed in a known frame location, theframe size e�ectively gives the o�set from the return5

base

Segment
Stack

Code

fs1

fs2

instr

instr

fs0
instr

N

N

RA2

RA1

fs0

fs1

top
frame

next
frame

Figure 4. Walking backwards through a stack segment is straightforward. The return address �eld of acontinuation stack record points to an instruction in the code stream, which is preceded by a data wordcontaining the frame size. This frame size is used to to �nd the base of the top frame, where its returnaddress is stored. This return address is used to �nd the frame size of the next frame down, which isused to �nd the next return address, etc.address of the current frame to the return address ofthe preceding frame. For Scheme, it is useful to havethe return address stored at the base of the frame sothat it need not be moved for tail recursive calls.Assuming that the compiler always generates an in-struction to reset the frame pointer immediately at thepoint of return, the stack walker could disassemble thisinstruction to determine the frame size and we couldthereby avoid storing the frame size explicitly in thecode stream. This would, however, complicate the stackwalker and unnecessarily constrain the compiler, whichwould otherwise be able to move the frame pointer di-rectly to the base of the frame for the next procedurecall in many cases. The constraint that the return ad-dress be placed at a constant o�set in the frame canalso be relaxed by storing the actual o�set in the codestream along with the frame size.4 Continuation OperationsWhen the system is initialized, a large stack segmentand an associated stack record are created. The ini-tial stack segment is large for two reasons: �rst, sothat stack overow for deeply recursive programs isless likely, and second, because continuation capturesshorten the stack. Each time a continuation is captured

(see Figure 5), the occupied portion of the current stacksegment is sealed and the current stack record is con-verted into a continuation object by adjusting the size�eld and storing the current return address in the re-turn address �eld. The return address in the currentframe is replaced by the address of an underow han-dler (see below). A new stack record is allocated toserve as the current stack record. Its base is the ad-dress of the next word above the occupied portion ofthe old stack segment, its link is the address of the oldstack record (the continuation), and its size is the num-ber of words remaining in the old stack segment. Thestack is thus shortened each time a continuation is cap-tured. Creating a continuation, therefore, does not en-tail copying the stack, but it does shorten the currentstack object, which eventually results in stack overowand the allocation of a new stack object (see Section 5).If a continuation were captured before each recursiveprocedure call, each saved stack segment would containexactly one frame, and the resulting list of continuationobjects would be essentially equivalent to a heap-basedcontrol stack.If the current stack segment is empty when a con-tinuation is captured, no changes are made to the cur-rent stack record and the link �eld of the current stack6

Before Capture

N1

Segment

Current
Stack

record
stack
current

Segment

Current
Stack

record
stack
current

After Capture

N2 RA

N3

underflow

underflowfp

N1

underflow

fp RA

N3

N2

N1

captured
continuation

Figure 5. Capturing a continuation is a constant-time operation with the segmented stack model. Thecurrent stack segment is divided into two segments at the top frame. The bottom segment is the stacksegment for the captured continuation, and the top segment becomes the current stack segment.record serves as the new continuation. This is neces-sary to implement tail recursion properly, i.e., so thatno growth in the control stack occurs when continua-tions are created repeatedly in a tail-recursive situation.For instance, the following Scheme function should loopinde�nitely since it calls itself tail-recursively:(de�ne looper(lambda ()(call/cc(lambda (k)(looper)))))If a new link were added to the control stack at eachiteration of looper because of the call to call/cc, thecontrol stack would grow progressively longer and theprogram would eventually run out of memory.Reinstating a continuation is more complex (see Fig-ure 6). In the simplest case, the current stack segmentis overwritten with the stack segment from the continu-ation, and the frame pointer is adjusted to point to thetop frame of the copied segment. If the current stacksegment is not large enough a new one is allocated.Unfortunately, the size of a saved stack segment isbounded only by the size of the initial stack segment.
Since stack segments are allocated in large chunks to re-duce the frequency of stack overows, if the whole seg-ment were copied at once, the cost of continuation rein-statement would be bounded only by this large amount.This can be prevented by placing an upper bound on theamount copied. If the size of a saved stack segment isless than or equal to this bound, the entire segment iscopied. Otherwise, the segment is �rst split into twosegments such that the size of top stack segment is lessthan the copy bound. Although it would be su�cientto split o� a single frame, it is more e�cient to split o�as much as possible without exceeding the bound be-cause of the overhead of splitting the continuation andinitiating the copy. An appropriate bound for a givenmachine can be determined only by experimentation.Finding an appropriate splitting point entails walkingbackwards through the continuation stack segment (seeFigure 4) until adding another frame would exceed thecopy bound. The stack segment is then split in much thesame way the stack is split when a continuation is cap-tured (see Figure 7). The base and link pointers fromthe continuation stack record and the return addressfrom the frame above the splitting point are stored in anewly allocated stack record. The size �eld of the new7

N

Current Continuation

N

Current Continuation

N

fp

N

fp

M

New Continuation

RA

M

top
frame

M

M

New Continuation

RA

top
frame

top
frame

Before Reinstatement After Reinstatement

Figure 6. When a continuation is reinstated, the contents of the stack segment of the continuation iscopied into the current stack segment. If the size of the stack segment is greater than a predeterminedlimit, the segment is �rst split into two segments (see Figure 7). If the current stack segment is not largeenough to hold the contents of the reinstated stack segment, a new stack segment is allocated.stack record is set to the size of the stack segment be-low the splitting point. The new stack record becomesthe stack link for the old stack record. The old stackrecord's base pointer is set to the splitting point and itssize �eld is set to the size of the stack segment abovethe splitting point. The return address in the frame isreplaced with the address of the underow handler.Since at least one frame must be copied when a con-tinuation is reinstated, if the amount of copying is to bebounded the size of a frame must be also bounded. Thisbound can be the same as the bound used in splittingcontinuations, but in practice it is reasonable to makeit larger if frames larger than the optimum splittingsize are not unusual. The frame bound then determinesthe worst-case cost and the copy bound determines theaverage-case cost of continuation invocations. In orderto maintain a bound on frame size, the number of ar-guments to a procedure and the amount of storage nec-essary for local bindings and intermediate results mustbe limited. Extra arguments can be passed in a aux-iliary data structure and the number of local bindingscan be limited by converting local binding blocks into
unnamed procedures. Intermediate results for pendingcalls and other operations can be stored in a linked listin the heap. In practice, with a reasonably large framebound, these conversions are rarely necessary.It is necessary to do something special when a returnis attempted from a call frame that is at the bottomof a stack segment. The initial stack segment has asits return address at the base of the segment the ad-dress of a routine that exits to the operating system.All other segments have the address of the underowhandler stored at the base of the segment. The under-ow handler simply reinstates the continuation in thelink �eld of the current stack record.5 Stack OverowWhen the heap model of continuation allocation is used,the depth of recursion is limited only by the amount ofavailable heap memory. However, with a stack-basedimplementation of the control stack, some method for8

RA

M

M

M

M1

M2

M2

M1

underflow

RA

underflow

underflow

Before Spliting After Spliting

Figure 7. Large stack segments must be split before being reinstated. A splitting point is found bywalking the stack to �nd the frame that gives the largest value for M1 without exceeding the predeter-mined limit on copying. The return address at the splitting point is stored in a new stack record and theaddress of an underow handler is stored in its place.stack overow detection and recovery is necessary to al-low inde�nite depth of recursion. If stack overow canbe detected while the system is in a known state, over-ow can be treated as an implicit continuation capture.Unfortunately, detecting stack overow inexpensivelyis not a simple matter, particularly if the goal is aportable implementation model. Furthermore, detect-ing overow is only part of the problem, since the stateof the system at the time of overow must be knowncompletely so that the computation can be continuedafter a new stack area is allocated and linked to thecontinuation containing the previous area.On some architectures, stack overow detection canbe made virtually cost-free with the help of the memorymanagement system. The stack can be located adja-cent to an area of memory that is not writable and anexception generated when the stack attempts to growinto the unwritable area. Such an approach is espe-cially compatible with the copy-in, copy-out model ofcontinuation management, since one can permanentlyplace the stack cache next to a suitable region of mem-ory. However, our model requires that new stack areasbe allocated on demand, so it is essential that the hard-ware and operating system allow areas of memory to beselectively marked read-only.Even on machines on which it is possible to reliablygenerate memory faults as a means for detecting stack

overow, it still may not be possible to recover fromthe stack overow if the hardware and operating systemdo not preserve enough of the state of the system. Inparticular, it may not be possible to determine whichinstruction caused the overow or what the contents ofthe registers were when the overow occurred.If all requirements can be met, then the memoryman-agement system can be used to create a no-cost solutionto the stack overow detection problem. The process ofrecovering from stack overow does not in itself needto be extremely e�cient. Since our system allows ar-bitrarily large stack areas and does not su�er from thedanger of \bouncing" back and forth between overowand underow, arbitrarily large amounts of computa-tion can be done between stack overows to amortizetheir cost. Consequently, the e�ciency of the host sys-tem's memory management and exception handlers isnot an issue.Unfortunately, it has been our experience that mem-ory exceptions are not a tenable means for detectingstack overow on many of the machines on which wehave implemented Scheme. Either we cannot �nd a rea-sonable way to generate them or we cannot restore thestate of the system after they have been detected. Fur-thermore, even on machines for which one could usethe memory management system, the programmer timenecessary to implement and maintain a special system9

N

base

Segment

Current
Stack

N

fp

esp
} Space for two

call frames

Figure 8. The end-of-stack pointer, esp, always points to a region before the actual end of the stack.This region must contain enough space for two call frames. Reserving room for two frames simpli�es theoverow check for procedures that make recursive (non-tail) calls and eliminates the overow check forprocedures that do not make recursive calls.for each machine may not be reasonable. As a result,we have turned to explicit checks for stack overow de-tection.The challenge is to implement the overow checkswith minimal impact on the speed of procedure calls.Our implementation uses two tactics to minimize thecost of overow detection. The �rst is to make the testas inexpensive as possible. The second is to avoid thetest whenever possible.The most important part of making the test inexpen-sive is to avoid memory references by keeping an end-of-stack pointer (esp) in a register (see Figure 8). Since theframe pointer (fp) is already in a register, checking forstack overow requires a simple register compare andbranch. We point the esp a constant amount before theactual end of the stack area so that the comparison doesnot have to take into account the expected frame sizeas long as it does not exceed the esp o�set. In fact, ifthe size of a frame is bounded (see Section 4), the espo�set can be set so that the overow check need nevertake into account the frame size.In some cases, we can avoid the stack overow checkentirely. First we make the esp o�set even larger|largeenough so that a procedure that only uses a boundedamount of stack space need not check for overow. Ifspace for an extra frame is maintained at the end of the

stack by procedures that do make recursive (as opposedto tail recursive) calls, then procedures that do not makerecursive calls need not check for overow. The resultis that leaf routines and routines that form a tight, tail-recursive loop need not check for overow.Additional stack overow checks can be eliminated bystatic analysis of the code. First, some procedures con-tain paths that meet the criteria for eliminating stackchecks, even if the procedure as a whole does not. Thusit is desirable to delay the stack check until it is knownthat a recursive call will be made, but not so long thatit becomes necessary to repeat the check. Second, thecompiler can determine how much stack space is usedby some recursive calls. If the called procedure uses aknown, bounded amount of stack space and the sum ofits space requirements and those of the current framesize is less than the space reserved for non-checking pro-cedures, then the calling procedure need not check forstack overow.6 ConclusionsOur approach to stack management supports bounded-time continuation operations and stack overow recov-ery without adversely a�ecting the e�ciency of proce-dure calls and returns. Creating a continuation is e�-10

cient, requiring only the creation of a small stack recordand the adjustment of a small number of �elds in anexisting stack record. Reinstating a continuation re-quires copying a saved stack segment over the currentstack segment, perhaps after �rst splitting the contin-uation to limit the size of the copied segment. Stackoverow and underow recovery are essentially identi-cal to continuation creation and reinstatement. Variousproblems with naive stack copying approaches to sup-porting continuations are solved by our approach. Con-tinuation operations are bounded, stack overow occursinfrequently, overow/underow \bouncing" is avoided,and stack allocation is possible for data objects with dy-namic extent.The main advantage of our approach over the ap-proach of heap allocating a linked list of call frames isthat procedure calls and returns do not have to main-tain explicit frame linkage information. In addition, ourmethod is less memory-intensive, consuming less heapspace and exhibiting greater locality of reference. Asa result, our approach results in smaller indirect costsfrom garbage collection, cache misses, and page faults.Our approach does not su�er from some of the limita-tions of the heap-based approach, such as the inabilityto reuse frames and the inability to stack-allocate ob-jects with dynamic extent.Clinger, et. al. [3], argue that a hybrid stack/heapmechanism may be most appropriate for Scheme andSmalltalk. Their mechanism provides for the frames tobe allocated on a stack and moved into a heap-allocatedlinked list when a continuation is created. This list re-mains in the heap inde�nitely and the frames in thelist are never copied back onto the stack. Procedurereturns must check whether or not they are returningfrom a frame on the stack, which requires adjustment ofthe stack pointer, or on the heap, which requires follow-ing the frame link. The hybrid stack/heap model su�ersfrom some of the disadvantages of the pure heap model.In particular, a small additional cost is paid for proce-dure returns (but not calls) and objects with dynamicextent cannot generally be stack allocated because theymove if a continuation is created. In addition, the stackmust be kept small so that the cost of creating a con-tinuation is bounded, which results in more frequentstack overows. The primary advantage of the hybridstack/heap mechanism is that there is never more thanone copy of a given frame. They were motivated byDanvy [4], who pointed out that multiple continuationcopies can lead to unbounded allocation. While our ap-proach does not avoid duplication of stack frames, thebound we place on stack segment size on continuationreinstatement places a bound on the amount of dupli-cation, and the amount of memory resulting from this

duplication is at worst a constant factor more than withthe stack/heap approach.We have implemented the continuation and overowmechanisms described in this paper and incorporatedthem into the implementation of Chez Scheme. Wehave not modi�ed the compiler to enforce the framesize bound. It is not clear that doing so would be worththe e�ort; static analysis of the source code for ChezScheme indicates that 99% of all frames are smaller than30 words, and we suspect that the dynamic behavior isskewed toward even smaller frames. We are investigat-ing the use of similar mechanisms in the implementationof concurrent continuations [11].Acknowledgement: We wish to thank Olivier Danvy forproviding comments on an earlier draft of this abstract.References[1] Andrew W. Appel, \Garbage collection can be fasterthan stack allocation," Information Processing Letters25, 1987, 275{279.[2] David H. Bartley and John C. Jensen, \The Imple-mentation of PC Scheme,"Proceedings of the 1986 ACMConference on Lisp and Functional Programming, Au-gust 1986, 86{93.[3] William D. Clinger, Anne H. Hartheimer, and EricM. Ost, \Implementation Strategies for Continuations,"Proceedings of the 1988 ACM Conference on Lisp andFunctional Programming, July 1988, 124{131.[4] Olivier Danvy, \Memory Allocation and Higher-Order Functions," Proceedings of the SIGPLAN '87Symposium on Interpreters and Interpretive Techniques,June 1987, 241{252.[5] Edsger W. Dijkstra, \Recursive Programming," inProgramming Systems and Languages, Saul Rosen (ed.),McGraw-Hill, NY, 1967.[6] R. Kent Dybvig, Three Implementation Models forScheme, University of North Carolina at Chapel Hill De-partment of Computer Science Technical Report #87-011 (PhD Dissertation), April 1987.[7] R. Kent Dybvig and Robert Hieb, \Engines fromContinuations," Indiana University Computer ScienceDepartment Technical Report No. 254, July 1988.[8] Daniel P. Friedman, Christopher T. Haynes andMitchell Wand, \Obtaining Coroutines with Continu-ations," Computer Languages 11, 3/4, 1986, 143{153.[9] Adele Goldberg and David Robson, Smalltalk 80:the Language and its Implementation, Addison-Wesley,1983.11

[10] Christopher T. Haynes and Daniel P. Friedman,\Abstracting Timed Preemption with Engines," Jour-nal of Computer Languages 12, 2, 1987, 109{121.[11] Robert Hieb and R. Kent Dybvig, \Continuationsand Concurrency," Second ACM SIGPLAN Symposiumon Principles and Practice of Parallel Programming(PPoPP), March 1990 (to appear).[12] Drew McDermott, \An E�cient Environment Allo-cation Scheme in an Interpreter for a Lexically-ScopedLisp," Conference Record of the 1980 Lisp Conference,August 1980, 154{162.[13] David Kranz, Richard Kelsey, Jonathan Rees, PaulHudak, James Philbin, and Norman Adams, \Orbit:An optimizing compiler for Scheme," Proceedings of theSIGPLAN '86 Symposium on Compiler Construction,published as SIGPLAN Notices 21, 7, July 1986, 219{233.[14] Jonathan A. Rees and William Clinger, eds., \TheRevised3 Report on the Algorithmic Language Scheme,"SIGPLAN Notices 21, 12, December 1986.[15] Guy L. Steele Jr., Common LISP: The Language,Digital Press, 1984.[16] Gerald J. Sussman and Guy L. Steele Jr., \Scheme:an Interpreter for Extended Lambda Calculus," Mas-sachusetts Institute of Technology Arti�cial IntelligenceMemo 349, 1975.

12

