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Abstract

Several recent nonrelativizing results in the area of interactive proofs have caused many
people to review the importance of relativization. In this paper we take a look at how complexity
theorists use and misuse oracle results. We pay special attention to the new interactive proof
systems and program checking results and try to understand why they do not relativize. We
give some new results that may help us to understand these questions better.

1 Introduction

The recent result IP = PSPACE [LFKN92, Sha92] surprised the theoretical computer science
community in more ways than one. A few years earlier, Fortnow and Sipser [F'S88] created an
oracle relative to which co-NP did not have interactive proofs. The IP = PSPACE result was
honestly a nonrelativizing theorem.

Several questions immediately popped up: Why didn’t this result relativize? What specific
techniques were used that avoided relativization? How can we use these techniques to prove other
nonrelativizing facts?

Also much older questions resurfaced: What exactly to oracle results mean? What should we
infer, if anything, from a relativization?

Such questions gained even more importance when we discovered the amazing power of mul-
tiple prover interactive proof systems [BFL91], transparent proofs [BFLS91] and probabilistically
checkable proofs [AS92, ALM*92].

We may not find satisfactory answers to these questions in the near future. However, in this
paper we will give some intuition and some theorems about oracles that may help shed light on
some of these issues.

In Section 3, we will see that relativization is an extremely powerful tool in helping complexity
theorists direct their research.

In Section 4, we will look at early results of provable statements with negative relativization. We
will look at these various examples and argue that they all lack a proper oracle access mechanism.

In section 5, we take a close look at the new unrelativizing results for interactive proof systems.
We prove some new results that may help us understand these issues better. We also argue that the
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new interactive proof system techniques do not relativize because they take advantage of certain
algebraic properties of complexity classes.

In section 5.1 we look at what happens when we add an oracle to probabilistically checkable
proofs (PCP). Arora, Lund, Motwani, Sudan and Szegedy [ALM*92] show that every language
in NP has a PCP using only a logarithmic number of random coin tosses and a constant number
of queries to the proof. We show that in a relativized world, for all k, such a result does not
hold even if we allow the verifier to use a polynomial number of random bits and n* proof queries
(Theorem 5.2).

Although Heller [Hel81] has created an oracle A relative to which NP* = EXP*, we show that
PCP*(logn,1) = EXP* would imply that P # NP (Theorem 5.4). Thus finding such an oracle
would be as hard as settling the P = NP question.

Arora, Impagliazzo and Vazirani [AIV92] argue that the “local-checkability” property of com-
plexity classes is a major reason that the results on interactive proofs do not relativize. In Sec-
tion 5.2, we give negative evidence for this thesis by showing that under a reasonable access mech-
anism, local checkability does in fact relativize.

We give support instead to the thesis that it is the algebraic properties of complexity classes
that do not relativize. In Section 5.3, we give evidence for this proposition by showing that IP =
PSPACE holds relative to algebraic extensions of arbitrarily complicated languages.

Finally, in Section 6, we give a brief arguement against infering any information from random
oracle results. We argue that we should only use random oracles as a tool to combine oracle
constructions. However, we believe that generic oracles are a much stronger and sharper tool for
this purpose.

Caveats

This paper contains several opinions on the use and misuse of relativization results. We must
caution the reader that other complexity theorists may have differing opinions on these matters.

In this paper, we have tried to give several examples to illustrate various points. However
this paper is not meant to be a survey paper. Many important works in the area have not been
mentioned due to lack of space.

2 Notation and Definitions

Most of the notation and definitions follow from the standard textbooks on the field [HU79, GJ79].

We use & to represent the join of two sets A and B, ie., A& B = ({0} x A)U ({1} x B). We
use FP to represent the polynomial-time computable functions.

It is a misnomer to relativize a complexity class C. Instead suppose we take an enumeration
of machines for C and give them some access mechanism to an oracle set A. We then say the
relativized class C# consists of the languages recognized by the acceptance criteria for C applied to
the machines using the oracle A.

Of course this definition may depend greatly on the specific enumeration of the machines of C
as well as the oracle access mechanism. The usual access mechanism consists of a separate oracle
tape that the Turing machine can write down queries and learn the answers. However, as we shall
see in Sections 4 and 5.2, such models may unduly handicap the machines.



2.1 Relativizing Formulae

It will be useful to have relativized NP-complete and PSPACE-complete sets.
Let a relativized SCNF formula be a CNF formula with clauses of the form:

T VaynVasV A($]'1, .. -7$jk)

where A(zj1,...,2;;) is true if ;... 2;; is in A. Any of the variables or the A(z;y,...,z;;) term
may be negated.

Lemma 2.1 Let ¢4 be a relativized 3CNF formula over an oracle A. Let 14 be a closed relativized
SCNF formula with arbitrary first-order existential and universal quantifiers over the variables.

1. Determining whether ¢4 is satisfiable is NP*-complete.
2. Determining the truth value of 14 is PSPACE*-complete.

Furthermore the completeness reductions do not need access to the oracle.

Goldsmith and Joseph [GJ86] prove the first part of the lemma. An easy modification of their proof
gives us the second part as well.

3 Uses of Oracle Results

In this section, we will discuss some legitimate uses of relativization results. As we will see,
complexity theorists have used relativization as a powerful tool in studying complexity theory.

In Section 3.1 we will see how theorists use oracles to discover what techniques will not likely
work to solve certain problems. In Section 3.2, we will see how relativization allows us to push at a
problem in two different directions. In Section 3.3, we will argue that that lack of nonrelativizable
techniques have caused theorists to look at new directions of research. Finally, in Section 3.4 we
will see how old relativization results help us to recognize new techniques that can be applied to
other problems.

Of course, theorists must execute extreme care in how one should interpret oracle results. In
Sections 4 and 5, we look at some computational models where oracle results may not have the
expected interpretation.

3.1 Limiting techniques

Suppose we can show for some statement 5 that there exists an oracle A such that 5 fails relative to
A in some oracle model. Then any proof that 5 hold must not relativize in that model or otherwise
that statement would also hold relative to A. If we can also find an oracle relative to which 5 holds
then no relativizable technique can decide the truth of 5.

Baker, Gill and Solovay [BGS75] noted this in their original oracle paper where they give a
relativized world where P = NP and another where P # NP. They also noted that essentially all
the known complexity techniques at that time relativize. They concluded that current techniques
would not solve the P = NP question.

In the nearly two decades since the Baker-Gill-Solovay paper, there have been literally hundreds
of results in complexity theory. With the exception of some results in interactive proof systems (see



Sections 3.4 and 5) all of the results in complexity theory have relativized. These include several
important results such as PH C P#F [Tod91] and PP is closed under intersection [BRS91].

The techniques for interactive proofs have not yet proven fruitful towards proving any other
theorems about complexity theory. Thus it really does appear that we still need to develop new
techniques to settle the hundreds of complexity statements that relativize both ways.

Early on some people speculated that perhaps the Baker-Gill-Solovay result indicated that these
questions about complexity theory may fall outside the axioms of set theory (see [Har78], chapter
7). However most researchers no longer subscribe to this viewpoint anymore because of lack of
evidence and some of the examples in Sections 4 and 5.

3.2 Two directions

Often in complexity theory, one has a complexity statement S where one can easily show a rela-
tivized world where S holds but it is open whether there exists a relativizable proof of 5. In order
to tackle this problem, many complexity theorists look at trying to prove two opposite directions:

¢ Trying to prove 5, or
o Creating a relativized world where S fails.

Often by working on a problem in two directions, one can often push a failure of a proof in one
direction into a proof of the other direction.

Goldwasser and Sipser [GS89] used this method in their proof of the equivalence of public and
private coins in interactive proof systems. Initially, Goldwasser and Sipser tried to prove that the
private coin interactive proof hierarchy was infinite relative to some oracle. The failure of that
attempt led to the equivalence result that implied the collapse of the private coin hierarchy.

3.3 New directions

Relativization results often lead researchers in new directions that prove extremely fruitful. This
may happen in two different ways:

1. A specific problem may have large amount of time devoted to it because of the lack of a
negative relativization result.

2. Whole new directions of research may develop in attempts to find new techniques to answer
problems with negative relativizations.

Beigel, Reingold and Spielman [BRS91] concentrated their efforts on trying to show that PP
is closed under intersection mainly because of the importance of the question and the fact that no
negative relativization existed. They succeeded in finding a relativizable proof.

The whole area of circuit complexity was developed as a potential method for attacking the
hard problems like P # NP. Although one can easily relativize circuits [Wil85], many researchers
believed the structure of circuits would allow us to find nonrelativizable techniques to solve some
basic complexity questions.

Circuit complexity still has a long way to go before it can fulfill this promise. However, circuit
complexity has provided us with several interesting combinatorial problems and some other appli-
cations for machine-based complexity theory. In fact, circuit complexity has given us the tools to



prove some important relativization results, such as a relativized world where the polynomial-time
hierarchy is infinite (see [Has89]).

3.4 Recognizing new techniques

Suppose we have a proof of a statement .5 but we also know that there exists a relativized world
where S does not hold. We can then analyze the proof of S to find the technique used in that
proof that does not relativize. We can then, hopefully, apply this technique to other negatively
relativized problems.

In 1989, Noam Nisan found a multiple-prover interactive proof for SAT, a problem with a
known negative relativization [FRS88]. Lund, Fortnow and Karloff analyzed this proof and using
Nisan’s techniques combined with some new ones showed a single-prover interactive proof system
for SAT [LFKN92]. Several other important papers on interactive proof theory followed from
extensions of these techniques (e.g. [Sha92, BFL91, BFLS91, ALM*92]). Babai [Bab90] goes into
more detail about the history of these developments.

4 When Oracles Fail

Almost since the first relativization results of Baker, Gill and Solovay [BGS75], complexity theorists
have look for true mathematical statements that fail in some relativized world. Though researchers
have published several papers along these lines (e.g. [Mor81, Kur83, Har85, HCKMS88, Cha90])
most of these results hold because the machine model does not have proper access to the oracle.

By understanding the various types of failures, it will enhance our ability to interpret relativiza-
tion results. One should not simply ignore relativization results that fall into the categories below
but one should cautiously draw inferences from such results.

In the section we discuss several different categories of examples where oracles fail. In Section 5
we will look at the special case of interactive proofs.

Space-Bounded Computation

Should the oracle tape count towards the space bound? FEither way can cause problems. If we do
count the tape that would prevent a result like ASPACE(poly) = EXP from relativizing because
the space-bounded machine could not ask exponentially long queries. If we do not count the
tape then a result like ATIME(poly) = PSPACE will not relativize because the space-bounded
machine could ask exponentially long queries. Hartmanis, Chang, Kadin and Mitchell [HCKMS88§]
have further discussion on these oracle models.

Ladner and Lynch [LL76] suggest a reasonable alternative: Do not count the space on the
oracle tape but make the oracle tape a write-only tape that is automatically erased after each
query. While this suggestion works well below P, it does not solve the quandary described in the
previous paragraph.

Buss [Bus88] creates an oracle model that seems to get around this problem but is too cum-
bersome for use in practice. If one must relativize a space class we suggest to either use the
corresponding relativized alternating time class or to use the Landner and Lynch model with a
careful eye.



Partial Relativizations

In these results some, but not all, of the objects involved are allowed to have access to the oracle.
Kurtz [Kur83] showed that NP C P3AT but for a random R, NPF Z pSATOR giving a counterex-
ample to the Random Oracle Hypothesis (See Section 6). However, it uses heavily the fact that
queries to the SAT oracle do not have access to R. In fact, for all A, NP# C pSAT?
[Har85] has a similar example.

Chang [Cha90] has a different example where a function s(n) is not space-constructible in the
unrelativized world but s(n) is space-constructible in a relativized world. However, if the function
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s(n) was computed using a relativized Turing machine, the theorem Chang states would relativize.

Insufficient Oracle Access

One of the basic theorems in complexity theory is linear speedup: if a program takes ¢(n) time with
t(n) superlinear then for every ¢, for all but a finite n, there is a another Turing machine that takes
only #(n)/c time. Moran [Mor81] noted that this result does not relativize: we need only make the
language dependent on strings in the oracle of length say #(n) + 1.

This oracle failure occurs because of insufficient oracle access. The proof of the linear speed-up
theorem works by encoding several tape square into single square by using a larger set of tape
symbols. However, the relativized model does not allow this compression on the oracle tape. If we
change the model to allow compressed queries to the oracle then we will indeed have a relativized
linear speedup theorem. We will show another example of this type of failure in Section 5.2.

When interpreting a relativization result, one must be extremely careful in looking at how the
computational model may access the oracle. If we can prove a statement 5 false relative to an
oracle in a certain model then techniques that relativize only in the model will not work to prove
S.

Recent nonrelativizing results on interactive proofs do not appear to fit in any of the above
categories. In Section 5, we will explore as best we can why these techniques do not relativize.

5 Relativizations of Interactive Proofs

Interactive proofs were invented in 1985 simultaneously by Babai [Bab85, BM88] and Goldwasser,
Micali and Rackoff [GMRS&9]. We refer the reader to these papers for descriptions and formal
definitions of interactive proofs.

In 1986, Fortnow and Sipser [[F'S88] created a relativized world where some language in co-NP
does not have an interactive proof. Fortnow and Sipser then conjectured that there exist languages
in co-NP that do not have interactive proofs.

In 1989, Lund, Fortnow, Karloff and Nisan [LFKN92] showed that every co-NP language has
an interactive proof system. By the Fortnow and Sipser oracle, their proof could not relativize. In
this section, we will try to examine why that proof does not relativize.

In Section 5.1, we discuss a recent important result about probabilistically checkable proofs by
Arora, Lund, Motwani, Sudan and Szegedy [ALM192] and show that that result does not relativize
in a strong way. We also discuss the possibility that one can use the probabilistically checkable
proof result to show that NP # EXP. In Section 5.2, we discuss local checkability developed by
Arora, Impagliazzo and Vazirani [AIV92] and argue that this notion does not give a satisfactory



answer to the question of why the interactive proof results do not relativize. In Section 5.3, we argue
that a more algebraic property of complexity classes is the root of this nonrelativization. Finally,
in Section 5.4 we discuss some further questions about interactive proofs and relativization.

5.1 Probabilistically Checkable Proofs

In this section, we will show two results about probabilistically checkable proof systems. First we
show that the result of Arora, Lund, Motwani, Sudan and Szegedy [ALM*192] does not relativize in
a strong way. We then look at what happens if we look at oracles trying to relate PCP and EXP.

Arora and Safra [AS92] define a hierarchy of complexity classes PCP, corresponding to the
number of random and query bits required to verify a proof of membership in the language, as
follows:

A wverifier M is a probabilistic polynomial-time Turing machine with random access to a string
IT representing a membership proof; M can query any bit of 1I. Call M an (r(n), q(n))-restricted
verifier if, on an input of size n, it is allowed to use at most O(r(n)) random bits for its computation,
and query at most O(g(n)) bits of the proof.

A language L is in PCP(r(n),q(n)) if there exists an (r(n),q(n))-restricted verifier M such
that for every input z:

1. If # € L, there is a proof II, which causes M to accept for every random string, i.e. with
probability 1.

2. If ¢ L, then for all proofs II, the probability that M using proof II accepts is bounded by
1/2.

In 1988, Ben-Or, Goldwasser, Kilian and Wigderson [BGKWS88] defined multiple prover interac-
tive proof systems where the verifier communicates with several provers that cannot communicate
among themselves. Fortnow, Rompel and Sipser [FRS88] show that the languages accepted by
multiple provers (MIP) and U;,PCP(n*,n*) are equivalent. Babai, Fortnow and Lund [BFL91]
building on the work of [LFKN92] show that NEXP = MIP = U, PCP(n*, n*).

Arora, Lund, Motwani, Sudan and Szegedy [ALMT*92] building on techniques of Arora and
Safra [AS92] show the following surprising and powerful theorem:

Theorem 5.1 NP = PCP(log(n),1)

One can easily create an oracle relative to which this result does not relativize because the verifier
has only a polynomial number of computation paths. We use techniques of Fortnow and Sipser
[F'S88] and Fortnow, Rompel and Sipser [FFRS88] to show a much stronger negative oracle result:

Theorem 5.2 For some oracle A, NP* is not contained in Uj>0PCPA(nj,nk) for any fized k.

Proof: Let Li(A) = {1?|There exists a string  of length n** in A}. Clearly L;(A)is in NP*
for every A.

Let My, M,,...be an enumerate of probabilistic verifiers where M; runs in time n'.

Terminology: M; makes two kinds of queries: A proof query is a query to the membership proof
II; An oracle query is a query to A.

Requirement R;;: L;(A) is not accepted by verifier M7 where M makes at most n* proof
queries.



We will handle these countably many requirements one at a time. Initially A is the empty
oracle. We will add a finite number of strings to 4 in each stage. The final A is the union of all
the strings added in each stage.

Stage (7, k):

1. Pick n large enough so that it does not conflict with earlier stages and such that 27 >> n?*,

2. Look at MA(1™). If there exists a membership proof that causes M(1") to accept with
probability greater than 1/4 then we have fulfilled R; ;. Go on to the next stage.

3. If some finite extension to A would cause M?*(1") to ask more than n* proof queries then
make that extension and R; ; is fulfilled. Go on to the next stage.

4. Put z from Lemma 5.3 into A. Suppose there existed some membership proof such that the
probability of M#(1") accepts is one. Then this same membership proof will cause A — {z}
to accept with probability at least 3/4 because of Lemma 5.3. This contradicts step 2. Thus
we have fulfilled R; ;. Go on to the next stage.

Lemma 5.3 There exists a string = of length n** such that
Pr( There exists a membership proof Il where M#(1™) has an oracle query to x) < 1/4
The probability is taken over the random strings of M7 (1™).

Proof: Fix a random coin toss r. The number of oracle queries that M*(1") could make is
at most n‘2"" for all possible membership proofs because there are at most n* proof queries. So
a randomly chosen string of length n?* will have extremely low probability of being in this set of
oracle queries. The lemma follows from the usual averaging argument. O

The oracle constructed by this algorithm will fulfill all the requirements and thus L(A) is not
contained in U;s,PCP*(n?, n*) for any fixed k. O

Since clearly PCPA(log n,1) C NP# for all A, We can interpret Theorem 5.1 as a weak
characterization of NP. Perhaps we can use this characterization to separate NP from higher
complexity classes like PSPACE and EXP by separating PCP(logn, 1) from these classes.

However P* C PCP*(logn, 1) for all A and for some B we have P¥ = PSPACE” [BGST75], for
this B we will have P” = PCP”(logn,1) = NP” = PSPACE”. Thus we would need additional
nonrelativizable techniques to separate PCP(logn, 1) from PSPACE.

The class EXP does not fall into the same trap. For every oracle A, we have P* + EXP*
since the deterministic time hierarchy theorem relativizes [HS65]. Heller [Hel81] showed that there
exists an oracle A where NP* = EXP#. Since Theorem 5.1 does not relativize, Heller’s theorem
does not necessarily imply that PCPA(log n,1) = EXP*. In fact any such oracle will be hard to
find:

Theorem 5.4 If there exists an oracle A such that PCP*(logn, 1) = EXP* then P # NP in the
unrelativized world.

Proof: Since a PCPA(log n, 1) verifier has only a polynomial number of computation paths, a
polynomial time machine could query all of the oracle queries on these paths. Then the polynomial-
time machine could determine whether a proof Il exists by a single unrelativized NP question. Thus
we have for every A that PCP*(logn, 1) C PASAT,



Assume that P = NP and for some oracle A, PCP*(logn,1) = EXP*. We then have
EXP* = PCP*(logn,1) C PAPSAT — P4 which contradicts the fact that the deterministic time
hierarchy relativizes. O

5.2 Local Checkability

Arora, Impagliazzo and Vazirani [ATV92] define the notion of proof checker as follows:

A proof-checkeris a Turing machine M that uses universal quantification and which is provided,
in addition to the input, a proof string. It is allowed random access to both the input and the proof
string. It is said to accept an input z using proof-string Il (denoted M'(z) = 1) iff all branches
created by its universal branching accept.

A language L is in the class PFCHK(¢(n)) iff there is a proof-checker M that runs in O(t(n))
time and has the property

o Vu € L, there exists a I such that M™(z) = 1.
o Vo L, M"(z) = 0 for every II.

Using the Cook-Levin theorem [Coo71, Lev73], Arora, Impagliazzo and Vazirani show that
NP = PFCHK(logn). Arora, Impagliazzo and Vazirani call this fact the “Local Checkability
Theorem”.

Now suppose we relativize PFCHK to an oracle A by giving the proof-checker an oracle tape
by writing a full oracle query z on the tape and magically entering a state ¢, if » € A and a state
qn if 2 ¢ A. However since only queries of length O(logn) can be asked by a PFCHK"(logn)
proof checker, it is easy to construct oracles A such that A ¢ PFCHKA(log n) and thus NP4 ¢
PFCHK"(log n).

Arora, Impagliazzo and Vazirani conclude that local checkability does not relativize. However,
we feel that any oracle access mechanism that prevents a machine from querying its own input is an
extremely weak access model. We will present a more robust access model and show that relative
to this model, local checkability does relativize.

We will allow M to query the oracle as follows: When M wants to make an oracle query, M
writes two pointers on the oracle tape. M will now go to state ¢, if the string located between
those two pointers on the proof tape is in the oracle and will go to state ¢, otherwise.

Theorem 5.5 For all oracles A, NP* = PFCHK"(logn).

Proof: Let ¢4 be a relativized 3CNF formula as described in Section 2.1. A proof 11 will
consist of a satisfying assignment as well as a list of z;y, ..., 2 for each A(;1,...,2;) occurring in
a clause. Such a proof can be universally verified in O(log n) time using the oracle access mechanism
described above.

Let L € NP*. By Lemma 2.1 there is an unrelativized reduction f mapping an input z to
some relativized 3CNF formula ¢4. Part of II will contain the formula ¢4 as well as as proof that

¢a = f(z). O



5.3 Algebraic Oracles

Babai and Fortnow [BF91] give an algebraic characterization of various complexity classes and argue
that the interactive proof take advantage of this characterization. This algebraic characterization
also does not seem to relativize.

In this section, we will give additional evidence that it is the algebraic properties of complexity
classes that prevent the relativization of interactive proof results.

Let A be any function mapping {0,1}* to {0,1}. Let A, be that function restricted to {0,1}".
Let f, to be the unique multilinear extension to A,,.

Let (y1,...,yz) be astandard pairing function such that |(y, ..., yx)| > |y |+|ya|+|ys|+- - -+ |vrl.

For any set L C X* we define the algebraic extension A of L inductively in n as follows:

1. Let f(xy,...,2,) be the unique multilinear extension of A(z;...z,).
2. Let (0,y1,...,yn) bein Aiff y; ...y, is in L.

3. Let (1,24,...,2,) bein Aif f(zy,...,2,) > 0.

4. Let (¢ +2,24,...,2,) be in A if the ith bit of f(z,...,2,) is one.

Note that L is many-one reducible to A.

Lund, Fortnow, Karloff and Nisan [LFKN92] and Shamir [Sha92] show that every language in
PSPACE has an interactive proof. This result does not relativize, Fortnow and Sipser [FS88§]
show that relative to some oracle A, even co-NP does not have interactive proofs. However, the
IP = PSPACE result does hold for algebraic extensions:

Theorem 5.6 For A an algebraic extension for any set L C ¥*, IP* = PSPACE™.

Proof Sketch:

Instead of repeating the entire proof in [Sha92], we will just describe how to modify it.

We use the relativized formulae described in Section 2.1. We arithmetized the formulas in the
same way as in [Sha92] replacing A(z;1,...,z;;) with f(2;1,...,2;;). Thus the arithmetized degree
remains low as required. At the end of the protocol the verifier can read off the values of f using
the encoding in the oracle A. O

From Theorem 5.6 we immediately have the have the following corollary:

Corollary 5.7 For any set L there is an oracle A such that
1. L is many-one reducible to A and

2. IP* = PSPACE".

5.4 Further Questions about Interactive Proofs

We would like to see the ideas of Section 5.3 applied to other classes based on the interactive proof
system such as multiple prover interactive proof systems and probabilistically checkable proofs. This
may lead to even more evidence of an algebraic property that is the main cause of the nonrelativizing
nature of these results.

However, given what we have seen in Section 5.2, we may question the usual oracle access
mechanisms used in these models. We think the oracle access mechanism used in PCP(logn, 1)
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works fine because the verifier is allowed to run in polynomial time. However, time may prove us
wrong.

The access mechanism used by Fortnow, Rompel and Sipser [FRS88] is almost surely the wrong
one. If one thinks about multiple-provers as U;+oPCP(n/,n’) then we see the proof might have
exponential size and thus describe exponential strings in the oracle. It is not clear how to extend
the access mechanism. One simple but workable suggestion is to have the verifier run in exponential
time.

It should be noted however that even if the verifier is given access to exponentially long strings
in the oracle, there will still be an oracle A such that co-NP# Z MIP*. We can easily modify the
proof of Fortnow, Rompel and Sipser [FRS88] so all the diagonalizations occur on exponentially
distant lengths with the oracle empty in between.

Because of the difficulty in creating an oracle A such that PCP(logn,1)4 = EXP*, we should
continue to try to show that PCP(logn,1) # EXP and thus NP # EXP. We should also see if
some different assumption, like a suitably strong one-way function, would allow us to find an oracle
relative to which PCP(logn,1)* = EXP*,

6 Random and Generic Oracles

In 1981, Bennet and Gill [BG81] looked at what happens when we choose the oracles randomly:
decide for each string whether or not it should be in the oracle independently with probability
one-half. We say a statement S holds with probability one if the set of oracles relative to which §
holds has measure one. From measure theory we have a wonderful zero-one law: for virtually any
complexity theory statement .5, we know that .5 holds with either probability zero or probability
one.

Bennet and Gill conjectured the random oracle hypothesis roughly stated as “if a complexity
statement holds with a random oracle with probability one then it holds in the unrelativized world”.
The random oracle hypothesis has great appeal. Intuitively it seems right: We ought to be able to
simulate a random oracle with a suitably strong pseudorandom number generator.

Kurtz [Kur83] showed that the formulation of the random oracle hypothesis given by Bennet and
Gill was false. Other counterexamples come from the area of interactive proofs [CGH90, HCRR90].
Despite these examples, many complexity theorists still believe that some version of the random
oracle hypothesis. We however would like to argue that we should not have ever believed the
random oracle hypothesis in the first place.

Kolmogorov complexity tells us that a “random” set R will contain lots of information. It is
true that for a fixed set L, looking at a random R may not greatly affect the complexity of L.
However the theory of random oracles works in the other direction. First we fix the set R. Then we
can look at a language L designed to take advantage of the information in R. For example, Bennet
and Gill [BG81] create a language I € NP® — P that takes advantage of the fact that some of
the information in R can be accessed nondeterministically but not deterministically.

Since an empty oracle does not contain any information, there is no reason to believe that results
about random oracles should carry over to the unrelativized world. If we know that a statement 5
holds with probability one, we should not infer anything about the statement .5 other than what
we can infer from the fact that there exists an oracle where S holds (see Section 3).

We know that all the definable statements that hold with probability one all hold simultaneously
with probability one. Thus random oracles give us a nice relativized world where several interesting
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complexity theory statements all hold at the same time. However, a much more powerful tool for
such purposes is the theory of generic oracles.

Generic oracles allow us to combine different oracle requirements in a clean manner. They give
us very powerful tools in developing oracles. Fenner, Fortnow and Kurtz [FFK92] use generic oracles
to develop a relativized world where the isomorphism conjecture holds, answering a long-standing
open question. Space limitations prevent us from giving more details about generic oracles here
but for the interested reader we recommend [BI87, FF'KL93, FR93].

7 Conclusions and Other Questions

Hopefully, this paper will convince the reader of the many and varied uses of relativization results
if done properly. The area of relativization remains a very important and active area of complexity
theory. We caution researchers in the area though to keep in mind the limitations mentioned in
Sections 4 and 5. Also, theorists must remember that oracles results are a tool. Theorems strictly
about the structure of oracles should be discouraged.

Although we do not know how to settle many important complexity theory statements, the
opposite is true in relativized worlds. For most important complexity theory statements .5, we
either know how to prove S or show that 5 does not hold in some relativized world. We thus would
like to end this paper with two interesting exceptions:

1. Does P = UP and NP = co-NP imply that P = NP? (See [HS92])

2. Does the isomorphism conjecture imply that there are no one-way functions? (See [FFK92])
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