When do datatypes commute?

Paul Hoogendijk and Roland Backhouse

Department of Mathematics and Computing Science,
Eindhoven University of Technology,
P.O. Box 513,
5600 MB Eindhoven,
The Netherlands.

March 6, 1997

Abstract

Polytypic programs are programs that are parameterised by type constructors
(like List), unlike polymorphic programs which are parameterised by types (like Int).
In this paper we formulate precisely the polytypic programming problem of “commut-
ing” two datatypes. The precise formulation involves a novel notion of higher order
polymorphism. We demonstrate via a number of examples the relevance and interest
of the problem, and we show that all “regular datatypes” (the sort of datatypes that
one can define in a functional programming language) do indeed commute according
to our specification. The framework we use is the theory of allegories, a combination
of category theory with the point-free relation calculus.

1 Polytypism

The ability to abstract is vital to success in computer programming. At the macro level
of requirements engineering the successful designer is the one able to abstract from the
particular wishes of a few clients a general purpose product that can capture a large
market [31]. At the micro level of programming the ability to write so-called “generic”
code capturing commonly occurring patterns is vital to reusability and thus to programmer
productivity.

One of the most significant contributions to generic programming has been the notion of
parametric polymorphism — first introduced by Strachey [32] and later incorporated in
the language ML by Milner [25, 26]. The use of parametric polymorphism eliminates the
compulsion in languages like Pascal to provide irrelevant type information. For example,
it is irrelevant to the computation of the length of a list whether the elements of the list

are integers, characters, or whatever. In Pascal this information must be supplied, thus
enforcing the programmer to rewrite essentially the same code each time a length function
is required for a new element type.

In this paper we consider a problem that entails a higher level of parametricity than can
normally be expressed by polymorphism. The problem is roughly stated in the title of
the paper “when do two datatypes commute?” and an illustrative instance of two
commuting dataypes is provided by the fact that a list of trees all of the same shape can
always be transformed without loss of information to a tree of lists all of the same length.
The paper has three goals. First, we want to show that the problem is relevant and
interesting. Second, we want to formulate the problem precisely and concisely. Third, we
want to use this problem as a primer to the theory of higher order polymorphism that we
have developed. It is not the purpose of this paper to provide a technical justification for
all results claimed in the paper. A complete technical justification is given by Hoogendijk
[14], refining earlier work of Backhouse, Doornbos and Hoogendijk [3].

Our commuting datatypes problem is an instance of what has recently been dubbed “poly-
typic programming” [16, 17, 23]. “Polytypic” programs distinguish themselves from poly-
morphic programs in that the parameter is a datatype like “list” or “tree” a function
from types to types rather than a type like “integer”, “list of integer” or “tree of string”.

The emergence of polytypism as a viable research field has occurred gradually over a
number of years. A landmark was the formulation by Malcolm [20, 21, 22] of a theorem
expressing when two computations could be fused into one computation. Malcolm’s fusion
theorem was polytypic in that it was parameterised by a datatype and so could be instanti-
ated in a variety of ways. Malcolm exploited the polytypic notion of a “catamorphism”
and introduced the “banana bracket” notation which was popularised and extended to the

polytypic notions of “anamorphisms” and “hylomorphisms” by Fokkinga, Meijer and
Paterson [24]. (Malcolm referred to “promotion” rather than “fusion”, that being the
terminology used by Bird [6] at the time in his theory of lists.) Since then the theme
of polytypism has been explored in a variety of ways. Several authors [4, 16, 23] have
explored polytypic generalisations of existing programming problems, Doornbos [9, 8, 10]
has developed a polytypic theory of program termination and the recently published book
by Bird and De Moor [5] contains a wealth of material in which parameterisation by a
datatype plays a central role.

Functional programmers have a well developed intuitive understanding of what it means
for a function to be polymorphic. Being able to experiment with the notion by writing and
executing polymorphic programs is clearly enormously beneficial to understanding. Nev-
ertheless, an unequivocal formal semantics of “parametric polymorphism” is still an active
area of research [11]. The situation with polytypism is much worse: the term is vague and
probably understood in different ways by different authors. Moreover, experimental im-
plementations of polytypism in functional programming languages are only just beginning
to get off the ground. The emphasis at this point in time is in showing the ubiquity of
polytypism; a drawback is the ad hoc nature of some developments. To give one simple

example: the “size” function for a datatype is often cited as a polytypic generalisation of
the length of a list. But what is the appropriate notion of “size” for a tree ~ the number
of nodes or, perhaps, the depth of the tree? Without a theoretical understanding of the
notion of polytypism it is difficult to provide convincing arguments for one or the other
choice.

This paper contributes to the theoretical foundations of polytypism, albeit tentatively. We
draw inspiration from Reynolds’ [29] and Plotkin’s [28] seminal accounts of the semantics of
parametric polymorphism. Roughly speaking, Reynolds and Plotkin showed that any para-
metrically polymorphic function satisfies a certain (di)naturality property that is derivable
from the type of the function via so-called “logical relations”. We turn this around and de-
fine the notion of commuting datatypes by requiring that a certain higher-order naturality
property be satisfied. The framework we use for formalising such properties is the theory
of allegories [12], a combination of category theory with the point-free relation calculus.

In the interests of greater understanding we approach the central topic of the paper slowly
and deliberately. First we need to agree on what a datatype is. For this purpose we briefly
summarise Hoogendijk and De Moor’s [15] arguments. The next step is to present several
illustrations of “commuting datatypes”. One of these is a concrete example, concerning
the transposition of matrices represented as lists of list, which we learnt from D.J. Lillie.
A second is more abstract: we argue that Moggi’s [27] notion of “strong” functor is an
instance of the phenomenon “commuting datatypes”. Armed with these examples we are
able to proceed to a precise formalisation of the notion.

2 Allegories and Datatypes

A brief summary of this section is that our notion of a “datatype” is a “relator with
membership” [15] and an appropriate framework for developing a theory of datatypes is
the theory of allegories [12].

2.1 Parametric Polymorphism

To motivate these choices let us begin by giving a brief summary of Reynolds’ [29] account
of parametric polymorphism. (This summary is partially borrowed from [11] with some
notational changes.) Suppose we have a polymorphic function f of type T for all types
«. That is, for each type A there is an instance fo of type TA. Then parametricity of the
polymorphism means that for any relation R of type A«B there is a relation TR of type
TA «TB such that (fa, fg) € TR.

In order to make the notion of parametricity completely precise, we have to be able to
extend each type constructor T in our chosen programming language to a function R +— TR
from relations to relations. Reynolds did so for function spaces and product. For product
he extended the (binary) type constructor X to relations by defining RxS for arbitrary

relations R of type A«B and S of type C+D to be the relation of type AxC++ BxD
satisfying

((u,v), (x,y)) ERxS = (u,x)eRA(v,y)€S

For function spaces, Reynolds extended the < operator to relations as follows. For all
relations R of type A«B and S of type C+D the relation R«S is the relation of type
(AC) « (B«D) satisfying

(f, g) €RS =V(x,y= (fx, gy) €R & (x,y)€S)

Note that we equate a function f of type A«B with the relation f of type A«+B satisfying
a=fb = (a,b)ef .

This means that the relational composition fog of two functions is the same as their func-
tional composition. That is, a=f(gc) = (a,c) € fog. It also means that the definitions of
fxg and f«g , for functions f and g, coincide with the usual categorical definitions of the
product and hom functors (respectively) for the category Set.

An example of Reynolds’ parametricity property is given by function application. The
type of function application is « (a«p)x . The type constructor T is thus the function
mapping types A and B to A« (A«B)xB. The extension of T to relations maps relations
R and S to the relation R« (R«S)xS. Now suppose @ is any parametrically polymorphic
function with the same type as function application. Then Reynolds’ claim is that @
satisfies

(@ac, @gp) € Re—(Re=S)xS

for all relations R and S of types A«—B and C«D, respectively. Unfolding the definitions,
this is the property that, for all functions f and g, and all c and d,

(fQc, g@d) e R & V(x,y: (fx, gy) €R & (x,y)eS)A(c,d)eS

The fact that function application itself satisfies this property is in fact the basis of
Reynolds’ inductive proof of the parametricity property (for a particular language of typed
lambda expressions). But the statement of the theorem is stronger because function appli-
cation is uniquely defined by its parametricity property. To see this, instantiate R to the
singleton set {(fc, fc)} and S to the singleton set {(c,c)}. Then, assuming @ satisfies the
parametricity property, (f@Qc, f@Qc) € R. That is, f@Qc =fc. Similarly, the identity function
is the unique function f satisfying the parametricity property (fa, fg) € R«R for all types
A and B and all relations R of type A«—B the parametricity property corresponding to the
polymorphic type, o« for all «, of the identity function , and the projection function
fst is the unique function f satisfying the parametricity property (fa s, fcp) € R«RxS
for all types A, B, C and D and all relations R and S of types A«—B and C+D, respectively
—the parametricity property corresponding to the polymorphic type, o axf for all «
and f3, of the fst function.

The import of all this is that certain functions can be specified by a parametricity prop-
erty. That is, certain parametricity properties have unique solutions. Most parametricity
properties do not have unique solutions however. For example, both the identity function
on lists and the reverse function satisfy the parametricity property of function f, for all
R:A«B,

(fa, fg) € ListR « ListR

Here ListR is the relation holding between two lists whenever the lists have the same length
and corresponding elements of the two lists are related by R.

2.2 Allegories and Relators
2.2.1 Allegories

As we remarked earlier, a precise formalisation of Reynolds’ parametricity property requires
extending each type constructor T to a mapping R +— TR from relations to relations.
The type requirement on this extension is that if R: A«-B then TR: TA«+TB. This type
requirement has of course exactly the same form as the type requirement on a functor and
it has been known for a long time that datatypes are indeed functors. But just being a
functor is probably much too weak a requirement to capture the notion of a datatype.
Moreover, it seems to be difficult or clumsy to express non-deterministic properties in a
strict categorical setting. An appropriate step to take, therefore, is to allegory theory [12]
and the requirement that datatypes be “relators”.

An allegory is a category with additional structure, the additional structure capturing the
most essential characteristics of relations. Being a category means, of course, that for
every object A there is an identity arrow ida, and that every pair of arrows R : A «+ B and
S : B« C, with matching source and target!, can be composed: ReS : A+ C. Composition
is associative and has id as a unit.

The additional axioms are as follows. First of all, arrows of the same type are ordered by
the partial order C and composition is monotonic with respect to this order. That is,

SieTi € ST, & §CS, AT CT, .

Secondly, for every pair of arrows R,S : A« B, their intersection (meet) RNS exists and
is defined by the following universal property, for each X : A « B,

XCRAXCS = XCRNS

Finally, for each arrow R : A« B its converse R” : B« A exists. The converse operator is
defined by the requirements that it is its own Galois adjoint, that is,

R*CS = RCSY |

!Note that we refer to the “source” and “target” of an arrow in a category in order to avoid confusion
with the domain and range of a relation introduced later.

and is contravariant with respect to composition,
(RoS)” = SYoR"

All three operators of an allegory are connected by the modular law, also known as
Dedekind’s law [30]:

RsS N T C (RN To8%)sS

The standard example of an allegory is Rel, the allegory with sets as objects and relations
as arrows. With this allegory in mind, we refer henceforth to the arrows of an allegory as
“relations”.

2.2.2 Relators
Now that we have the definition of an allegory we can give the definition of a relator.

Definition 1 (Relator) A relator is a monotonic functor that commutes with converse.
That is, let A and B be allegories. Then the mapping F: A« B is a relator iff,

FRoFS = F(R-S) for each R: A«B and S: B« C, (2)
Fida = idra for each object A, (3)
FRCFS & RCS foreach R: A« B and S: A« B, (4)
(FR)” = F(R”) for each R: A+ B. (5)

O

Two examples of relators have already been given. List is a unary relator, and product is a
binary relator. List is an example of an inductively-defined datatype; in [1] it was observed
that all inductively-defined datatypes are relators.

A design requirement which lead to the above definition of a relator [1, 2| is that a relator
should extend the notion of a functor but in such a way that it coincides with the latter
notion when restricted to functions. Formally, relation R : A« B is total iff

idg € R%R |
and relation R is single-valued or simple iff
RORU g IdA

A function is a relation that is both total and simple. It is easy to verify that total
and simple relations are closed under composition. Hence, functions are closed under
composition too. In other words, the functions form a sub-category. For an allegory A, we
denote the sub-category of functions by Map(.A). In particular, Map(Rel) is the category
having sets as objects and functions as arrows. Now the desired property of relators is
that relator F : A« B is a functor of type Map(A) < Map(B). It is easily shown that our
definition of relator guarantees this property.

2.2.3 Division and Tabulation

The allegory Rel has more structure than we have captured so far with our axioms. For
instance, in Rel we can take arbitrary unions (joins) of relations. There are also two
“division” operators, and Rel is “tabulated”. In full, Rel is a unitary, tabulated, locally
complete, division allegory. For full discussion of these concepts see [12] or [5]. Here we
briefly summarise the relevant definitions.

We say that an allegory is locally complete if for each set S of relations of type A « B, the
union US : A+ B exists and, furthermore, intersection and composition distribute over
arbitrary unions. The defining property of union is that, for all X : A « B,

USCX=VY(SeS: SCX)

We use the notation 1L 5 g for the smallest relation of type A < B and TT 4 g for the largest
relation of the same type.

The existence of a largest relation for each pair of objects A and B is guaranteed by the
existence of a “unit” object, denoted by 1. We say that object 1 is a wnit if id; is the
largest relation of its type and for every object A there exists a total relation !5 : 1+ A .
If an allegory has a unit then it is said to be unitary.

The most crucial consequence of the distributivity of composition over union is the existence
of two so-called division operators “\” and “/”. Specifically, we have the following three
Galois-connections. For all R: A« B, S: B« Cand T: A+ C,

RSCT = SCR\T ,

ReSCT RCT/S ,

SCR\T = RCT/S ,
(where, of course, the third is just a combination of the first two).
Note that R\T : B« C and T/S : A+ B. The interpretation of the factors is
(b,c)eR\T = V(a: (a,b)eR: (ac)eT) ,
(a,b)eT/S = V(c: (bec)eS: (ac)eT)
The final characteristic of Rel is that it is “tabular”. That is, each relation is a set of

ordered pairs. Formally, we say that an object C and a pair of functions f : A+ C and
g : B« C is a tabulation of relation R : A « B if

R = fog” A fef N geg = idc

An allegory is said to be tabular if every relation has a tabulation.

Allegory Rel is tabular. Given relation R : A « B, define C to be the subset of the cartesian
product AxB containing the pairs of elements for which (x,y)€R. Then the pair of
projection functions outl : A« C and outr : B+ C is a tabulation of R.

If allegory B is tabular, a functor is monotonic iff it commutes with converse [5]. So, if
we define a relator on a tabular allegory, one has to prove either requirement (4) or (5).
For this reason Bird and De Moor [5] define a relator to be a monotonic functor; they also
attribute the definition to Kawahara [18] and Carboni, Kelly and Wood [7].

2.2.4 Domains

In addition to the source and target of a relation it is useful to know their domain and
range. The domain of a relation R : A+ B is that subset R> of idg defined by the Galois
connection:

RC TTageX = R>CX foreach X C idg. (6)
The range of R : A+ B, which we denote by R<, is the domain of R".

The interpretation of the domain of a relation is the set of all y such that (x,y) € R for
some x. We use the names “domain” and “range” because we usually interpret relations
as transforming “input” y on the right to “output” x on the left. The domain and range
operators play an important role in a relational theory of datatypes.

2.2.5 Pointwise Closed Classes of Relators

We have already mentioned a few examples of relators. Of these, only product is primitive;
the others are composite. In general, our concern is with establishing that certain classes
of relators are commuting. That is, every pair of relators in the class commutes with
each other. A requirement is that a class be sufficiently rich in the sense that it is closed
under a number of composition operators. The composition operators that we consider
indispensable are functional composition and tupling.

Little needs to be said about functional composition at this moment. It is easy to verify
that the functional composition of two relators F: A« B and G : B« C, which we denote
by FG, is a relator. There is also an identity relator for each allegory A, which we denote
by 1d leaving the specific allegory to be inferred from the context. The relators thus form
a category a fact that we need to bear in mind later

Tupling permits the definition of relators that are multiple-valued. So far, all our examples
of relators have been single-valued. Modern functional programming languages provide a
syntax whereby relators (or, more precisely, the corresponding functors) can de defined
as datatypes. Often datatypes are single-valued, but in general they are not. Mutually-
recursive datatypes are commonly occurring programmer-defined datatypes that are not
single-valued. But composite-valued relators also occur in the definition of single-valued
relators. For example, the (single-valued) relator F defined by FR=RXR is the composition
of the relator x after the (double-valued) doubling relator. More complicated examples

8

like the binary relator ® that maps the pair (R,S) to R+SxS involve projection as well
as repetition (doubling), product and coproduct. The programmer is not usually aware of
this because the use of multiple-valued relators is camouflaged by the use of variables. For
our purposes, however, we need a variable-free mechanism for composing relators. This is
achieved by making the arity of a relator explicit and introducing mechanisms for tupling
and projection.

We consider a collection of allegories created by closing some base allegory C under the
formation of finite cartesian products. (The cartesian product of two allegories, defined in
the usual pointwise fashion, is clearly an allegory. Moreover, properties such as unitary,
locally complete etc. are preserved in the process.) An allegory in the collection is thus C*
where k, the arity of the allegory is either a natural number or lxm where 1 is an arity
and m is a number. Note that we identify 1xk and kx1 with k.

The arity of a relator F is k1 if the target of F is C* and its source is C'. We write
F : k¢ Lrather than the strictly correct F: C*«C'. A relator with arity 1+ 1 is called an
endorelator and a relator with arity 1k for some k is called single-valued.

Given a number k and a number of relators F; (0 <i<k) all of the same arity 1+ m, the
relators can be tupled in the obvious way to form a relator of arity lxk « m. We denote the
tupled relator by A(i:0<i<k:F;). (Note that this defines A as a mapping from the range
(1:0<i<k) to the relators.) Some variations on this notation are used. First, we often use
Fr to abbreviate the mapping (i:0<i<k:F;) in a tuple expression. That is, we abbreviate
A(1:0<i<k: F;) to AFy. Second, we sometimes use A as an infix operator —reduced slightly
in size to avoid ambiguity— ; thus, FAG is the relator that maps relation R to the pair of
relations (FR, GR). Thirdly, when all the relators are equal to one and the same relator
F we write simply AF ; this is the relator that given relation R makes k copies of FR to
create a vector of length k. Finally, there are times when we need to make the implicit
parameter k explicit. In such cases we add it as a subscript to A. In particular, we most
often write AF in order to indicate clearly the amount of duplication of F.

Complementary to tupling is projection. For each number k and for each i1, 0 <i<k, we
can define the relator Proj; that maps a k-tuple of relations Ry, ..., Rx_1 to Ry . (Note
that, following the convention introduced above, Projx denotes the function mapping 1 in
the range 0<i<k to Proj;.) In the case that k is 2 we use the special notation Outl and
Outr for the two projections. Note that the identity relator is a special case of a projection
(the case k=1).

Using tupling and projection we can define several other operations. The operation _* can,

of course, be extended to a functor. If F has arity 1« m then
F* A A(i:0<i<k:FProj;)

has arity lxk - mxk. Another relator transposes lxk into kxl. We denote this relator by
T —irrespective of the dimensions 1 and k, relying on the context to determine what its
dimensions are— . The definition of T : kxl« lxk is AA{(Proj;Projy); it is the unique

’

mapping such that for all matrices of single-valued relators F; j, where 0 <i<kand 0 <j <1,
one has

T(AAU(Fi 1)) = AA(Fy)

By composing _* and T we get a functor dual to _*; specifically, we define *F by *F = 1F¢t.
Thus, for F: 1« m we have F* : lxk « m«k and *F : ksl ksm.

Projection and tupling are connected by the law
H=AF, = V(i: 0<i<k: ProjjH=F;) , (7)

for all H and F. We also need to bear this in mind when defining the notion of a commuting
class of relators.

We conclude this subsection with the definition of a “pointwise closed” class of relators.

Definition 8 (Pointwise Closed) A collection of relators is said to be pointwise closed
with base allegory C if each relator in the collection has type C¥«C! for some arities k and
L, and the collection includes all projections and is closed under functional composition
and tupling.

(I

We have chosen the name “pointwise closed” to suggest the idea that the classes of relators
we are interested in are those that are obtained by pointwise definitions starting from some
primitive collection of relators?. For example, the binary relator that maps the pair (R, S) to
R+SxS would be expressed as +(Outl a (x(A,Outr))) in the notation introduced above.
The primitive relators in this example are coproduct and product which we now introduce.

2.2.6 Regular Relators

The “regular relators” are those relators constructed from three primitive (classes of)
relators by pointwise closure and induction.

For each object A in an allegory there is a relator K5 defined by KaR=ida. Such relators
are called constant relators.

A coproduct of two objects consists of an object and two injection relations. The object is
denoted by A+B and the two relations by inlag : A+B« A and inrag : A+B« B. For
the injection relations we require that

inl3 goinlag =ida and inry goinrap =idp 9)

inly goinrag = Llag , (10)
and

inlageinly g Uinrapgoinry g = idajp . (11)

2Tf there is a standard term in the literature that we could use instead of “pointwise closed” then we
would be happy to do so. We do not know of such a term.

10

Having the functions inl and inr, we can define the junc operator: for all R: C+ A and
S:C«B,

RvS A& Reinly g U Seinryp (12)
and the coproduct relator: for all R: Ce—A and S: D« B

R+S A (in'C‘DOR) \% (ian,DOS)
A product of two objects consists of an object and two projection arrows. The object is

denoted by AxB and the two arrows by outlag : A AXB and outrag : B« AXB. For
the arrows we require them to be functions and that

outlapooutra g = TTag , (13)
and
outl gooutla g M outry gooutrap = idaxp . (14)

Having the projection functions outl and outr, we can define the split operator on relations:
forall R: A«—Cand S: B« C

R2S & outly goR N outry oS (15)
and the product relator: for all for R: C+— A and S : D « B,
RxS A (Rooutlap) 2 (Sooutra p)

(The similarity between the symbol “A” used to denote tupling of relators and the split
operator “ is, of course, not coincidental.)

A”

Tree relators are defined as follows. Suppose that relation in : A« FA is an initial F-
algebra. That is to say, suppose that for each relation R : B« FB (thus each “F-algebra”)
there exists a unique F—homomorphism to R from in. We denote this unique homomor-
phism by (F;R]). Formally, (F;R]) and in are characterized by the universal property that,
for each relation X : B« A and each relation R : B« FB,

X =(F;R) = Xoin=RoFX . (16)

Now, let ® be a binary relator and assume that, for each A, ing : TA+— A®TA is an
initial algebra of (A®)3. Then the mapping T defined by, for all R: A+ B,

TR = ([A@ N ing o R®|dTBD
is a relator, the tree relator induced by &.

(Characterization (16) can be weakened without loss of generality so that the univer-
sal quantifications over relations X and R are restricted to universal quantifications over
functions X and R. This, in essence, is what Bird and De Moor [5] refer to as the Eilenberg-
Wright lemma.)

3Here and elsewhere we use the section notation (A®) for the relator @(Ka ald).

11

2.3 Natural Transformations

Reynolds’ characterisation of parametric polymorphism predicts that certain polymorphic
functions are natural transformations. To see this it helps to re-express the pointwise
definition of the « operator in the following point-free form:

(f,g) € RS = foS C Rog

Now consider, for example, the reverse function on lists, denoted here by rev. This has
polymorphic type ListA « ListA for all A and so, according to Reynolds’ prediction:

(rev, rev) € ListR« ListR
for all relations R. That is,
revoListR C ListRorev

for all relations R. Similarly the function that makes a pair out of a single value, here
denoted by fork, has type AxA « A for all A, and so is predicted to satisfy the property:

forkeR C RxRofork

for all relations R.

The above properties of rev and fork are not natural transformation properties because
they assert an inclusion and not an equality; they are sometimes called “lax” natural
transformation properties. It so happens that the inclusion in the case of rev can be
strengthened to an equality but this is certainly not the case for fork. Nevertheless, in the
functional programmer’s world being a lax natural transformation between two relators is
equivalent to being a natural transformation between two functors as we shall now explain.

Since relators are by definition functors, the standard definition of a natural transformation
between relators makes sense. That is to say, we define a collection of relations « indexed
by objects (equivalently, a mapping « of objects to relations) to be a natural transformation
of type F« G, for relators F and G iff

FRoog = a2 GR for each R: A« B.

However, as illustrated by fork above, many collections of relations are not natural with
equality but with an inclusion. That is why we define two other types of natural transfor-
mation denoted by F« G and F— G, respectively. We define:

x:F—G 2 (FRoag O axaoGR for each R: A« B)
and
x:F—>G 2 (FRoag C axaoGR for each R: A« B)

A relationship between naturality in the allegorical sense and in the categorical sense is
given by two lemmas. Recall that relators respect functions, i.e. relators are functors on

12

the sub-category Map. The first lemma states that an allegorical natural transformation
is a categorical natural transformation:

(Ffoaxg = axa o Gf for each function f: A«—B) & «:F—G

The second lemma states the converse; the lemma is valid under the assumption that the
source allegory of the relators F and G is tabular:

x:F—G & (FHoag = aaoGf for each function f: A« B)
In the case that all elements of the collection « are functions we thus have:
x:F—~GinA = a:F—Gin Map(A)

where by “in X” we mean that all quantifications in the definition of the type of natural
transformation range over the objects and arrows of X.

Since natural transformations of type F«— G are the more common ones and, as argued
above, agree with the categorical notion of natural transformation in the case that they
are functions, we say that « is a natural transformation if o : F« G and we say that « is
a proper natural transformation if « : F+ G. (As mentioned earlier, other authors use the
term “lax natural transformation” instead of our natural transformation.)

The natural transformations studied in the computing science literature are predominantly
(collections of) functions. In contrast, the natural transformations discussed in this paper
are almost all non-functional either because they are partial or because they are non-
deterministic (or both).

The notion of arity is of course applicable to all functions defined on product allegories; in
particular natural transformations have an arity. A natural transformation of arity k1
maps an l-tuple of objects to a k-tuple of relations. The governing rule is: if « is a natural
transformation to F from G (of whatever type proper or not) then the arities of F and
G and o must be identical. Moreover, the composition xef3 of two natural transformations
(defined by (axeff)a = aacfa) is only valid if @ and have the same arity (since the
composition is componentwise composition in the product allegory).

2.4 Membership and Fans

Since our goal is to use naturality properties to specify relations it is useful to be able to
interpret what it means to be “natural”. All interpretations of naturality that we know of
assume either implicitly or explicitly that a datatype is a way of structuring information
and, thus, that one can always talk about the information stored in an instance of the
datatype. A natural transformation is then interpreted as a transformation of one type
of structure to another type of structure that rearranges the stored information in some
way but does no actual computations on the stored information. Doing no computations
on the stored information guarantees that the transformation is independent of the stored
information and thus also of the representation used when storing the information.

13

Hoogendijk and De Moor have made this precise [15]. Their argument, briefly summarised
here, is based on the thesis that a datatype is a relator with a membership relation.

Suppose F is a relator. For the moment we assume that F is an endorelator. (Thus the
source of F is not a product of allegories.) The interpretation of FR is a relation between
F-structures of the same shape such that corresponding values stored in the two structures
are related by R. For example, ListR is a relation between two lists of the same length
—the shape of a list is its length— such that the ith element of the one list is related by
R to the ith element of the other. Suppose A is an object and suppose XCida. So X is
a partial identity relation; in effect X selects a subset of A, those values standing in the
relation X to themselves. By the same token, FX is the partial identity relation that selects
all F-structures in which all the stored values are members of the subset selected by X. This
informal reasoning is the basis of the definition of a membership relation for the datatype

F.

The precise specification of membership for F is a collection of relations mem (indexed by
objects of the source allegory of F) such that mema : A« FA and such that FX is the
largest subset Y of idga whose “members” are elements of the set X. Formally, mem is
required to satisfy the property:

V(X,Y: XCida AYCidra: FXDY = (memacY)- C X) (17)

Note that (17) is a Galois connection. A consequence is that a necessary condition for
relator F to have membership is that it preserve arbitrary intersections of partial identities.
In [15] an example due to P.J. Freyd is presented of a relator that does not have this prop-
erty. Thus, if one agrees that having membership is an essential attribute of a datatype,
the conclusion is that not all relators are datatypes.

Property (17) doesn’t make sense in the case that F is not an endorelator but the problem
is easily rectified. The general case that we have to consider is a relator of arity k1 for
some numbers k and 1. We consider first the case that k is 1; for k > 1 the essential idea is
to split the relator into 1 component relators each of arity 1+ k. For illustrative purposes
we assume for the moment that 1=2.

The interpretation of a binary relator ® as a datatype-former is that a structure of type
Ap®Aq, for objects Ag and A, contains data at two places: the left and right argument. In
other words, the membership relation for ® has two components, memg : Ag— Ag®A; and
mem; : A;— Ao®A;, one for each argument. Just as in the endo case, for all ®-structures
being elements of the set Xo®X;, for partial identities Xq and X;, the component for the left
argument should return all and only elements of X, the component for the right argument
all and only elements of X;. Formally, we demand that, for all partial identities Xy C ida,,
X] g iC|A1 and Y g idA0®A17

Xo®X; 2Y = (mempeY)<C Xg A (memioY)< C X; (18)
The rhs of (18) can be rewritten as

((memo,mem;)oAY)< C (Xo,X)

14

where A; denotes the doubling functor: A;Y = (Y,Y). Now, writing mem = (memg, memy),
A = (Ap,A) and X = (X0, X1), equation (18) becomes, for all partial identities X C ida
and Y g id(®]A,

(®)IXDY = (memoAY)<C X .

The above equation for a membership relation for a binary relator suggests the equation
for an arbitrary single-valued relator F of arity 1« 1. Specifically, we demand that the
membership relation mem for F be a collection of relations such that, for all vectors of
objects A (i.e. objects of arity 1)

mema : A «— AFA
and such that, for all partial identities X C ida and Y C idga,

FEXDY = (memaoAY)<CX . (19)

In fact, in [15] neither (19) nor (17) is used as the defining property of membership. Instead
the following definition is used, and it is shown that (19) is a consequence thereof. (Actually
[15] only considers the case L=1, a detail we will ignore here.)

A collection of arrows mem of arity k* 1«1 is a membership relation of relator F: k«1,
if for each vector of objects A

mema : ((Ax)YA — AFA
and for each object B, vector of objects A and each R : A« AB,

FRoN(mem \ ((Ax)Y)id)a,z = N(mema\ ((A)Y)R) . (20)

Properties (20) and (19) are equivalent under the assumption of extensionality as shown
by Hoogendijk [14]. Note that NS denotes the intersection of the 1 elements of the vector
of relations S. Division in a product allegory is of course componentwise division in the
base allegories.

Property (20) gives a great deal of insight into the nature of natural transformations. First,
the property is easily generalised to:

FRoN(mem\ ((Ax)")S)ac = N(mema\ ((Ax)")(RoS)) (21)

for all R: A« B and S : B« A{C. Next we require that the membership of a tuple of
relators is the tuple of their memberships:

mem.F = 1A (mem.ProjiF) (22)

Then, it is straightforward to show that the membership, mem, of relator F: k«1is a
natural transformation. Indeed

mem : (Ag)'—AF

15

and also
N(mem \ ((Ax) id)A; : FA— Ay .

(For endorelator F these properties simplify to mem : Id«F and mem\id : F«1d.) Hav-
ing established these two properties, the —highly significant— observation that mem
and N(mem\ ((Ax)Y)id)A; are the largest natural transformations of their types can be
made. Finally, and most significantly, suppose F and G are relators with memberships
mem.F and mem.G respectively. Then the largest natural transformation of type F«— G
is N(mem.F\mem.G). (We refer the reader to [15] for proofs of all these properties in the
case of endorelators, and to [14] in the general case. The key element in the proof is the
identification aziom which states that the identity function is the largest natural trans-
formation of type Id <= Id. The identification axiom plays the same role in our theory as
the property stated in the introduction that the identity function is the only polymorphic
function of type Id« Id does in Reynolds’.)

The insight that these properties give is that natural transformations between datatypes
can only rearrange values; computation on the stored values or invention of new values is
prohibited. To see this let us consider each of the properties in turn. A natural transforma-
tion of type Id «— F constructs values of type A given a structure of type FA. The fact that
the membership relation for F is the largest natural transformation of type Id+«F says
that all values created by such a natural transformation must be members of the structure
FA. Similarly, a natural transformation « of type F¢— G constructs values of type FA
given a structure of type GA. The fact that N(mem.F\mem.G) is the largest natural trans-
formation of type F¢« G means that o« C (mem.F\mem.G); for each component i of the
vector mem.F\mem.G. According to the interpretation of the division operator, this means
that every member of the F-structure created by « is a member of the input G-structure.
A proper natural transformation « : F« G has types F« G and F— G. Consequently, a
proper natural transformation copies values without loss or duplication.

The natural transformation N(mem\ ((Ax)Y)id)A;, the largest natural transformation of
type FA Ay, is called the canonical fan of F. It transforms an arbitrary value into an
F-structure by non-deterministically creating an F-structure and then copying the given
value at all places in the structure. It plays a crucial role in the sequel. (The name “fan”
is chosen to suggest the hand-held device that was used in olden times by dignified ladies
to cool themselves down.) Rules for computing the canonical fan for all regular relators
are as follows. (These are used later in the construction of “zips”.)

fan.Proj = id (23)
fan.AF, = Af(fan.Fy) (24)
fan.FG = F(fan.G)ofan.F (25)
fanKa = TTa_ (26)
fan+ = (idvid)” (27)

16

fan.x = idaid (28)
fan.T = (id®; (fan.®)")" (29)

(where T is the tree relator induced by ®).

3 Commuting Datatypes: Examples

In this section we want to argue that the notion that two datatypes “commute” is a common
occurrence.

The best known example of a commutativity property is the fact that two lists of the same
length can be mapped into single list of pairs whereby

([(11,(12, ...],[b],bz,]) — [(a],b1),(az,bz),]

The function that performs this operation is known as the “zip” function to functional
programmers. Zip commutes a pair of lists into a list of pairs.

Other specific examples of commutativity properties are easy to invent. For instance, it is
not difficult to imagine generalising zip to a function that commutes m lists each of length
n into n lists each of length m. Indeed, this latter function is also well known under the
name matriz transposition. Another example is the function that commutes a tree of lists
all of the same length into a list of trees all of the same shape. There is also a function
that “broadcasts” a value to all elements of a list —thus

(av[b])bZ)]) = [(avb]))(a)bZ))]

— . That is, the datatype an element of type A paired with (a list of elements of type B)
is “commuted” to a list of (element of type A paired with an element of type B). More
precisely, for each A, the family of broadcasts indexed by B is a natural transformation of
type List(Ax)« (Ax)List; the two datatypes being “commuted” are thus (Ax) and List.
This list broadcast is itself an instance of a subfamily of the operations that we discuss
later. In general, a broadcast operation copies a given value to all locations in a given data
structure.

A final example of a generalised zip would be the (polymorphic) operation that maps
values of type (A+B)x(C+D) to values of type (AxC)+(BxD), i.e. commutes a product
of disjoint sums to a disjoint sum of products. A necessary restriction is that the elements
of the input pair of values have the same “shape”, i.e. both be in the left component of
the disjoint sum or both be in the right component.

In general then, a zip operation transforms F-structures of G-structures to G-structures of
F-structures. Typically, “zips” are partial since they are only well-defined on structures of
the same shape. As we shall see, they may also be non-deterministic; that is, a “zip” is a
relation that need not be simple. Finally, the arity of the two datatypes, F and G, need
not be the same; for example, the classical zip function maps pairs of lists to lists of pairs,
and pairing has arity 1«2 whereas list formation has arity 1«1.

17

3.1 Structure Multiplication

A good example of the beauty of the “zip” generalisation is afforded by what we shall call
“structure multiplication”. (This example we owe to D.J. Lillie [private communication,
December 1994].) A simple, concrete example of structure multiplication is the following.
Given two lists [a;,az, ...] and [by, bz, ...] form a matrix in which the (i,j)th element
is the pair (ai,b;). We call this “structure multiplication” because the input type is the
product ListA x ListB for some types A and B.

Given certain basic functions, this task may be completed in one of two ways. The first
way has two steps. First, the list of a’s is broadcast over the list of b’s to form the list

[([(11»(12»---]>b1)>([a1)a2)---])bZ))---]

Then each b is broadcast over the list of a’s. The second way is identical but for an
interchange of “a” and “b”.

Both methods return a list of lists, but the results are not identical. The connection
between the two results is that one is the transpose of the other. The two methods and
the connection between them are summarised in the following diagram.

ListA x ListB

List(ListA x B) List(A x ListB)

ListList(A x B)

ListList(A x B)

The point we want to make is that there is an obvious generalisation of this procedure:
replace ListA by FA and ListB by GB for some arbitrary relators F and G. Doing so leads
to the realisation that every step involves a “zip” operation (i.e. commuting the order of a
pair of datatypes). This is made explicit in the diagram below.

18

FA x GB

(zip.(FAX).G)g (zip.(xGB).F)a
G(FA x B) F(A x GB)
G(zip.(xB).F)a (zip.F(Ax).G)5 F(zip.(Ax).G)p
GFA X B] s —— FG(A xB)

In order to make evident which datatypes are being “commuted” at each step, each ar-
row has been labelled by an expression involving a “zip” term. A “zip” takes the form
zip.F.G for some datatypes F and G. In the absence of a formal specification (to be given
later) one should interpret zip.F.G as a family of relations indexed by types such that

(zip.F.G)A : GFA « FGA.

An additional edge has been added to the diagram to show the usefulness of generalising
the notion of commutativity beyond just broadcasting; this additional inner edge shows
how the commutativity of the diagram can be decomposed into smaller parts*. Specifically,
in order to show that the whole diagram commutes (in the standard categorical sense of
commuting diagram) it suffices to show that two smaller diagrams commute. Specfically,
the following two equalities must be established:

(zip.F(Ax).G)g = (zip.F.G)axp © F(zip.(AX).G)g (30)
and
(zip.F(Ax).G)go(zip.(xGB).F)a = G(zip.(xB).F)ac (zip.(FAX).G)g (31)

We shall in fact design our definition of “commuting datatypes” in such a way that these
two equations are satisfied (almost) by definition. In other words, our notion of “com-
muting datatypes” is such that the commutativity of the above diagram is automatically
guaranteed.

3.2 Strength

Several scientists have argued that the notion of functor is too general to capture the
notion of a datatype as understood by programmers. Moggi [27] argues that the notion of
“strength” is fundamental to computation, “strength” being defined as follows.

4The additional edge together with the removal of the right-pointing edge in the bottom line seem to
make the diagram asymmetric. But, of course, there are symmetric edges. Corresponding to the added
diagonal edge there is an edge connecting G(FA x B) and FG(A x B) but only one of these edges is needed
in the argument that follows.

19

Definition 32 (Strength) A natural transformation strap : F(A X B) <= FA x B is
said to be a strength of relator F iff stry p is a function that behaves coherently with
respect to product in the following sense. First, the diagram

StI’Ayl

F(A x1) FA x1

Frida ridFa

FA

(where rida : A« A x 1 is the obvious natural isomorphism) commutes. Second, the dia-
gram

FAx(BxC)M (FAxB)x C
stra g X idc
Stra BxC F(AxB) x C
straxs, c
FI(Ax (BxC)) «— F((AxB) x C)

assAB‘C

(where assapc : Ax(BxC)« (AxB)xC is the obvious natural isomorphism) com-
mutes as well. A relator that has at least one strength is said to be strong.
Il

The idea behind “strength” is very simple. A relator F is “strong” if, for each pair of
types A and B, it is possible to broadcast a given value of type B to every element in an
F-structure of A’s. The broadcasting operation is what Moggi calls the “strength” of the
relator.

The type of the “strength” stra g of relator F is the same as the type of (zip.(xA).F)g,
namely F(A x B) « FA x B. We shall argue that, if F and the family of relators (xA) are
included in a class of commuting relators, then any relation satisfying the requirements of
(zip.(xA).F)g also satisfies the definition of stra p.

Let us begin with an informal scrutiny of the definition of strength. In the introduction
to this section we remarked that a broadcast operation (a “strength”) is an example of
a zip. Specifically, a broadcast operation is a zip of the form (zip.(xA).F)g. Paying due
attention to the fact that the relator F is a parameter of the definition, we observe that

20

all the natural transformations involved in the definition of strength are special cases of a
broadcast operation and thus of zips.

In the first diagram there are two occurrences of the canonical isomorphism rid. In general,
we recognise a projection of type A+« A x B as a broadcast where the parameter F is
instantiated to K, the relator that is constantly A when applied to objects and is the
identity on A when applied to arrows. Thus rida is (zip.(x1).Ka)g for some arbitrary B.
In words, rida commutes the relators (x1) and Ka. Redrawing the first diagram above,
using that all the arrows are broadcasts and thus zips, we get the following diagram®.

F(A x 1) (zip.(x1).F)Ka FA x 1

F(zip.(x1).(Ka)) zip.(x1).(Kfa)
FA

Expressed as an equation, this is the requirement that

2ip.(x1).(Kra) = F(zip.(x1).(Ka)) o (zip.(x1).F)Ka (33)

Now we turn to the second diagram in the definition of strength. Just as we observed that
rid is an instance of a broadcast and thus a zip, we also observe that ass is a broadcast
and thus a zip. Specifically, assa g c is (zip.(xC).(Ax))g. Once again, every edge in the
diagram involves a zip operation! That is not all. Yet more zips can be added to the
diagram. For our purposes it is crucial to observe that the bottom left and middle right
nodes the nodes labelled F(A x (B x C)) and F(A x B) x C are connected by the edge
(zip.(xC).F(Ax))g.

FA X (BxC) « (zip.(xC).(FAX))s (FAxB)x C

(zip.(xB).F)a X idc

(zip.(x(BxC)).F)a / F(AxB)x C
yC)-F(AX))B (zip.(x C).F)axs
F(Ax (Bx C)) < F((A xB) x C)

F(zip.(xC).(Ax))g

5To be perfectly correct we should instantiate each of the transformations at some arbitrary B. We
haven’t done so because the choice of which B in this case is truly irrelevant.

21

This means that we can decompose the original coherence property into a combination of
two properties of zips. These are as follows. First, the lower triangle:

(zip.(xC).F(Ax))g = F(zip.(xC).(Ax))g ° (zip.(xC).F)axs (34)
Second, the upper rectangle:

(zip.(x (BXC)).F)a e (zip.(XC).(FAx))g = (zip.(x C).F(Ax))g o (zip.(xB).F)axidc (35)

Note the strong similarity between (33) and (34). They are both instances of one equation
parameterised by three different datatypes. There is also a similarity between these two
equations and (30); the latter is an instance of the same parameterised equation after
taking the converse of both sides and assuming that zip.F.G = (zip.G.F)". Less easy to spot
is the similarity between (31) and (35). As we shall see, however, both are instances of
one equation parameterised again by three different datatypes except that (35) is obtained
by applying the converse operator to both sides of the equation and again assuming that

2ip.F.G = (zip.G.F).

4 The Requirement

In this section we formulate precisely what we mean by two datatypes commuting.

Looking again at the examples above, the first step towards an abstract problem specifi-
cation is clear enough. Replacing “list”, “tree” etc. by “datatype F’ the problem is to
specify an operation zip.F.G for given datatypes F and G that maps FG-structures into
GF-structures.

Note that the informal language we use here seems to imply that we consider only endo
relators (relators of arity 1+—1). After all, the composition FG is meaningless if the source
arity of F is not the same as the target arity of G. If F: m«k and G : n ¢« 1 then ("F)(G¥)
is a meaningful composition, as too is (G™)('F), both having arity nxm« lxk. (Recall
that for H : 1~ m we have H* : lxk ¢« mxk and *H : ksl kxm.) Thus, to be perfectly
precise we should talk about mapping (“F)(G¥) structures to (G™)('F) structures.

Being able to handle relators of arbitrary arity and not restricting ourselves to endorelators
is an important element of our development —were we to restrict ourselves to just endore-
lators then we could not even handle the standard example of zipping a pair of lists since
product is not endo but nevertheless we often omit arity information in our informal
motivation of some elements of our requirement. In all formal statements we do supply
the arity information. The point is that these details can easily be inferred by a process of
arity checking (using the rules given in section 2) but their inclusion in the first instance
is a burdensome complication.

The first step may be obvious enough, subsequent steps are less obvious. The nature
of our requirements is influenced by the relationship between parametric polymorphism
and naturality properties discussed earlier but takes place at a higher level. We consider

22

the datatype F to be fixed and specify a collection of operations zip.F.G indexed by the
datatype G. (The fact that the index is a datatype rather than a type is what we mean
by “at a higher level”.) Such a family forms what we call a collection of “half-zips”. The
requirement is that the collection be “parametric” in G. That is, the elements of the
family zip.F should be “logically related” to each other. The precise formulation of this
idea leads us to three requirements on “half-zips”. The symmetry between F and G, lost
in the process of fixing F and varying G, is then restored by the simple requirement that a
zip is both a half-zip and the converse of a half-zip.

The division of our requirements into “half-zips” and “zips” corresponds to the way that
zips are constructed. Specifically, we construct a half-zip zip.F.G for each datatype F in
the class of regular datatypes and an arbitrary datatype G. That is to say, for each
datatype F we construct the function zip.F on datatypes which, for an arbitrary datatype
G, gives the corresponding zip operation zip.F.G. The function is constructed to meet
the requirement that it define a collection of half-zips; subsequently we show that if the
collection is restricted to regular datatypes G then each half-zip is in fact a zip.

A further subdivision of the requirements is into naturality requirements and requirements
that guarantee that the algebraic structure of pointwise definition of relators is respected
(for example, the associativity of functional composition of relators is respected). These
we discuss in turn.

4.1 Naturality Requirements

Our first requirement is that zip.F.G be natural. That is to say, its application to an FG-
structure should not in any way depend on the values in that structure. Suppose that
F:m&kand G :n« 1. Then we demand that

zip.E.G : (G™)('F) « (“F)(G¥) . (36)
Thus a zip is a proper natural transformation indexed by an lxk matrix of types each
member of the family being an n+m matrix of relations.

As forewarned, arity information is included in the formal statement (36) although not in
the informal discussion preceding it. For endorelators the requirement is much simpler:

2ip.F.G : GFFG

Our advice is thus to ignore all tupling and projection operators (the superscripts in this
case) on a first reading.

Note that we require zip.F.G to be a proper natural transformation since for a zip operation
on a structure no loss or duplication of values should occur.

Demanding naturality is not enough. Somehow we want to express that all the members
of the family zip.F of zip operations for different datatypes G and H are related. For
instance, if we have a natural transformation o : G« H then zip.F.G and zip.F.H should

23

be “coherent” with the transformation «. That is to say, having both zips and «, there
are two ways of transforming FH-structures into GF-structures; these should effectively be
the same.

One way is first transforming an FH-structure into an FG-structure using Fa, (i.e. applying
the transformation o to each H-structure inside the F-structure) and then commuting the
FG-structure into a GF-structure using zip.F.G.

Another way is first commuting an FH-structure into an HF-structure with zip.F.H and
then transforming this H-structure into a G-structure (both containing F-structures) using
«F. So, we have the following diagram.

F
FG«— o FH
2ip.F.G zip.F.H
GF HF
ok

One might suppose that an equality is required, i.e.
aFozipFH = zip.FGoFax (37)

for all natural transformations o« : G+ H. But this requirement is too severe for two
reasons.

The first reason is that if o« is not functional, i.e. « is a non-deterministic transformation,
the rhs of equation (37) may be more non-deterministic than the lhs because of the possible
multiple occurrence of . Take for instance F:= List and G = H := X, i.e. zip.F.G and
zip.F.H are both the inverse of the zip function on a pair of lists, and take o := id U swap,
i.e. o non-deterministically swaps the elements of a pair or not. Then «oF o zip.F.H unzips
a list of pairs into a pair of lists and swaps the lists or not. On the other hand, zip.F.G < Fx
first swaps some of the elements of a list of pairs and then unzips it into a pair of lists.

The second reason is that, due to the partiality of zips, the domain of the left side of (37)
may be smaller than that of the right.

As a concrete example, suppose listify is a polymorphic function that constructs a list of
the elements stored in a tree. The way that the tree is traversed (inorder, preorder etc.) is
immaterial; what is important is that listify is a natural transformation of type List « Tree.
Now suppose we are given a list of trees. Then it can be transformed to a list of lists by
“listify”ing each tree in the list, i.e. by applying the (appropriate instance of the) function
List(listify). If all the trees in the list have the same shape, a list of lists can also be
obtained by first commuting the list of trees to a tree of lists (all of the same length) and
then “listify”ing the tree structure. That is we apply the (appropriate instance of the)
function (listify)List o zip.List. Tree. The two lists of lists will not be the same: if the size

24

of the original list is m and the size of each tree in the list is n then the first method will
construct m lists each of length n whilst the second method will construct n lists each
of length m. However the two lists of lists are “zips” of each other (“transposes” would
be the more conventional terminology). This is expressed by the commutativity of the
following diagram in the case that the input type List(TreeA) is restricted to lists of trees
of the same shape.

List (listify)a

List(ListA) List(TreeA)
(zip.List.List) o (zip.List. Tree)a
List(ListA) ~——— Tree(ListA)
listify| jgea

Note however that if we view both paths through the diagram as partial relations of type
List(ListA) < List(TreeA) then the upper path (via List(ListA)) includes the lower path (via
Tree(ListA)). This is because the function List(listify)a may construct a list of lists all of
the same length (as required by the subsequent zip operation) even though all the trees in
the given list of trees may not all have the same shape. The requirement on the trees is
that they all have the same size, which is weaker than their all having the same shape.

Both examples show that we have to relax requirement (37) using an inclusion instead
of equality. Having this inclusion, the requirement for o can be relaxed as well. So, the
requirement becomes

aF o zip.FH C zip.F.GoFx for all «: G—H

Including arity information, the formal statement of the requirement is that for all relators
F:m—kand G,H:n«1,and all x: G+—H,

(™) ('F) o zip.FH C zip.F.Go("F)(a¥) . (38)

4.2 Pointwise Integrity

The variable-free mechanism we have introduced for “pointwise closing” a class of relators
allows some freedom in the manner in which relators are composed. Formally, the relators
form a category under functional composition, and the tupling and projection operators
are related by the characteristic equation

F= AGk = PT’Oij = Gk

(Note that the right side of this equivalence is an equation between mappings following
the convention explained earlier. Thus it is true if for all i, 0 <i<k , Proj;F = G;.) Our
second set of requirements guarantee that this algebraic structure is respected by the
mapping zip.F.

25

We begin with tupling and projection. In view of arity considerations the obvious require-
ments are:

zip.F.G = 1A, (zip.F.P10j,,G) (39)
where 1 is the arity of the target of G the zip of a tuple is the tuple of the zips and

zip.F.Proj = (id™)F(Proj") (40)
for each projection relator Proj : 1«1, assuming F : m« k.

In fact, (39) becomes redundant when we introduce requirement (41) on the composition
of relators.

For our final requirement we consider the monoid structure of functors under composition.
Fix functor F and consider the collection of zips, zip.F.G, indexed by (endo)functor G.
Since the (endo)functors form a monoid it is required that the mapping zip.F is a monoid
homomorphism.

In order to formulate this requirement precisely we let ourselves be driven by type consid-
erations. The requirement is that zip.F.GH be some composition of zip.F.G and zip.F.H of
which zip.F.1d is the identity. But the type of zip.F.GH,

zip.F.GH : GHF «— FGH

demands that the datatype F has to be “pushed” through GH leaving the order of G and
H unchanged. With zip.F.G we can swap the order of F and G, with zip.F.H the order of F
and H. Thus transforming FGH to GHF can be achieved as shown below.

G(zip.F.H) (zip.F.G)H

FHG -

GHF FGH

So, informally, we demand that
zip.F.GH = G(zip.F.H) o (zip.F.G)H .
Moreover, in order to guarantee that zip.F.GId = zip.F.G = zip.F.1dG we require that
zip.F.1d = idF .
Formally, the demand is that, for all F: m«k, G:n«land H: l«o,
zip.F.GH = (G™)(zip.F.H) o (zip.F.G)(H*) | (41)
and, for F: m«k and the identity relator Id : L+ 1,
zip.FId = (id"*™)('F) . (42)
In order to verify that zip.F is indeed a monoid homomorphism we make the monoid explicit.

Define (for fixed datatype F) the monoid M as follows. The elements are pairs consisting
of a natural transformation, & , and a functor, G, where

Fun

(x,G)eM = «o:GF — FG

26

Define composition in the following way:
(x,G)-(B,H) 2 (GBeaH , GH)

That (GBoaH , GH) is an element of M is, by definition, GBoaH : GHF«+ FGH which
follows from 3 : HF«—FH and o : GF«FG. It is easily seen that “-” has unit (idF,Id)
and is associative.

Now, define f(G) = (zip.F.G, G). Then zip.F is a monoid homomorphism if
f(GH) = f(G) - f(H)
and
f(Id) = (idF,1d)
Expanding the definition of f, we thus demand
zip.F.GH = G(zip.F.H) o (zip.F.G)H
and
zip.F.Id = idF .
(Note that idF : IdF« FId.) .

4.3 Half Zips and Commuting Relators

Apart from the very first of our requirements ((36), the requirement that zip.F.G be nat-
ural), all the other requirements have been requirements on the nature of the mapping
zip.F. Roughly speaking, (38) demands that it be parametric, (39) and (40) that it respect
tupling and projection, and (41) and (42) that it be functorial. Of these requirements, (39)
and (42) are redundant. ((39) can be derived from (40) and (41); it can then be used in
combination with (40) to derive (42).) We find it useful to bundle the (non-redundant set
of) requirements together into the definition of something that we call a “half zip”.

Definition 43 (Half Zip) Consider a fixed relator F: m«k and a pointwise closed
class of relators G. Then the members of the collection zip.F.G, where G ranges over G, are
called half-zips iff

(a) zip.F.G : (G™)('F) « (“F)(G¥), for each G : n+1

(b) zip.F.Proj = (id™)F(Proj¥) for all Proj: 1«1,

(c) 2|p F.GH = (G™)(zip.F.H)o (zip.F.G)(H¥) for all G:n«1land H: l«o,

() (™) ('F) o zip.F.H C zip.F.Go("F)(a®) for each & : G+ H where G,H :n« L.

Note that for F: m«k and G : n«1, we have

zip.F.G : nxm« lxk

27

and
(zip.G.F)” : msmn« kxl

So for non-endo F and G they do not have the same arity. The source and target arities
are clearly related by matrix transposition, i.e. the relator T. That is,

T(zip.G.F)"T : nxm« lxk .
So, the general definition becomes:

Definition 44 (Commuting Relators) The half-zip zip.F.G is said to be a zip of
(F, G) if there exists a half-zip zip.G.F such that

zip.F.G = 1(zip.G.F)"1

We say that datatypes F and G commute if there exists a zip for (F,G).
O

5 Consequences

In this section we address two concerns. First, it may be the case that our requirement is
so weak that it has many trivial solutions. We show that, on the contrary, the requirement
has a number of consequences that guarantee that there are no trivial solutions. On
the other hand, it could be that our requirement for datatypes to commute is so strong
that it is rarely satisfied. Here we show that the requirement can be met for all regular
datatypes. (Recall that the “regular” datatypes are the sort of datatypes that one can
define in a conventional functional programming language.) Moreover, we can even prove
the remarkable result that for the regular relators our requirement has a unique solution.

5.1 Shape Preservation

Zips are partial operations: zip.F.G should map F-structures of (G—structures of the same
shape) into G—structures of (F-structures of the same shape). This requirement is, however,
not explicitly stated in our formalisation of being a zip. In this subsection we show that it
is nevertheless a consequence of that formal requirement. In particular we show that a half
zip always constructs G structures of (F structures of the same shape). We in fact show a
more general result that forms the basis of the uniqueness result for regular relators.

Let us first recall how shape considerations are expressed. The function ! is the function
of type 1+ A that replaces a value by the unique element of the unit type, 1. Also, for an
arbitrary function f, Ff maps an F structure to an F structure of the same shape, replacing
each value in the input structure by the result of applying f to that value. Thus Flx maps
an F structure (of A’s) to an F structure of the same shape in which each value in the
input structure has been replaced by the unique element of the unit type. We can say that

28

(Fla)x is the shape of the F structure x, and Fls o f is the shape of the result of applying
function f.

Now, for a natural transformation o of type F« G, the shape characteristics of & in general
are determined by «;, since

F!AOOCA = O(loG!A

That is, the shape of the result of applying aa is completely determined by the behaviour
of &;. The shape characteristics of zip.F.G, in particular, are determined by (zip.F.G); since

GFlao (zip.F.G)a = (zip.F.G); o FGla

Our shape requirement is that a half zip maps an F G shape into a G F shape in which all
F-shapes equal the original F-shape. This we can express by a single equation relating the
behaviour of (zip.F.G); to that of fan.G. Specifically, we note that (fan.G)r; generates from
a given F-shape, x, an arbitrary G-structure in which all elements equal x, and thus have
the same F shape. On the other hand, F(fan.G);, when applied to x, generates F-structures
with shape x containing arbitrary G-shapes. The shape requirement (for endorelators) is
thus satisfied if we can establish the property

(fan.G)Fl = (ZIpFG)l oF(fan.G)1 . (45)
This property is an immediate consequence of the following lemma (stated in full general-
ity).
Suppose F: k1 and G : m«n are datatypes. Then, if fan.G is the canonical fan of G,

((fan.G)")F = (zip.F.G)((A)Y) o (™F)((fan.G)Y) . (46)

From equation (45) it also follows that the range of (zip.F.G); is the range of (fan.G)gy, i.e.
arbitrary G-structures of which all elements are the same, but arbitrary, F-shape.

A more general version of (46) is obtained by considering the so-called fan function. Re-
calling the characterising property of the membership relation (20), we define the mapping
F (with the same arity as F, namely k1) by

FR = FRoN(mem \ ((Ar)Yid)as (47)

for all R: A« AB. (Note that Fisa partial mapping since it is only defined on relations
with source a vector of 1 instances of the same object.) Then the generalisation of (46) is
the following lemma.

Suppose F: k«1and G : m«n are datatypes. Then, if G is the fan function of G,
(GX)("F)R = (zip.F.G)a° (™F)(GYR , (48)
for all R: A « ((An)Y)B.

It is (48) that often uniquely characterises zip.F.G.

29

5.2 Commuting relators

One reason why our requirements might have trivial solutions is that they are expressed in
terms of lax natural transformations. Requiring properness of a natural transformation is
stronger. The next lemma establishes a properness result for zips on commuting datatypes;
it proves to be the key in showing that certain zips are unique.

Let & denote a class of commuting datatypes. Then for all F: k1, and G,H: mn in
& and all families of functions « such that o« : G« H,

(MF) (') ozip.H.F = zip.G.F o (o")("F) . (49)

Note that the lemma does not imply that the zips are themselves simple. On the face of
it, the property stated in the lemma is quite weak.

5.3 All regular datatypes commute

We now come to the main result of this paper, namely, that all regular relators commute.
Morever, for each pair of regular relators F and G there is a unique natural transformation
zip.F.G satisfying our requirements.

The regular relators are constructed from the constant relators, product and coproduct
by pointwise extension and/or the construction of tree relators. The requirement that
zip.F.G and zip.G.F be each other’s converse (modulo transposition) demands the following
definitions:

zip.Id.G = idG
zip.P10j.G idG(Proj*) forall G:1«k and all Proj: 1«1
zip.AF..G = TA(zip.F.G)

zip.,FGH = (zip.FH)(*G)oF(zip.G.H) forall H: 1k

)
)
)
)

The restriction to single-valued relators in these equations is made possible by the rule for

For the constant relators and product and coproduct, the zip function is uniquely charac-
terised by (48). One obtains the following definitions, for all G : T+ k:

zip.Ko.G = (fan.G)(Kax) (54)
zip.+.G = Ginl v Ginr (55)
zip.x.G = (Goutl ~ Goutr)"” (56)

Note that, in general, zip.K5.G and zip.x.G are not simple; moreover, the latter is typically
partial. That is the right domain of (zip.x.G)a g) is typically a proper subset of GA x GB.
Datatypes defined in terms of these datatypes will thus also be non-simple and/or partial.
Nevertheless, broadcast operations (“strengths”) are always functional.

30

Tree relators are the last sort of relators in the class of regular relators. Let T be the tree
relator induced by ® as defined in section 2.2.6. Here the uniqueness of zip.T.G for all g is
assured by (49) with o instantiated to in. One obtains:

zip.T.G = (idg®; G(Xin)o (zip.®.G)(*(IdaT))) forall G: 1k (57)

5.4 Broadcast and Structure Multiplication, Again

In our motivation of commuting datatypes, we said that the requirements for structure
multiplication and “strength” would be met “almost by definition”. In this section we
observe in what sense that is indeed the case.

The requirements for structure multiplication are given by equations (30) and (31); those
for broadcasts by (33), (34) and (35).

We begin with (30), (33) and (34). Note that all of these correspond to triangular dia-
grams. All are instances or simple consequences of the compositionality requirement of
zips, 43(c). This is easiest to see in the case of (34) since it suffices to make the substi-
tutions F,G,H := (xC),F,(Ax). Next easiest to see is (33). Here the observation has
to be made that Kpa =FKa. Then make the substitutions F,G,H := (x1),F,Ka. Finally,
(30) is a combination of 43(c) and (44) with the substitutions F,G,H := G,F,(Ax). Thus
all three requirements are satisfied, by definition, if it can be shown that all the relators
involved belong to a class of commuting relators. In particular, since the sections (xC)
and (Ax) are regular relators, all the requirements are met if in each case F is a regular
relator.

The remaining two requirements, (31) and (35), are instances of (49) and 43(d), re-
spectively. This is less easy to see. The key is to observe that the broadcast « where
g = (zip.(xB).F) is a proper, functional natural transformation of type F(Ax)+ (FA)x
for each regular relator F and each A. (Note that the functionality is a special prop-
erty of broadcasts. As mentioned before, zips are typically partial and nondeterministic.
Hoogendijk [14] proves that (zip.(xB).F)a is functional for all regular relators F.) Property
(31) is then an instance of (49) after making the substitutions F,G,H := G,F(Ax),(FA)x
and defining « as above. Property (35) is obtained from 43(d) using the substitutions
F,GH,ag := (xC),F(Ax),(FA)x,(zip.(xB).F)a. This results in an inclusion not an
equality but every term is a broadcast, and thus a function, and inclusion of functions is
equivalent to their equality. We conclude that (31) and (35) are also met provided that F
and all sections of the form (xC) and (Ax) are members of a class of commuting relators,
and in particular if F is a regular relator.

6 Conclusion

Polytypism is a new concept in the repertoire of generic programming. In this paper we
have made several innovatory contributions to the theoretical and practical development

31

of polytypism. First, and arguably most importantly, we have provided strong evidence for
the necessity of developing a theory of polytypism in a relational rather than a functional
framework. Membership and fans can only be discussed at a metalevel in a functional
framework and the fact that all regular relators commute is just not true in a functional
framework since some of the transformations are necessarily nondeterministic. Second, we
have demonstrated how to cope cleanly with non-endorelators thus overcoming a limitation
of all other work in this field published to date that we know of (including our own). Third,
we have illustrated a general approach to the specification of polytypic programs. Roughly
summarised the approach is to require that the class of programs is compositional with
respect to the pointwise definition of datatypes, and that the class is “higher order natural”
in the sense that it maps related datatypes to related datatypes (just as polymorphic
functions map related objects to related objects). This is a major advance on our earlier
work [3] in which the commuting requirement was substantially more operational in flavour
and hence ad hoc.

Several challenges remain. A major frustration is that we have been unable to establish
a general unicity property of the “zip” operators even though in every individual case
that we have studied we can prove unicity. This suggests that our requirements can be
made stronger and, in the process, yet simpler and more elegant. Broader questions are
how the notion of polytypism relates to, for example, design patterns [13] and adaptive
object-oriented programming [19].

Acknowledgement The diagrams were drawn with the aid of Paul Taylor’s commutative
diagrams package.

References

[1] R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, and
J. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray, T. Rus, and
G. Scollo, editors, Proceedings of the 2nd Conference on Algebraic Methodology and
Software Technology, AMAST 91, pages 303 326. Springer-Verlag, Workshops in Com-
puting, 1992.

2] R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der Woude.
Relational catamorphisms. In Méller B., editor, Proceedings of the IFIP TC2/WG2.1

Working Conference on Constructing Programs from Specifications, pages 287-318.
Elsevier Science Publishers B.V., 1991.

[3] R.C. Backhouse, H. Doornbos, and P. Hoogendijk. Commuting relators. Available via
World-Wide Web at http://www.win.tue.nl/win/cs/wp/papers, September 1992.

[4] Richard Bird, Oege de Moor, and Paul Hoogendijk. Generic functional programming
with types and relations. J. of Functional Programming, 6(1):1-28, January 1996.

32

[5]

(6]

[16]

[17]

Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall Interna-
tional, 1996.

R.S. Bird. Lectures on constructive functional programming. In M. Broy, editor,
Constructive Methods in Computing Science, pages 151-216. Springer-Verlag, 1989.
NATO ASI Series, vol. F55.

A. Carboni, G.M. Kelly, and R.J. Wood. A 2-categorical approach to geometric
morphisms I. Cahiers de Topologie et Geometrie Differentielle Categoriques, 32(1):47—
95, 1991.

H. Doornbos. Reductivity arquments and program construction. PhD thesis, Eindhoven
University of Technology, Department of Mathematics and Computing Science, June
1996.

Henk Doornbos and Roland Backhouse. Induction and recursion on datatypes. In
B. Moller, editor, Mathematics of Program Construction, 3rd International Confer-
ence, volume 947 of LNCS, pages 242 256. Springer-Verlag, July 1995.

Henk Doornbos and Roland Backhouse. Reductivity. Science of Computer Program-
ming, 26(1-3):217-236, 1996.

Achim Jung (Editor). Domains and denotational semantics: History, accomplish-
ments and open problems. Bulletin of the Furopean Association for Computer Science,
59:227 256, June 1996.

P.J. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1990.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass.,
1995.

Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Department of Math-
ematics and Computing Science, Eindhoven University of Technology, 1997.

Paul Hoogendijk and Oege de Moor. What is a datatype? Technical Report 96/16,
Department of Mathematics and Computing Science, Eindhoven University of Tech-
nology, 1996. Submitted to Science of Computer Programming. Available via World-
Wide Web at http://www.win.tue.nl/win/cs/wp/papers.

J. Jeuring. Polytypic pattern matching. In Conference Record of FPCA ’95,
SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming Languages and
Computer Architecture, pages 238 248, 1995.

J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury, E. Meijer,
and T. Sheard, editors, Proceedings of the Second International Summer School on
Advanced Functional Programming Techniques, pages 68-114. Springer-Verlag, 1996.
LNCS 1129.

33

[18]

[19]

[20]

[21]

[24]

[25]

[26]
[27]

28]

[29]

[30]

[31]

Y. Kawahara. Notes on the universality of relational functors. Memoirs of the Faculty
of Science, Kyushu University, Series A, Mathematics, 27(3):275 289, 1973.

Karl J. Lieberherr, Ignacio Silva-Lepe, and Cun Xiao. Adaptive object-oriented pro-
gramming using graph-based customization. Comm.A.C.M., 37(5):94-101, May 1994.

G. Malcolm. Homomorphisms and promotability. In J.L.A. van de Snepscheut, editor,
Conference on the Mathematics of Program Construction, pages 335 347. Springer-
Verlag LNCS 375, 1989.

G. Malcolm. Algebraic data types and program transformation. PhD thesis, Groningen
University, 1990.

G. Malcolm. Data structures and program transformation. Science of Computer
Programming, 14(2 3):255 280, October 1990.

Lambert Meertens. Calculate polytypically! In Herbert Kuchen and S. Doaitse
Swierstra, editors, Proceedings of the Eighth International Symposium PLILP 96 Pro-
gramming Languages: Implementations, Logics and Programs, volume 1140 of Lecture
Notes in Computer Science, pages 1 16. Springer Verlag, 1996.

E. Meijer, M.M. Fokkinga, and R. Paterson. Functional programming with bananas,
lenses, envelopes and barbed wire. In FPCA91: Functional Programming Languages
and Computer Architecture, volume 523 of LNCS, pages 124-144. Springer-Verlag,
1991.

R. Milner. A theory of type polymorphism in programming. J. Comp. Syst. Scs.,
17:348 375, 1977.

R. Milner. The standard ML core language. Polymorphism, 11(2), October 1985.

E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55-92, 1991.

Gordon D. Plotkin. Lambda-definability in the full type hierarchy. In J.P. Seldin and
J.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculus
and Formalism. Academic Press, London, 1980.

J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E. Mason,
editor, IFIP ’83, pages 513-523. Elsevier Science Publishers, 1983.

J. Riguet. Relations binaires, fermetures, correspondances de Galois. Bulletin de la
Société Mathématique de France, 76:114 155, 1948.

Charles Simonyi. The death of computer languages, the birth of intentional pro-
gramming. Proceedings of the 28th Annual International Seminar on the Teaching of
Computing Science at University Level, Sponsored by ICL and University of Newcastle
upon Tyne, Department of Computing Science, September 1995.

34

[32] C. Strachey. Fundamental concepts in programming languages. Lecture Notes, Inter-
national Summer School in Computer Programming, Copenhagen, August 1967.

35

