
When do datatypes commute?Paul Hoogendijk and Roland BackhouseDepartment of Mathematics and Computing Science,Eindhoven University of Technology,P.O. Box 513,5600 MB Eindhoven,The Netherlands.March 6, 1997AbstractPolytypic programs are programs that are parameterised by type constructors(like List), unlike polymorphic programs which are parameterised by types (like Int).In this paper we formulate precisely the polytypic programming problem of \commut-ing" two datatypes. The precise formulation involves a novel notion of higher orderpolymorphism. We demonstrate via a number of examples the relevance and interestof the problem, and we show that all \regular datatypes" (the sort of datatypes thatone can de�ne in a functional programming language) do indeed commute accordingto our speci�cation. The framework we use is the theory of allegories, a combinationof category theory with the point-free relation calculus.1 PolytypismThe ability to abstract is vital to success in computer programming. At the macro levelof requirements engineering the successful designer is the one able to abstract from theparticular wishes of a few clients a general purpose product that can capture a largemarket [31]. At the micro level of programming the ability to write so-called \generic"code capturing commonly occurring patterns is vital to reusability and thus to programmerproductivity.One of the most signi�cant contributions to generic programming has been the notion ofparametric polymorphism | �rst introduced by Strachey [32] and later incorporated inthe language ML by Milner [25, 26]. The use of parametric polymorphism eliminates thecompulsion in languages like Pascal to provide irrelevant type information. For example,it is irrelevant to the computation of the length of a list whether the elements of the list1



are integers, characters, or whatever. In Pascal this information must be supplied, thusenforcing the programmer to rewrite essentially the same code each time a length functionis required for a new element type.In this paper we consider a problem that entails a higher level of parametricity than cannormally be expressed by polymorphism. The problem is roughly stated in the title ofthe paper | \when do two datatypes commute?" | and an illustrative instance of twocommuting dataypes is provided by the fact that a list of trees all of the same shape canalways be transformed without loss of information to a tree of lists all of the same length.The paper has three goals. First, we want to show that the problem is relevant andinteresting. Second, we want to formulate the problem precisely and concisely. Third, wewant to use this problem as a primer to the theory of higher order polymorphism that wehave developed. It is not the purpose of this paper to provide a technical justi�cation forall results claimed in the paper. A complete technical justi�cation is given by Hoogendijk[14], re�ning earlier work of Backhouse, Doornbos and Hoogendijk [3].Our commuting datatypes problem is an instance of what has recently been dubbed \poly-typic programming" [16, 17, 23]. \Polytypic" programs distinguish themselves from poly-morphic programs in that the parameter is a datatype like \list" or \tree" |a functionfrom types to types| rather than a type like \integer", \list of integer" or \tree of string".The emergence of polytypism as a viable research �eld has occurred gradually over anumber of years. A landmark was the formulation by Malcolm [20, 21, 22] of a theoremexpressing when two computations could be fused into one computation. Malcolm's fusiontheorem was polytypic in that it was parameterised by a datatype and so could be instanti-ated in a variety of ways. Malcolm exploited the |polytypic| notion of a \catamorphism"and introduced the \banana bracket" notation which was popularised and extended to the|polytypic| notions of \anamorphisms" and \hylomorphisms" by Fokkinga, Meijer andPaterson [24]. (Malcolm referred to \promotion" rather than \fusion", that being theterminology used by Bird [6] at the time in his theory of lists.) Since then the themeof polytypism has been explored in a variety of ways. Several authors [4, 16, 23] haveexplored polytypic generalisations of existing programming problems, Doornbos [9, 8, 10]has developed a polytypic theory of program termination and the recently published bookby Bird and De Moor [5] contains a wealth of material in which parameterisation by adatatype plays a central role.Functional programmers have a well developed intuitive understanding of what it meansfor a function to be polymorphic. Being able to experiment with the notion by writing andexecuting polymorphic programs is clearly enormously bene�cial to understanding. Nev-ertheless, an unequivocal formal semantics of \parametric polymorphism" is still an activearea of research [11]. The situation with polytypism is much worse: the term is vague andprobably understood in di�erent ways by di�erent authors. Moreover, experimental im-plementations of polytypism in functional programming languages are only just beginningto get o� the ground. The emphasis at this point in time is in showing the ubiquity ofpolytypism; a drawback is the ad hoc nature of some developments. To give one simple2



example: the \size" function for a datatype is often cited as a polytypic generalisation ofthe length of a list. But what is the appropriate notion of \size" for a tree | the numberof nodes or, perhaps, the depth of the tree? Without a theoretical understanding of thenotion of polytypism it is di�cult to provide convincing arguments for one or the otherchoice.This paper contributes to the theoretical foundations of polytypism, albeit tentatively. Wedraw inspiration from Reynolds' [29] and Plotkin's [28] seminal accounts of the semantics ofparametric polymorphism. Roughly speaking, Reynolds and Plotkin showed that any para-metrically polymorphic function satis�es a certain (di)naturality property that is derivablefrom the type of the function via so-called \logical relations". We turn this around and de-�ne the notion of commuting datatypes by requiring that a certain higher-order naturalityproperty be satis�ed. The framework we use for formalising such properties is the theoryof allegories [12], a combination of category theory with the point-free relation calculus.In the interests of greater understanding we approach the central topic of the paper slowlyand deliberately. First we need to agree on what a datatype is. For this purpose we brie
ysummarise Hoogendijk and De Moor's [15] arguments. The next step is to present severalillustrations of \commuting datatypes". One of these is a concrete example, concerningthe transposition of matrices represented as lists of list, which we learnt from D.J. Lillie.A second is more abstract: we argue that Moggi's [27] notion of \strong" functor is aninstance of the phenomenon \commuting datatypes". Armed with these examples we areable to proceed to a precise formalisation of the notion.2 Allegories and DatatypesA brief summary of this section is that our notion of a \datatype" is a \relator withmembership" [15] and an appropriate framework for developing a theory of datatypes isthe theory of allegories [12].2.1 Parametric PolymorphismTo motivate these choices let us begin by giving a brief summary of Reynolds' [29] accountof parametric polymorphism. (This summary is partially borrowed from [11] with somenotational changes.) Suppose we have a polymorphic function f of type T� for all types�. That is, for each type A there is an instance fA of type TA. Then parametricity of thepolymorphism means that for any relation R of type A B there is a relation TR of typeTA TB such that (fA ; fB)2TR.In order to make the notion of parametricity completely precise, we have to be able toextend each type constructor T in our chosen programming language to a function R 7! TRfrom relations to relations. Reynolds did so for function spaces and product. For producthe extended the (binary) type constructor � to relations by de�ning R�S for arbitrary3



relations R of type A B and S of type C D to be the relation of type A�C B�Dsatisfying((u; v) ; (x; y))2R�S � (u; x)2R^ (v; y)2S :For function spaces, Reynolds extended the  operator to relations as follows. For allrelations R of type A B and S of type C D the relation R S is the relation of type(A C) (B D) satisfying(f ; g)2R S � 8(x; y:: (fx ; gy)2R( (x; y)2S) :Note that we equate a function f of type A B with the relation f of type A B satisfyinga= fb � (a; b)2f :This means that the relational composition f�g of two functions is the same as their func-tional composition. That is, a= f(gc) � (a; c)2 f�g. It also means that the de�nitions off�g and f g , for functions f and g, coincide with the usual categorical de�nitions of theproduct and hom functors (respectively) for the category Set.An example of Reynolds' parametricity property is given by function application. Thetype of function application is � (� �)��. The type constructor T is thus the functionmapping types A and B to A (A B)�B. The extension of T to relations maps relationsR and S to the relation R (R S)�S. Now suppose @ is any parametrically polymorphicfunction with the same type as function application. Then Reynolds' claim is that @satis�es(@A;C ; @B;D) 2 R (R S)�Sfor all relations R and S of types A B and C D, respectively. Unfolding the de�nitions,this is the property that, for all functions f and g, and all c and d,(f@c ; g@d)2R( 8(x; y:: (fx ; gy)2R( (x; y)2S)^ (c; d)2S :The fact that function application itself satis�es this property is in fact the basis ofReynolds' inductive proof of the parametricity property (for a particular language of typedlambda expressions). But the statement of the theorem is stronger because function appli-cation is uniquely de�ned by its parametricity property. To see this, instantiate R to thesingleton set f(fc ; fc)g and S to the singleton set f(c; c)g. Then, assuming @ satis�es theparametricity property, (f@c ; f@c)2R. That is, f@c= fc. Similarly, the identity functionis the unique function f satisfying the parametricity property (fA ; fB)2R R for all typesA and B and all relations R of type A B|the parametricity property corresponding to thepolymorphic type, � � for all �, of the identity function|, and the projection functionfst is the unique function f satisfying the parametricity property (fA;B ; fC;D) 2 R R�Sfor all types A, B, C and D and all relations R and S of types A B and C D, respectively|the parametricity property corresponding to the polymorphic type, � ��� for all �and �, of the fst function. 4



The import of all this is that certain functions can be speci�ed by a parametricity prop-erty. That is, certain parametricity properties have unique solutions. Most parametricityproperties do not have unique solutions however. For example, both the identity functionon lists and the reverse function satisfy the parametricity property of function f, for allR :A B,(fA ; fB) 2 ListR ListR :Here ListR is the relation holding between two lists whenever the lists have the same lengthand corresponding elements of the two lists are related by R.2.2 Allegories and Relators2.2.1 AllegoriesAs we remarked earlier, a precise formalisation of Reynolds' parametricity property requiresextending each type constructor T to a mapping R 7! TR from relations to relations.The type requirement on this extension is that if R :A B then TR : TA TB. This typerequirement has of course exactly the same form as the type requirement on a functor andit has been known for a long time that datatypes are indeed functors. But just being afunctor is probably much too weak a requirement to capture the notion of a datatype.Moreover, it seems to be di�cult or clumsy to express non-deterministic properties in astrict categorical setting. An appropriate step to take, therefore, is to allegory theory [12]and the requirement that datatypes be \relators".An allegory is a category with additional structure, the additional structure capturing themost essential characteristics of relations. Being a category means, of course, that forevery object A there is an identity arrow idA, and that every pair of arrows R : A B andS : B C, with matching source and target1, can be composed: R�S : A C. Compositionis associative and has id as a unit.The additional axioms are as follows. First of all, arrows of the same type are ordered bythe partial order � and composition is monotonic with respect to this order. That is,S1�T1 � S2�T2 ( S1 � S2 ^ T1 � T2 :Secondly, for every pair of arrows R ;S : A B, their intersection (meet) R\S exists andis de�ned by the following universal property, for each X : A B,X � R ^ X � S � X � R\S :Finally, for each arrow R : A B its converse R[ : B A exists. The converse operator isde�ned by the requirements that it is its own Galois adjoint, that is,R[ � S � R � S[ ;1Note that we refer to the \source" and \target" of an arrow in a category in order to avoid confusionwith the domain and range of a relation introduced later.5



and is contravariant with respect to composition,(R�S)[ = S[�R[ :All three operators of an allegory are connected by the modular law , also known asDedekind's law [30]:R�S \ T � (R \ T�S[)�S :The standard example of an allegory is Rel, the allegory with sets as objects and relationsas arrows. With this allegory in mind, we refer henceforth to the arrows of an allegory as\relations".2.2.2 RelatorsNow that we have the de�nition of an allegory we can give the de�nition of a relator.De�nition 1 (Relator) A relator is a monotonic functor that commutes with converse.That is, let A and B be allegories. Then the mapping F : A B is a relator i�,FR �FS = F(R�S) for each R : A B and S : B C, (2)FidA = idFA for each object A, (3)FR � FS ( R � S for each R : A B and S : A B, (4)(FR)[ = F(R[) for each R : A B. (5)2Two examples of relators have already been given. List is a unary relator, and product is abinary relator. List is an example of an inductively-de�ned datatype; in [1] it was observedthat all inductively-de�ned datatypes are relators.A design requirement which lead to the above de�nition of a relator [1, 2] is that a relatorshould extend the notion of a functor but in such a way that it coincides with the latternotion when restricted to functions. Formally, relation R : A B is total i�idB � R[�R ;and relation R is single-valued or simple i�R�R[ � idA :A function is a relation that is both total and simple. It is easy to verify that totaland simple relations are closed under composition. Hence, functions are closed undercomposition too. In other words, the functions form a sub-category. For an allegory A, wedenote the sub-category of functions by Map(A). In particular, Map(Rel) is the categoryhaving sets as objects and functions as arrows. Now the desired property of relators isthat relator F : A B is a functor of type Map(A) Map(B). It is easily shown that ourde�nition of relator guarantees this property.6



2.2.3 Division and TabulationThe allegory Rel has more structure than we have captured so far with our axioms. Forinstance, in Rel we can take arbitrary unions (joins) of relations. There are also two\division" operators, and Rel is \tabulated". In full, Rel is a unitary, tabulated, locallycomplete, division allegory. For full discussion of these concepts see [12] or [5]. Here webrie
y summarise the relevant de�nitions.We say that an allegory is locally complete if for each set S of relations of type A B, theunion [S : A B exists and, furthermore, intersection and composition distribute overarbitrary unions. The de�ning property of union is that, for all X : A B,[S �X � 8(S2S :: S�X) :We use the notation ??A;B for the smallest relation of type A B and >>A;B for the largestrelation of the same type.The existence of a largest relation for each pair of objects A and B is guaranteed by theexistence of a \unit" object, denoted by 1. We say that object 1 is a unit if id1 is thelargest relation of its type and for every object A there exists a total relation !A : 1 A .If an allegory has a unit then it is said to be unitary.The most crucial consequence of the distributivity of composition over union is the existenceof two so-called division operators \n" and \/". Speci�cally, we have the following threeGalois-connections. For all R : A B, S : B C and T : A C,R�S � T � S � RnT ;R�S � T � R � T=S ;S � RnT � R � T=S ;(where, of course, the third is just a combination of the �rst two).Note that RnT : B C and T=S : A B. The interpretation of the factors is(b;c)2RnT � 8(a : (a;b)2R : (a;c)2T) ;(a;b)2T=S � 8(c : (b;c)2S : (a;c)2T) :The �nal characteristic of Rel is that it is \tabular". That is, each relation is a set ofordered pairs. Formally, we say that an object C and a pair of functions f : A C andg : B C is a tabulation of relation R : A B ifR = f�g[ ^ f[�f \ g[�g = idC :An allegory is said to be tabular if every relation has a tabulation.7



Allegory Rel is tabular. Given relation R : A B, de�ne C to be the subset of the cartesianproduct A�B containing the pairs of elements for which (x;y)2R. Then the pair ofprojection functions outl : A C and outr : B C is a tabulation of R.If allegory B is tabular, a functor is monotonic i� it commutes with converse [5]. So, ifwe de�ne a relator on a tabular allegory, one has to prove either requirement (4) or (5).For this reason Bird and De Moor [5] de�ne a relator to be a monotonic functor; they alsoattribute the de�nition to Kawahara [18] and Carboni, Kelly and Wood [7].2.2.4 DomainsIn addition to the source and target of a relation it is useful to know their domain andrange. The domain of a relation R : A B is that subset R> of idB de�ned by the Galoisconnection:R � >>A;B �X � R> � X for each X � idB. (6)The range of R : A B, which we denote by R<, is the domain of R[.The interpretation of the domain of a relation is the set of all y such that (x;y)2R forsome x. We use the names \domain" and \range" because we usually interpret relationsas transforming \input" y on the right to \output" x on the left. The domain and rangeoperators play an important role in a relational theory of datatypes.2.2.5 Pointwise Closed Classes of RelatorsWe have already mentioned a few examples of relators. Of these, only product is primitive;the others are composite. In general, our concern is with establishing that certain classesof relators are commuting. That is, every pair of relators in the class commutes witheach other. A requirement is that a class be su�ciently rich in the sense that it is closedunder a number of composition operators. The composition operators that we considerindispensable are functional composition and tupling.Little needs to be said about functional composition at this moment. It is easy to verifythat the functional composition of two relators F : A B and G : B C, which we denoteby FG, is a relator. There is also an identity relator for each allegory A, which we denoteby Id leaving the speci�c allegory to be inferred from the context. The relators thus forma category |a fact that we need to bear in mind later| .Tupling permits the de�nition of relators that are multiple-valued. So far, all our examplesof relators have been single-valued. Modern functional programming languages provide asyntax whereby relators (or, more precisely, the corresponding functors) can de de�nedas datatypes. Often datatypes are single-valued, but in general they are not. Mutually-recursive datatypes are commonly occurring programmer-de�ned datatypes that are notsingle-valued. But composite-valued relators also occur in the de�nition of single-valuedrelators. For example, the (single-valued) relator F de�ned by FR=R�R is the compositionof the relator � after the (double-valued) doubling relator. More complicated examples8



like the binary relator 
 that maps the pair (R; S) to R+S�S involve projection as wellas repetition (doubling), product and coproduct. The programmer is not usually aware ofthis because the use of multiple-valued relators is camou
aged by the use of variables. Forour purposes, however, we need a variable-free mechanism for composing relators. This isachieved by making the arity of a relator explicit and introducing mechanisms for tuplingand projection.We consider a collection of allegories created by closing some base allegory C under theformation of �nite cartesian products. (The cartesian product of two allegories, de�ned inthe usual pointwise fashion, is clearly an allegory. Moreover, properties such as unitary,locally complete etc. are preserved in the process.) An allegory in the collection is thus Ckwhere k, the arity of the allegory is either a natural number or l�m where l is an arityand m is a number. Note that we identify 1�k and k�1 with k.The arity of a relator F is k l if the target of F is Ck and its source is Cl. We writeF : k l rather than the strictly correct F : Ck Cl. A relator with arity 1 1 is called anendorelator and a relator with arity 1 k for some k is called single-valued.Given a number k and a number of relators Fi ( 0� i<k) all of the same arity l m, therelators can be tupled in the obvious way to form a relator of arity l�k m. We denote thetupled relator by �(i:0�i<k:Fi). (Note that this de�nes � as a mapping from the range(i::0�i<k) to the relators.) Some variations on this notation are used. First, we often useFk to abbreviate the mapping (i:0�i<k:Fi) in a tuple expression. That is, we abbreviate�(i:0�i<k:Fi) to �Fk. Second, we sometimes use � as an in�x operator |reduced slightlyin size to avoid ambiguity| ; thus, F�G is the relator that maps relation R to the pair ofrelations (FR ; GR). Thirdly, when all the relators are equal to one and the same relatorF we write simply �F ; this is the relator that given relation R makes k copies of FR tocreate a vector of length k. Finally, there are times when we need to make the implicitparameter k explicit. In such cases we add it as a subscript to �. In particular, we mostoften write �kF in order to indicate clearly the amount of duplication of F.Complementary to tupling is projection. For each number k and for each i, 0� i<k, wecan de�ne the relator Proji that maps a k-tuple of relations R0, . . . , Rk-1 to Ri . (Notethat, following the convention introduced above, Projk denotes the function mapping i inthe range 0�i<k to Proji.) In the case that k is 2 we use the special notation Outl andOutr for the two projections. Note that the identity relator is a special case of a projection(the case k=1).Using tupling and projection we can de�ne several other operations. The operation k can,of course, be extended to a functor. If F has arity l m thenFk 4 �(i:0�i<k:FProji)has arity l�k m�k. Another relator transposes l�k into k�l. We denote this relator by� |irrespective of the dimensions l and k, relying on the context to determine what itsdimensions are| . The de�nition of � : k�l l�k is �k�l(ProjlProjk); it is the unique9



mapping such that for all matrices of single-valued relators Fi;j, where 0� i<k and 0� j< l,one has�(�k�l(Fk;l)) = �l�k(Fk;l) :By composing k and � we get a functor dual to k; speci�cally, we de�ne kF by kF = �Fk�.Thus, for F : l m we have Fk : l�k m�k and kF : k�l k�m.Projection and tupling are connected by the lawH=�Fk � 8(i: 0� i<k: ProjiH=Fi) ; (7)for all H and F. We also need to bear this in mind when de�ning the notion of a commutingclass of relators.We conclude this subsection with the de�nition of a \pointwise closed" class of relators.De�nition 8 (Pointwise Closed) A collection of relators is said to be pointwise closedwith base allegory C if each relator in the collection has type Ck Cl for some arities k andl, and the collection includes all projections and is closed under functional compositionand tupling.2We have chosen the name \pointwise closed" to suggest the idea that the classes of relatorswe are interested in are those that are obtained by pointwise de�nitions starting from someprimitive collection of relators2. For example, the binary relator that maps the pair (R; S) toR+S�S would be expressed as +(Outl � (�(�2Outr))) in the notation introduced above.The primitive relators in this example are coproduct and product which we now introduce.2.2.6 Regular RelatorsThe \regular relators" are those relators constructed from three primitive (classes of)relators by pointwise closure and induction.For each object A in an allegory there is a relator KA de�ned by KAR= idA. Such relatorsare called constant relators.A coproduct of two objects consists of an object and two injection relations. The object isdenoted by A+B and the two relations by inlA;B : A+B A and inrA;B : A+B B. Forthe injection relations we require thatinl[A;B � inlA;B = idA and inr[A;B � inrA;B = idB ; (9)inl[A;B � inrA;B = ??A;B ; (10)and inlA;B � inl[A;B [ inrA;B � inr[A;B = idA+B : (11)2If there is a standard term in the literature that we could use instead of \pointwise closed" then wewould be happy to do so. We do not know of such a term.10



Having the functions inl and inr, we can de�ne the junc operator: for all R : C A andS : C B,R 5 S 4 R � inl[A;B [ S � inr[A;B ; (12)and the coproduct relator : for all R : C A and S : D BR+S 4 (inlC;D �R) 5 (inrC;D �S) :A product of two objects consists of an object and two projection arrows. The object isdenoted by A�B and the two arrows by outlA;B : A A�B and outrA;B : B A�B. Forthe arrows we require them to be functions and thatoutlA;B � outr[A;B = >>A;B ; (13)and outl[A;B � outlA;B \ outr[A;B � outrA;B = idA�B : (14)Having the projection functions outl and outr, we can de�ne the split operator on relations:for all R : A C and S : B CR 4 S 4 outl[A;B �R \ outr[A;B �S ; (15)and the product relator : for all for R : C A and S : D B,R�S 4 (R �outlA;B) 4 (S �outrA;B) :(The similarity between the symbol \�" used to denote tupling of relators and the splitoperator \ 4 " is, of course, not coincidental.)Tree relators are de�ned as follows. Suppose that relation in : A FA is an initial F-algebra. That is to say, suppose that for each relation R : B FB (thus each \F-algebra")there exists a unique F-homomorphism to R from in. We denote this unique homomor-phism by ([F ;R]). Formally, ([F ;R]) and in are characterized by the universal property that,for each relation X : B A and each relation R : B FB,X = ([F ;R]) � X�in = R �FX : (16)Now, let 
 be a binary relator and assume that, for each A, inA : TA A
TA is aninitial algebra of (A
)3. Then the mapping T de�ned by, for all R : A B,TR= ([A
 ; inB �R
idTB])is a relator, the tree relator induced by 
.(Characterization (16) can be weakened without loss of generality so that the univer-sal quanti�cations over relations X and R are restricted to universal quanti�cations overfunctions X and R. This, in essence, is what Bird and De Moor [5] refer to as the Eilenberg-Wright lemma.)3Here and elsewhere we use the section notation (A
) for the relator 
(KA � Id).11



2.3 Natural TransformationsReynolds' characterisation of parametric polymorphism predicts that certain polymorphicfunctions are natural transformations. To see this it helps to re-express the pointwisede�nition of the  operator in the following point-free form:(f; g)2R S � f�S�R�g :Now consider, for example, the reverse function on lists, denoted here by rev. This haspolymorphic type ListA ListA for all A and so, according to Reynolds' prediction:(rev; rev) 2 ListR ListRfor all relations R. That is,rev �ListR � ListR � revfor all relations R: Similarly the function that makes a pair out of a single value, heredenoted by fork, has type A�A A for all A, and so is predicted to satisfy the property:fork�R � R�R � forkfor all relations R:The above properties of rev and fork are not natural transformation properties becausethey assert an inclusion and not an equality; they are sometimes called \lax" naturaltransformation properties. It so happens that the inclusion in the case of rev can bestrengthened to an equality but this is certainly not the case for fork. Nevertheless, in thefunctional programmer's world being a lax natural transformation between two relators isequivalent to being a natural transformation between two functors as we shall now explain.Since relators are by de�nition functors, the standard de�nition of a natural transformationbetween relators makes sense. That is to say, we de�ne a collection of relations � indexedby objects (equivalently, a mapping � of objects to relations) to be a natural transformationof type F G, for relators F and G i�FR ��B = �A �GR for each R : A B.However, as illustrated by fork above, many collections of relations are not natural withequality but with an inclusion. That is why we de�ne two other types of natural transfor-mation denoted by F -G and F ,!G, respectively. We de�ne:� : F -G 4 (FR ��B � �A �GR for each R : A B)and � : F ,!G 4 (FR ��B � �A �GR for each R : A B) :A relationship between naturality in the allegorical sense and in the categorical sense isgiven by two lemmas. Recall that relators respect functions, i.e. relators are functors on12



the sub-category Map. The �rst lemma states that an allegorical natural transformationis a categorical natural transformation:(Ff ��B = �A �Gf for each function f : A B) ( � : F -G :The second lemma states the converse; the lemma is valid under the assumption that thesource allegory of the relators F and G is tabular:� : F -G ( (Ff ��B = �A �Gf for each function f : A B) :In the case that all elements of the collection � are functions we thus have:� : F -G in A � � : F G in Map(A)where by \in X" we mean that all quanti�cations in the de�nition of the type of naturaltransformation range over the objects and arrows of X.Since natural transformations of type F -G are the more common ones and, as arguedabove, agree with the categorical notion of natural transformation in the case that theyare functions, we say that � is a natural transformation if � : F -G and we say that � isa proper natural transformation if � : F G. (As mentioned earlier, other authors use theterm \lax natural transformation" instead of our natural transformation.)The natural transformations studied in the computing science literature are predominantly(collections of) functions. In contrast, the natural transformations discussed in this paperare almost all non-functional either because they are partial or because they are non-deterministic (or both).The notion of arity is of course applicable to all functions de�ned on product allegories; inparticular natural transformations have an arity. A natural transformation of arity k lmaps an l-tuple of objects to a k-tuple of relations. The governing rule is: if � is a naturaltransformation to F from G (of whatever type | proper or not) then the arities of F andG and � must be identical. Moreover, the composition ��� of two natural transformations(de�ned by (���)A = �A ��A) is only valid if � and � have the same arity (since thecomposition is componentwise composition in the product allegory).2.4 Membership and FansSince our goal is to use naturality properties to specify relations it is useful to be able tointerpret what it means to be \natural". All interpretations of naturality that we know ofassume either implicitly or explicitly that a datatype is a way of structuring informationand, thus, that one can always talk about the information stored in an instance of thedatatype. A natural transformation is then interpreted as a transformation of one typeof structure to another type of structure that rearranges the stored information in someway but does no actual computations on the stored information. Doing no computationson the stored information guarantees that the transformation is independent of the storedinformation and thus also of the representation used when storing the information.13



Hoogendijk and De Moor have made this precise [15]. Their argument, brie
y summarisedhere, is based on the thesis that a datatype is a relator with a membership relation.Suppose F is a relator. For the moment we assume that F is an endorelator. (Thus thesource of F is not a product of allegories.) The interpretation of FR is a relation betweenF-structures of the same shape such that corresponding values stored in the two structuresare related by R. For example, ListR is a relation between two lists of the same length|the shape of a list is its length| such that the ith element of the one list is related byR to the ith element of the other. Suppose A is an object and suppose X� idA. So X isa partial identity relation; in e�ect X selects a subset of A, those values standing in therelation X to themselves. By the same token, FX is the partial identity relation that selectsall F-structures in which all the stored values are members of the subset selected by X: Thisinformal reasoning is the basis of the de�nition of a membership relation for the datatypeF:The precise speci�cation of membership for F is a collection of relations mem (indexed byobjects of the source allegory of F) such that memA : A FA and such that FX is thelargest subset Y of idFA whose \members" are elements of the set X. Formally, mem isrequired to satisfy the property:8(X; Y: X� idA^Y� idFA: FX � Y � (memA�Y)<� X) (17)Note that (17) is a Galois connection. A consequence is that a necessary condition forrelator F to have membership is that it preserve arbitrary intersections of partial identities.In [15] an example due to P.J. Freyd is presented of a relator that does not have this prop-erty. Thus, if one agrees that having membership is an essential attribute of a datatype,the conclusion is that not all relators are datatypes.Property (17) doesn't make sense in the case that F is not an endorelator but the problemis easily recti�ed. The general case that we have to consider is a relator of arity k l forsome numbers k and l. We consider �rst the case that k is 1; for k>1 the essential idea isto split the relator into l component relators each of arity 1 k. For illustrative purposeswe assume for the moment that l=2.The interpretation of a binary relator 
 as a datatype-former is that a structure of typeA0
A1, for objects A0 and A1, contains data at two places: the left and right argument. Inother words, the membership relation for 
 has two components, mem0 : A0 A0
A1 andmem1 : A1 A0
A1, one for each argument. Just as in the endo case, for all 
-structuresbeing elements of the set X0
X1, for partial identities X0 and X1, the component for the leftargument should return all and only elements of X0, the component for the right argumentall and only elements of X1. Formally, we demand that, for all partial identities X0 � idA0,X1 � idA1 and Y � idA0
A1,X0
X1 � Y � (mem0�Y)<� X0 ^ (mem1�Y)<� X1 (18)The rhs of (18) can be rewritten as((mem0 ;mem1) ��2Y)< � (X0 ;X1) 14



where �2 denotes the doubling functor: �2Y = (Y ;Y). Now, writingmem = (mem0 ;mem1),A = (A0 ;A1) and X = (X0 ;X1), equation (18) becomes, for all partial identities X � idAand Y � id(
)A,(
)X � Y � (mem ��2Y)< � X :The above equation for a membership relation for a binary relator suggests the equationfor an arbitrary single-valued relator F of arity 1 l. Speci�cally, we demand that themembership relation mem for F be a collection of relations such that, for all vectors ofobjects A (i.e. objects of arity l)memA : A �lFAand such that, for all partial identities X � idA and Y � idFA,FX � Y � (memA ��lY)< � X : (19)In fact, in [15] neither (19) nor (17) is used as the de�ning property of membership. Insteadthe following de�nition is used, and it is shown that (19) is a consequence thereof. (Actually[15] only considers the case l=1, a detail we will ignore here.)A collection of arrows mem of arity k� l l is a membership relation of relator F : k l,if for each vector of objects AmemA : ((�k)l)A �lFAand for each object B, vector of objects A and each R : A �lB,FR �\(memn ((�k)l)id)�lB = \(memA n ((�k)l)R) : (20)Properties (20) and (19) are equivalent under the assumption of extensionality as shownby Hoogendijk [14]. Note that \S denotes the intersection of the l elements of the vectorof relations S. Division in a product allegory is of course componentwise division in thebase allegories.Property (20) gives a great deal of insight into the nature of natural transformations. First,the property is easily generalised to:FR �\(memn ((�k)l)S)�lC = \(memA n ((�k)l)(R�S)) (21)for all R : A B and S : B �lC. Next we require that the membership of a tuple ofrelators is the tuple of their memberships:mem:F = ��k(mem:ProjkF) (22)Then, it is straightforward to show that the membership, mem, of relator F : k l is anatural transformation. Indeedmem : (�k)l -�lF ; 15



and also\(memn ((�k)l)id)�l : F�l -�k :(For endorelator F these properties simplify to mem : Id -F and memnid : F - Id.) Hav-ing established these two properties, the |highly signi�cant| observation that memand \(memn ((�k)l)id)�l are the largest natural transformations of their types can bemade. Finally, and most signi�cantly, suppose F and G are relators with membershipsmem:F and mem:G respectively. Then the largest natural transformation of type F -Gis \(mem:Fnmem:G). (We refer the reader to [15] for proofs of all these properties in thecase of endorelators, and to [14] in the general case. The key element in the proof is theidenti�cation axiom which states that the identity function is the largest natural trans-formation of type Id - Id. The identi�cation axiom plays the same role in our theory asthe property stated in the introduction that the identity function is the only polymorphicfunction of type Id Id does in Reynolds'. )The insight that these properties give is that natural transformations between datatypescan only rearrange values; computation on the stored values or invention of new values isprohibited. To see this let us consider each of the properties in turn. A natural transforma-tion of type Id -F constructs values of type A given a structure of type FA. The fact thatthe membership relation for F is the largest natural transformation of type Id -F saysthat all values created by such a natural transformation must be members of the structureFA. Similarly, a natural transformation � of type F -G constructs values of type FAgiven a structure of type GA. The fact that \(mem:Fnmem:G) is the largest natural trans-formation of type F -G means that �� (mem:Fnmem:G)i for each component i of thevector mem:Fnmem:G. According to the interpretation of the division operator, this meansthat every member of the F-structure created by � is a member of the input G-structure.A proper natural transformation � : F G has types F -G and F ,!G. Consequently, aproper natural transformation copies values without loss or duplication.The natural transformation \(memn ((�k)l)id)�l, the largest natural transformation oftype F�l -�k, is called the canonical fan of F. It transforms an arbitrary value into anF-structure by non-deterministically creating an F-structure and then copying the givenvalue at all places in the structure. It plays a crucial role in the sequel. (The name \fan"is chosen to suggest the hand-held device that was used in olden times by digni�ed ladiesto cool themselves down.) Rules for computing the canonical fan for all regular relatorsare as follows. (These are used later in the construction of \zips".)fan:Proj = id (23)fan:�Fk = �(fan:Fk) (24)fan:FG = F(fan:G) � fan:F (25)fan:KA = >>A; (26)fan:+ = (id 5 id)[ (27)16



fan:� = id 4 id (28)fan:T = ([id
 ; (fan:
)[])[ (29)(where T is the tree relator induced by 
).3 Commuting Datatypes: ExamplesIn this section we want to argue that the notion that two datatypes \commute" is a commonoccurrence.The best known example of a commutativity property is the fact that two lists of the samelength can be mapped into single list of pairs whereby([a1 ; a2 ; : : :] ; [b1 ; b2 ; : : :]) 7! [(a1 ; b1) ; (a2 ; b2) ; : : :]The function that performs this operation is known as the \zip" function to functionalprogrammers. Zip commutes a pair of lists into a list of pairs.Other speci�c examples of commutativity properties are easy to invent. For instance, it isnot di�cult to imagine generalising zip to a function that commutes m lists each of lengthn into n lists each of length m. Indeed, this latter function is also well known under thename matrix transposition. Another example is the function that commutes a tree of listsall of the same length into a list of trees all of the same shape. There is also a functionthat \broadcasts" a value to all elements of a list |thus(a ; [b1 ; b2 ; : : :]) 7! [(a ;b1) ; (a ;b2) ; : : :]| . That is, the datatype an element of type A paired with (a list of elements of type B)is \commuted" to a list of (element of type A paired with an element of type B). Moreprecisely, for each A, the family of broadcasts indexed by B is a natural transformation oftype List(A�) - (A�)List; the two datatypes being \commuted" are thus (A�) and List.This list broadcast is itself an instance of a subfamily of the operations that we discusslater. In general, a broadcast operation copies a given value to all locations in a given datastructure.A �nal example of a generalised zip would be the (polymorphic) operation that mapsvalues of type (A+B)�(C+D) to values of type (A�C)+(B�D), i.e. commutes a productof disjoint sums to a disjoint sum of products. A necessary restriction is that the elementsof the input pair of values have the same \shape", i.e. both be in the left component ofthe disjoint sum or both be in the right component.In general then, a zip operation transforms F-structures of G-structures to G-structures ofF-structures. Typically, \zips" are partial since they are only well-de�ned on structures ofthe same shape. As we shall see, they may also be non-deterministic; that is, a \zip" is arelation that need not be simple. Finally, the arity of the two datatypes, F and G, neednot be the same; for example, the classical zip function maps pairs of lists to lists of pairs,and pairing has arity 1 2 whereas list formation has arity 1 1.17



3.1 Structure MultiplicationA good example of the beauty of the \zip" generalisation is a�orded by what we shall call\structure multiplication". (This example we owe to D.J. Lillie [private communication,December 1994].) A simple, concrete example of structure multiplication is the following.Given two lists [a1 ; a2 ; : : :] and [b1 ; b2 ; : : :] form a matrix in which the (i ; j)th elementis the pair (ai ; bj). We call this \structure multiplication" because the input type is theproduct ListA�ListB for some types A and B.Given certain basic functions, this task may be completed in one of two ways. The �rstway has two steps. First, the list of a's is broadcast over the list of b's to form the list[([a1 ; a2 ; : : :] ; b1) ; ([a1 ; a2 ; : : :] ; b2) ; : : :]Then each b is broadcast over the list of a's. The second way is identical but for aninterchange of \a" and \b".Both methods return a list of lists, but the results are not identical. The connectionbetween the two results is that one is the transpose of the other. The two methods andthe connection between them are summarised in the following diagram.ListA�ListB	����� @@@@@RList(ListA�B) List(A�ListB)
ListList(A�B)? � - ListList(A�B)?The point we want to make is that there is an obvious generalisation of this procedure:replace ListA by FA and ListB by GB for some arbitrary relators F and G. Doing so leadsto the realisation that every step involves a \zip" operation (i.e. commuting the order of apair of datatypes). This is made explicit in the diagram below.
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FA�GB	�����(zip:(FA�):G)B @@@@@(zip:(�GB):F)ARG(FA�B) F(A�GB)
������(zip:F(A�):G)B�����GF(A�B)G(zip:(�B):F)A? � (zip:F:G)A�B FG(A�B)?F(zip:(A�):G)B

In order to make evident which datatypes are being \commuted" at each step, each ar-row has been labelled by an expression involving a \zip" term. A \zip" takes the formzip:F:G for some datatypes F and G. In the absence of a formal speci�cation (to be givenlater) one should interpret zip:F:G as a family of relations indexed by types such that(zip:F:G)A : GFA FGA.An additional edge has been added to the diagram to show the usefulness of generalisingthe notion of commutativity beyond just broadcasting; this additional inner edge showshow the commutativity of the diagram can be decomposed into smaller parts4. Speci�cally,in order to show that the whole diagram commutes (in the standard categorical sense ofcommuting diagram) it su�ces to show that two smaller diagrams commute. Spec�cally,the following two equalities must be established:(zip:F(A�):G)B = (zip:F:G)A�B � F(zip:(A�):G)B (30)and (zip:F(A�):G)B � (zip:(�GB):F)A = G(zip:(�B):F)A � (zip:(FA�):G)B (31)We shall in fact design our de�nition of \commuting datatypes" in such a way that thesetwo equations are satis�ed (almost) by de�nition. In other words, our notion of \com-muting datatypes" is such that the commutativity of the above diagram is automaticallyguaranteed.3.2 StrengthSeveral scientists have argued that the notion of functor is too general to capture thenotion of a datatype as understood by programmers. Moggi [27] argues that the notion of\strength" is fundamental to computation, \strength" being de�ned as follows.4The additional edge together with the removal of the right-pointing edge in the bottom line seem tomake the diagram asymmetric. But, of course, there are symmetric edges. Corresponding to the addeddiagonal edge there is an edge connecting G(FA�B) and FG(A�B) but only one of these edges is neededin the argument that follows. 19



De�nition 32 (Strength) A natural transformation strA;B : F(A�B) - FA�B issaid to be a strength of relator F i� strA ; B is a function that behaves coherently withrespect to product in the following sense. First, the diagramF(A�1) � strA;1 FA�1@@@@@FridA R 	�����ridFAFA(where ridA : A A� 1 is the obvious natural isomorphism) commutes. Second, the dia-gram FA� (B�C) �assFA;B;C (FA�B)�C
F(A�B)�C?strA;B� idC

F(A� (B�C))
strA ; B�C? �FassA;B;C F((A�B)�C)?strA�B ; C(where assA;B;C : A� (B�C) (A�B)�C is the obvious natural isomorphism) com-mutes as well. A relator that has at least one strength is said to be strong .2The idea behind \strength" is very simple. A relator F is \strong" if, for each pair oftypes A and B, it is possible to broadcast a given value of type B to every element in anF-structure of A's. The broadcasting operation is what Moggi calls the \strength" of therelator.The type of the \strength" strA;B of relator F is the same as the type of (zip:(�A):F)B,namely F(A�B) FA�B. We shall argue that, if F and the family of relators (�A) areincluded in a class of commuting relators, then any relation satisfying the requirements of(zip:(�A):F)B also satis�es the de�nition of strA;B.Let us begin with an informal scrutiny of the de�nition of strength. In the introductionto this section we remarked that a broadcast operation (a \strength") is an example ofa zip. Speci�cally, a broadcast operation is a zip of the form (zip:(�A):F)B. Paying dueattention to the fact that the relator F is a parameter of the de�nition, we observe that20



all the natural transformations involved in the de�nition of strength are special cases of abroadcast operation and thus of zips.In the �rst diagram there are two occurrences of the canonical isomorphism rid. In general,we recognise a projection of type A A�B as a broadcast where the parameter F isinstantiated to KA, the relator that is constantly A when applied to objects and is theidentity on A when applied to arrows. Thus ridA is (zip:(�1):KA)B for some arbitrary B.In words, ridA commutes the relators (�1) and KA. Redrawing the �rst diagram above,using that all the arrows are broadcasts and thus zips, we get the following diagram5.F(A�1) � (zip:(�1):F)KA FA� 1@@@@@F(zip:(�1):(KA)) R 	�����zip:(�1):(KFA)FAExpressed as an equation, this is the requirement thatzip:(�1):(KFA) = F(zip:(�1):(KA)) � (zip:(�1):F)KA (33)Now we turn to the second diagram in the de�nition of strength. Just as we observed thatrid is an instance of a broadcast and thus a zip, we also observe that ass is a broadcastand thus a zip. Speci�cally, assA;B;C is (zip:(�C):(A�))B. Once again, every edge in thediagram involves a zip operation! That is not all. Yet more zips can be added to thediagram. For our purposes it is crucial to observe that the bottom left and middle rightnodes |the nodes labelled F(A� (B�C)) and F(A�B)�C| are connected by the edge(zip:(�C):F(A�))B.FA� (B�C) � (zip:(�C):(FA�))B (FA�B)�C
F(A�B)�C?(zip:(�B):F)A� idC

������(zip:(�C):F(A�))B�����F(A� (B�C))
(zip:(�(B�C)):F)A? � F(zip:(�C):(A�))B F((A�B)�C)?(zip:(�C):F)A�B

5To be perfectly correct we should instantiate each of the transformations at some arbitrary B: Wehaven't done so because the choice of which B in this case is truly irrelevant.21



This means that we can decompose the original coherence property into a combination oftwo properties of zips. These are as follows. First, the lower triangle:(zip:(�C):F(A�))B = F(zip:(�C):(A�))B � (zip:(�C):F)A�B (34)Second, the upper rectangle:(zip:(�(B�C)):F)A � (zip:(�C):(FA�))B = (zip:(�C):F(A�))B � (zip:(�B):F)A�idC (35)Note the strong similarity between (33) and (34). They are both instances of one equationparameterised by three di�erent datatypes. There is also a similarity between these twoequations and (30); the latter is an instance of the same parameterised equation aftertaking the converse of both sides and assuming that zip:F:G=(zip:G:F)[. Less easy to spotis the similarity between (31) and (35). As we shall see, however, both are instances ofone equation parameterised again by three di�erent datatypes except that (35) is obtainedby applying the converse operator to both sides of the equation and again assuming thatzip:F:G=(zip:G:F)[.4 The RequirementIn this section we formulate precisely what we mean by two datatypes commuting.Looking again at the examples above, the �rst step towards an abstract problem speci�-cation is clear enough. Replacing \list", \tree" etc. by \datatype F" the problem is tospecify an operation zip:F:G for given datatypes F and G that maps FG-structures intoGF-structures.Note that the informal language we use here seems to imply that we consider only endorelators (relators of arity 1 1). After all, the composition FG is meaningless if the sourcearity of F is not the same as the target arity of G. If F : m k and G : n l then (nF)(Gk)is a meaningful composition, as too is (Gm)(lF), both having arity n�m l�k. (Recallthat for H : l m we have Hk : l�k m�k and kH : k�l k�m.) Thus, to be perfectlyprecise we should talk about mapping (nF)(Gk){structures to (Gm)(lF){structures.Being able to handle relators of arbitrary arity and not restricting ourselves to endorelatorsis an important element of our development |were we to restrict ourselves to just endore-lators then we could not even handle the standard example of zipping a pair of lists sinceproduct is not endo| but nevertheless we often omit arity information in our informalmotivation of some elements of our requirement. In all formal statements we do supplythe arity information. The point is that these details can easily be inferred by a process ofarity checking (using the rules given in section 2) but their inclusion in the �rst instanceis a burdensome complication.The �rst step may be obvious enough, subsequent steps are less obvious. The natureof our requirements is in
uenced by the relationship between parametric polymorphismand naturality properties discussed earlier but takes place at a higher level. We consider22



the datatype F to be �xed and specify a collection of operations zip:F:G indexed by thedatatype G: (The fact that the index is a datatype rather than a type is what we meanby \at a higher level".) Such a family forms what we call a collection of \half-zips". Therequirement is that the collection be \parametric" in G. That is, the elements of thefamily zip:F should be \logically related" to each other. The precise formulation of thisidea leads us to three requirements on \half-zips". The symmetry between F and G, lostin the process of �xing F and varying G, is then restored by the simple requirement that azip is both a half-zip and the converse of a half-zip.The division of our requirements into \half-zips" and \zips" corresponds to the way thatzips are constructed. Speci�cally, we construct a half-zip zip:F:G for each datatype F inthe class of regular datatypes and an arbitrary datatype G. That is to say, for eachdatatype F we construct the function zip:F on datatypes which, for an arbitrary datatypeG, gives the corresponding zip operation zip:F:G. The function is constructed to meetthe requirement that it de�ne a collection of half-zips; subsequently we show that if thecollection is restricted to regular datatypes G then each half-zip is in fact a zip.A further subdivision of the requirements is into naturality requirements and requirementsthat guarantee that the algebraic structure of pointwise de�nition of relators is respected(for example, the associativity of functional composition of relators is respected). Thesewe discuss in turn.4.1 Naturality RequirementsOur �rst requirement is that zip:F:G be natural. That is to say, its application to an FG-structure should not in any way depend on the values in that structure. Suppose thatF : m k and G : n l. Then we demand thatzip:F:G : (Gm)(lF) (nF)(Gk) : (36)Thus a zip is a proper natural transformation indexed by an l�k matrix of types eachmember of the family being an n�m matrix of relations.As forewarned, arity information is included in the formal statement (36) although not inthe informal discussion preceding it. For endorelators the requirement is much simpler:zip:F:G : GF FG :Our advice is thus to ignore all tupling and projection operators (the superscripts in thiscase) on a �rst reading.Note that we require zip:F:G to be a proper natural transformation since for a zip operationon a structure no loss or duplication of values should occur.Demanding naturality is not enough. Somehow we want to express that all the membersof the family zip:F of zip operations for di�erent datatypes G and H are related. Forinstance, if we have a natural transformation � : G H then zip:F:G and zip:F:H should23



be \coherent" with the transformation �. That is to say, having both zips and �, thereare two ways of transforming FH-structures into GF-structures; these should e�ectively bethe same.One way is �rst transforming an FH-structure into an FG-structure using F�, (i.e. applyingthe transformation � to each H-structure inside the F-structure) and then commuting theFG-structure into a GF-structure using zip:F:G.Another way is �rst commuting an FH-structure into an HF-structure with zip:F:H andthen transforming this H-structure into a G-structure (both containing F-structures) using�F. So, we have the following diagram.FG � F� FH
GFzip:F:G?� �F HF?zip:F:HOne might suppose that an equality is required, i.e.�F � zip:F:H = zip:F:G �F� (37)for all natural transformations � : G H. But this requirement is too severe for tworeasons.The �rst reason is that if � is not functional, i.e. � is a non-deterministic transformation,the rhs of equation (37) may be more non-deterministic than the lhs because of the possiblemultiple occurrence of �. Take for instance F := List and G = H := �, i.e. zip:F:G andzip:F:H are both the inverse of the zip function on a pair of lists, and take � := id[ swap,i.e. � non-deterministically swaps the elements of a pair or not. Then �F � zip:F:H unzipsa list of pairs into a pair of lists and swaps the lists or not. On the other hand, zip:F:G �F��rst swaps some of the elements of a list of pairs and then unzips it into a pair of lists.The second reason is that, due to the partiality of zips, the domain of the left side of (37)may be smaller than that of the right.As a concrete example, suppose listify is a polymorphic function that constructs a list ofthe elements stored in a tree. The way that the tree is traversed (inorder, preorder etc.) isimmaterial; what is important is that listify is a natural transformation of type List Tree.Now suppose we are given a list of trees. Then it can be transformed to a list of lists by\listify"ing each tree in the list, i.e. by applying the (appropriate instance of the) functionList(listify). If all the trees in the list have the same shape, a list of lists can also beobtained by �rst commuting the list of trees to a tree of lists (all of the same length) andthen \listify"ing the tree structure. That is we apply the (appropriate instance of the)function (listify)List � zip:List:Tree. The two lists of lists will not be the same: if the size24



of the original list is m and the size of each tree in the list is n then the �rst method willconstruct m lists each of length n whilst the second method will construct n lists eachof length m. However the two lists of lists are \zips" of each other (\transposes" wouldbe the more conventional terminology). This is expressed by the commutativity of thefollowing diagram in the case that the input type List(TreeA) is restricted to lists of treesof the same shape. List(ListA) � List(listify)A List(TreeA)
List(ListA)(zip:List:List)A? � listifyListA Tree(ListA)?(zip:List:Tree)ANote however that if we view both paths through the diagram as partial relations of typeList(ListA) List(TreeA) then the upper path (via List(ListA)) includes the lower path (viaTree(ListA)). This is because the function List(listify)A may construct a list of lists all ofthe same length (as required by the subsequent zip operation) even though all the trees inthe given list of trees may not all have the same shape. The requirement on the trees isthat they all have the same size, which is weaker than their all having the same shape.Both examples show that we have to relax requirement (37) using an inclusion insteadof equality. Having this inclusion, the requirement for � can be relaxed as well. So, therequirement becomes�F � zip:F:H � zip:F:G �F� for all � : G -H :Including arity information, the formal statement of the requirement is that for all relatorsF : m k and G;H : n l , and all � : G -H,(�m)(lF) � zip:F:H � zip:F:G � (nF)(�k) : (38)4.2 Pointwise IntegrityThe variable-free mechanism we have introduced for \pointwise closing" a class of relatorsallows some freedom in the manner in which relators are composed. Formally, the relatorsform a category under functional composition, and the tupling and projection operatorsare related by the characteristic equationF = �Gk � ProjkF = Gk :(Note that the right side of this equivalence is an equation between mappings followingthe convention explained earlier. Thus it is true if for all i, 0� i<k , ProjiF = Gi.) Oursecond set of requirements guarantee that this algebraic structure is respected by themapping zip:F. 25



We begin with tupling and projection. In view of arity considerations the obvious require-ments are:zip:F:G = ��n(zip:F:ProjnG) (39)where n is the arity of the target of G |the zip of a tuple is the tuple of the zips| andzip:F:Proj = (idm)F(Projk) (40)for each projection relator Proj : 1 l, assuming F : m k.In fact, (39) becomes redundant when we introduce requirement (41) on the compositionof relators.For our �nal requirement we consider the monoid structure of functors under composition.Fix functor F and consider the collection of zips, zip:F:G, indexed by (endo)functor G.Since the (endo)functors form a monoid it is required that the mapping zip:F is a monoidhomomorphism.In order to formulate this requirement precisely we let ourselves be driven by type consid-erations. The requirement is that zip:F:GH be some composition of zip:F:G and zip:F:H ofwhich zip:F:Id is the identity. But the type of zip:F:GH,zip:F:GH : GHF FGH ;demands that the datatype F has to be \pushed" through GH leaving the order of G andH unchanged. With zip:F:G we can swap the order of F and G, with zip:F:H the order of Fand H: Thus transforming FGH to GHF can be achieved as shown below.GHF �G(zip:F:H) FHG �(zip:F:G)H FGHSo, informally, we demand thatzip:F:GH = G(zip:F:H) � (zip:F:G)H :Moreover, in order to guarantee that zip:F:GId = zip:F:G = zip:F:IdG we require thatzip:F:Id = idF :Formally, the demand is that, for all F : m k, G : n l and H : l o,zip:F:GH = (Gm)(zip:F:H) � (zip:F:G)(Hk) ; (41)and, for F : m k and the identity relator Id : l l,zip:F:Id = (idl�m)(lF) : (42)In order to verify that zip:F is indeed a monoid homomorphismwe make the monoid explicit.De�ne (for �xed datatype F) the monoid M as follows. The elements are pairs consistingof a natural transformation, � , and a functor, G, where(� ;G)2M � � : GF �Fun FG 26



De�ne composition in the following way:(� ;G) � (� ;H) 4 (G� ��H ; GH)That (G� ��H ; GH) is an element of M is, by de�nition, G� ��H : GHF FGH whichfollows from � : HF FH and � : GF FG. It is easily seen that \ � " has unit (idF ; Id)and is associative.Now, de�ne f(G) = (zip:F:G ;G). Then zip:F is a monoid homomorphism iff(GH) = f(G) � f(H)and f(Id) = (idF ; Id) :Expanding the de�nition of f, we thus demandzip:F:GH = G(zip:F:H) � (zip:F:G)Hand zip:F:Id = idF :(Note that idF : IdF FId.) .4.3 Half Zips and Commuting RelatorsApart from the very �rst of our requirements ((36), the requirement that zip:F:G be nat-ural), all the other requirements have been requirements on the nature of the mappingzip:F. Roughly speaking, (38) demands that it be parametric, (39) and (40) that it respecttupling and projection, and (41) and (42) that it be functorial. Of these requirements, (39)and (42) are redundant. ((39) can be derived from (40) and (41); it can then be used incombination with (40) to derive (42).) We �nd it useful to bundle the (non-redundant setof) requirements together into the de�nition of something that we call a \half zip".De�nition 43 (Half Zip) Consider a �xed relator F : m k and a pointwise closedclass of relators G. Then the members of the collection zip:F:G, where G ranges over G, arecalled half-zips i�(a) zip:F:G : (Gm)(lF) (nF)(Gk), for each G : n l(b) zip:F:Proj = (idm)F(Projk) for all Proj : 1 l,(c) zip:F:GH = (Gm)(zip:F:H) � (zip:F:G)(Hk) for all G : n l and H : l o,(d) (�m)(lF) � zip:F:H � zip:F:G � (nF)(�k) for each � : G -H where G;H : n l.2Note that for F : m k and G : n l, we havezip:F:G : n�m l�k 27



and (zip:G:F)[ : m�n k�l :So for non-endo F and G they do not have the same arity. The source and target aritiesare clearly related by matrix transposition, i.e. the relator �. That is,�(zip:G:F)[� : n�m l�k :So, the general de�nition becomes:De�nition 44 (Commuting Relators) The half-zip zip:F:G is said to be a zip of(F ;G) if there exists a half-zip zip:G:F such thatzip:F:G = �(zip:G:F)[�We say that datatypes F and G commute if there exists a zip for (F ;G).25 ConsequencesIn this section we address two concerns. First, it may be the case that our requirement isso weak that it has many trivial solutions. We show that, on the contrary, the requirementhas a number of consequences that guarantee that there are no trivial solutions. Onthe other hand, it could be that our requirement for datatypes to commute is so strongthat it is rarely satis�ed. Here we show that the requirement can be met for all regulardatatypes. ( Recall that the \regular" datatypes are the sort of datatypes that one cande�ne in a conventional functional programming language.) Moreover, we can even provethe remarkable result that for the regular relators our requirement has a unique solution.5.1 Shape PreservationZips are partial operations: zip:F:G should map F{structures of (G{structures of the sameshape) into G{structures of (F{structures of the same shape). This requirement is, however,not explicitly stated in our formalisation of being a zip. In this subsection we show that itis nevertheless a consequence of that formal requirement. In particular we show that a halfzip always constructs G{structures of (F{structures of the same shape). We in fact show amore general result that forms the basis of the uniqueness result for regular relators.Let us �rst recall how shape considerations are expressed. The function !A is the functionof type 1 A that replaces a value by the unique element of the unit type, 1. Also, for anarbitrary function f, Ff maps an F{structure to an F{structure of the same shape, replacingeach value in the input structure by the result of applying f to that value. Thus F!A mapsan F{structure (of A's) to an F{structure of the same shape in which each value in theinput structure has been replaced by the unique element of the unit type. We can say that28



(F!A)x is the shape of the F{structure x, and F!A � f is the shape of the result of applyingfunction f.Now, for a natural transformation � of type F G, the shape characteristics of � in generalare determined by �1, sinceF!A ��A = �1 �G!AThat is, the shape of the result of applying �A is completely determined by the behaviourof �1. The shape characteristics of zip:F:G, in particular, are determined by (zip:F:G)1 sinceGF!A � (zip:F:G)A = (zip:F:G)1 � FG!AOur shape requirement is that a half zip maps an F{G{shape into a G{F{shape in which allF{shapes equal the original F{shape. This we can express by a single equation relating thebehaviour of (zip:F:G)1 to that of fan:G. Speci�cally, we note that (fan:G)F1 generates froma given F-shape, x, an arbitrary G-structure in which all elements equal x, and thus havethe same F{shape. On the other hand, F(fan:G)1, when applied to x, generates F-structureswith shape x containing arbitrary G-shapes. The shape requirement (for endorelators) isthus satis�ed if we can establish the property(fan:G)F1 = (zip:F:G)1 �F(fan:G)1 : (45)This property is an immediate consequence of the following lemma (stated in full general-ity).Suppose F : k l and G : m n are datatypes. Then, if fan:G is the canonical fan of G,((fan:G)k)F = (zip:F:G)((�n)l) � (mF)((fan:G)l) : (46)From equation (45) it also follows that the range of (zip:F:G)1 is the range of (fan:G)F1, i.e.arbitrary G-structures of which all elements are the same, but arbitrary, F-shape.A more general version of (46) is obtained by considering the so-called fan function. Re-calling the characterising property of the membership relation (20), we de�ne the mappingF̂ (with the same arity as F, namely k l) byF̂R = FR �\(memn ((�k)l)id)�lB ; (47)for all R : A �lB. (Note that F̂ is a partial mapping since it is only de�ned on relationswith source a vector of l instances of the same object.) Then the generalisation of (46) isthe following lemma.Suppose F : k l and G : m n are datatypes. Then, if Ĝ is the fan function of G,(Ĝk)(nF)R = (zip:F:G)A � (mF)(Ĝl)R ; (48)for all R : A ((�n)l)B.It is (48) that often uniquely characterises zip:F:G.29



5.2 Commuting relatorsOne reason why our requirements might have trivial solutions is that they are expressed interms of lax natural transformations. Requiring properness of a natural transformation isstronger. The next lemma establishes a properness result for zips on commuting datatypes;it proves to be the key in showing that certain zips are unique.Let � denote a class of commuting datatypes. Then for all F : k l, and G;H : m n in� and all families of functions � such that � : G H,(mF)(�l) � zip:H:F = zip:G:F � (�k)(nF) : (49)Note that the lemma does not imply that the zips are themselves simple. On the face ofit, the property stated in the lemma is quite weak.5.3 All regular datatypes commuteWe now come to the main result of this paper, namely, that all regular relators commute.Morever, for each pair of regular relators F and G there is a unique natural transformationzip:F:G satisfying our requirements.The regular relators are constructed from the constant relators, product and coproductby pointwise extension and/or the construction of tree relators. The requirement thatzip:F:G and zip:G:F be each other's converse (modulo transposition) demands the followingde�nitions:zip:Id:G = idG (50)zip:Proj:G = idG(Projk) for all G : 1 k and all Proj : 1 l (51)zip:�Fk:G = ��(zip:Fk:G) (52)zip:FG:H = (zip:F:H)(kG) �F(zip:G:H) for all H : 1 k (53)The restriction to single-valued relators in these equations is made possible by the rule forzip:G:�Fl.For the constant relators and product and coproduct, the zip function is uniquely charac-terised by (48). One obtains the following de�nitions, for all G : 1 k:zip:KA:G = (fan:G)(KA) (54)zip:+:G = Ginl 5 Ginr (55)zip:�:G = (Goutl 4 Goutr)[ (56)Note that, in general, zip:KA:G and zip:�:G are not simple; moreover, the latter is typicallypartial. That is the right domain of (zip:�:G)(A;B) is typically a proper subset of GA�GB.Datatypes de�ned in terms of these datatypes will thus also be non-simple and/or partial.Nevertheless, broadcast operations (\strengths") are always functional.30



Tree relators are the last sort of relators in the class of regular relators. Let T be the treerelator induced by 
 as de�ned in section 2.2.6. Here the uniqueness of zip:T:G for all g isassured by (49) with � instantiated to in. One obtains:zip:T:G = ([idG
 ; G(kin) � (zip:
:G)(k(Id�T))]) for all G : 1 k (57)5.4 Broadcast and Structure Multiplication, AgainIn our motivation of commuting datatypes, we said that the requirements for structuremultiplication and \strength" would be met \almost by de�nition". In this section weobserve in what sense that is indeed the case.The requirements for structure multiplication are given by equations (30) and (31); thosefor broadcasts by (33), (34) and (35).We begin with (30), (33) and (34). Note that all of these correspond to triangular dia-grams. All are instances or simple consequences of the compositionality requirement ofzips, 43(c). This is easiest to see in the case of (34) since it su�ces to make the substi-tutions F;G;H := (�C) ; F ; (A�). Next easiest to see is (33). Here the observation hasto be made that KFA=FKA. Then make the substitutions F;G;H := (�1) ; F ;KA. Finally,(30) is a combination of 43(c) and (44) with the substitutions F;G;H := G;F ; (A�). Thusall three requirements are satis�ed, by de�nition, if it can be shown that all the relatorsinvolved belong to a class of commuting relators. In particular, since the sections (�C)and (A�) are regular relators, all the requirements are met if in each case F is a regularrelator.The remaining two requirements, (31) and (35), are instances of (49) and 43(d), re-spectively. This is less easy to see. The key is to observe that the broadcast � where�B=(zip:(�B):F)A is a proper, functional natural transformation of type F(A�) (FA)�for each regular relator F and each A. (Note that the functionality is a special prop-erty of broadcasts. As mentioned before, zips are typically partial and nondeterministic.Hoogendijk [14] proves that (zip:(�B):F)A is functional for all regular relators F:) Property(31) is then an instance of (49) after making the substitutions F;G;H := G;F(A�) ; (FA)�and de�ning � as above. Property (35) is obtained from 43(d) using the substitutionsF;G;H;�B := (�C) ; F(A�) ; (FA)� ; (zip:(�B):F)A. This results in an inclusion |not anequality| but every term is a broadcast, and thus a function, and inclusion of functions isequivalent to their equality. We conclude that (31) and (35) are also met provided that Fand all sections of the form (�C) and (A�) are members of a class of commuting relators,and in particular if F is a regular relator.6 ConclusionPolytypism is a new concept in the repertoire of generic programming. In this paper wehave made several innovatory contributions to the theoretical and practical development31



of polytypism. First, and arguably most importantly, we have provided strong evidence forthe necessity of developing a theory of polytypism in a relational rather than a functionalframework. Membership and fans can only be discussed at a metalevel in a functionalframework and the fact that all regular relators commute is just not true in a functionalframework since some of the transformations are necessarily nondeterministic. Second, wehave demonstrated how to cope cleanly with non-endorelators thus overcoming a limitationof all other work in this �eld published to date that we know of (including our own). Third,we have illustrated a general approach to the speci�cation of polytypic programs. Roughlysummarised the approach is to require that the class of programs is compositional withrespect to the pointwise de�nition of datatypes, and that the class is \higher order natural"in the sense that it maps related datatypes to related datatypes (just as polymorphicfunctions map related objects to related objects). This is a major advance on our earlierwork [3] in which the commuting requirement was substantially more operational in 
avourand hence ad hoc.Several challenges remain. A major frustration is that we have been unable to establisha general unicity property of the \zip" operators even though in every individual casethat we have studied we can prove unicity. This suggests that our requirements can bemade stronger and, in the process, yet simpler and more elegant. Broader questions arehow the notion of polytypism relates to, for example, design patterns [13] and adaptiveobject-oriented programming [19].Acknowledgement The diagrams were drawn with the aid of Paul Taylor's commutativediagrams package.References[1] R.C. Backhouse, P. de Bruin, P. Hoogendijk, G. Malcolm, T.S. Voermans, andJ. van der Woude. Polynomial relators. In M. Nivat, C.S. Rattray, T. Rus, andG. Scollo, editors, Proceedings of the 2nd Conference on Algebraic Methodology andSoftware Technology, AMAST'91, pages 303{326. Springer-Verlag, Workshops in Com-puting, 1992.[2] R.C. Backhouse, P. de Bruin, G. Malcolm, T.S. Voermans, and J. van der Woude.Relational catamorphisms. In M�oller B., editor, Proceedings of the IFIP TC2/WG2.1Working Conference on Constructing Programs from Speci�cations, pages 287{318.Elsevier Science Publishers B.V., 1991.[3] R.C. Backhouse, H. Doornbos, and P. Hoogendijk. Commuting relators. Available viaWorld-Wide Web at http://www.win.tue.nl/win/cs/wp/papers, September 1992.[4] Richard Bird, Oege de Moor, and Paul Hoogendijk. Generic functional programmingwith types and relations. J. of Functional Programming, 6(1):1{28, January 1996.32



[5] Richard S. Bird and Oege de Moor. Algebra of Programming. Prentice-Hall Interna-tional, 1996.[6] R.S. Bird. Lectures on constructive functional programming. In M. Broy, editor,Constructive Methods in Computing Science, pages 151{216. Springer-Verlag, 1989.NATO ASI Series, vol. F55.[7] A. Carboni, G.M. Kelly, and R.J. Wood. A 2-categorical approach to geometricmorphisms I. Cahiers de Topologie et Geometrie Di�erentielle Categoriques, 32(1):47{95, 1991.[8] H. Doornbos. Reductivity arguments and program construction. PhD thesis, EindhovenUniversity of Technology, Department of Mathematics and Computing Science, June1996.[9] Henk Doornbos and Roland Backhouse. Induction and recursion on datatypes. InB. M�oller, editor, Mathematics of Program Construction, 3rd International Confer-ence, volume 947 of LNCS, pages 242{256. Springer-Verlag, July 1995.[10] Henk Doornbos and Roland Backhouse. Reductivity. Science of Computer Program-ming, 26(1{3):217{236, 1996.[11] Achim Jung (Editor). Domains and denotational semantics: History, accomplish-ments and open problems. Bulletin of the European Association for Computer Science,59:227{256, June 1996.[12] P.J. Freyd and A. Scedrov. Categories, Allegories. North-Holland, 1990.[13] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, Mass.,1995.[14] Paul Hoogendijk. A Generic Theory of Datatypes. PhD thesis, Department of Math-ematics and Computing Science, Eindhoven University of Technology, 1997.[15] Paul Hoogendijk and Oege de Moor. What is a datatype? Technical Report 96/16,Department of Mathematics and Computing Science, Eindhoven University of Tech-nology, 1996. Submitted to Science of Computer Programming. Available via World-Wide Web at http://www.win.tue.nl/win/cs/wp/papers.[16] J. Jeuring. Polytypic pattern matching. In Conference Record of FPCA '95,SIGPLAN-SIGARCH-WG2.8 Conference on Functional Programming Languages andComputer Architecture, pages 238{248, 1995.[17] J. Jeuring and P. Jansson. Polytypic programming. In J. Launchbury, E. Meijer,and T. Sheard, editors, Proceedings of the Second International Summer School onAdvanced Functional Programming Techniques, pages 68{114. Springer-Verlag, 1996.LNCS 1129. 33



[18] Y. Kawahara. Notes on the universality of relational functors. Memoirs of the Facultyof Science, Kyushu University, Series A, Mathematics, 27(3):275{289, 1973.[19] Karl J. Lieberherr, Ignacio Silva-Lepe, and Cun Xiao. Adaptive object-oriented pro-gramming using graph-based customization. Comm.A.C.M., 37(5):94{101, May 1994.[20] G. Malcolm. Homomorphisms and promotability. In J.L.A. van de Snepscheut, editor,Conference on the Mathematics of Program Construction, pages 335{347. Springer-Verlag LNCS 375, 1989.[21] G. Malcolm. Algebraic data types and program transformation. PhD thesis, GroningenUniversity, 1990.[22] G. Malcolm. Data structures and program transformation. Science of ComputerProgramming, 14(2{3):255{280, October 1990.[23] Lambert Meertens. Calculate polytypically! In Herbert Kuchen and S. DoaitseSwierstra, editors, Proceedings of the Eighth International Symposium PLILP '96 Pro-gramming Languages: Implementations, Logics and Programs, volume 1140 of LectureNotes in Computer Science, pages 1{16. Springer Verlag, 1996.[24] E. Meijer, M.M. Fokkinga, and R. Paterson. Functional programming with bananas,lenses, envelopes and barbed wire. In FPCA91: Functional Programming Languagesand Computer Architecture, volume 523 of LNCS, pages 124{144. Springer-Verlag,1991.[25] R. Milner. A theory of type polymorphism in programming. J. Comp. Syst. Scs.,17:348{375, 1977.[26] R. Milner. The standard ML core language. Polymorphism, II(2), October 1985.[27] E. Moggi. Notions of computation and monads. Information and Computation,93(1):55{92, 1991.[28] Gordon D. Plotkin. Lambda-de�nability in the full type hierarchy. In J.P. Seldin andJ.R. Hindley, editors, To H.B. Curry: Essays on Combinatory Logic, Lambda Calculusand Formalism. Academic Press, London, 1980.[29] J.C. Reynolds. Types, abstraction and parametric polymorphism. In R.E. Mason,editor, IFIP '83, pages 513{523. Elsevier Science Publishers, 1983.[30] J. Riguet. Relations binaires, fermetures, correspondances de Galois. Bulletin de laSoci�et�e Math�ematique de France, 76:114{155, 1948.[31] Charles Simonyi. The death of computer languages, the birth of intentional pro-gramming. Proceedings of the 28th Annual International Seminar on the Teaching ofComputing Science at University Level, Sponsored by ICL and University of Newcastleupon Tyne, Department of Computing Science, September 1995.34



[32] C. Strachey. Fundamental concepts in programming languages. Lecture Notes, Inter-national Summer School in Computer Programming, Copenhagen, August 1967.

35


