
Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999. 47Predictive Application-Performance Modelingin a Computational Grid EnvironmentNirav H. Kapadia Jos�e A. B. Fortes Carla E. BrodleySchool of Electrical and Computer EngineeringPurdue UniversityWest Lafayette, IN 47907-1285fkapadia, fortes, brodleyg@ecn.purdue.eduAbstractThis paper describes and evaluates the applicationof three local learning algorithms | nearest-neighbor,weighted-average, and locally-weighted polynomial re-gression | for the prediction of run-speci�c resource-usage on the basis of run-time input parameters sup-plied to tools. A two-level knowledge base allows thelearning algorithms to track short-term uctuations inthe performance of computing systems, and the use ofinstance editing techniques improves the scalability ofthe performance-modeling system. The learning algo-rithms assist PUNCH, a network-computing system atPurdue University, in emulating an ideal user in termsof its resource management and usage policies.1. IntroductionIt is now recognized that the heterogeneous natureof the network-computing environment cannot be ef-fectively exploited without some form of adaptive ordemand-driven resource management (e.g., [10, 11, 12,14, 18, 27]). A demand-driven resource managementsystem can be characterized by its ability to make auto-matic cost/performance tradeo� decisions at run-time.Such decisions require that the infrastructure be able todecide how (which implementation | e.g., sequentialversus parallel) and where (which platform) to executea tool. This, in turn, implies an ability to estimatethe resource requirements of any given run before ascheduling decision is made. This paper describes andevaluates the application of three local learning tech-niques for run-speci�c resource-usage prediction.Local learning algorithms use available data in theregion of a query to build a local model for the appro-priate output [2]. For this domain, available data con-sists of measured resource-usage associated with pre-

vious runs of the given tool, and the query point isde�ned by the input parameters associated with therun for which resource-usage is to be predicted. Theregion around the query point is speci�ed by way of adistance metric that measures \distances" within thespace de�ned by tool-speci�c input parameters.PUNCH is a distributed, web-accessible network-computing system that currently caters to about �vehundred users, and provides access to forty researchand commercial tools in computer architecture, paral-lel programming, and computational electronics. Thedescribed learning algorithms assist PUNCH [16, 20]in emulating an ideal user in terms of its resource-management and usage policies. An ideal user isde�ned as one who: 1) can predict the resource-requirements of each run that he/she initiates, 2) pref-erentially uses the most plentiful resources that supportthe requirements of the given run, and 3) voluntar-ily relinquishes resources to higher-priority users whennecessary.The paper is organized as follows. Section 2 out-lines the characteristics of the tools and the compu-tational grid environment in the context of resourceusage prediction. Section 3 summarizes related workon the topic. Section 4 motivates the selection ofinstance-based learning algorithms for this domain.Sections 5 and 6 describe and evaluate the nearest-neighbor, weighted average, and locally weighted re-gression algorithms, respectively. Finally, Section 7presents the conclusions of this work.2. Domain ConstraintsTwo sets of problems must be addressed in order tobe able to predict tool- and run-speci�c resource-usagein a computational grid environment [18]. The �rst setconsists of issues that are a consequence of the diver-sity of the tools executed on the computational grid,

Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999. 48whereas the second set includes issues that arise dueto the dynamic nature of the run-time environment.The resources utilized by a particular run of a giventool often depend on the input to the tool. In somecases (e.g., with matrix manipulation codes), this de-pendence can be expressed by way of analytical ex-pressions. In general, however, the exact relationshipbetween the tool-input and the corresponding resource-usage is complex | making it necessary to learn therelationship (i.e., the concept).Learning algorithms employed for resource-usageprediction must address the following three tool-relatedconcerns: 1) the extent to which individual input pa-rameters (i.e., features) a�ect the relationship is un-known | making it necessary to learn the relative im-portance of the features, 2) the range and distribu-tion of the values of the features are not known in ad-vance | which implies that scaling factors employedfor numerical stability have to be determined on they, and 3) the concept to be learned often has a non-deterministic component | due to measurement noise(e.g., as with CPU time and network delays), perfor-mance variations inherent to complex computer sys-tems (e.g., the impact of concurrently-executing appli-cations on the e�ectiveness of the memory sub-system),and unobservable features (e.g., the convergence rate ofmany numerical algorithms depends on the eigenvaluedistribution, which may not be known when the run isinitiated).The computational grid environment presents twochallenges in terms of acquiring and managing knowl-edge for resource-usage prediction. The �rst challengeis a result of the real-time nature of the prediction pro-cess, which must occur after a user initiates a run, butbefore the run can be scheduled. This imposes an up-per bound on the amount of information that can besearched and/or utilized by learning algorithms. Thesecond challenge is a consequence of uctuations inthe availability and performance of individual nodeswithin large, networked computing systems. Such uc-tuations can be caused by overloaded �le-servers or net-work routers, and occur at unpredictable times. Con-sequently, learning algorithms employed for resource-usage prediction must be able to quickly tailor theirpredictions to short-term variations without being un-duly a�ected by them in the longer term.The application-performance modeling system forPUNCH [18, 19]: 1) employs locally weighted poly-nomial regression [2, 9], allowing it to work with un-known feature weights and incomplete/noisy informa-tion, 2) addresses scalability issues by way of a cachethat allows it to exploit the locality of runs [18] andby selectively incorporating information into its knowl-

edge base, and 3) tracks short-term uctuations in per-formance by way of a two-level knowledge-base thatdi�erentiates between short-term memory and long-term memory. This paper describes three local learn-ing techniques | nearest-neighbor, weighted-average,and locally weighted regression | that can be used topredict resource-usage; knowledge representation andmanagement issues are described in [18, 19].3. Related WorkExisting work aimed at estimating resource-usagemakes use of cumulative statistical data or analyticalexpressions to predict run time. Statistical models aretypically tool-speci�c, and are constructed from mea-sured execution times of previous runs. Analytical ex-pressions are also tool-speci�c, and are generally pro-vided by the administrators or the users of the tool.Examples of systems that utilize cumulative statis-tical data can be found in [1, 8, 14, 15, 26, 27, 28]. Suchsystems implicitly assume that a particular tool will ex-hibit similar resource-usage characteristics across runs| regardless of the input to the tool.1 Although thisassumption has been found to be valid for speci�c toolsand environments (e.g., [7]), it is not true in general.For instance, multiple users concurrently executing agiven tool in a grid environment with radically di�er-ent input data may cause the observed resource-usageto vary rapidly from one run to the next. This prob-lem could be partially addressed by maintaining sep-arate statistics for each user | however, this wouldimply that information gleaned from one user could nolonger be exploited in order to make predictions forruns initiated by other users.The applicability of analytical expressions is re-stricted to the types of tools for which such expres-sions can be determined with relative ease (e.g., aswith numerical software). As a result, this approachis of limited use in a computational grid environment.Some systems address this limitation by using analyt-ical expressions in conjunction with other approaches| SmartNet [11, 12], for example, estimates resource-usage characteristics by employing a combination ofstatistical analysis and optional analytical expressionsprovided by users.The design objectives of an application-performancemodeling system, as stated by Berman [10], are: 1) toutilize dynamic information to represent variations inperformance, 2) to produce performance predictions1Most of the mentioned systems can adapt to long-termchanges in tool behavior by discarding \old" statistics. Thesystem described in [26] accounts for command-line argumentssupplied to the tool, when they are available.

Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999. 49that are timeframe-speci�c, and 3) to be able to adaptto a wide spectrum of potential computational envi-ronments. The PUNCH performance-modeling sys-tem utilizes local learning algorithms to learn the cor-relation between tool-speci�c, run-time input param-eters and the corresponding run-speci�c resource re-quirements. The run-speci�c values of administrator-speci�ed input parameters are automatically extractedby PUNCH from arguments and/or �les supplied tothe tool [21]. A two-level knowledge base [18, 19] al-lows the system to tailor its predictions to short-termvariations in the performance of the tool and/or thecomputing environment. The instance-based learningalgorithms utilized by the system are relatively insen-sitive to the structural complexity of the function tobe learned [9] | consequently, they can be used for awide range of tools.4. Learning Algorithm SelectionGlobal parametric learning algorithms [24] such asneural networks attempt to establish an input-outputmapping via a single function y = f(x; �), where �is a �nite-length parameter vector. While these meth-ods can theoretically approximate any continuous func-tion (e.g., [13]), they may not be appropriate for alltools. For example, semiconductor device simulationtools typically allow users to simulate a device in one,two, or three dimensions. In general, di�erent solutiontechniques are used for each of these cases, implyingthat the input-output mapping for such tools will con-sist of three distinct concepts. This is likely to causeproblems for learning algorithms that attempt to cap-ture concepts at a global level.Local parametric algorithms attempt to overcomesome of the problems of global parametric learning bydividing the input space into many partitions [2, 24].Each partition i is approximated by an independentfunction yi = fi(x; �i); the functions fi are kept as sim-ple as possible. The problem now shifts to the selectionof appropriate partitions for the learning system [25].Non-parametric algorithms (e.g., [2, 6, 22]) address thisissue by allowing the number of partitions (and conse-quently the number of parameters) to change dynami-cally. Instance-based learning (IBL) algorithms achievethis by recomputing a �xed set of parameters as a func-tion of the query point.IBL algorithms do not require an explicit trainingphase [6]. Moreover, because of their localized nature,the algorithms are relatively insensitive to the struc-tural complexity of the function to be learned and arenot a�ected by catastrophic interference (a conditionin which previously learnt information is forgotten by

an incremental learning system [24]), making them agood choice for this domain.5. Instance-Based Learning AlgorithmsThis section presents three instance-based learningmethods: nearest-neighbor, weighted-average (kernelregression), and locally weighted regression. The issuesinvolved in the selection of values for the parametersthat de�ne these methods are outlined in Section 5.4.Additional details can be found in [17].
5.1. Nearest-NeighborK-nearest neighbor (k-NN) algorithms [2] predictthe output value(s) for a given query point by usingan unweighted average of the output values of the knearest instances as de�ned by a distance metric. Im-plementing a k-NN algorithm requires the speci�cationof the following parameters: 1) the number of instances(k) to be included in the local neighborhood, and 2) anappropriate distance metric. The experiments in thispaper employ a 1-NN algorithm.
5.2. Weighted AverageWeighted average algorithms [2] make their predic-tion on the basis of a weighted average of the outputvalues of the k nearest instances; the weight of an in-stance is an inverse function of its distance from thequery point. The following parameters must be spec-i�ed in order to implement a weighted average algo-rithm: 1) the number of points to be included in thelocal neighborhood (kernel width), 2) an appropriatedistance metric, and 3) a kernel (i.e., weighting) func-tion. In order to quantify the bene�ts of using a slightlymore sophisticated prediction technique (compared tothe 1-NN algorithm), the experiments in this paper usea three-point weighted average algorithm.
5.3. Locally Weighted Polynomial RegressionLocally weighted regression (LWR) algorithms(e.g., [2, 3, 9]) �t a surface to nearby points, typicallyvia a locally linear or quadratic model.2 With a linear(quadratic) model, the target concept is locally approx-imated by a linear (quadratic) surface.In order to clarify the ideas behind LWR, this sec-tion includes an overview of locally weighted regression.A locally linear polynomial and a dataset with one at-tribute are used for the purpose of the illustration; the2Higher order local models are generally not used because ofthe associated computational cost.

Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999. 50ideas can be extended to higher order local polynomialsand datasets with multiple attributes [2, 17].Consider linear regression analysis on data that wasobtained from a function with one independent andone dependent variable (y = f(x)). Say we have Nsamples of this function corresponding to yi = f(xi),where 1 � i � N . Then, the line determined by globallinear regression minimizes the sum of the squares ofthe errors. That is, if the line is given byŷ = b0 + b1x; (1)linear regression determines b0 and b1 such that theerror NXi=1(yi � ŷi)2is minimized. Note that yi and ŷi are functions of x.In contrast, locally weighted linear regression min-imizes a weighted sum of the squares of the errors.The weights are local in the sense that they are(re)computed for each query, and the kernel function(i.e., weighting function) is chosen so as to eliminatethe e�ects of remote data-points. The size of the lo-cal neighborhood (i.e., the region in which the weightsare non-zero) is called the kernel width or bandwidth.Mathematically, locally weighted linear regression de-termines b0(xq) and b1(xq) such that the errorNXi=1 wqi(yi � ŷi)2 (2)is minimized, where xq is the query point and wqi arethe query-speci�c weights. The coe�cients of the poly-nomial described by Equation 1 are now functions ofthe query point. The weights wqi are computed aswqi = K(d(xq; xi); kw);where K(�) is a non-negative function (the kernel func-tion) whose value increases as j xq�xi j decreases, d(�)is a distance metric, and kw is the kernel width.In applying locally weighted regression, four param-eters must be selected: 1) the order of the local polyno-mial, 2) the distance metric, 3) the kernel width, and4) the kernel function. A locally linear polynomial wasused for this research because empirical evaluation [19]showed that: 1) it resulted in lower prediction errorsand faster learning, and 2) it required less time thanhigher order models to make a prediction. The regres-sion equations were solved by singular value decompo-sition [23] to ensure numerical stability.

5.4. Parameter SelectionThe distance metric is common to all three algo-rithms. Given that the range and distribution of thevalues of the features are not known, a distance func-tion that normalizes distances with respect to the querypoint was used. The normalization compresses dimen-sions in proportion to the value of the query pointin the corresponding dimension, allowing the distancefunction to accommodate a wider range of values (for�nite-precision arithmetic).3The kernel width (i.e., bandwidth) can be �xed orvariable. A �xed kernel width is of limited use becauseit can lead to inaccurate or unde�ned predictions inregions with low data-density [5]. Given the absence ofa \complete" dataset in this domain, the kernel widthwas locally optimized [9] by recomputing it for eachquery. The kernel widths for the nearest-neighbor andweighted average algorithms are equal to the distance(from the query point) of the �rst and third nearestneighbors, respectively. For locally weighted regres-sion, the kernel width is equal to the distance of the2(n+1)th nearest neighbor from the query point, wheren is the length of the feature vector.The kernel function determines the relative weightsof the datapoints that fall within the kernel width.The function is required to be non-negative and havedecreasing values with increasing distance [9]. A hy-brid, query-dependent kernel function that maintainsa constant value of one for a distance equal to thatof the nearest neighbor, and is Gaussian after thatwas employed because it resulted in lower predictionerrors when compared to the \nearest-neighbor band-width" described in [9]. The hybrid nature of the ker-nel function also ensures that at least one data-point isavailable to make a prediction, regardless of the data-density in the region of the query point.6. Empirical EvaluationThe three algorithms described above have di�er-ent capabilities in terms of the concepts that they canrepresent. The �rst set of results in this section weregenerated by way of a synthetic dataset, and are usedto highlight these di�erences. The second set of re-sults were obtained from real data measured over thecourse of about ten months of operation of the Pur-due University Network-Computing Hubs (PUNCH),during which time about �ve hundred PUNCH usersexecuted approximately �fty thousand runs of varioustools on shared compute servers connected to the Pur-due Data Network. This set of results highlights the3The distancemetric does not have to satisfy the requirementsfor formal distance metrics [2].

Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999. 51
0 10 20 30 40 50

0

10

20

30

40

50
Target Concept

Feature Value

C
P

U
 T

im
e

0 10 20 30 40 50
0

10

20

30

40

50
1−Nearest−Neighbor Algorithm

Feature Value
P

re
di

ct
ed

 C
P

U
 T

im
e

0 10 20 30 40 50
0

10

20

30

40

50
3−point Weighted Average

Feature Value

P
re

di
ct

ed
 C

P
U

 T
im

e

0 10 20 30 40 50
0

10

20

30

40

50
Linear Locally Weighted Regression

Feature Value

P
re

di
ct

ed
 C

P
U

 T
im

e

Figure 1. Resource usage and prediction
characteristics for a hypothetical tool with a
single feature. The first plot shows the be-
havior of the tool with respect to the input
parameter; the marked points indicate the in-
stances stored in the knowledge base.performance of the learning algorithms for real appli-cations in a live, networked computing environment.For illustrative purposes, consider a hypotheticaltool whose resource-usage characteristics depend on asingle feature. The �rst plot in Figure 1 shows the rela-tionship between the input parameter (feature) and the(simulated) CPU time for this tool. The speci�c pointsmarked in the plot represent the instances available inthe knowledge base for each of the algorithms. The re-maining plots show the characteristics of the predictedCPU time for the three learning algorithms. Observethat the nearest-neighbor and weighted-average algo-rithms are not able to learn the concept as well as theLLWR algorithm. The plots in Figure 2 show the ef-fects of using a knowledge base with points that are rel-atively sparse and unevenly distributed | the resultsillustrate the higher sensitivity of the nearest-neighborand weighted-average algorithms to the distribution ofthe observed instances.In general, the nearest-neighbor and weighted-average algorithms cannot track (even linear) polyno-mial surfaces without error [4]. This is illustrated inFigure 3, which shows the prediction errors for the one-nearest neighbor (1-NN), three-point weighted-average(3-Avg), and locally linear LWR (LLWR) algorithmson a synthetic dataset. The dataset was made up of1,000 instances with randomly-generated feature vec-tors. In addition to being able to reproduce linear sur-

0 10 20 30 40 50
0

10

20

30

40

50
Target Concept

Feature Value

C
P

U
 T

im
e

0 10 20 30 40 50
0

10

20

30

40

50
1−Nearest−Neighbor Algorithm

Feature Value

P
re

di
ct

ed
 C

P
U

 T
im

e

0 10 20 30 40 50
0

10

20

30

40

50
3−point Weighted Average

Feature Value

P
re

di
ct

ed
 C

P
U

 T
im

e

0 10 20 30 40 50
0

10

20

30

40

50
Linear Locally Weighted Regression

Feature Value

P
re

di
ct

ed
 C

P
U

 T
im

e

Figure 2. Resource usage and prediction
characteristics for a hypothetical tool with
one feature and a knowledge base that is rel-
atively sparse and has unevenly distributed
data points. The marked points indicate the
instances stored in the knowledge base.faces without error, locally weighted regression algo-rithms can reproduce peaks and are insensitive to un-symmetrically distributed data [9, 24], making them anideal choice for the domain.In a computing environment, the performance of thelearning algorithms can be evaluated in terms of twocriteria: prediction error and prediction time. With re-spect to these criteria, two issues need to be addressedin order to make IBL algorithms suitable for extendeduse in a networked computing environment.Basic IBL algorithms cannot track temporal varia-tions in the concept to be learned, a feature that is cru-cial in a computing environment because systems canexhibit short-term uctuations in performance. Thesolution to this problem is based on the observationthat, if a run with a given feature vector is invoked atsome time t, it (or a run with similar feature values) islikely to be invoked again at some time t + �t. Thistemporal (and spatial) locality of runs is especially truein an academic environment, where a relatively largenumber of students tend to work concurrently on anygiven assignment. The PUNCH performance-modelingsystem employs a two-level knowledge base that allowsthe learning algorithms to exploit this locality. The�rst level of the knowledge base is used as a �xed-sizecache, representing the short-term memory of the sys-tem. The second level acts as the long-term memory.Recently-observed instances are kept in the cache, and

Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999. 52
0 100 200 300 400 500 600 700 800 900 1000

0

10

20

30

40
Linear Dataset; Basic IBL Algorithms

Run Number

A
bs

ol
ut

e
E

rr
or

 (
se

co
nd

s) 1−NN
3−Avg
LLWR

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

Run Number

P
er

ce
nt

 E
rr

or

1−NN
3−Avg
LLWR

Figure 3. Cumulative prediction error for IBL
algorithms on a synthetic dataset with ten fea-
tures. The nearest-neighbor and weighted-
average algorithms cannot track (even linear)
polynomial surfaces without error.are used preferentially in the process of making a pre-diction (see [18, 19] for details).Minimizing the time required to predict resourceusage is important because the predictions are madein real-time. Ideally, this time should be signi�cantlysmaller than (10% of, say) the shortest runs invoked byusers. A bounded (and small) prediction time can beobtained by imposing an upper bound on the size of theknowledge base, in conjunction with the use of e�cientsearch techniques. In PUNCH, the size of the tool-speci�c knowledge bases are constrained by selectivelyincorporating only incorrectly predicted feature vectors,and by discarding knowledge associated with featurevectors that have been consistently used to make in-correct predictions. This process is known as instanceediting; additional details are available in [19].The local learning algorithms described in this paperwere tested on three semiconductor simulation tools(T-Suprem3, Minimos, and S-Demon). The datasetswere constructed from trace data obtained by moni-toring runs initiated by PUNCH on shared computeservers. This paper presents detailed results for T-Suprem3, a commercial package that simulates the pro-cessing steps used to manufacture silicon devices; re-sults for the other datasets showed similar trends. Thediscussion focuses on the errors associated with the pre-diction of CPU time because of its importance in termsof scheduling.44The performance-modeling system currently predicts CPU

2357

2566

3.6

3.5 16

noedit, c=0

iedit, c=0

iedit, c=5

N
N 2299

17

2363

0.006

0.007

0.387

3.4

2482

2726

4.0

3.8

2363

19

17

noedit, c=0

iedit, c=0

iedit, c=5

A
V

G

2578

0.006

0.009

0.425

3.7

2239

2425

2507

6.3

5.3

5.3

2363

28

25

noedit, c=0

iedit, c=0

iedit, c=5

LL
W

R

0.008

0.012

0.415

#z
er

o-
er

r

er
r(

av
g)

K
B

-S
iz

e

t(
lo

ok
up

)

P
ol

ic
y

A
lg

o

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30
Results for T−Suprem3 Data−Set

Run Number

P
re

d
ic

ti
o

n
 E

rr
o

r
(s

)

NN
Wtd. Avg.
LLWR

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.1

0.2

0.3

0.4

Run Number

L
o

o
k
u

p
 T

im
e

 (
s
)

noedit, c=0
noedit, c=5
iedit, c=0
iedit, c=5

0 5 10 15 20 25 30
0

500

1000

CPU Time

#
O

c
c
u

rr
e

n
c
e

s Exact Match
Linear LWR

Figure 4. Effects of instance editing and
caching on the learning system. Note the
increase in the number of “zero-error” pre-
dictions with caching (c=5). Also observe
the drop in lookup times and the size of the
knowledge base with instance editing (iedit).The feature vector for T-Suprem3 was made up ofthe following: 1) number of grid points, 2) total di�u-sion time, 3) cumulative epitaxial growth, 4) minimumimplant energy, 5) number of deposit steps, 6) numberof etch steps, and 7) number of implant steps.5 Thelearning instances collected for T-Suprem3 comprisedof 8,100 runs whose CPU times ranged from 1 to 730seconds (99.98% of the runs took less than 30 seconds).In the subsequent discussion, results obtained with andwithout instance editing are labeled iedit and noedit,respectively.The top plot on the left hand side of Figure 4 showsthe cumulative prediction errors of each of the locallearning methods with instance editing and a cacheof size �ve. The plot shows that the 1-NN algorithmlearns faster than the other two algorithms. The mid-dle plot shows the time required to retrieve instancesfrom the knowledge base for each prediction of the 1-NN algorithm. This time is directly tied to the size ofthe knowledge base. As expected, the unmodi�ed algo-rithm (noedit, c=0) results in monotonically increas-ing lookup time. Observe that the lookup time dropsby almost a factor of two when a two-level knowledgebase with a cache size of 5 is used (noedit, c=5). Thisis a clear indication of the temporal locality of runsand the corresponding usefulness of short-term mem-ory. Applying instance editing results in a boundedknowledge base (iedit curves), indicating the e�ec-tiveness of discarding knowledge associated with pre-dictable and noisy instances. The lookup time plotstime and network data-transfer time; memory and disk-spacerequirements will be predicted once the ongoing development ofa monitoring system is complete.5These features were identi�ed by a domain expert.

Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999. 53for the three-point weighted-average and linear locallyweighted regression algorithms were qualitatively iden-tical. The bottom plot shows the distribution of thenumber of runs in terms of CPU time, along with abreak up of the number of exact matches (i.e., whenan identical feature-combination was found in knowl-edge base) and interpolated predictions for the locallyweighted regression algorithm. Again, the increase inthe number of exact matches with a cache validates thesupposition of temporal locality. The correspondingresults for the nearest-neighbor and weighted-averagealgorithms exhibit identical characteristics.The table on the right hand side of Figure 4 presentsa more detailed view of the e�ects of instance editingand caching. Consider the results for the 1-NN algo-rithm. The three rows correspond to the following con-ditions: noedit, c=0, iedit, c=0, and iedit, c=5.The �rst column shows the number of zero-error pre-dictions. This quantity drops with instance editingbecause instances that would have helped for futurequeries are being discarded. Observe that the valueincreases again with caching. Indeed, a combined ap-plication of instance editing and caching results in a�nal value that is higher than the original because in-stance editing helps �lter out the noise in the datasetwhile caching helps o�set the disadvantages of discard-ing data. The average error is shown in the next col-umn, illustrating that the error decreases with instanceediting and caching. Finally, the last two columns showthe e�ects of instance editing and caching on knowledgebase size and lookup time. Instance editing drasticallyreduces the size of the knowledge base. Note that themajority of the runs ran in fewer than 5 seconds (seebottom plot in the �gure), which probably contributesto the reduction of the knowledge base size. It is alsointeresting to note that the size of the resulting knowl-edge base is similar for all three algorithms, in spiteof their di�erent representational capabilities. Whena cache of size �ve is added (third row for each al-gorithm), the knowledge base size does not grow by�ve. This implies that the most-frequently occurringinstances and the best predictors of CPU time overlapto some degree. The behavior of the lookup time isexplained by the fact that it is directly tied to the sizeof the knowledge base. Caching helps further reducethe lookup time even when the knowledge base is verysmall because the system �rst searches the cache.The results for the other two algorithms show simi-lar trends. The bene�ts of caching are independent ofthe speci�c algorithm because it exploits user-behavior,rather than the speci�c characteristics of individuallearning algorithms.

7. ConclusionsThree instance-based learning algorithms |nearest-neighbor, weighted-average, and locallyweighted polynomial regression | were describedin this paper. The algorithms are used to predictrun-speci�c resource-usage on the basis of run-timeinput parameters supplied to the tool | to ourknowledge, the performance-modeling system forPUNCH is the �rst to utilize automatically-extracted,tool-speci�c inputs in order to learn the resource-usagecharacteristics of tools.A two-level knowledge base allows the learning al-gorithms to track short-term uctuations in the per-formance of computing systems, and the use of in-stance editing techniques improves the scalability ofthe performance-modeling system. These two solutionssigni�cantly contribute to the suitability of IBL algo-rithms for extended use in a computing environmentsuch as the one presented by a computational grid.The results in this paper indicate that the nearest-neighbor algorithm outperforms the more sophisti-cated locally weighted regression algorithm for thetools tested. However, this could be an artifact ofthe limitations of the current PUNCH environment:measured resource-usage often included a signi�cantamount of noise (a better monitoring system is beingimplemented), and the distribution of run-times wasmore skewed towards shorter runs than what could beexpected within a large computational grid environ-ment. Further studies within larger computing envi-ronments with diverse tools and an extensive user-baseare needed in order to draw a more general conclusion.AcknowledgementsThis work was partially funded by the National Sci-ence Foundation under grants MIPS-9500673, CDA-9617372, EEC-9700762, IIS-9733573, ECS-9809520,and EIA-9872516, and by an academic reinvestmentgrant from Purdue University.References[1] R. Armstrong, D. Hensgen, and T. Kidd. The rel-ative performance of various mapping algorithms isindependent of sizable variances in run-time predic-tions. In Proceedings of the 7th Heterogeneous Com-puting Workshop (HCW'98), Orlando, Florida, USA,1998.[2] C. G. Atkeson, S. A. Schaal, and A. W. Moore. Locallyweighted learning. AI Review, 11:11{73, 1997.[3] W. S. Cleveland. Robust locally weighted regressionand smoothing scatterplots. Journal of the AmericanStatistical Association, 74(368):829{836, 1979.

Eighth IEEE International Symposium on High Performance Distributed Computing, August 1999. 54[4] W. S. Cleveland, S. J. Devlin, and E. Grosse. Regres-sion by local �tting: Methods, properties, and compu-tational algorithms. Journal of Econometrics, 37:87{114, 1988.[5] W. S. Cleveland and C. Loader. Rejoinder to discus-sion of \smoothing by local regression: Principles andmethods". In Statistical Theory and ComputationalAspects of Smoothing, pages 113{120. Springer, 1996.[6] K. Deng and A. W. Moore. Multiresolution instance-based learning. In Proceedings of the InternationalJoint Conference on Arti�cial Intelligence (IJCAI),Montreal, Canada, 1995.[7] M. V. Devarakonda and R. K. Iyer. Predictability ofprocess resource usage: A measurement based studyon unix. IEEE Transactions on Software Engineering,15(12):1579{1586, 1989.[8] A. B. Downey. Predicting queue times on space-sharing parallel computers. In Proceedings of the11th International Parallel Processing Symposium(IPPS'97), Geneva, Switzerland, April 1997.[9] J. Fan and I. Gijbels. Local Polynomial Modelling andits Applications. Chapman and Hall, 1996.[10] I. Foster and C. Kesselman, editors. The GRIDBlueprint for a New Computing Infrastructure. Mor-gan Kaufmann, 1999.[11] R. Freund, T. Kidd, D. Hensgen, and L. Moore.SmartNet: A scheduling framework for heterogeneouscomputing. In Proceedings of the International Sympo-sium on Parallel Architectures, Algorithms, and Net-works (ISPAN-96), pages 514{521, 1996.[12] R. F. Freund, M. Gherrity, S. Ambrosius, M. Camp-bell, M. Halderman, D. Hensgen, E. Keith, T. Kidd,M. Kussow, J. D. Lima, F. Mirabile, L. Moore,B. Rust, and H. J. Siegel. Scheduling resourcesin multi-user, heterogeneous computing environmentswith SmartNet. In Proceedings of the 7th Heteroge-neous Computing Workshop (HCW'98), pages 184{199, 1998.[13] K. Funahashi. On the approximate realization of con-tinuous mappings by neural networks. Neural Net-works, 2:183{192, 1989.[14] J. Gehring and A. Reinefeld. MARS - a framework forminimizing the job execution time in a metacomputingenvironment. Future Generation Computer Systems,12(1):87{99, 1996.[15] K. K. Goswami, M. Devarakonda, and R. K.Iyer. Prediction-based dynamic load-sharing heuris-tics. IEEE Transactions on Parallel and DistributedSystems, 4(6):638{648, 1993.[16] N. Kapadia, J. A. B. Fortes, and M. Lundstrom.The Computational Electronics Hub: A network-based simulation laboratory. In Summary Record ofthe Workshop on Materials and Process Research andthe Information Highway, page 31. National AcademyPress, April 1996.[17] N. H. Kapadia. On the Design of a Demand-BasedNetwork-Computing System: The Purdue UniversityNetwork-Computing Hubs. PhD thesis, Department of

Electrical and Computer Engineering, Purdue Univer-sity, August 1999.[18] N. H. Kapadia, C. E. Brodley, J. A. B. Fortes,and M. S. Lundstrom. Resource-usage prediction fordemand-based network-computing. In Proceedings ofthe 1998 Workshop on Advances in Parallel and Dis-tributed Systems (APADS), West Lafayette, Indiana,October 1998.[19] N. H. Kapadia, C. E. Brodley, J. A. B. Fortes, andM. S. Lundstrom. Resource usage prediction fordemand-based network-computing. Technical ReportTR-ECE 98-9, Department of Electrical and Com-puter Engineering, Purdue University, 1998.[20] N. H. Kapadia and J. A. B. Fortes. On the de-sign of a demand-based network-computing system:The Purdue University Network-Computing Hubs.In Proceedings of the 7th IEEE International Sym-posium on High Performance Distributed Computing(HPDC'98), pages 71{80, Chicago, Illinois, July 1998.[21] N. H. Kapadia and J. A. B. Fortes. The PUNCHnetwork desktop. Technical Report TR-ECE 99-1,Department of Electrical and Computer Engineering,Purdue University, 1999.[22] A. W. Moore, J. Schneider, and K. Deng. E�cientlocally weighted polynomial regression predictions. InProceedings of the 1997 International Machine Learn-ing Conference, Nsahville, Tennessee, 1997.[23] W. W. Press, S. A. Teukolsky, W. T. Vetterling, andB. P. Flannery. Numerical Recipes in C: The Art ofScienti�c Computing. Cambridge University Press,2nd edition, 1992.[24] S. Schaal. Nonparametric regression for learning. InProceedings of the Conference on Adaptive Behaviorand Learning, pages 123{133, Center for Interdisci-plinary Research, University of Bielefeld, Germany,1994.[25] S. Schaal and C. G. Atkeson. Assessing the qualityof learned local models. In J. Cowan, G. Tesauro,and A. J., editors, Advances in Neural InformationProcessing Systems, volume 6, pages 160{167. MorganKaufmann, 1994.[26] W. Smith, I. Foster, and V. Taylor. Predicting ap-plication run times using historical information. InProceedings of the IPPS/SPDP'98 Workshop on JobScheduling Strategies for Parallel Processing, 1998.[27] A. Svensson. History, an intelligent load sharing �lter.In Proceedings of the 10th International Conference onDistributed Computing Systems, pages 546{552, 1990.[28] C.-J. Wang, P. Krueger, and M. T. Liu. Intelligentjob selection for distributed scheduling. In Proceed-ings of the 13th IEEE International Conference onDistributed Computing Systems, pages 517{524, 1993.

