Eighth IEEFE International Symposium on High Performance Distributed Computing, August 1999. 47

Predictive Application-Performance Modeling
in a Computational Grid Environment

Nirav H. Kapadia

José A. B. Fortes

Carla E. Brodley

School of Electrical and Computer Engineering
Purdue University

West Lafayette, IN 47907-1285
{kapadia, fortes, brodley }@ecn.purdue.edu

Abstract

This paper describes and evaluates the application
of three local learning algorithms — nearest-neighbor,
weighted-average, and locally-weighted polynomial re-
gresston — for the prediction of run-specific resource-
usage on the basis of run-time input parameters sup-
plied to tools. A two-level knowledge base allows the
learning algorithms to track short-term fluctuations in
the performance of computing systems, and the use of
mstance editing techniques tmproves the scalability of
the performance-modeling system. The learning algo-
rithms assist PUNCH, a network-computing system at
Purdue University, in emulating an ideal user in terms
of its resource management and usage policies.

1. Introduction

It is now recognized that the heterogeneous nature
of the network-computing environment cannot be ef-
fectively exploited without some form of adaptive or
demand-driven resource management (e.g., [10, 11, 12,
14, 18, 27]). A demand-driven resource management
system can be characterized by its ability to make auto-
matic cost/performance tradeofl decisions at run-time.
Such decisions require that the infrastructure be able to
decide how (which implementation — e.g., sequential
versus parallel) and where (which platform) to execute
a tool. This, in turn, implies an ability to estimate
the resource requirements of any given run before a
scheduling decision i1s made. This paper describes and
evaluates the application of three local learning tech-
niques for run-specific resource-usage prediction.

Local learning algorithms use available data in the
region of a query to build a local model for the appro-
priate output [2]. For this domain, available data con-
sists of measured resource-usage associated with pre-

vious runs of the given tool, and the query point is
defined by the input parameters associated with the
run for which resource-usage is to be predicted. The
region around the query point is specified by way of a
distance metric that measures “distances” within the
space defined by tool-specific input parameters.

PUNCH is a distributed, web-accessible network-
computing system that currently caters to about five
hundred users, and provides access to forty research
and commercial tools in computer architecture, paral-
lel programming, and computational electronics. The
described learning algorithms assist PUNCH [16, 20]
in emulating an ideal user in terms of its resource-
management and usage policies. An ideal user is
defined as one who: 1) can predict the resource-
requirements of each run that he/she initiates, 2) pref-
erentially uses the most plentiful resources that support
the requirements of the given run, and 3) voluntar-
ily relinquishes resources to higher-priority users when
necessary.

The paper is organized as follows. Section 2 out-
lines the characteristics of the tools and the compu-
tational grid environment in the context of resource
usage prediction. Section 3 summarizes related work
on the topic. Section 4 motivates the selection of
instance-based learning algorithms for this domain.
Sections b and 6 describe and evaluate the nearest-
neighbor, weighted average, and locally weighted re-
gression algorithms, respectively. Finally, Section 7
presents the conclusions of this work.

2. Domain Constraints

Two sets of problems must be addressed in order to
be able to predict tool- and run-specific resource-usage
in a computational grid environment [18]. The first set
consists of issues that are a consequence of the diver-
sity of the tools executed on the computational grid,

Eighth IEEFE International Symposium on High Performance Distributed Computing, August 1999. 48

whereas the second set includes issues that arise due
to the dynamic nature of the run-time environment.

The resources utilized by a particular run of a given
tool often depend on the input to the tool. In some
cases (e.g., with matrix manipulation codes), this de-
pendence can be expressed by way of analytical ex-
pressions. In general, however, the exact relationship
between the tool-input and the corresponding resource-
usage is complex — making 1t necessary to learn the
relationship (i.e., the concept).

Learning algorithms employed for resource-usage
prediction must address the following three tool-related
concerns: 1) the extent to which individual input pa-
rameters (i.e., features) affect the relationship is un-
known — making it necessary to learn the relative im-
portance of the features, 2) the range and distribu-
tion of the values of the features are not known in ad-
vance — which implies that scaling factors employed
for numerical stability have to be determined on the
fly, and 3) the concept to be learned often has a non-
deterministic component — due to measurement noise
(e.g., as with CPU time and network delays), perfor-
mance variations inherent to complex computer sys-
tems (e.g., the impact of concurrently-executing appli-
cations on the effectiveness of the memory sub-system),
and unobservable features (e.g., the convergence rate of
many numerical algorithms depends on the eigenvalue
distribution, which may not be known when the run is
initiated).

The computational grid environment presents two
challenges in terms of acquiring and managing knowl-
edge for resource-usage prediction. The first challenge
is a result of the real-time nature of the prediction pro-
cess, which must occur after a user initiates a run, but
before the run can be scheduled. This imposes an up-
per bound on the amount of information that can be
searched and/or utilized by learning algorithms. The
second challenge 1s a consequence of fluctuations in
the availability and performance of individual nodes
within large, networked computing systems. Such fluc-
tuations can be caused by overloaded file-servers or net-
work routers, and occur at unpredictable times. Con-
sequently, learning algorithms employed for resource-
usage prediction must be able to quickly tailor their
predictions to short-term variations without being un-
duly affected by them in the longer term.

The application-performance modeling system for
PUNCH [18, 19]: 1) employs locally weighted poly-
nomial regression [2, 9], allowing it to work with un-
known feature weights and incomplete/noisy informa-
tion, 2) addresses scalability issues by way of a cache
that allows it to exploit the locality of runs [18] and
by selectively incorporating information into its knowl-

edge base, and 3) tracks short-term fluctuations in per-
formance by way of a two-level knowledge-base that
differentiates between short-term memory and long-
term memory. This paper describes three local learn-
ing techniques — nearest-neighbor, weighted-average,
and locally weighted regression — that can be used to
predict resource-usage; knowledge representation and
management issues are described in [18, 19].

3. Related Work

Existing work aimed at estimating resource-usage
makes use of cumulative statistical data or analytical
expressions to predict run time. Statistical models are
typically tool-specific, and are constructed from mea-
sured execution times of previous runs. Analytical ex-
pressions are also tool-specific, and are generally pro-
vided by the administrators or the users of the tool.

Examples of systems that utilize cumulative statis-
tical data can be found in [1, 8, 14, 15, 26, 27, 28]. Such
systems implicitly assume that a particular tool will ex-
hibit similar resource-usage characteristics across runs
— regardless of the input to the tool.! Although this
assumption has been found to be valid for specific tools
and environments (e.g., [7]), it is not true in general.
For instance, multiple users concurrently executing a
given tool in a grid environment with radically differ-
ent input data may cause the observed resource-usage
to vary rapidly from one run to the next. This prob-
lem could be partially addressed by maintaining sep-
arate statistics for each user — however, this would
imply that information gleaned from one user could no
longer be exploited in order to make predictions for
runs initiated by other users.

The applicability of analytical expressions is re-
stricted to the types of tools for which such expres-
sions can be determined with relative ease (e.g., as
with numerical software). As a result, this approach
is of limited use in a computational grid environment.
Some systems address this limitation by using analyt-
ical expressions in conjunction with other approaches
— SmartNet [11, 12], for example, estimates resource-
usage characteristics by employing a combination of
statistical analysis and optional analytical expressions
provided by users.

The design objectives of an application-performance
modeling system, as stated by Berman [10], are: 1) to
utilize dynamic information to represent variations in
performance, 2) to produce performance predictions

IMost of the mentioned systems can adapt to long-term
changes in tool behavior by discarding “old” statistics. The
system described in [26] accounts for command-line arguments
supplied to the tool, when they are available.

Eighth IEEFE International Symposium on High Performance Distributed Computing, August 1999. 49

that are timeframe-specific, and 3) to be able to adapt
to a wide spectrum of potential computational envi-
ronments. The PUNCH performance-modeling sys-
tem utilizes local learning algorithms to learn the cor-
relation between tool-specific, run-time input param-
eters and the corresponding run-specific resource re-
quirements. The run-specific values of administrator-
specified input parameters are automatically extracted
by PUNCH from arguments and/or files supplied to
the tool [21]. A two-level knowledge base [18, 19] al-
lows the system to tailor its predictions to short-term
variations in the performance of the tool and/or the
computing environment. The instance-based learning
algorithms utilized by the system are relatively insen-
sitive to the structural complexity of the function to
be learned [9] — consequently, they can be used for a
wide range of tools.

4. Learning Algorithm Selection

Global parametric learning algorithms [24] such as
neural networks attempt to establish an input-output
mapping via a single function y = f(z,6), where
is a finite-length parameter vector. While these meth-
ods can theoretically approximate any continuous func-
tion (e.g., [13]), they may not be appropriate for all
tools. For example, semiconductor device simulation
tools typically allow users to simulate a device in one,
two, or three dimensions. In general, different solution
techniques are used for each of these cases, implying
that the input-output mapping for such tools will con-
sist of three distinct concepts. This is likely to cause
problems for learning algorithms that attempt to cap-
ture concepts at a global level.

Local parametric algorithms attempt to overcome
some of the problems of global parametric learning by
dividing the input space into many partitions [2, 24].
Each partition ¢ is approximated by an independent
function y; = fi(x, 0;); the functions f; are kept as sim-
ple as possible. The problem now shifts to the selection
of appropriate partitions for the learning system [25].
Non-parametric algorithms (e.g., [2, 6, 22]) address this
issue by allowing the number of partitions (and conse-
quently the number of parameters) to change dynami-
cally. Instance-based learning (IBL) algorithms achieve
this by recomputing a fixed set of parameters as a func-
tion of the query point.

IBL algorithms do not require an explicit training
phase [6]. Moreover, because of their localized nature,
the algorithms are relatively insensitive to the struc-
tural complexity of the function to be learned and are
not affected by catastrophic interference (a condition
in which previously learnt information is forgotten by

an incremental learning system [24]), making them a
good choice for this domain.

5. Instance-Based Learning Algorithms

This section presents three instance-based learning
methods: nearest-neighbor, weighted-average (kernel
regression), and locally weighted regression. The issues
involved in the selection of values for the parameters
that define these methods are outlined in Section 5.4.
Additional details can be found in [17].

5.1. Nearest-Neighbor

K-nearest neighbor (A-NN) algorithms [2] predict
the output value(s) for a given query point by using
an unweighted average of the output values of the &
nearest instances as defined by a distance metric. Im-
plementing a k-NN algorithm requires the specification
of the following parameters: 1) the number of instances
(k) to be included in the local neighborhood, and 2) an
appropriate distance metric. The experiments in this
paper employ a 1-NN algorithm.

5.2. Weighted Average

Weighted average algorithms [2] make their predic-
tion on the basis of a weighted average of the output
values of the k nearest instances; the weight of an in-
stance is an inverse function of its distance from the
query point. The following parameters must be spec-
ified in order to implement a weighted average algo-
rithm: 1) the number of points to be included in the
local neighborhood (kernel width), 2) an appropriate
distance metric, and 3) a kernel (i.e., weighting) func-
tion. In order to quantify the benefits of using a slightly
more sophisticated prediction technique (compared to
the 1-NN algorithm), the experiments in this paper use
a three-point weighted average algorithm.

5.3. Locally Weighted Polynomial Regression

Locally weighted regression (LWR) algorithms
(e.g., [2, 3, 9]) fit a surface to nearby points, typically
via a locally linear or quadratic model.? With a linear
(quadratic) model, the target concept is locally approx-
imated by a linear (quadratic) surface.

In order to clarify the ideas behind LWR, this sec-
tion includes an overview of locally weighted regression.
A locally linear polynomial and a dataset with one at-
tribute are used for the purpose of the illustration; the

?Higher order local models are generally not used because of
the associated computational cost.

Eighth IEEFE International Symposium on High Performance Distributed Computing, August 1999. 50

ideas can be extended to higher order local polynomials
and datasets with multiple attributes [2, 17].

Consider linear regression analysis on data that was
obtained from a function with one independent and
one dependent variable (y = f(z)). Say we have N
samples of this function corresponding to v = f(x;),
where 1 < i < N. Then, the line determined by global
linear regression minimizes the sum of the squares of
the errors. That 1s, if the line is given by

y=bo+buz, (1)

linear regression determines by and b; such that the
error
N

> (v —4i)°

i=1

is minimized. Note that y; and y; are functions of x.
In contrast, locally weighted linear regression min-
imizes a wetghted sum of the squares of the errors.
The weights are local in the sense that they are
(re)computed for each query, and the kernel function
(i.e., weighting function) is chosen so as to eliminate
the effects of remote data-points. The size of the lo-
cal neighborhood (i.e., the region in which the weights
are non-zero) is called the kernel width or bandwidth.
Mathematically, locally weighted linear regression de-
termines by(z,4) and b1 (z4) such that the error

Z Wwei (yi — 9i)* (2)

is minimized, where z, is the query point and wg; are
the query-specific weights. The coefficients of the poly-
nomial described by Equation 1 are now functions of
the query point. The weights wg; are computed as

wgi = K(d(zq, %), kw),

where K (-) is a non-negative function (the kernel func-
tion) whose value increases as | 2, — 2; | decreases, d(-)
1s a distance metric, and k,, is the kernel width.

In applying locally weighted regression, four param-
eters must be selected: 1) the order of the local polyno-
mial, 2) the distance metric, 3) the kernel width, and
4) the kernel function. A locally linear polynomial was
used for this research because empirical evaluation [19]
showed that: 1) it resulted in lower prediction errors
and faster learning, and 2) it required less time than
higher order models to make a prediction. The regres-
sion equations were solved by singular value decompo-
sition [23] to ensure numerical stability.

5.4. Parameter Selection

The distance metric is common to all three algo-
rithms. Given that the range and distribution of the
values of the features are not known, a distance func-
tion that normalizes distances with respect to the query
point was used. The normalization compresses dimen-
sions in proportion to the value of the query point
in the corresponding dimension, allowing the distance
function to accommodate a wider range of values (for
finite-precision arithmetic).?

The kernel width (i.e., bandwidth) can be fixed or
variable. A fixed kernel width is of limited use because
it can lead to inaccurate or undefined predictions in
regions with low data-density [5]. Given the absence of
a “complete” dataset in this domain, the kernel width
was locally optimized [9] by recomputing it for each
query. The kernel widths for the nearest-neighbor and
weighted average algorithms are equal to the distance
(from the query point) of the first and third nearest
neighbors, respectively. For locally weighted regres-
sion, the kernel width is equal to the distance of the
2(n+1)* nearest neighbor from the query point, where
n is the length of the feature vector.

The kernel function determines the relative weights
of the datapoints that fall within the kernel width.
The function is required to be non-negative and have
decreasing values with increasing distance [9]. A hy-
brid, query-dependent kernel function that maintains
a constant value of one for a distance equal to that
of the nearest neighbor, and is Gaussian after that
was employed because it resulted in lower prediction
errors when compared to the “nearest-neighbor band-
width” described in [9]. The hybrid nature of the ker-
nel function also ensures that at least one data-point is
available to make a prediction, regardless of the data-
density in the region of the query point.

6. Empirical Evaluation

The three algorithms described above have differ-
ent capabilities in terms of the concepts that they can
represent. The first set of results in this section were
generated by way of a synthetic dataset, and are used
to highlight these differences. The second set of re-
sults were obtained from real data measured over the
course of about ten months of operation of the Pur-
due University Network-Computing Hubs (PUNCH),
during which time about five hundred PUNCH users
executed approximately fifty thousand runs of various
tools on shared compute servers connected to the Pur-
due Data Network. This set of results highlights the

3The distance metric does not have to satisfy the requirements
for formal distance metrics [2].

Eighth IEEFE International Symposium on High Performance Distributed Computing, August 1999. 51

Target Concept 1-Nearest-Neighbor Algorithm

50 50

40 o 40
x E

23 X X XXX XX éso

%20 g20
B
x a

10 10

X
X
Qoo 0
0 10 20 30 40 50 0 10 20 30 40 50
Feature Value Feature Value
3-point Weighted Average Linear Locally Weighted Regression
50 5

o 40 o 40
E E
= =

2 30 2 30
O O
g B

220 220
k=1 h=1
o 1<

& 10 & 10

0 0

0 10 20 30 40 50 0 10 20 30 40 50

Feature Value Feature Value

Figure 1. Resource usage and prediction
characteristics for a hypothetical tool with a

single feature. The first plot shows the be-
havior of the tool with respect to the input

parameter; the marked points indicate the in-
stances stored in the knowledge base.

performance of the learning algorithms for real appli-
cations in a live, networked computing environment.

For illustrative purposes, consider a hypothetical
tool whose resource-usage characteristics depend on a
single feature. The first plot in Figure 1 shows the rela-
tionship between the input parameter (feature) and the
(simulated) CPU time for this tool. The specific points
marked in the plot represent the instances available in
the knowledge base for each of the algorithms. The re-
maining plots show the characteristics of the predicted
CPU time for the three learning algorithms. Observe
that the nearest-neighbor and weighted-average algo-
rithms are not able to learn the concept as well as the
LLWR algorithm. The plots in Figure 2 show the ef-
fects of using a knowledge base with points that are rel-
atively sparse and unevenly distributed — the results
illustrate the higher sensitivity of the nearest-neighbor
and weighted-average algorithms to the distribution of
the observed instances.

In general, the nearest-neighbor and weighted-
average algorithms cannot track (even linear) polyno-
mial surfaces without error [4]. This is illustrated in
Figure 3, which shows the prediction errors for the one-
nearest neighbor (1-NN), three-point weighted-average
(3-Avg), and locally linear LWR (LLWR) algorithms
on a synthetic dataset. The dataset was made up of
1,000 instances with randomly-generated feature vec-
tors. In addition to being able to reproduce linear sur-

Target Concept
50 50
x

1-Nearest-Neighbor Algorithm

W I
S S

CPU Time
Predicted CPU Time
N
o

[
S)

o
o

o

10 20 30 40 50
Feature Value

x
0 10 20 30 40 50
Feature Value

3-point Weighted Average Linear Locally Weighted Regression

a

=3
w I a
S S

Predicted CPU Time
N
o

Predicted CPU Time

[
S)

o
o

0 10 20 30 40 50 0 10 20 30 40 50
Feature Value Feature Value

Figure 2. Resource usage and prediction
characteristics for a hypothetical tool with

one feature and a knowledge base that is rel-
atively sparse and has unevenly distributed
data points. The marked points indicate the
instances stored in the knowledge base.

faces without error, locally weighted regression algo-
rithms can reproduce peaks and are insensitive to un-
symmetrically distributed data [9, 24], making them an
ideal choice for the domain.

In a computing environment, the performance of the
learning algorithms can be evaluated in terms of two
criteria: prediction error and prediction time. With re-
spect to these criteria, two 1ssues need to be addressed
in order to make IBL algorithms suitable for extended
use in a networked computing environment.

Basic IBL algorithms cannot track temporal varia-
tions in the concept to be learned, a feature that is cru-
cial in a computing environment because systems can
exhibit short-term fluctuations in performance. The
solution to this problem is based on the observation
that, if a run with a given feature vector is invoked at
some time ¢, it (or a run with similar feature values) is
likely to be invoked again at some time ¢ + At. This
temporal (and spatial) locality of runs is especially true
in an academic environment, where a relatively large
number of students tend to work concurrently on any
given assignment. The PUNCH performance-modeling
system employs a two-level knowledge base that allows
the learning algorithms to exploit this locality. The
first level of the knowledge base is used as a fixed-size
cache, representing the short-term memory of the sys-
tem. The second level acts as the long-term memory.
Recently-observed instances are kept in the cache, and

Eighth IEEFE International Symposium on High Performance Distributed Computing, August 1999. 52

Linear Dataset; Basic IBL Algorithms

|
7 M‘M 1-NN
B sl -— - 3-Ang
g 301" —— LLWR
g | el o
520
w
2
35
310
<
A ‘
0 100 200 300 400 500 600 700 800 900 1000
Run Number
150, T
I
i 1-NN
| -— - 3-Avg
s100f TN D ——— LLWR
@ S -
5 Lo
153 i
& 50
i
P F , , \ L L
0 100 200 300 400 500 600 700 800 900 1000

Run Number

Figure 3. Cumulative prediction error for IBL
algorithms on a synthetic dataset with ten fea-
tures. The nearest-neighbor and weighted-
average algorithms cannot track (even linear)
polynomial surfaces without error.

are used preferentially in the process of making a pre-
diction (see [18, 19] for details).

Minimizing the time required to predict resource
usage i1s important because the predictions are made
in real-time. Ideally, this time should be significantly
smaller than (10% of, say) the shortest runs invoked by
users. A bounded (and small) prediction time can be
obtained by imposing an upper bound on the size of the
knowledge base, in conjunction with the use of efficient
search techniques. In PUNCH, the size of the tool-
specific knowledge bases are constrained by selectively
incorporating only incorrectly predicted feature vectors,
and by discarding knowledge associated with feature
vectors that have been consistently used to make in-
correct predictions. This process is known as instance
editing; additional details are available in [19].

The local learning algorithms described in this paper
were tested on three semiconductor simulation tools
(T-Suprem3, Minimos, and S-Demon). The datasets
were constructed from trace data obtained by moni-
toring runs initiated by PUNCH on shared compute
servers. This paper presents detailed results for T-
Suprem3, a commercial package that simulates the pro-
cessing steps used to manufacture silicon devices; re-
sults for the other datasets showed similar trends. The
discussion focuses on the errors associated with the pre-
diction of CPU time because of its importance in terms
of scheduling.*

4The performance-modeling system currently predicts CPU

Restifs for T-Suprem3 Data-Set

5 Sl o] &
5 o Ry 2|12 N 2
£ > = S |B| R|S
& < g S| E| @l &

Nlo|| x| =

noedit, c=02357 | 3.6 ||2363 |0.387

L L L L L L L
0 1000 2000 3000 4000 5000 6000 7000 8000

. Z | ledit, c=0 [2299 | 35|| 16]0.007

o, o0] iedit, c=5 [2566 | 3.4|| 17]0.006

El- e ! L

5 Bos | e 1 noedit, c=02482 | 4.0||2363 |0.425

804 [N 1 -

s S [edit, c=0 [2578 | 3.8]| 190.009
[1000 2000 3000 a 4000 5000 6000 7000 8000 <

Narber iedit, =5 2726 [3.7|| 17]0.006
\E Erear LR noedit, ¢=02239 | 6.3|12363 |0.415
iedit, =0 |2425 | 5.3|| 280.012

10

LLWR

15
CPU Time

Figure 4. Effects of instance editing and
caching on the learning system. Note the
increase in the number of “zero-error” pre-
dictions with caching (<¢=5). Also observe
the drop in lookup times and the size of the
knowledge base with instance editing (iedit).

The feature vector for T-Suprem3 was made up of
the following: 1) number of grid points, 2) total diffu-
sion time, 3) cumulative epitaxial growth, 4) minimum
implant energy, 5) number of deposit steps, 6) number
of etch steps, and 7) number of implant steps.> The
learning instances collected for T-Suprem3 comprised
of 8,100 runs whose CPU times ranged from 1 to 730
seconds (99.98% of the runs took less than 30 seconds).
In the subsequent discussion, results obtained with and
without instance editing are labeled iedit and noedit,
respectively.

The top plot on the left hand side of Figure 4 shows
the cumulative prediction errors of each of the local
learning methods with instance editing and a cache
of size five. The plot shows that the 1-NN algorithm
learns faster than the other two algorithms. The mid-
dle plot shows the time required to retrieve instances
from the knowledge base for each prediction of the 1-
NN algorithm. This time is directly tied to the size of
the knowledge base. As expected, the unmodified algo-
rithm (noedit, ¢=0) results in monotonically increas-
ing lookup time. Observe that the lookup time drops
by almost a factor of two when a two-level knowledge
base with a cache size of 5 is used (noedit, c=5). This
is a clear indication of the temporal locality of runs
and the corresponding usefulness of short-term mem-
ory. Applying instance editing results in a bounded
knowledge base (iedit curves), indicating the effec-
tiveness of discarding knowledge associated with pre-
dictable and noisy instances. The lookup time plots

time and network data-transfer time; memory and disk-space
requirements will be predicted once the ongoing development of
a monitoring system is complete.

5These features were identified by a domain expert.

Eighth IEEFE International Symposium on High Performance Distributed Computing, August 1999. 53

for the three-point weighted-average and linear locally
weighted regression algorithms were qualitatively iden-
tical. The bottom plot shows the distribution of the
number of runs in terms of CPU time, along with a
break up of the number of exact matches (i.e., when
an identical feature-combination was found in knowl-
edge base) and interpolated predictions for the locally
weighted regression algorithm. Again, the increase in
the number of exact matches with a cache validates the
supposition of temporal locality. The corresponding
results for the nearest-neighbor and weighted-average
algorithms exhibit identical characteristics.

The table on the right hand side of Figure 4 presents
a more detailed view of the effects of instance editing
and caching. Consider the results for the 1-NN algo-
rithm. The three rows correspond to the following con-
ditions: noedit, c¢=0, iedit, ¢=0, and iedit, c¢=5.
The first column shows the number of zero-error pre-
dictions. This quantity drops with instance editing
because instances that would have helped for future
queries are being discarded. Observe that the value
increases again with caching. Indeed, a combined ap-
plication of instance editing and caching results in a
final value that is higher than the original because in-
stance editing helps filter out the noise in the dataset
while caching helps offset the disadvantages of discard-
ing data. The average error is shown in the next col-
umn, illustrating that the error decreases with instance
editing and caching. Finally, the last two columns show
the effects of instance editing and caching on knowledge
base size and lookup time. Instance editing drastically
reduces the size of the knowledge base. Note that the
majority of the runs ran in fewer than 5 seconds (see
bottom plot in the figure), which probably contributes
to the reduction of the knowledge base size. It is also
interesting to note that the size of the resulting knowl-
edge base is similar for all three algorithms, in spite
of their different representational capabilities. When
a cache of size five is added (third row for each al-
gorithm), the knowledge base size does not grow by
five. This implies that the most-frequently occurring
instances and the best predictors of CPU time overlap
to some degree. The behavior of the lookup time is
explained by the fact that it is directly tied to the size
of the knowledge base. Caching helps further reduce
the lookup time even when the knowledge base is very
small because the system first searches the cache.

The results for the other two algorithms show simi-
lar trends. The benefits of caching are independent of
the specific algorithm because it exploits user-behavior,
rather than the specific characteristics of individual
learning algorithms.

7. Conclusions

Three instance-based learning algorithms —
nearest-neighbor, weighted-average, and locally
weighted polynomial regression — were described

in this paper. The algorithms are used to predict
run-specific resource-usage on the basis of run-time
input parameters supplied to the tool — to our
knowledge, the performance-modeling system for
PUNCH is the first to utilize automatically-extracted,
tool-specific inputs in order to learn the resource-usage
characteristics of tools.

A two-level knowledge base allows the learning al-
gorithms to track short-term fluctuations in the per-
formance of computing systems, and the use of in-
stance editing techniques improves the scalability of
the performance-modeling system. These two solutions
significantly contribute to the suitability of IBL algo-
rithms for extended use in a computing environment
such as the one presented by a computational grid.

The results in this paper indicate that the nearest-
neighbor algorithm outperforms the more sophisti-
cated locally weighted regression algorithm for the
tools tested. However, this could be an artifact of
the limitations of the current PUNCH environment:
measured resource-usage often included a significant
amount of noise (a better monitoring system is being
implemented), and the distribution of run-times was
more skewed towards shorter runs than what could be
expected within a large computational grid environ-
ment. Further studies within larger computing envi-
ronments with diverse tools and an extensive user-base
are needed in order to draw a more general conclusion.

Acknowledgements

This work was partially funded by the National Sci-
ence Foundation under grants MIPS-9500673, CDA-
9617372, EEC-9700762, 11S-9733573, ECS-9809520,
and EIA-9872516, and by an academic reinvestment
grant from Purdue University.

References

[1] R. Armstrong, D. Hensgen, and T. Kidd. The rel-
ative performance of various mapping algorithms is
independent of sizable variances in run-time predic-
tions. In Proceedings of the 7th Heterogeneous Com-
puting Workshop (HCW’98), Orlando, Florida, USA,
1998.

[2] C. G. Atkeson, S. A. Schaal, and A. W. Moore. Locally
weighted learning. Al Review, 11:11-73, 1997.

[3] W. S. Cleveland. Robust locally weighted regression
and smoothing scatterplots. Journal of the American
Statistical Association, 74(368):829-836, 1979.

Eighth IEEFE International Symposium on High Performance Distributed Computing, August 1999. 54

[4]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

W. S. Cleveland, S. J. Devlin, and E. Grosse. Regres-
sion by local fitting: Methods, properties, and compu-
tational algorithms. Journal of Fconometrics, 37:87—
114, 1988.

W. S. Cleveland and C. Loader. Rejoinder to discus-
sion of “smoothing by local regression: Principles and
methods”. In Statistical Theory and Computational
Aspects of Smoothing, pages 113-120. Springer, 1996.
K. Deng and A. W. Moore. Multiresolution instance-
based learning. In Proceedings of the International
Joint Conference on Artificial Intelligence (IJCAI),
Montreal, Canada, 1995.

M. V. Devarakonda and R. K. Iyer. Predictability of
process resource usage: A measurement based study
on unix. [EFE Transactions on Software Engineering,
15(12):1579-1586, 1989.

A. B. Downey. Predicting queue times on space-
sharing parallel computers. In Proceedings of the
11th International Parallel Processing Symposium
(IPPS’97), Geneva, Switzerland, April 1997.

J. Fan and I. Gijbels. Local Polynomial Modelling and
its Applications. Chapman and Hall, 1996.
I. Foster and C. Kesselman, editors. The GRID
Blueprint for a New Computing Infrastructure. Mor-
gan Kaufmann, 1999.

R. Freund, T. Kidd, D. Hensgen, and L. Moore.
SmartNet: A scheduling framework for heterogeneous
computing. In Proceedings of the International Sympo-
stum on Parallel Architectures, Algorithms, and Net-
works (ISPAN-96), pages 514-521, 1996.

R. F. Freund, M. Gherrity, S. Ambrosius, M. Camp-
bell, M. Halderman, D. Hensgen, E. Keith, T. Kidd,
M. Kussow, J. D. Lima, F. Mirabile, L. Moore,
B. Rust, and H. J. Siegel. Scheduling resources
in multi-user, heterogeneous computing environments
with SmartNet. In Proceedings of the 7th Heteroge-
neous Computing Workshop (HCW’98), pages 184—
199, 1998.

K. Funahashi. On the approximate realization of con-
tinuous mappings by neural networks. Neural Net-
works, 2:183-192, 1989.

J. Gehring and A. Reinefeld. MARS - a framework for
minimizing the job execution time in a metacomputing
environment. Future Generation Computer Systems,
12(1):87-99, 1996.
K. K. Goswami, M. Devarakonda, and R. K.
Iyer. Prediction-based dynamic load-sharing heuris-
tics. IEEFE Transactions on Parallel and Distributed
Systems, 4(6):638-648, 1993.

N. Kapadia, J. A. B. Fortes, and M. Lundstrom.
The Computational Electronics Hub: A network-
based simulation laboratory. In Summary Record of
the Workshop on Materials and Process Research and
the Information Highway, page 31. National Academy
Press, April 1996.

N. H. Kapadia. On the Design of a Demand-Based
Network-Computing System: The Purdue University
Network-Computing Hubs. PhD thesis, Department of

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Flectrical and Computer Engineering, Purdue Univer-
sity, August 1999.

N. H. Kapadia, C. E. Brodley, J. A. B. Fortes,
and M. S. Lundstrom. Resource-usage prediction for
demand-based network-computing. In Proceedings of
the 1998 Workshop on Advances in Parallel and Dis-
tributed Systems (APADS), West Lafayette, Indiana,
October 1998.

N. H. Kapadia, C. E. Brodley, J. A. B. Fortes, and
M. S. Lundstrom. Resource usage prediction for
demand-based network-computing. Technical Report
TR-ECE 98-9, Department of Electrical and Com-
puter Engineering, Purdue University, 1998.

N. H. Kapadia and J. A. B. Fortes. On the de-
sign of a demand-based network-computing system:
The Purdue University Network-Computing Hubs.
In Proceedings of the 7th IFEE International Sym-
posium on High Performance Distributed Computing
(HPD(C’98), pages 71-80, Chicago, lllinois, July 1998.
N. H. Kapadia and J. A. B. Fortes. The PUNCH
network desktop. Technical Report TR-ECE 99-1,
Department of Electrical and Computer Engineering,
Purdue University, 1999.

A. W. Moore, J. Schneider, and K. Deng. Efficient
locally weighted polynomial regression predictions. In
Proceedings of the 1997 International Machine Learn-
ing Conference, Nsahville, Tennessee, 1997.

W. W. Press, S. A. Teukolsky, W. T. Vetterling, and
B. P. Flannery. Numerical Recipes in C: The Art of
Scientific Computing. Cambridge University Press,
2nd edition, 1992.

S. Schaal. Nonparametric regression for learning. In
Proceedings of the Conference on Adaptive Behavior
and Learning, pages 123-133, Center for Interdisci-
plinary Research, University of Bielefeld, Germany,
1994.

S. Schaal and C. G. Atkeson. Assessing the quality
of learned local models. In J. Cowan, G. Tesauro,
and A. J., editors, Advances in Neural Information
Processing Systems, volume 6, pages 160-167. Morgan
Kaufmann, 1994.

W. Smith, I. Foster, and V. Taylor. Predicting ap-
plication run times using historical information. In
Proceedings of the IPPS/SPDP’98 Workshop on Job
Scheduling Strategies for Parallel Processing, 1998.

A. Svensson. History, an intelligent load sharing filter.
In Proceedings of the 10th International Conference on
Distributed Computing Systems, pages 546-552, 1990.
C.-J. Wang, P. Krueger, and M. T. Liu. Intelligent
job selection for distributed scheduling. In Proceed-
ings of the 13th IEEFE International Conference on
Distributed Computing Systems, pages 517-524, 1993.

