The Use of Planning Critics in Mechanizing
Inductive Proofs*

Andrew Ireland

Department of Artificial Intelligence
University of Edinburgh
80 South Bridge
EH1 1HN

Abstract

Proof plans provide a technique for guiding the search for a proof in
the context of tactical style reasoning. We propose an extension to this
technique in which failure may be exploited in the search for a proof. This
extension is based upon the concept of planning critics. In particular we
illustrate how proof critics may be used to patch proof plans in the domain
of inductive proofs.

1 Introduction

Proof plans [Bundy 88] guide the search for a proof in the context of tactical style
reasoning [Gordon et al 79]. A proof plan contains a tactic together with a proof
rationale. The tactic component specifies the low-level structure of a proof in
terms of the object-level logic inference rules and is used to control the theorem
prover. In contrast, the proof rationale, which is expressed in a meta-logic, cap-
tures the high-level structure of a proof. Proof plans are constructed from tactic
specifications called methods. Using the meta-logic, a method expresses the pre-
conditions under which a tactic is applicable and the effects of applying the tactic.
The proof plan ideas have been implemented in a plan formation system called

*This paper was published in: Logic Programming and Automated Reasoning LPAR‘92,
St.Petersburg, Lecture Notes in Artificial Intelligence 624, Springer-Verlag 1992. The research
reported in this paper was supported by SERC grant GR/F/71799.

The Use of Planning Critics in Mechanizing Inductive Proofs 2

CLAM [van Harmelen 89] and applied very successfully to the domain of induct-
ive proofs [Bundy et al 91]. However, experience in automated inductive theorem
proving [Boyer & Moore 88] has shown that failed proof attempts often hold the
key to discovering a complete proof. Currently CLAM provides no mechanism for
interpreting failure or even partial success in the search for a proof. In this paper
we propose the use of explicit planning critics in providing the means of exploiting
such negative information. Proof critics represent an extension to the hierarchy
of inference rules, tactics and methods.

We outline a proof plan for induction in §2 and as motivation for our proposal we
demonstrate the potential for exploiting partial success of this proof plan in §3.
We show in §4 how this potential may be captured through the use of planning
critics. The use of critics is extended is §5 where the need for global analysis is
demonstrated.

2 A proof plan for inductive proofs

The overall proof plan for induction is composed of a hierarchy of subplans. Based
upon a process called recursion analysis|Bundy et al 89], the preconditions of the
induction plan determine the most promising form of induction. The planning
of the resulting proof obligations are carried out by the base_case and step_case
subplans. We concentrate here on the proot plan for the step case proofs.

The step_case plan decomposes into ripple and fertilize. The ripple plan has been
identified as the central component of the induction plan and is described in detail
in [Bundy et al 90b]. In essence, the ripple plan guides the rewriting of the induc-
tion conclusion so that it may be rewritten using the induction hypothesis. The fer-
tilize plan controls the use of induction hypotheses. In planning step cases, CLAM
has access to meta-level information in addition to the object-level goal structure.
This meta-level information is represented by annotations of the object-level term
structures. Annotations provide a means of describing the role particular terms
and formulae play within a proof plan. To illustrate, consider the theorem:

Vi list(r). a: list(7). rotate(length(l),l <> a) =a <> (1)

The function rotate takes a number n, and a list [/, and returns a list constructed
by concatenating the first n elements onto the remaining elements of [. List
concatenation is denoted by the infix operator <> and the function length returns
the number of elements in a list. A proof of (1) follows by structural induction on
the list [giving rise to one step case. The associated induction hypothesis takes
the form:

Va': list(7). rotate(length(v),v <>d') =d <>
while the induction conclusion is:

rotate(length(Ju = Q|T),|u E Q|T <> la]) = la] <> T (2)

The Use of Planning Critics in Mechanizing Inductive Proofs 3

The annotated terms T and |a] are called wave and sink terms respect-
ively. The role these annotations play in controlling the rewriting of the induction
conclusion will be described shortly.

In (2) the wave terms correspond to the induction terms introduced by applying
list induction, where :: is the infix list constructor. A wave term is composed
of a wave-front and one or more wave-holes. Wave-fronts mark the mismatch
between the induction conclusion and the induction hypothesis. Wave-holes are
the subterms of the wave term which match against an induction hypothesis. In
T the wave-front is of the form w :: ... while the subterm v occupies the
wave-hole. The arrow indicates the direction in which the wave-front is to be
moved within the expression tree.

Sinks are used to indicate term structure in the induction conclusion which may
be matched against an universally quantified variable in the induction hypothesis.

The ripple plan embodies two strategies each of which rewrites the induction
conclusion to the point where fertilization is applicable: The first strategy attempts
to dominate the induction conclusion with a wave-front. If this is achieved then
the associated wave-hole will match against the induction hypothesis. The second
strategy attempts to move wave-fronts into sinks. Wave-fronts are directed either
upwards or downwards depending which strategy is being employed.

The ripple plan restricts the rewriting of the induction conclusion to a syntactic
class of rewrites known as wave-rules which also contain wave-fronts. Recursive
definitions provide a rich source of wave-rules. For example, the definitions of the
functions which appear in (1) give rise to the following wave-rules:

length(T) = |s(length(Y)) ' (3)
T<>Z = ‘X::Y<>Z‘T (4)

Y # nil — rotate(|s(X) T,Y) = rotate(X,[t(Y) <> hd(Y) :: nil l) (5)

The functions hd and t/ return the head and tail of a list respectively while nzl
is the empty list. The application of a wave-rule is guaranteed to make progress
towards achieving the preconditions of fertilization. An important property of
wave-rules is that they preserve what is known as the skeleton term structure. This
invariant term structure corresponds to the “reflection” of the induction hypothesis
in the conclusion and is essential for the success of fertilization. Wave-rules can be
classified as being either longitudinal (3 and 4) or transverse (5). This classification
reflects the rewriting strategies outlined above: Repeated longitudinal rippling is
required in order to achieve the first strategy while the second requires transverse
wave-rules.

As mentioned in §1, plans are constructed from tactic specifications called meth-
ods. The schema for methods is given in figure 1. The ripple plan is built up from

'We adopt the convention of using = to denote rewriting and — to denote implication.

The Use of Planning Critics in Mechanizing Inductive Proofs 4

the wave method. The preconditions of the wave method determine the applicabil-
ity of the wave-rules. The method which specifies the applicability of longitudinal

Name: method name and arguments.
Input: input slot is matched against the current goal sequent.
Preconditions: the preconditions determine the applicability of the method.

Effects: if the preconditions succeed then the effects slot is used to calculate the
outputs.

Output: the output slot contains a possibly empty list of subgoal sequents.

Tactic: the program which controls the object-level theorem prover.

Figure 1: The Format of Methods

wave-rules is given in figure 2. In words, the preconditions to the wave method
state:

There exists a wave-rule Rn with left-hand-side L which matches a
sub-expression at position Pos within the goal G and the side condition

C' is provable given the hypothesis list H.

Rewriting (2) using longitudinal wave-rules (3) and (4) gives rise to:

1

rotate(| s(length(v)) | ,|u v <> |a] T) = |a| <> T (6)

Transverse rippling introduces an extra precondition to the wave method:

The least nested wave-front associated with the sub-expression at
position Pos lies within the scope of a sink at position SPos in the goal

G.

A wave-front lies within the scope of a sink if the sink occurs in a distinct branch
of the expression tree. Expressing this precondition by the meta-logical term
sinkable(Pos, G, SPos), then the wave method for transverse rippling may be

represented as shown in figure 3. Since the wave term | s(length(v))| in (6) satisfies

precondition P4 we are able to use transverse wave-rule (5) to rewrite the induction
conclusion.

The Use of Planning Critics in Mechanizing Inductive Proofs 5

method (wave(Pos,[Rn, D)),

Ht G,

[P1: wave_rule(Rn,long(D),C — L = R)A
P2 :exp_at(G, Pos, L)\
P3 : tautology(H + C)],

[replace(Pos, R, G, New()],

[H F NewG],

wave(Pos, [Rn, D))

).
Meanings of the meta-logical terms:

o waverule(Rn, T(D), Rule) means that Rn is the name of the wave-rule
Rule of type T and rewrite orientation D;

o cup_al(Fxp, Pos,SubExp) means that SubFxp is the sub-expression in
Fxp at position Pos;

e tautology(H F C) is true when the condition C' is provable given the hypo-
thesis list H;

o replace(Pos, R, G, New(d) means that New(' is the result of replacing the
sub-expression at position Pos in the goal ' by R.

Figure 2: Wave method: longitudinal-rippling

3 Exploiting partial success

The applicability of a method depends upon all its associated preconditions suc-
ceeding. Here we consider the potential for exploiting partial success where pre-
viously the planning process would fail.

Currently the ripple plan is able to rewrite (6) into:

rotate(length(v),v <> UQ <> m’lH) = |la] <> T

While the wave-fronts on the left-hand-side have been sunk the wave-front on the
right-hand-side prevents a complete match with the induction hypothesis from
being achieved. By analysing the failure of the transverse wave method we find
that it is due to preconditions P1 and P2: That is, there are no wave-rules to
ripple T into [a| on the right-hand-side. The crucial point in the analysis is
that P4 succeeds because the blocked wave-front lies within the scope of a sink. In

The Use of Planning Critics in Mechanizing Inductive Proofs 6

method (wave(Pos,[Rn, D)),

Ht G,

[P1: waverule(Rn,trans(D),C — L = R)A
P2 :exp_at(G, Pos, L)\
P3 : tautology(H = C)A
P4 : sinkable(Pos, G,)],

[replace(Pos, R, G, New()],

[H F NewG],

wave(Pos, [Rn, D))

).

Figure 3: Wave method: transverse—rippling

84 we examine the possibility of using this information to speculate and initiate
the search for the lemma corresponding to the missing wave-rule.

In addition to the generation of lemmas, partial success may also motivate gener-
alizations online. Note that (1) is a generalization of the theorem:

Vi list(r). rotate(length(l),l) =1 (7)

Applying the induction plan to (7) gives rise to a induction conclusion of the form:

rotate(|s(length(v)) T,|u o |T) =[uv |T (8)

Now consider the rewriting of (8) using wave-rule (5). The transverse wave method
fails because of precondition P4: That is, there are no sinks within the scope of

i
the wave term |s(length(v))|. The important point in the analysis, however, is

that preconditions P1, P2 and P3 succeed. This analysis of partial success may
be used to motivate generalization through the introduction of sinks, a possibility
which will be explored further in §4.

In both the above examples we have identified the need for term structure without
knowing its exact form. In the first case the term structure corresponds to the
right-hand-side of a missing wave-rule. In the second case we know that the term
must introduce a sink but we do not know the form the relationship between
the sink and the existing term structure will take. These are particular instances
of a general phenomenon which has given rise to a least commitment strategy
called middle-out reasoning [Bundy et al 90a]. In essence, this strategy involves
the use of meta variables (potentially higher-order) in speculating missing term
structure. Such speculation terms get instantiated at a later point in the proof

The Use of Planning Critics in Mechanizing Inductive Proofs 7

planning process. Jane Hesketh in her thesis [Hesketh 91] developed the technique
of middle-out reasoning in the context of generalizations such as the one outlined
above. In §4 we present our extension to CLAM in which critics are used to trigger
middle-out reasoning given the partial success of methods.

4 Capturing exceptions to proof plans

We now turn to representational issues and our proposal for using constructive
planning critics in mechanizing the kind of meta-level analysis outlined in §3. A
critic is a small program which analyses plan structures. Critics are “constructive”
in the sense that as well as identifying problems in the plan structure they also
take corrective action. The notion of constructive critics was first introduced in the
NOAH system[Sacerdoti 77] and has had lasting effect on the classical Al planning
paradigm [Wilkins 88]. While a method specifies precisely the conditions under
which a tactic is applicable our proposed proof critics may be used to capture
patchable exceptions to a tactic. The schema for critics is given in figure 4. Fach

Name: the name of a critic corresponds to the name of its associated method.

Input: a pointer to the set of partial plans generated by the critic’s associated
method.

Preconditions: the preconditions determine the applicability of the critic.

Effects: the effects slot may be used to modify the goal and plan structure.

Figure 4: The Format of Critics

proof critic is associated with a method. The failure or partial success of the
method activates its associated critics. The applicability of a critic is determined
by the preconditions. A critic may perform the kind of local analysis of partial
success outlined in §3. Alternatively, the preconditions of a critic can relate to
the space of partial proof plans constructed by its associated method. Such global
analysis is illustrated in §5. Running the effects of a critic may modify the goal
and the plan structure.

We now present the critics for the transverse wave method based upon our precon-
dition analysis. Consider again the example of the missing wave-rule in which only
precondition P4 succeeded. The patch is achieved by speculating the right-hand-
side of the missing wave-rule. Such a speculation requires the use of a higher-order
meta variable. The speculation term is built up from the sink at position SPos

The Use of Planning Critics in Mechanizing Inductive Proofs 8

and the contents of the least nested wave-front associated with the sub-expression
at position Pos in the goal (G. The application of the wave-rule speculation gives
rise to a goal of the form:

rotate(length(v),v <> UQ <>wu nilH) = {F(Qau) lJ <>v

where [is a higher-order meta variable. Constrained by the contents of the sink
on the left-hand-side the fertilize plan instantiates £ to be Az Ay.x <> y :: nil.
Consequently, the missing wave-rule takes the form:

X<>\Y::Q\T:>\X<>Y::m'll<>Z

This partial success is captured in the critic given in figure 5.

eritie (wave,
Plans,
[preconds(Plans,[],[P4 : sinkable(Pos, G, S Pos)])],
[speculate lemma(Pos, SPos,G, Rn : Lemma),
add_wave_rules(Lemma),

insert_method(Plans,[], wave(Pos,[Rn,_]))]
).

Meanings of the meta-logical terms:

o preconds(Plans, Pos, Preconds) is used to access the preconditions
Preconds recorded at position Pos within the partial plans referenced by
Plans (Note that [| denotes the root node associated with Plans);

o speculate_lemma(Pos, SPos, G, Rn : Lemma) means that Rn is the name
of the lemma speculation Lemma which is constructed from the goal G and
the relative positions of the source and target wave-fronts given by Pos and
S Pos respectively;

o add_wave rules(Lemma) records all possible wave-rules which the lemma
Lemma provides;

e insert_method(Plans, Pos, Method) splices in the method Method at posi-
tion Pos in the plan referenced by Plans.

Figure 5: Transverse wave critic: missing wave-rule

In the second example it is the lack of a sink which caused the failure of the
transverse wave method. The patching of the goal requires the speculation of terms

The Use of Planning Critics in Mechanizing Inductive Proofs 9

which introduce sinks. Such speculations require the use of higher-order meta
variables to bind new object-level variables (the sinks) to existing term structures.
The patched goal takes the form:

rotate(| s(length(v)) T,F(Laj ,T)) = G(|a] ,T)

Note that the speculation of a sink on the left-hand-side is balanced with the
speculation of a sink on the right-hand-side. Reactivating the ripple plan will
instantiate ' and G' to be Az.A\y.y <> = and Az.\y.x <> y respectively. Figure 6
illustrates how this kind of partial success of the transverse wave method can be

captured by the preconditions of a critic.

eritie (wave,
Plans,
[preconds(Plans,[], [P1 : waverule(Rn, _,_),
P2 :exp_at(G, Pos, _),
P3:)
[speculate_sink_terms(Rn, Pos, G, New(),
replace_goal(Plans,[], New(),
insert_method(Plans, [], wave(Pos,[Rn, D]))]

).
Meanings of the meta-logical terms:

o speculate_sink_terms(Rn, Pos, G, New() means that New(is a transform-
ation of (G in which speculation sink terms are introduced based upon the
application of wave-rule Rn at position Pos in G

o replace_goal(Plans, Pos, New() replaces the goal slot associated with the
plan node at position Pos within Plans (Note if the speculation introduces
term structure which is not part of a wave-front then this term structure
must be propagated back through the plan structure).

Figure 6: Transverse wave critic: missing sinks

5 Productive use of failed proof attempts

The framework outlined in §4 for patching proof plans is extended here to support
global analysis of the planning process. In particular, we demonstrate how critics

The Use of Planning Critics in Mechanizing Inductive Proofs 10

may be used to suggest a case analysis by recognizing complementary failed partial
proofs. We illustrate the idea by examining the proof of a synthesis theorem. A
synthesis theorem may be expressed by the schema:

Vinputs. Joutput. spec(inputs, output) 9)

If we use a constructive logic [Martin-Lof 79] to prove a theorem of this form then
the associated proof will yield a function, prog, which satisfies the logical relation
spec(inputs, prog(inputs)). Proving synthesis theorems introduces the problem of
calculating the value of existential witnesses. To be true to the synthesis paradigm
we must incrementally construct the witnessing term hand—in—hand with the proof.
Middle-out reasoning provides one approach to achieving this objective. We begin
by replacing output in (9) by the meta-term F'(inputs), our initial speculation for
the existential witness. This gives a new goal of the form:

Vinputs. spec(inputs, F(inputs))
The application of the induction plan to this goal will incrementally build up the
required definition of F.

Here we consider the synthesis of a partitioning function based upon Dijkstra’s
Dutch national flag problem [Dijkstra 76]. Informally we require a program to
partition a list of red and blue objects into a pair of lists containing the component
colours. A program to achieve this task may be specified formally by the theorem:

Vi : list(objects). Ja : list(objects) x list(objects).
perm(l, fst(x) <> snd(xz)) A reds(fst(x)) A blues(snd(x))
The predicate perm(p, ¢) is true when p and ¢ are lists such that p is a permutation
of ¢ while the predicates reds(p) and blues(p) hold when p is a list of red and blue

objects, respectively. In addition we assume the following closure property for
elements of type objects:

Va : objects. red(x) V blue(x) (10)

These predicates give rise to the following wave-rules:

perm(W s X[[WY] <> 7) = perm(X,Y <> 2) (11)
perm(T,Y <> T) = perm(X.Y <> Z) (12)
reds(X 2 Y|) = [red(X) Areds(Y)| (13)
bues(X =Y [) = [blue(X) A blues(V)| (14)

Introducing a speculation term F'(/) for @ the initial goal is reduced to:

perm(l, fst(F (1)) <> snd(F (1)) A reds(fst(F(1))) A blues(snd(F(I)))

The Use of Planning Critics in Mechanizing Inductive Proofs 11

The proof plan for induction selects list induction. This has the effect of partially
instantiating /' to the primitive recursion schema which is the dual of structural
induction on lists:

F(l) = if [= nil then ¢
else let w::v=11in H(u,v, F(v)

~—

This recursion schema provides a wave-rule of the form:

F(X =Y]) = [a(x, Y, FO)| (15)

The base_case proof plan instantiates (G to be (nil, nil). As before we focus on the
proof plan for the step case where the induction conclusion takes the form:

perm(T,fst -T <> snd(F(T
reds(fst(F(T
blues(snd(F(mT)))

Using (15) the induction conclusion rewrites to:

perm(T,fst(H(u,v, F(v)) T) <> snd(| H(u,v, F(v)) T)) A
reds(fst((H(w, 0, F(o))])) A
blues(snd(| H(u,v, F(v)) T))

General properties of the projections fst and snd provide the wave-rules:

7)) (16)

snd([((L, K(X,Y,snd(Z)))]) = [K(X,Y,snd(7))] (17)

fst((J(X, Y, fst(Z)), L)) = |J(X,Y, fst

~~

Using (16) and (17) to rewrite the induction conclusion we get:

i i

perm(T, J(u,v, fst(F(v)))| <>|K(u,v,snd(F(v)))|) A (18)
reds([J(u, 0, st E@)]) A
blues(| K(u,v, snd(F(v))) T)

H is instantiated to Az Ay Az.(J(x,y, fst(2)), K(x,y,snd(z))) as a side effect of
this rewriting. At this point in the proof the partial definition of the program
takes the form:

The Use of Planning Critics in Mechanizing Inductive Proofs 12

F(l) = if | = nil then (nil, nel)
else let w:: v =11in (J(u,v, fst(F(v))), K(u,v,snd(F(v))))

A choice point now arises within the ripple plan. Either wave-rule (11) or (12)
may be applied to (18) but not both. If we choose (11) J is instantiated to
Ax. Ay Az.x 0 z and the induction conclusion becomes:

perm(v, fst(F(v)) <> | K(u,v, snd(F(v))) T) A
reds(|u :: fst(F(v)) T) A
blues(| K (u,v, snd(F(v))) T)

and using (13) we get:

perm(v, fst(F(v)) <> |K(u,v,snd(F(v)))|) A

red(u) A reds(fst(F(v))) ' A

blues(| K (u,v,snd(F(v))) T)

Finally the propositional wave-rules:

PAQ[AR=[PAQAR)

PA[QAR| =[QNPAR)

enable us to rewrite the conclusion to the point where the fertilize plan is applic-
able. Fertilization instantiates K to be Ax.Ay.Az.z leaving the subgoal red(u).
The definition of the program at this point takes the form:

F(l) = if | = nil then (nil, nel)
elselet w::v=171in (u :: fst(F(v)), snd(F(v)))

Note that this program will only produce correct results when given a list of
red objects. A further invocation of the induction plan to prove the remaining
subgoal is ruled out by recursion analysis because red is not inductively defined.
By backtracking to (18) and selecting wave-rule (12) the ripple and fertilize plans
succeed but again leave an unproven subgoal. This time the subgoal is blue(u)
and the resulting program definition is:

F(l) = if | = nil then (nil, nel)
else let w:: v =11in (fst(F(v)),u :: snd(F(v)))

The Use of Planning Critics in Mechanizing Inductive Proofs 13

critie (step_case,
Plans,
[3 C € closures.
YV D € disjuncts(C).
3G € {X : forms| failure(Plans, ., X)}.GG = D],
[insert_method(Plans, ||, case_split(C'))]

).
Meanings of meta-logical sorts and terms:
e closures is the set of known closure properties;
e forms is the set of all formulae;
o disjuncts(Form) is the set of disjuncts of the formula Form;

o failure(Plans, Pos,G) means that (G is the failed goal at position
Pos in the plan referenced by Plans.

Figure 7: Step_case critic: missing case split

The step_case plan fails at this point. Neither of the failed proof attempts alone
suggests how the proof plan could be patched. Taken together, however, the failed
subgoals suggest a case split based upon (10). This global analysis can be captured
by the critic given in figure 7. The patched proof plan gives rise to the following
complete definition for the program:

F(l) = if | = nil then (nil, nel)
else let u::v=1[1n
case colour(u) of
red : (u :: fst(F(v)),snd(F(v)))
blue : (fst(F(v)), u :: snd(F(v)))

where colour is the decision procedure associated with (10). This kind of ret-
rospective discovery of case splits appears to be a common feature of synthesis
proofs, for instance, it arises in the synthesis of insertion sort among other list
manipulation functions.

The Use of Planning Critics in Mechanizing Inductive Proofs 14

6 Conclusion

We have presented an extended framework for constructing proof plans. Our
notion of proof critics allows us to reason about partial success and failure of
plans. We have illustrated how both local and global analysis of failure may be
used to patch partial plans. The uses of proof critics, however, are not limited
to the analysis of explicit failures as presented here. For example, the use of
pre-emptive critics in detecting potentially infinitely nested inductions seems a
useful direction to explore. Proof critics complement the original concept of proof
plans: While a proof plan characterizes a family of proofs a proof critic captures
the patchable exceptions to the basic proof plan. The goal of patchability was
emphasized in the original proof plans proposal [Bundy 88]. We believe that once
implemented the proposal presented here will realize this goal.

Acknowledgements

I would like to thank Alan Bundy for his encouragement in the development of
my ideas. | am grateful to Jane Hesketh for her ideas on generalization upon
which I have drawn. My thanks also go to David Basin and Alan Smaill for their
constructive comments on earlier versions of this paper.

References

[Boyer & Moore 88] R.S. Boyer and J.S. Moore. A Computational Logic Hand-
book. Academic Press, 1988. Perspectives in Computing, Vol
23.

[Bundy 88| A. Bundy. The use of explicit plans to guide inductive proofs.
In R. Lusk and R. Overbeek, editors, 9th Conference on
Automated Deduction, pages 111-120. Springer-Verlag, 1988.
Longer version available from Edinburgh as DAI Research

Paper No. 349.

[Bundy et al 89] A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, and
A. Stevens. A rational reconstruction and extension of re-
cursion analysis. In N.S. Sridharan, editor, Proceedings of
the Eleventh International Joint Conference on Artificial In-
telligence, pages 359-365. Morgan Kaufmann, 1989. Also
available from Edinburgh as DAI Research Paper 419.

[Bundy et al 90a] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka steps

into calculations in automatic program synthesis. In S.L.H.

The Use of Planning Critics in Mechanizing Inductive Proofs 15

Clarke, editor, Proceedings of UK IT 90, pages 221-6, 1990.
Also available from Edinburgh as DAI Research Paper 448.

[Bundy et al 90b] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland.
Extensions to the rippling-out tactic for guiding inductive
proofs. In M.E. Stickel, editor, 10th International Conference
on Automated Deduction, pages 132-146. Springer-Verlag,
1990. Lecture Notes in Artificial Intelligence No. 449. Also
available from Edinburgh as DAI Research Paper 459.

[Bundy et al 91] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Ex-
periments with proof plans for induction. Journal of Auto-
mated Reasoning, 7:303-324, 1991. Earlier version available
from Edinburgh as DAI Research Paper No 413.

[Dijkstra 76] E. Dijkstra. A Discipline of Programming. Prentice-Hall,
1976.

[Gordon et al 79] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. FEdinburgh
LCF - A mechanised logic of computation, volume 78 of Lec-
ture Notes in Computer Science. Springer Verlag, 1979.

[Hesketh 91] J.T. Hesketh. Using Middle-Out Reasoning to Guide Induct-
ive Theorem Proving. Unpublished PhD thesis, University of
Edinburgh, 1991.

[Martin-Lof 79] Per Martin-Lof. Constructive mathematics and computer
programming. In 6th International Congress for Logic, Meth-
odology and Philosophy of Science, pages 153-175, Hanover,
August 1979. Published by North Holland, Amsterdam.
1982.

[Sacerdoti 77] E.D. Sacerdoti. A Structure for Plans and Behaviour. Arti-
ficial Intelligence Series. North Holland, 1977. Also as SRI
AT Technical note number 109, August 1975.

[van Harmelen 89] F. van Harmelen. The CLAM proof planner, user manual
and programmer manual: version 1.4. Technical Paper TP-

4, DAI, 1989.

[Wilkins 88] D.E. Wilkins. Practical Planning: FExtending the Classical
AT Planning Paradigm. Morgan Kaufmann, 1988.

