
The Use of Planning Critics in MechanizingInductive Proofs�Andrew IrelandDepartment of Arti�cial IntelligenceUniversity of Edinburgh80 South BridgeEH1 1HNAbstractProof plans provide a technique for guiding the search for a proof inthe context of tactical style reasoning. We propose an extension to thistechnique in which failure may be exploited in the search for a proof. Thisextension is based upon the concept of planning critics. In particular weillustrate how proof critics may be used to patch proof plans in the domainof inductive proofs.1 IntroductionProof plans [Bundy 88] guide the search for a proof in the context of tactical stylereasoning [Gordon et al 79]. A proof plan contains a tactic together with a proofrationale. The tactic component speci�es the low-level structure of a proof interms of the object-level logic inference rules and is used to control the theoremprover. In contrast, the proof rationale, which is expressed in a meta-logic, cap-tures the high-level structure of a proof. Proof plans are constructed from tacticspeci�cations called methods. Using the meta-logic, a method expresses the pre-conditions under which a tactic is applicable and the e�ects of applying the tactic.The proof plan ideas have been implemented in a plan formation system called�This paper was published in: Logic Programming and Automated Reasoning LPAR`92,St.Petersburg, Lecture Notes in Arti�cial Intelligence 624, Springer-Verlag 1992. The researchreported in this paper was supported by SERC grant GR/F/71799.

The Use of Planning Critics in Mechanizing Inductive Proofs 2clam [van Harmelen 89] and applied very successfully to the domain of induct-ive proofs [Bundy et al 91]. However, experience in automated inductive theoremproving [Boyer & Moore 88] has shown that failed proof attempts often hold thekey to discovering a complete proof. Currently clam provides no mechanism forinterpreting failure or even partial success in the search for a proof. In this paperwe propose the use of explicit planning critics in providing the means of exploitingsuch negative information. Proof critics represent an extension to the hierarchyof inference rules, tactics and methods.We outline a proof plan for induction in x2 and as motivation for our proposal wedemonstrate the potential for exploiting partial success of this proof plan in x3.We show in x4 how this potential may be captured through the use of planningcritics. The use of critics is extended is x5 where the need for global analysis isdemonstrated.2 A proof plan for inductive proofsThe overall proof plan for induction is composed of a hierarchy of subplans. Basedupon a process called recursion analysis[Bundy et al 89], the preconditions of theinduction plan determine the most promising form of induction. The planningof the resulting proof obligations are carried out by the base case and step casesubplans. We concentrate here on the proof plan for the step case proofs.The step case plan decomposes into ripple and fertilize. The ripple plan has beenidenti�ed as the central component of the induction plan and is described in detailin [Bundy et al 90b]. In essence, the ripple plan guides the rewriting of the induc-tion conclusion so that it may be rewritten using the induction hypothesis. The fer-tilize plan controls the use of induction hypotheses. In planning step cases, clamhas access to meta-level information in addition to the object-level goal structure.This meta-level information is represented by annotations of the object-level termstructures. Annotations provide a means of describing the role particular termsand formulae play within a proof plan. To illustrate, consider the theorem:8l : list(�): a : list(�): rotate(length(l); l <> a) = a <> l (1)The function rotate takes a number n, and a list l, and returns a list constructedby concatenating the �rst n elements onto the remaining elements of l. Listconcatenation is denoted by the in�x operator <> and the function length returnsthe number of elements in a list. A proof of (1) follows by structural induction onthe list l giving rise to one step case. The associated induction hypothesis takesthe form: 8a0 : list(�): rotate(length(v); v <> a0) = a0 <> vwhile the induction conclusion is:rotate(length(u :: v "); u :: v " <> bac) = bac <> u :: v " (2)

The Use of Planning Critics in Mechanizing Inductive Proofs 3The annotated terms u :: v " and bac are called wave and sink terms respect-ively. The role these annotations play in controlling the rewriting of the inductionconclusion will be described shortly.In (2) the wave terms correspond to the induction terms introduced by applyinglist induction, where :: is the in�x list constructor. A wave term is composedof a wave-front and one or more wave-holes. Wave-fronts mark the mismatchbetween the induction conclusion and the induction hypothesis. Wave-holes arethe subterms of the wave term which match against an induction hypothesis. Inu :: v " the wave-front is of the form u :: : : : while the subterm v occupies thewave-hole. The arrow indicates the direction in which the wave-front is to bemoved within the expression tree.Sinks are used to indicate term structure in the induction conclusion which maybe matched against an universally quanti�ed variable in the induction hypothesis.The ripple plan embodies two strategies each of which rewrites the inductionconclusion to the point where fertilization is applicable: The �rst strategy attemptsto dominate the induction conclusion with a wave-front. If this is achieved thenthe associated wave-hole will match against the induction hypothesis. The secondstrategy attempts to move wave-fronts into sinks. Wave-fronts are directed eitherupwards or downwards depending which strategy is being employed.The ripple plan restricts the rewriting of the induction conclusion to a syntacticclass of rewrites known as wave-rules which also contain wave-fronts. Recursivede�nitions provide a rich source of wave-rules. For example, the de�nitions of thefunctions which appear in (1) give rise to the following wave-rules1:length(X :: Y ")) s(length(Y)) " (3)X :: Y " <> Z) X :: Y <> Z " (4)Y 6= nil ! rotate(s(X) "; Y)) rotate(X; tl(Y) <> hd(Y) :: nil #) (5)The functions hd and tl return the head and tail of a list respectively while nilis the empty list. The application of a wave-rule is guaranteed to make progresstowards achieving the preconditions of fertilization. An important property ofwave-rules is that they preserve what is known as the skeleton term structure. Thisinvariant term structure corresponds to the \re
ection" of the induction hypothesisin the conclusion and is essential for the success of fertilization. Wave-rules can beclassi�ed as being either longitudinal (3 and 4) or transverse (5). This classi�cationre
ects the rewriting strategies outlined above: Repeated longitudinal rippling isrequired in order to achieve the �rst strategy while the second requires transversewave-rules.As mentioned in x1, plans are constructed from tactic speci�cations called meth-ods. The schema for methods is given in �gure 1. The ripple plan is built up from1We adopt the convention of using) to denote rewriting and ! to denote implication.

The Use of Planning Critics in Mechanizing Inductive Proofs 4the wave method. The preconditions of the wave method determine the applicabil-ity of the wave-rules. The method which speci�es the applicability of longitudinalName: method name and arguments.Input: input slot is matched against the current goal sequent.Preconditions: the preconditions determine the applicability of the method.E�ects: if the preconditions succeed then the e�ects slot is used to calculate theoutputs.Output: the output slot contains a possibly empty list of subgoal sequents.Tactic: the program which controls the object-level theorem prover.Figure 1: The Format of Methodswave-rules is given in �gure 2. In words, the preconditions to the wave methodstate: There exists a wave-rule Rn with left-hand-side L which matches asub-expression at position Pos within the goal G and the side conditionC is provable given the hypothesis list H.Rewriting (2) using longitudinal wave-rules (3) and (4) gives rise to:rotate(s(length(v)) "; u :: v <> bac ") = bac <> u :: v " (6)Transverse rippling introduces an extra precondition to the wave method:The least nested wave-front associated with the sub-expression atposition Pos lies within the scope of a sink at position SPos in the goalG.A wave-front lies within the scope of a sink if the sink occurs in a distinct branchof the expression tree. Expressing this precondition by the meta-logical termsinkable(Pos;G; SPos), then the wave method for transverse rippling may berepresented as shown in �gure 3. Since the wave term s(length(v)) " in (6) satis�esprecondition P4 we are able to use transverse wave-rule (5) to rewrite the inductionconclusion.

The Use of Planning Critics in Mechanizing Inductive Proofs 5method (wave(Pos; [Rn;D]);H ` G;[P1 : wave rule(Rn; long(D); C ! L) R)^P2 : exp at(G;Pos; L)^P3 : tautology(H ` C)];[replace(Pos;R;G;NewG)];[H ` NewG];wave(Pos; [Rn;D])):Meanings of the meta-logical terms:� wave rule(Rn; T (D); Rule) means that Rn is the name of the wave-ruleRule of type T and rewrite orientation D;� exp at(Exp; Pos; SubExp) means that SubExp is the sub-expression inExp at position Pos;� tautology(H ` C) is true when the condition C is provable given the hypo-thesis list H;� replace(Pos;R;G;NewG) means that NewG is the result of replacing thesub-expression at position Pos in the goal G by R.Figure 2: Wave method: longitudinal{rippling3 Exploiting partial successThe applicability of a method depends upon all its associated preconditions suc-ceeding. Here we consider the potential for exploiting partial success where pre-viously the planning process would fail.Currently the ripple plan is able to rewrite (6) into:rotate(length(v); v <> � a <> u :: nil #�) = bac <> u :: v "While the wave-fronts on the left-hand-side have been sunk the wave-front on theright-hand-side prevents a complete match with the induction hypothesis frombeing achieved. By analysing the failure of the transverse wave method we �ndthat it is due to preconditions P1 and P2: That is, there are no wave-rules toripple u :: v " into bac on the right-hand-side. The crucial point in the analysis isthat P4 succeeds because the blocked wave-front lies within the scope of a sink. In

The Use of Planning Critics in Mechanizing Inductive Proofs 6method (wave(Pos; [Rn;D]);H ` G;[P1 : wave rule(Rn; trans(D); C ! L) R)^P2 : exp at(G;Pos; L)^P3 : tautology(H ` C)^P4 : sinkable(Pos;G;)];[replace(Pos;R;G;NewG)];[H ` NewG];wave(Pos; [Rn;D])):Figure 3: Wave method: transverse{ripplingx4 we examine the possibility of using this information to speculate and initiatethe search for the lemma corresponding to the missing wave-rule.In addition to the generation of lemmas, partial success may also motivate gener-alizations online. Note that (1) is a generalization of the theorem:8l : list(�): rotate(length(l); l) = l (7)Applying the induction plan to (7) gives rise to a induction conclusion of the form:rotate(s(length(v)) "; u :: v ") = u :: v " (8)Now consider the rewriting of (8) using wave-rule (5). The transverse wave methodfails because of precondition P4: That is, there are no sinks within the scope ofthe wave term s(length(v)) ". The important point in the analysis, however, isthat preconditions P1, P2 and P3 succeed. This analysis of partial success maybe used to motivate generalization through the introduction of sinks, a possibilitywhich will be explored further in x4.In both the above examples we have identi�ed the need for term structure withoutknowing its exact form. In the �rst case the term structure corresponds to theright-hand-side of a missing wave-rule. In the second case we know that the termmust introduce a sink but we do not know the form the relationship betweenthe sink and the existing term structure will take. These are particular instancesof a general phenomenon which has given rise to a least commitment strategycalled middle-out reasoning [Bundy et al 90a]. In essence, this strategy involvesthe use of meta variables (potentially higher-order) in speculating missing termstructure. Such speculation terms get instantiated at a later point in the proof

The Use of Planning Critics in Mechanizing Inductive Proofs 7planning process. Jane Hesketh in her thesis [Hesketh 91] developed the techniqueof middle-out reasoning in the context of generalizations such as the one outlinedabove. In x4 we present our extension to clam in which critics are used to triggermiddle-out reasoning given the partial success of methods.4 Capturing exceptions to proof plansWe now turn to representational issues and our proposal for using constructiveplanning critics in mechanizing the kind of meta-level analysis outlined in x3. Acritic is a small program which analyses plan structures. Critics are \constructive"in the sense that as well as identifying problems in the plan structure they alsotake corrective action. The notion of constructive critics was �rst introduced in thenoah system[Sacerdoti 77] and has had lasting e�ect on the classical AI planningparadigm [Wilkins 88]. While a method speci�es precisely the conditions underwhich a tactic is applicable our proposed proof critics may be used to capturepatchable exceptions to a tactic. The schema for critics is given in �gure 4. EachName: the name of a critic corresponds to the name of its associated method.Input: a pointer to the set of partial plans generated by the critic's associatedmethod.Preconditions: the preconditions determine the applicability of the critic.E�ects: the e�ects slot may be used to modify the goal and plan structure.Figure 4: The Format of Criticsproof critic is associated with a method. The failure or partial success of themethod activates its associated critics. The applicability of a critic is determinedby the preconditions. A critic may perform the kind of local analysis of partialsuccess outlined in x3. Alternatively, the preconditions of a critic can relate tothe space of partial proof plans constructed by its associated method. Such globalanalysis is illustrated in x5. Running the e�ects of a critic may modify the goaland the plan structure.We now present the critics for the transverse wave method based upon our precon-dition analysis. Consider again the example of the missing wave-rule in which onlyprecondition P4 succeeded. The patch is achieved by speculating the right-hand-side of the missing wave-rule. Such a speculation requires the use of a higher-ordermeta variable. The speculation term is built up from the sink at position SPos

The Use of Planning Critics in Mechanizing Inductive Proofs 8and the contents of the least nested wave-front associated with the sub-expressionat position Pos in the goal G. The application of the wave-rule speculation givesrise to a goal of the form:rotate(length(v); v <> � a <> u :: nil #�) = � F (a; u) #� <> vwhere F is a higher-order meta variable. Constrained by the contents of the sinkon the left-hand-side the fertilize plan instantiates F to be �x:�y:x <> y :: nil.Consequently, the missing wave-rule takes the form:X <> Y :: Z ") X <> Y :: nil # <> ZThis partial success is captured in the critic given in �gure 5.critic (wave;P lans;[preconds(P lans; []; [P4 : sinkable(Pos;G; SPos)])];[speculate lemma(Pos; SPos;G;Rn : Lemma);add wave rules(Lemma);insert method(P lans; []; wave(Pos; [Rn;]))]):Meanings of the meta-logical terms:� preconds(P lans; Pos; Preconds) is used to access the preconditionsPreconds recorded at position Pos within the partial plans referenced byP lans (Note that [] denotes the root node associated with P lans);� speculate lemma(Pos; SPos;G;Rn : Lemma) means that Rn is the nameof the lemma speculation Lemma which is constructed from the goal G andthe relative positions of the source and target wave-fronts given by Pos andSPos respectively;� add wave rules(Lemma) records all possible wave-rules which the lemmaLemma provides;� insert method(P lans; Pos;Method) splices in the method Method at posi-tion Pos in the plan referenced by P lans.Figure 5: Transverse wave critic: missing wave-ruleIn the second example it is the lack of a sink which caused the failure of thetransverse wave method. The patching of the goal requires the speculation of terms

The Use of Planning Critics in Mechanizing Inductive Proofs 9which introduce sinks. Such speculations require the use of higher-order metavariables to bind new object-level variables (the sinks) to existing term structures.The patched goal takes the form:rotate(s(length(v)) "; F (bac ; u :: v ")) = G(bac ; u :: v ")Note that the speculation of a sink on the left-hand-side is balanced with thespeculation of a sink on the right-hand-side. Reactivating the ripple plan willinstantiate F and G to be �x:�y:y <> x and �x:�y:x <> y respectively. Figure 6illustrates how this kind of partial success of the transverse wave method can becaptured by the preconditions of a critic.critic (wave;P lans;[preconds(P lans; []; [P1 : wave rule(Rn; ;);P2 : exp at(G;Pos;);P3 :])];[speculate sink terms(Rn;Pos;G;NewG);replace goal(P lans; [];NewG);insert method(P lans; []; wave(Pos; [Rn;D]))]):Meanings of the meta-logical terms:� speculate sink terms(Rn;Pos;G;NewG) means that NewG is a transform-ation of G in which speculation sink terms are introduced based upon theapplication of wave-rule Rn at position Pos in G;� replace goal(P lans; Pos;NewG) replaces the goal slot associated with theplan node at position Pos within P lans (Note if the speculation introducesterm structure which is not part of a wave-front then this term structuremust be propagated back through the plan structure).Figure 6: Transverse wave critic: missing sinks5 Productive use of failed proof attemptsThe framework outlined in x4 for patching proof plans is extended here to supportglobal analysis of the planning process. In particular, we demonstrate how critics

The Use of Planning Critics in Mechanizing Inductive Proofs 10may be used to suggest a case analysis by recognizing complementary failed partialproofs. We illustrate the idea by examining the proof of a synthesis theorem. Asynthesis theorem may be expressed by the schema:8inputs: 9output: spec(inputs; output) (9)If we use a constructive logic [Martin-L�of 79] to prove a theorem of this form thenthe associated proof will yield a function, prog, which satis�es the logical relationspec(inputs; prog(inputs)). Proving synthesis theorems introduces the problem ofcalculating the value of existential witnesses. To be true to the synthesis paradigmwemust incrementally construct the witnessing term hand{in{hand with the proof.Middle-out reasoning provides one approach to achieving this objective. We beginby replacing output in (9) by the meta-term F (inputs), our initial speculation forthe existential witness. This gives a new goal of the form:8inputs: spec(inputs; F (inputs))The application of the induction plan to this goal will incrementally build up therequired de�nition of F .Here we consider the synthesis of a partitioning function based upon Dijkstra'sDutch national
ag problem [Dijkstra 76]. Informally we require a program topartition a list of red and blue objects into a pair of lists containing the componentcolours. A program to achieve this task may be speci�ed formally by the theorem:8l : list(objects): 9x : list(objects)� list(objects):perm(l; fst(x) <> snd(x)) ^ reds(fst(x)) ^ blues(snd(x))The predicate perm(p; q) is true when p and q are lists such that p is a permutationof q while the predicates reds(p) and blues(p) hold when p is a list of red and blueobjects, respectively. In addition we assume the following closure property forelements of type objects:8x : objects: red(x) _ blue(x) (10)These predicates give rise to the following wave-rules:perm(W :: X "; W :: Y " <> Z)) perm(X;Y <> Z) (11)perm(W :: X "; Y <> W :: Z ")) perm(X;Y <> Z) (12)reds(X :: Y ")) red(X) ^ reds(Y) " (13)blues(X :: Y ")) blue(X) ^ blues(Y) " (14)Introducing a speculation term F (l) for x the initial goal is reduced to:perm(l; fst(F (l)) <> snd(F (l))) ^ reds(fst(F (l))) ^ blues(snd(F (l)))

The Use of Planning Critics in Mechanizing Inductive Proofs 11The proof plan for induction selects list induction. This has the e�ect of partiallyinstantiating F to the primitive recursion schema which is the dual of structuralinduction on lists:F(l) � if l = nil then Gelse let u :: v = l in H(u; v; F (v))This recursion schema provides a wave-rule of the form:F (X :: Y ")) H(X;Y; F (Y)) " (15)The base case proof plan instantiates G to be hnil; nili. As before we focus on theproof plan for the step case where the induction conclusion takes the form:perm(u :: v "; fst(F (u :: v ")) <> snd(F (u :: v "))) ^reds(fst(F (u :: v "))) ^blues(snd(F (u :: v ")))Using (15) the induction conclusion rewrites to:perm(u :: v "; fst(H(u; v; F (v)) ") <> snd(H(u; v; F (v)) ")) ^reds(fst(H(u; v; F (v)) ")) ^blues(snd(H(u; v; F (v)) "))General properties of the projections fst and snd provide the wave-rules:fst(hJ(X;Y; fst(Z)); Li ")) J(X;Y; fst(Z)) " (16)snd(hL;K(X;Y; snd(Z))i ")) K(X;Y; snd(Z)) " (17)Using (16) and (17) to rewrite the induction conclusion we get:perm(u :: v "; J(u; v; fst(F (v))) " <> K(u; v; snd(F (v))) ") ^ (18)reds(J(u; v; fst(F (v))) ") ^blues(K(u; v; snd(F (v))) ")H is instantiated to �x:�y:�z:hJ(x; y; fst(z));K(x; y; snd(z))i as a side e�ect ofthis rewriting. At this point in the proof the partial de�nition of the programtakes the form:

The Use of Planning Critics in Mechanizing Inductive Proofs 12F(l) � if l = nil then hnil; nilielse let u :: v = l in hJ(u; v; fst(F (v)));K(u; v; snd(F (v)))iA choice point now arises within the ripple plan. Either wave-rule (11) or (12)may be applied to (18) but not both. If we choose (11) J is instantiated to�x:�y:�z:x :: z and the induction conclusion becomes:perm(v; fst(F (v)) <> K(u; v; snd(F (v))) ") ^reds(u :: fst(F (v)) ") ^blues(K(u; v; snd(F (v))) ")and using (13) we get:perm(v; fst(F (v)) <> K(u; v; snd(F (v))) ") ^red(u) ^ reds(fst(F (v))) " ^blues(K(u; v; snd(F (v))) ")Finally the propositional wave-rules:P ^ Q " ^R) P ^ (Q ^R) "P ^ Q ^ R ") Q ^ (P ^R) "enable us to rewrite the conclusion to the point where the fertilize plan is applic-able. Fertilization instantiates K to be �x:�y:�z:z leaving the subgoal red(u).The de�nition of the program at this point takes the form:F(l) � if l = nil then hnil; nilielse let u :: v = l in hu :: fst(F (v)); snd(F (v))iNote that this program will only produce correct results when given a list ofred objects. A further invocation of the induction plan to prove the remainingsubgoal is ruled out by recursion analysis because red is not inductively de�ned.By backtracking to (18) and selecting wave-rule (12) the ripple and fertilize planssucceed but again leave an unproven subgoal. This time the subgoal is blue(u)and the resulting program de�nition is:F(l) � if l = nil then hnil; nilielse let u :: v = l in hfst(F (v)); u :: snd(F (v))i

The Use of Planning Critics in Mechanizing Inductive Proofs 13critic (step case;P lans;[9 C 2 closures:8 D 2 disjuncts(C):9 G 2 fX : forms j failure(P lans; ;X)g:G = D];[insert method(P lans; []; case split(C))]):Meanings of meta-logical sorts and terms:� closures is the set of known closure properties;� forms is the set of all formulae;� disjuncts(Form) is the set of disjuncts of the formula Form;� failure(P lans; Pos;G) means that G is the failed goal at positionPos in the plan referenced by P lans.Figure 7: Step case critic: missing case splitThe step case plan fails at this point. Neither of the failed proof attempts alonesuggests how the proof plan could be patched. Taken together, however, the failedsubgoals suggest a case split based upon (10). This global analysis can be capturedby the critic given in �gure 7. The patched proof plan gives rise to the followingcomplete de�nition for the program:F(l) � if l = nil then hnil; nilielse let u :: v = l incase colour(u) ofred : hu :: fst(F (v)); snd(F (v))iblue : hfst(F (v)); u :: snd(F (v))iwhere colour is the decision procedure associated with (10). This kind of ret-rospective discovery of case splits appears to be a common feature of synthesisproofs, for instance, it arises in the synthesis of insertion sort among other listmanipulation functions.

The Use of Planning Critics in Mechanizing Inductive Proofs 146 ConclusionWe have presented an extended framework for constructing proof plans. Ournotion of proof critics allows us to reason about partial success and failure ofplans. We have illustrated how both local and global analysis of failure may beused to patch partial plans. The uses of proof critics, however, are not limitedto the analysis of explicit failures as presented here. For example, the use ofpre-emptive critics in detecting potentially in�nitely nested inductions seems auseful direction to explore. Proof critics complement the original concept of proofplans: While a proof plan characterizes a family of proofs a proof critic capturesthe patchable exceptions to the basic proof plan. The goal of patchability wasemphasized in the original proof plans proposal [Bundy 88]. We believe that onceimplemented the proposal presented here will realize this goal.AcknowledgementsI would like to thank Alan Bundy for his encouragement in the development ofmy ideas. I am grateful to Jane Hesketh for her ideas on generalization uponwhich I have drawn. My thanks also go to David Basin and Alan Smaill for theirconstructive comments on earlier versions of this paper.References[Boyer & Moore 88] R.S. Boyer and J.S. Moore. A Computational Logic Hand-book. Academic Press, 1988. Perspectives in Computing, Vol23.[Bundy 88] A. Bundy. The use of explicit plans to guide inductive proofs.In R. Lusk and R. Overbeek, editors, 9th Conference onAutomated Deduction, pages 111{120. Springer-Verlag, 1988.Longer version available from Edinburgh as DAI ResearchPaper No. 349.[Bundy et al 89] A. Bundy, F. van Harmelen, J. Hesketh, A. Smaill, andA. Stevens. A rational reconstruction and extension of re-cursion analysis. In N.S. Sridharan, editor, Proceedings ofthe Eleventh International Joint Conference on Arti�cial In-telligence, pages 359{365. Morgan Kaufmann, 1989. Alsoavailable from Edinburgh as DAI Research Paper 419.[Bundy et al 90a] A. Bundy, A. Smaill, and J. Hesketh. Turning eureka stepsinto calculations in automatic program synthesis. In S.L.H.

The Use of Planning Critics in Mechanizing Inductive Proofs 15Clarke, editor, Proceedings of UK IT 90, pages 221{6, 1990.Also available from Edinburgh as DAI Research Paper 448.[Bundy et al 90b] A. Bundy, F. van Harmelen, A. Smaill, and A. Ireland.Extensions to the rippling-out tactic for guiding inductiveproofs. In M.E. Stickel, editor, 10th International Conferenceon Automated Deduction, pages 132{146. Springer-Verlag,1990. Lecture Notes in Arti�cial Intelligence No. 449. Alsoavailable from Edinburgh as DAI Research Paper 459.[Bundy et al 91] A. Bundy, F. van Harmelen, J. Hesketh, and A. Smaill. Ex-periments with proof plans for induction. Journal of Auto-mated Reasoning, 7:303{324, 1991. Earlier version availablefrom Edinburgh as DAI Research Paper No 413.[Dijkstra 76] E. Dijkstra. A Discipline of Programming. Prentice-Hall,1976.[Gordon et al 79] M.J. Gordon, A.J. Milner, and C.P. Wadsworth. EdinburghLCF - A mechanised logic of computation, volume 78 of Lec-ture Notes in Computer Science. Springer Verlag, 1979.[Hesketh 91] J.T. Hesketh. Using Middle-Out Reasoning to Guide Induct-ive Theorem Proving. Unpublished PhD thesis, University ofEdinburgh, 1991.[Martin-L�of 79] Per Martin-L�of. Constructive mathematics and computerprogramming. In 6th International Congress for Logic, Meth-odology and Philosophy of Science, pages 153{175, Hanover,August 1979. Published by North Holland, Amsterdam.1982.[Sacerdoti 77] E.D. Sacerdoti. A Structure for Plans and Behaviour. Arti-�cial Intelligence Series. North Holland, 1977. Also as SRIAI Technical note number 109, August 1975.[van Harmelen 89] F. van Harmelen. The CLAM proof planner, user manualand programmer manual: version 1.4. Technical Paper TP-4, DAI, 1989.[Wilkins 88] D.E. Wilkins. Practical Planning: Extending the ClassicalAI Planning Paradigm. Morgan Kaufmann, 1988.

