
To be presented at the Causal Models and Statistical Learning Seminar(London, UK, March 1997).On the Accuracy of Stochastic ComplexityApproximationsPetri Kontkanen, Petri Myllym�aki, Tomi Silander, Henry TirriComplex Systems Computation Group (CoSCo)P.O.Box 26, Department of Computer ScienceFIN-00014 University of Helsinki, Finlandcosco@cs.Helsinki.FI, http://www.cs.Helsinki.FI/research/cosco/AbstractStochastic complexity of a data set is de�ned as the shortest possible code lengthfor the data obtainable by using some �xed set of models. This measure is of greattheoretical and practical importance as a tool for tasks such as determining modelcomplexity, or performing predictive inference. Unfortunately for cases where thedata has missing information, computing the stochastic complexity requires margin-alizing (integrating) over the missing data, which results even in the discrete datacase to computing a sum with an exponential number of terms. Therefore in mostcases the stochastic complexity measure has to be approximated. In this paper wewill investigate empirically the performance of some of the most common stochasticcomplexity approximations in an attempt to understand their small sample behaviorin the incomplete data framework. In earlier empirical evaluations the problem ofnot knowing the actual stochastic complexity for incomplete data was circumven-ted either by using synthetic data, or by comparing the behavior of the stochasticcomplexity approximation methods to crossvalidated prediction error, approacheswhich both su�er from validity problems. Our comparison is based on the novelidea of using demonstrably representative small samples from real data sets, andthen calculating by \brute force" the exponential sums. This allows for the �rsttime a comparison between the true stochastic complexity and its approximationswith real-world data.1 IntroductionRissanen [21, 22] has de�ned the stochastic complexity of a data set as the shortestpossible code length for the data obtainable by using some �xed set of models. Thismeasure can be used as a tool for solving several di�cult problems of great practicalimportance. For instance, the problem of choosing the proper model complexity (inorder to avoid over�tting) can be solved by using the stochastic complexity measure.This type of model selection is common in many machine learning approaches, e.g., inselecting the proper number of hidden units in feed-forward neural networks [11], or inpruning of a decision tree [19].Stochastic complexity o�ers also a theoretically solid framework for computing op-timal predictive distributions, as will be shown in Section 2. More importantly, for both1



of these tasks, stochastic complexity can be shown to be an optimal criteria both ininformation theoretic and Bayesian probability theory frameworks (see the discussionin [2, 22]).In this paper, we focus on an incomplete data situation, where the sample datacontains some missing information. In this case, computing the stochastic complexityrequires marginalizing (integrating) over the missing data, which results even in thediscrete data case to computing a sum with an exponential number of terms. This isclearly an infeasible task, so in most practical situations stochastic complexity measurehas to be approximated.Although several methods for computing the evidence approximately has been sug-gested in the literature (see e.g., [1, 3, 4, 14, 22, 25, 27]), the quality of most of theseapproximations is not well known, except for some asymptotic results. On the otherhand, in many real life situations we are typically faced with relatively small data sets.Therefore we will in this paper investigate empirically the performance of some of themost common stochastic complexity approximations in an attempt to understand theirsmall sample behavior in the incomplete data framework. The various stochastic com-plexity approximation methods used in the experiments are described in more detail inSection 3.The speci�c problem domain selected for this empirical study is de�ned in termsof �nite mixture models. This family of models is especially suitable for this purpose,as with �nite mixtures we are always faced with missing data created by the basicassumptions de�ning the model family. Moreover, as demonstrated in Section 4.1, in the�nite mixture model family case the stochastic complexity measure can be representedin closed form. However, with the missing data introduced by model assumptions,calculating it in practice requires computing over an exponential sum. It should alsobe noted that although the �nite mixtures are conceptually simple models, our earlierempirical results (see e.g. [28]) show very good performance in predictive inference tasks,when compared to results obtained by more complex model families, such as neuralnetworks or decision trees. In earlier similar studies [20, 24], the model family used haseither been too restricted for extending the results to real-world domains, or too generalto allow an exact solution to be used for the comparisons.When trying to evaluate the quality of the stochastic complexity approximationsempirically, we encounter the following di�cult methodological problem: if calculatingthe stochastic complexity measure exactly is not feasible for any reasonable sized dataset, how do we then evaluate the approximation quality if we do not have any referencemeasure? In earlier empirical evaluations [5, 17], the problem of not knowing the actualstochastic complexity for incomplete data was circumvented either by using syntheticdata, or by comparing the behavior of the stochastic complexity approximation methodsto crossvalidated prediction error. However, as pointed out in Section 4.2, using eitherof these approaches does not necessarily provide correct information about the qualityof the approximations.The key to solving this dilemma lies in an earlier study [15], where we observedthat for certain real world data sets we can obtain good predictive models already withvery small samples of the full training set. In such cases we do not loose any essentialmodeling information by replacing the full data set by a small sample. However, for smallsamples we can actually calculate the exponential sums required for the exact stochasticmeasure, albeit by using substantial computing power. Therefore we are able to comparethe approximations with real data sets to the actual true value of the measure. To our2



knowledge the comparison presented is �rst of its nature. The results of the empiricaltests performed can be found in Section 4.4.2 Stochastic complexity and its applicationsIn the following, let M denote a set of probability distributions determined by a setof parametric models. In this framework, �xing a speci�c model, i.e., the parametricform and the speci�c parameter values, determines a single probability distribution.Consequently, in the following we treat M as a set of models, instead of as a set ofdistributions.Rissanen [21] de�ned the stochastic complexity SC(D j M) of a dataset D relativeto a set of models M as the shortest code length for D that can be obtained with thehelp of modelsM. In [22], the corresponding code length was de�ned asSC(D j M) = � logP (D j M) = � log Z P (D j �;M)P (� j M)d�; (1)where the integration goes over all the possible models � in M. Although Rissanenderived the stochastic complexity measure by using information-theoretic arguments,from (1) we see that the stochastic complexity has a direct link to Bayesian probabilitytheory as the code length is de�ned with the help of the marginal likelihood (or evidence)P (D j M). Rissanen has recently [23] introduced an alternative coding scheme forstochastic complexity, which produces for some data sets D even shorter codes than (1),but in this paper we will focus on the \old" formulation of stochastic complexity.Stochastic complexity is an interesting measure as it o�ers solutions to two practicallyimportant questions. First of all, in many cases the setM contains models with a di�er-ent parametric form. For explorative (data mining) purposes, an important question iswhich of the model classes (parametric forms) best reects the probability distributioncorresponding to the given sample data D. More precisely, letMk denote a model class,a subset of models each sharing the same parametric form, and let M be partitionedinto K such subsets, M =M1 [ : : : [MK. Now we wish to be able to determine whichMk is best justi�ed by the given data D. In the Bayesian framework, this problem issolved by determining the model class maximizing the posterior probability P (Mk j D),P (Mk j D) = P (D jMk)P (Mk)P (D) :If all the model classes are assumed to be equally probable a priori, we getP (Mk j D) / P (D jMk) = 2�SC(DjMk);since P (D) can regarded as a constant. Consequently, the optimal model class can befound by minimizing SC(D jMk), the stochastic complexity of D with respect to modelclass Mk.The second important application area of stochastic complexity is formed by predict-ive inference problems, where in the general sense, the task is to compute a predictivedistribution for a new data vector ~d, given the data D. The set of possible models ishere assumed to be restricted to one model class M , which can be determined as de-scribed above. A standard approach to this problem is to �rst determine the model �̂maximizing the posterior probability P (� j D;M) (or the likelihood P (D j �;M) ),3



and then to use distribution P (~d j �̂;M) for predictive inference. Nevertheless, fromthe Bayesian point of view, a more accurate predictive distribution can be obtained byaveraging (integrating) over all the possible models in M ,P (~d j D;M) = Z P (~d j D;�;M)P (� j D;M)d� (2)= Z P (~d;D j �;M)P (� jM)P (D jM) d�/ Z P (~d;D j �;M)P (� jM)= P (~d;D jM) = 2�SC(~d;DjM):Consequently, the Bayes optimal predictive distribution P (~d j D;M) can be determinedif we are able to compute SC(~d;D jM), the stochastic complexity of the data set ~d [Dwith respect to model class M .3 Approximating the stochastic complexity in the in-complete data caseIf the model familyM is chosen in such a way that the integral in de�nition (1) can becomputed in feasible time, then the stochastic complexitymeasure can be used for solvingthe model class selection and predictive inference problems as described in Section 2.An example of such a simple model family is the Naive Bayes classi�er, in which casethe model family consists of a single model class (so the model class selection problemdisappears), and the predictive distribution (2) can be computed extremely e�ciently,as showed in [15]. Nevertheless, in many practical cases the integral is of the form whichis not computationally feasible. This situation occurs even with relative simple modelfamilies, if the sample data D is incomplete, i.e., if it contains missing information. Inthe following we study methods for approximating the stochastic complexity measure inthe incomplete data case.In the sequel, let us use Dobs for denoting the observed data (the sample data given),and Dmis some missing data which is not given in Dobs. From the Bayesian point ofview, the model class selection and predictive inference problems should be solved byusing the observed data Dobs alone by marginalizing out the missing data Dmis. Moreprecisely, the stochastic complexity measure needed for solving these tasks is in this caseSC(Dobs jM) = � logP (Dobs jM) = � log Z P (Dobs;Dmis jM)dDmis: (3)However, even if restrict ourselves to the discrete data case, this results to an expo-nential sum of terms, which makes computing the stochastic complexity (3) an infeasibletask. In this paper we compare empirically the four stochastic complexity approximationmethods described below.The Bayesian information criterion (BIC) [25, 14], also known as the Schwarz cri-terion, can be derived by expanding the logarithm of the integrand in (3) around theposterior mode �̂(Dobs), �̂(Dobs) = arg max� P (� j Dobs);4



which yieldsSC(Dobs jM) = � logP (Dobs jM) � � logP (Dobs j �̂(Dobs)) + 12d logN; (4)where d is the number of parameters, and N denotes the number of data vectors in Dobs.In the Akaike information criterion (AIC) [1], the stochastic complexity is approximatedby SC(Dobs jM) = logP (Dobs) � logP (Dobs j �̂(Dobs))� d: (5)The BIC criterion can also been given a formulation in the MDL setting, as showedin [22].The BIC (and AIC) approximations can also be used as a motivation for anotherapproximation method. For example, from the BIC approximation (4) we know that theprobability P (Dobs jM) is approximatively (with increasing N) P (Dobsj�̂(Dobs);M) �C,where C is a constant depending only on N , and on the dimensionality of �̂. Similarly,by using ~Dmis, an estimate of Dmis, we getP (Dobs; ~Dmis jM) � P (Dobs; ~Dmis j �̂(Dobs; ~Dmis);M) �C:Now by solving C in both cases, and by assuming that �̂(Dobs) � �̂(Dobs; ~Dmis), we getSC(Dobs jM) = � log P (Dobs jM)� � log P (Dobs j �̂(Dobs; ~Dmis);M) P (Dobs; ~Dmis jM)P (Dobs; ~Dmis j �̂(Dobs; ~Dmis);M)! : (6)This Cheeseman-Stutz (CS) approximation, used in the Autoclass system [4], has inmany empirical tests turned out to be quite accurate, yet a computationally e�cientapproximation of stochastic complexity [5, 17].In Section 4, the above described stochastic complexity approximation methods (4){(6) are empirically evaluated by using public domain real world data. The results ofthese tests inspired us to also experiment with the following simple local neighborhood(LN) approximation method, where instead of integrating over all the possible missingdata sets, we use only some local neighborhood around ~Dmis, a locally optimal estimateof the missing data Dmis:SC(Dobs jM) = � log Z P (Dobs;Dmis jM)dDmis� � log Zd( ~Dmis ;Dmis)<� P (Dobs;Dmis jM)dDmis; (7)where d( ~Dmis;Dmis) is some distance function.4 Empirical results4.1 The problemIn the �nite mixture model family [10, 29], the probability distribution for a data vector~d is written as a weighted sum of mixture distributions,P (~d) = KXk=1 �P (Y = yk)P (~djY = yk)� ; (8)5



where Y denotes a latent clustering random variable, the values of which are not givenin the data Dobs, and K is the number of possible values of Y . In the following, weassume the problem domain to be modeled by m discrete random variables X1; : : : ;Xm.Moreover, the variables X1; : : : ;Xm are assumed to be independent, given the value ofthe clustering variable Y , yieldingP (~d) = P (X1 = x1; : : : ;Xm = xm) = KXk=1 P (Y = yk) mYi=1P (Xi = xijY = yk)! :Consequently, the data vectors ~d; : : : ; ~dN can be thought of being partitioned into Kclusters according to the value of the clustering variable Y . The resulting probabilitydistribution can be represented as a simple tree-structured Bayesian network, where theroot corresponds to the latent clustering variable Y , and the leaves correspond to thedomain variables X1; : : : ;Xm.It should be noted that by introducing the latent variable Y , with �nite mixtures weare always faced with missing data, consisting of values of Y , since by de�nition, valuesof a latent variable are never part of the given sample Dobs. Consequently, the �nitemixture model family o�ers a convenient framework for comparing di�erent stochasticcomplexity approximation methods with missing data. In the sequel, by the unobserveddataDmis we mean a random sample from the distribution of Y , analogous to the observeddata Dobs, a collection of i.i.d. random samples from the joint distribution of X1; : : : ;Xm.Both the cluster distribution P (Y ) and the intra-class conditional distributions Pk(Xi),Pk(Xi) = P (XijY = yk);are here assumed to be multinomial. Thus a single �nite mixture model can be de�nedby �rst �xing K, the model class (the number of the mixing distributions) as described inSection 2, and then by determining the values of the model parameters � = (�;�);� 2 
,where � = (�1; : : : ; �K) and � = (�11; : : : ;�1m; : : : ;�K1; : : : ;�Km), with the denotations�k = P (Y = yk), �ki = (�ki1; : : : ; �kini), where �kil = P (Xi = xiljY = yk).Since the family of Dirichlet densities is conjugate (see e.g. [8]) to the family of mul-tinomials, i.e., the functional form of parameter distribution remains invariant in theprior-to-posterior transformation, we assume that the prior distributions of the para-meters are from this family. More precisely, let (�1; : : : ; �K) � Di (�1; : : : ; �K), and(�ki1; : : : ; �kini) � Di (�ki1; : : : ; �kini) ; k = 1; : : : ;K; i = 1; : : : ;m; where f�k; �kil j k =1; : : : ;K; i = 1; : : : ;m; l = 1; : : : ; nig are the hyperparameters of the corresponding dis-tributions. Assuming that the parameter vectors � and �ki are independent, the jointprior distribution of all the parameters isDi (�1; : : : ; �K) KYk=1 mYi=1Di (�ki1; : : : ; �kini)As shown in [7, 13], with the above assumptions, the posterior probability of completedata (Dobs;Dmis) for a K-cluster �nite mixture model class MK can be written asP (Dobs;Dmis jMK) = Z P (Dobs;Dmis j �;M)P (� jMK) d� (9)= � �PKk=1 �k�� �N +PKk=1 �k� KYk=1 �(hk + �k)�(�k) KYk=1 mYi=1 � (Pnil=1 �kil)� (hk +Pnil=1 �kil) niYl=1 �(fkil + �kil)�(�kil) ! :6



Data set Size #Attrs #ClassesAustralian 690 15 2Glass 214 10 6Heart disease 270 14 2Hepatitis 150 20 2Primary tumor 339 18 21Breast cancer 286 10 2Diabetes 768 9 2Iris 150 5 3Lymphography 148 19 4Table 1: The data sets used in our experiments.As discussed in Section 2, computing the stochastic complexity measure for the in-complete data case requires marginalizing out the missing data Dmis:SC(Dobs jMK) = � logP (Dobs jMK) = � log XDmis P (Dobs;Dmis jMK); (10)where P (Dobs;Dmis j MK) is given by (9), and the sum goes over all the KN possibleclusterings of the data Dobs = (~d1; : : : ; ~dN ) | clearly a computationally infeasible task.In the following section we empirically compare the di�erent stochastic complexity ap-proximation methods described in Section 3 in the task of computing the �nite mixtureincomplete data stochastic complexity (10).4.2 The experimental settingWhen evaluating the quality of the stochastic complexity approximations we encounterinteresting methodological problems. From (10) we saw that due to the exponentialsummation, calculating the stochastic complexity measure for a �nite mixture modelclass MK is not feasible for any reasonable sized data set. How do we then evaluate theapproximation quality if we do not have any reference measure?In [5, 17], the problem of not knowing the actual stochastic complexity for incompletedata is circumvented by using synthetic data in a model class selection problem. Forsynthetic data one assumes that the correct value is \implicitly known", since the numberof mixing distributions used for generating data can be controlled. Unfortunately such anempirical study can face serious validity problems. First of all, when data is generatedfor planned experiments, one does not know whether the results can be generalized toreal-world problem domains, or whether they are simply caused by some anomaly in thearti�cial data generating method. Hence such empirical tests do not necessarily tell usmuch about the approximation quality for real data sets.A more severe problem is, however, that when approximative stochastic complex-ity measures are validated against generated data, one should be extremely careful inproviding samples that are representative to the intended mixing distributions. Negativeresults, i.e., approximations suggesting model classes di�ering from the \true number"of mixture components MK can also be caused by the fact that the data in the samplecan indeed be described best with a di�erent model class MK0 , since no �nite sample7



can capture all the information of the generating process. The amounts of data neededto represent the underlying distribution are substantial (thousands of data vectors forparameter spaces of only moderate dimensionality), which de�es the whole purpose of�nding out the approximation quality for small sample sizes encountered in real life. Theresults reported in [5, 17] clearly reect this di�culty.Since we cannot calculate the stochastic complexity for real data sets, an alternativesolution, commonly suggested for model class selection problems, is to compare thestochastic approximation methods against some other, more easily computable measure,such as the leave-one-out crossvalidation measure [26]. In the beginning of this paperwe have argued that stochastic complexity provides a principled measure for modelselection and prediction tasks. However, we know that the crossvalidation measure isin fact an average value of the last term in the sequential decomposition of the actualstochastic complexity [6], under random re-orderings of the data. Thus it will be veryhard to judge the quality of other approximations based on such a coarse measure. Therelationship between the stochastic complexity measure (called \scienti�c criterion") andcrossvalidation measure (called \engineering criterion") together with some experimentalresults in model class selection tasks are discussed in [12].In an earlier study [15] we have demonstrated that for some commonly used bench-mark data sets, on the average very small random samples (less than 10%) are su�cientto construct good predictive models. By good models we mean that they provide pre-diction performance comparable to the performance of models constructed from the fulldata set D. This prompted an interesting novel alternative for evaluating the qualityof stochastic complexity approximations with real data sets. For such benchmark datasets, without any loss of generality, we can in fact restrict our comparative study toa small random sample D0; jDj0 << jDj and calculate all the terms in the exponentialsum in (10). Thus by using this \brute force method" we are able to calculate thestochastic complexity exactly, giving us a measure against which we can then comparethe approximations for real data sets.For our experiments, we have chosen nine data sets from the collection discussedin [28]. Many of these data sets appeared in the extensive comparative study performedby the StatLog-project [18], and are standard benchmarks in the machine learning com-munity. The main criteria for selecting these particular data sets was the observedlearning rate in our earlier experiments, i.e., we preferred data sets for which (on theaverage) already less than 10% of the full training data was enough to produce goodpredictive models. Many of the full data sets were less than 270 data vectors, and con-tained natural data from various problem domains (a short description of the data setsused can be found in Table 11. For our experiments we used random samples D0 of size10 or less, as the need for computing resources increases exponentially with the size ofthe sample. It should be observed that even for these small samples we used parallelprocessing power of 30 networked Pentiums running dedicated software on Linux, whichallows us use the network as a \supercomputer" for repeated stochastic experiments.Many of the �gures presented in Section 4.4 have required more than 30 Pentium CPUdays, and are by no means easily obtainable.1The data sets can be obtained from the UCI data repository at URL address\http://www.ics.uci.edu/�mlearn/". 8



4.3 The algorithmsAs noted in Section 4.1, computing the stochastic complexity for a data set D with Nvectors, given a K-cluster �nite mixture model classMK, requires computing over a sumwith KN terms, corresponding to all the possible clusterings of the data. More precisely,let Z1; : : : ;Zn denote the possible clusterings (so n = KN ). Now we can compute thestochastic complexity of D bySC(D jM) = � log nXi=1 P (Zi;D jM); (11)where P (Zi;D jM) can be computed by using formula (9).In the following, we use SC for denoting the (true) stochastic complexity obtainedby using formula (11). For approximating this measure, we used in our experiments thefollowing methods:� BIC: The Bayesian information criterion as de�ned in (4).� AIC: The Akaike information criterion as de�ned in (5).� C-S: The Cheeseman-Stutz approximation method as de�ned in (6).� LN: The local neighborhood approximation method as de�ned in (7).In order to be able to use the AIC, BIC,C-S, and LN methods for approximatingSC, we need a method for providing estimates of the missing data. In the experimentsreported here, we used the Expectation Maximization (EM) [9] algorithm for computing~Dmis and �̂(Dobs; ~Dmis jM). As EM is a locally optimal search algorithm, the algorithmwas repeated in each case 20 times, starting from randomly chosen initial locations.As the �nal result of the algorithm, we used the model �̂ with the highest posteriorprobability. To see how much the methods depend on the estimates found by the EMalgorithm, we also computed their \optimal" performance, i.e., the performance themethods would have obtained if EM would have found the clustering Ẑ maximizing theprobability P (Z;D j M). This type of an optimized version of a method \X" will bedenoted by \X*" in the discussion below.For the LN method, we used in this paper a version where we used formula (11), butinstead of summing over all the possible clusterings Z, we used only the minimal localneighborhood of Ẑ, i.e., the N � (K � 1) clusterings that could be obtained from Ẑ bychanging the value of one component only.4.4 The resultsIn our �rst set of experiments, the goal was to study how the exponential sum (11)behaves as a function of the terms included in the sum. For a given data set D, wecomputed �rst all the n = KN possible clusterings by using a network of workstationsas described in Section 4.2. These clusterings Z1; : : : ;Zn were then ordered and re-indexed in descending order according to probability P (Z;D j M). Figure 1 presentsthe cumulative sum SC(s), SC(s) = � log sXi=1P (Zi;D jM); (12)9
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Figure 1: Cumulative distribution of the stochastic complexity for all the data sets,where the terms are arranged in descending order. Here the x-axis is the percentage ofthe number of terms in the sum (12) and the y-axis gives the percentage of the actualSC measure value obtained by using this number of clusterings.for the case with K = 3 clusters, and for all the data sets in Table 1 with sample sizesof 7 data vectors, and illustrates how the cumulative sum behaves as s approaches n. Asthe clusterings are arranged in descending order, the \best" clustering can be found onthe left. It should be noticed that the behavior of the cumulative sum varies only slightlywith the di�erent data sets. For most data sets, less than 10% of the largest terms areneeded on the average to reach an error level below 10%. However, one of the data sets(Diabetes) has much less steep curve and needs clearly much more terms (in relativesense) than the others. For this type of data sets we can expect our LN method not towork well.In Figure 2 we illustrate in the Hepatitis data set case how many terms are neededin the sum (12) for obtaining F% (where F goes from 90 to 99) of the true stochasticcomplexity as a function of the size of the data set (N). The clusterings are here arrangedin descending order as in Figure 1. The results show that although the size of thedata space grows exponentially with increasing N , the absolute number of clusteringsneeded for a good approximation of SC remains surprisingly small. This observation wasthe initial motivation for our experiments with the local neighborhood approximationapproach.The results for a 10 data vector sample from the Hepatitis data set (with K=3) arepresented in Figure 3. Several observations can be made from these results. First, it isclear that the approximations are sensitive to the missing data estimate and behave verypoorly with low posterior models. The results also support the observations in [5, 16]where C-S was found to outperform both AIC and BIC. In fact we can also see that10
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Figure 2: The number of clusterings needed in the sum (12) for obtaining F% (F=90{99)of the true stochastic complexity as a function of the size of the sampled data set.this does not hold only for the approximations using the estimates found, but also theoptimal version C-S* outperforms AIC* and BIC*. However, most interestingly thesimple version of the LN approximation outperforms all the other stochastic complexityapproximations, both in the \optimal" and \pragmatic" sense.In the third set of experiments we studied the behavior of the methods in the modelclass selection setting, which is a typical application of the stochastic complexitymeasure.Figure 4 illustrates the typical behavior of the methods for a 6 data vector sample fromthe Hepatitis data set, where the number of mixture components was varied from 1 to6. Here we again see that the LN method performs best in following the behavior ofthe correct SC measure, and that the C-S methods outperforms both the BIC and AICapproximations. The behavior of the BIC and AIC methods turned out to be quitesimilar, which is not surprising considering the minor di�erence between equations (4)and (5).5 ConclusionIn this paper we investigated empirically the performance of di�erent stochastic com-plexity approximation methods in an attempt to understand their small sample behaviorfor the incomplete data framework. The comparison was based on a novel idea of us-ing small, but demonstrably representative samples from real data sets, which made itpossible (although with a considerable computational e�ort) to compute the stochasticcomplexity measure exactly by marginalizing out the missing data. This `brute force"approach allowed us to make a fair comparison between the di�erent approximationmethods, since the di�erence between their results and the correct solution could now11
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