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Abstract

Stochastic complexity of a data set is defined as the shortest possible code length
for the data obtainable by using some fixed set of models. This measure is of great
theoretical and practical importance as a tool for tasks such as determining model
complexity, or performing predictive inference. Unfortunately for cases where the
data has missing information, computing the stochastic complexity requires margin-
alizing (integrating) over the missing data, which results even in the discrete data
case to computing a sum with an exponential number of terms. Therefore in most
cases the stochastic complexity measure has to be approximated. In this paper we
will investigate empirically the performance of some of the most common stochastic
complexity approximationsin an attempt to understand their small sample behavior
in the incomplete data framework. In earlier empirical evaluations the problem of
not knowing the actual stochastic complexity for incomplete data was circumven-
ted either by using synthetic data, or by comparing the behavior of the stochastic
complexity approximation methods to crossvalidated prediction error, approaches
which both suffer from validity problems. Our comparison is based on the novel
idea of using demonstrably representative small samples from real data sets, and
then calculating by “brute force” the exponential sums. This allows for the first
time a comparison between the true stochastic complexity and its approximations
with real-world data.

1 Introduction

Rissanen [21, 22] has defined the stochastic complexity of a data set as the shortest
possible code length for the data obtainable by using some fixed set of models. This
measure can be used as a tool for solving several difficult problems of great practical
importance. For instance, the problem of choosing the proper model complexity (in
order to avoid overfitting) can be solved by using the stochastic complexity measure.
This type of model selection is common in many machine learning approaches, e.g., in
selecting the proper number of hidden units in feed-forward neural networks [11], or in
pruning of a decision tree [19].

Stochastic complexity offers also a theoretically solid framework for computing op-
timal predictive distributions, as will be shown in Section 2. More importantly, for both



of these tasks, stochastic complexity can be shown to be an optimal criteria both in
information theoretic and Bayesian probability theory frameworks (see the discussion
in [2, 22]).

In this paper, we focus on an incomplete data situation, where the sample data
contains some missing information. In this case, computing the stochastic complexity
requires marginalizing (integrating) over the missing data, which results even in the
discrete data case to computing a sum with an exponential number of terms. This is
clearly an infeasible task, so in most practical situations stochastic complexity measure
has to be approximated.

Although several methods for computing the evidence approximately has been sug-
gested in the literature (see e.g., [1, 3, 4, 14, 22, 25, 27]), the quality of most of these
approximations is not well known, except for some asymptotic results. On the other
hand, in many real life situations we are typically faced with relatively small data sets.
Therefore we will in this paper investigate empirically the performance of some of the
most common stochastic complexity approximations in an attempt to understand their
small sample behavior in the incomplete data framework. The various stochastic com-
plexity approximation methods used in the experiments are described in more detail in
Section 3.

The specific problem domain selected for this empirical study is defined in terms
of finite mixture models. This family of models is especially suitable for this purpose,
as with finite mixtures we are always faced with missing data created by the basic
assumptions defining the model family. Moreover, as demonstrated in Section 4.1, in the
finite mixture model family case the stochastic complexity measure can be represented
in closed form. However, with the missing data introduced by model assumptions,
calculating it in practice requires computing over an exponential sum. It should also
be noted that although the finite mixtures are conceptually simple models, our earlier
empirical results (see e.g. [28]) show very good performance in predictive inference tasks,
when compared to results obtained by more complex model families, such as neural
networks or decision trees. In earlier similar studies [20, 24], the model family used has
either been too restricted for extending the results to real-world domains, or too general
to allow an exact solution to be used for the comparisons.

When trying to evaluate the quality of the stochastic complexity approximations
empirically, we encounter the following difficult methodological problem: if calculating
the stochastic complexity measure exactly is not feasible for any reasonable sized data
set, how do we then evaluate the approximation quality if we do not have any reference
measure? In earlier empirical evaluations [5, 17], the problem of not knowing the actual
stochastic complexity for incomplete data was circumvented either by using synthetic
data, or by comparing the behavior of the stochastic complexity approximation methods
to crossvalidated prediction error. However, as pointed out in Section 4.2, using either
of these approaches does not necessarily provide correct information about the quality
of the approximations.

The key to solving this dilemma lies in an earlier study [15], where we observed
that for certain real world data sets we can obtain good predictive models already with
very small samples of the full training set. In such cases we do not loose any essential
modeling information by replacing the full data set by a small sample. However, for small
samples we can actually calculate the exponential sums required for the exact stochastic
measure, albeit by using substantial computing power. Therefore we are able to compare
the approximations with real data sets to the actual true value of the measure. To our



knowledge the comparison presented is first of its nature. The results of the empirical
tests performed can be found in Section 4.4.

2 Stochastic complexity and its applications

In the following, let M denote a set of probability distributions determined by a set
of parametric models. In this framework, fixing a specific model, i.e., the parametric
form and the specific parameter values, determines a single probability distribution.
Consequently, in the following we treat M as a set of models, instead of as a set of
distributions.

Rissanen [21] defined the stochastic complexity SC(D | M) of a dataset D relative
to a set of models M as the shortest code length for D that can be obtained with the
help of models M. In [22], the corresponding code length was defined as

SC(D | M) = —log P(D | M) = —log / P(D | ©, M)P(O | M)dO, (1)

where the integration goes over all the possible models @ in M. Although Rissanen
derived the stochastic complexity measure by using information-theoretic arguments,
from (1) we see that the stochastic complexity has a direct link to Bayesian probability
theory as the code length is defined with the help of the marginal likelihood (or evidence)
P(D | M). Rissanen has recently [23] introduced an alternative coding scheme for
stochastic complexity, which produces for some data sets D even shorter codes than (1),
but in this paper we will focus on the “old” formulation of stochastic complexity.
Stochastic complexity is an interesting measure as it offers solutions to two practically
important questions. First of all, in many cases the set M contains models with a differ-
ent parametric form. For explorative (data mining) purposes, an important question is
which of the model classes (parametric forms) best reflects the probability distribution
corresponding to the given sample data D. More precisely, let M), denote a model class,
a subset of models each sharing the same parametric form, and let M be partitioned
into K such subsets, M = M, U...U Mg. Now we wish to be able to determine which
M), is best justified by the given data D. In the Bayesian framework, this problem is
solved by determining the model class maximizing the posterior probability P(M,. | D),

P(M, | D) = P(D |,/3\?;>>)P(Mk).

If all the model classes are assumed to be equally probable a priori, we get
P(My | D) o P(D | My) = 2SI,

since P(D) can regarded as a constant. Consequently, the optimal model class can be
found by minimizing SC(D | My), the stochastic complexity of D with respect to model
class Mp.

The second important application area of stochastic complexity is formed by predict-
ive inference problems, where in the general sense, the task is to compute a predictive
distribution for a new data vector (7, given the data D. The set of possible models is
here assumed to be restricted to one model class M, which can be determined as de-
scribed above. A standard approach to this problem is to first determine the model e)
maximizing the posterior probability P(© | D, M) (or the likelihood P(D | O, M) ),



and then to use distribution P((f| (:), M) for predictive inference. Nevertheless, from
the Bayesian point of view, a more accurate predictive distribution can be obtained by
averaging (integrating) over all the possible models in M,

Pd|D.M) = /P(J|D,(~),M) (O | D, M)do© (2)
P(d.D | ©,M)P(O | M)
B / P(D | M) 10
(

= /P(J,D|(~),M) oM
_ P((]:D | M) = Qfso(rf,mz\//)_

Consequently, the Bayes optimal predictive distribution P((f| D, M) can be determined
if we are able to compute SC(d, D | M), the stochastic complexity of the data set dU D
with respect to model class M.

3 Approximating the stochastic complexity in the in-
complete data case

If the model family M is chosen in such a way that the integral in definition (1) can be
computed in feasible time, then the stochastic complexity measure can be used for solving
the model class selection and predictive inference problems as described in Section 2.
An example of such a simple model family is the Naive Bayes classifier, in which case
the model family consists of a single model class (so the model class selection problem
disappears), and the predictive distribution (2) can be computed extremely efficiently,
as showed in [15]. Nevertheless, in many practical cases the integral is of the form which
is not computationally feasible. This situation occurs even with relative simple model
families, if the sample data D is incomplete, i.e., if it contains missing information. In
the following we study methods for approximating the stochastic complexity measure in
the incomplete data case.

In the sequel, let us use Doy for denoting the observed data (the sample data given),
and Dpis some missing data which is not given in D,,. From the Bayesian point of
view, the model class selection and predictive inference problems should be solved by
using the observed data D, alone by marginalizing out the missing data D, ;. More
precisely, the stochastic complexity measure needed for solving these tasks is in this case

ch(Dobs | M) = flog P(Dobg | M) == *log / P(Dobsapmis | M)dDmlq (3)

However, even if restrict ourselves to the discrete data case, this results to an expo-
nential sum of terms, which makes computing the stochastic complexity (3) an infeasible
task. In this paper we compare empirically the four stochastic complexity approximation
methods described below.

The Bayesian information criterion (BIC) [25, 14], also known as the Schwarz cri-
terion, can be derived by expanding the logarithm of the integrand in (3) around the
posterior mode (:)(Dobs),

~

O(D,ps) = arg max P(O | Dobs),



which yields
A 1
SC(Dops | M) = —Tlog P(Dons | M) = —Tog P(Dobs | O(Dons)) + §d]0g N, (4)

where d is the number of parameters, and N denotes the number of data vectors in D,ys.

In the Akaike information criterion (AIC) [1], the stochastic complexity is approximated
by

SC(Dops | M) = log P(Daps) & log P(Daps | O(Dops)) — d. (5)

The BIC criterion can also been given a formulation in the MDI. setting, as showed
in [22].

The BIC (and AIC) approximations can also be used as a motivation for another
approximation method. For example, from the BIC approximation (4) we know that the
probability P(D,s | M) is approximatively (with increasing N) P(Dobs|(3)(Dobs), M)-C,
where (' is a constant depending only on N, and on the dimensionality of o. Similarly,
by using ﬁmm an estimate of D5, we get

P(Dopss Dinis | M) = P(Dobs, Dinis | O(Dobs, Dunis ), M) - C.

Now by solving (' in both cases, and by assuming that (:)(Dobs) ~ O(Dobs, Dimis), we get
SC(Dops | M) = —Tlog P(Dops | M)

A ~ P Do qaﬁmis M
~ 7]0g (P(Dobs | G(Dobsapmis)a M) ( b | ) ) . (6)

P(Dobsa @mis | (:)(Dobsa @mis)a M)

This Cheeseman-Stutz (CS) approximation, used in the Autoclass system [4], has in
many empirical tests turned out to be quite accurate, yet a computationally efficient
approximation of stochastic complexity [5, 17].
In Section 4, the above described stochastic complexity approximation methods (4)

(6) are empirically evaluated by using public domain real world data. The results of
these tests inspired us to also experiment with the following simple local neighborhood
(LN) approximation method, where instead of integrating over all the possible missing
data sets, we use only some local neighborhood around Dinis, a locally optimal estimate
of the missing data D,;:

SC(Dos | M) = 710g/ P(Dobs: Do | M )dDpis

~ —| / PDO <7Dmi< MdDmiq’ 7
8 [ 5 o P(Dabs Dois | M)dDi (7)

where d(Dmis, Dmis) is some distance function.

4 Empirical results

4.1 The problem

In the finite mizture model family [10, 29], the probability distribution for a data vector

d is written as a weighted sum of mixture distributions,

-~

P(d) =3 (P(Y = y) P(d]Y = 1)) . (8)



where Y denotes a latent clustering random variable, the values of which are not given
in the data D, and K is the number of possible values of Y. 1In the following, we
assume the problem domain to be modeled by m discrete random variables Xy,..., X,,.
Moreover, the variables X;,..., X, are assumed to be independent, given the value of
the clustering variable Y, yielding

. K

Pd)y=PXy=21,..., X, =2,) = Z (P(Y = yk)ﬁ P(X;, =x|Y = yk)) )

k=1 =1

—

Consequently, the data vectors d, ... ,JN can be thought of being partitioned into K
clusters according to the value of the clustering variable Y. The resulting probability
distribution can be represented as a simple tree-structured Bayesian network, where the
root corresponds to the latent clustering variable Y, and the leaves correspond to the
domain variables Xy,..., X,,.

It should be noted that by introducing the latent variable Y, with finite mixtures we
are always faced with missing data, consisting of values of Y, since by definition, values
of a latent variable are never part of the given sample D,s. Consequently, the finite
mixture model family offers a convenient framework for comparing different stochastic
complexity approximation methods with missing data. In the sequel, by the unobserved
data Dpis we mean a random sample from the distribution of YV, analogous to the observed

data Dy, a collection of i.i.d. random samples from the joint distribution of X;,.... X,,.
Both the cluster distribution P(Y) and the intra-class conditional distributions Py(X;),

P(X;) = P(X;|Y = yp),

are here assumed to be multinomial. Thus a single finite mixture model can be defined
by first fixing K, the model class (the number of the mixing distributions) as described in
Section 2, and then by determining the values of the model parameters @ = (a, ), 0 € .
where v = (aq,...,ax)and @ = (G, .., Py, Prer, ..., Preyy ), with the denotations
ap = P(Y = yk)7 by = (Qﬁkn,---aﬁbkm,;% where ¢ = P(Xfr = fm|Y = yk)-

Since the family of Dirichlet densities is conjugate (see e.g. [8]) to the family of mul-
tinomials, i.e., the functional form of parameter distribution remains invariant in the
prior-to-posterior transformation, we assume that the prior distributions of the para-
meters are from this family. More precisely, let (aq,...,ax) ~ Di(g1,...,pux), and
(¢k“7...7¢]ﬂjni) ~ Di (0‘]{7;17...70']{7j7711:)7k = ]7...7R77i = ]7...7777/7 Where {/,L]“O']mj] | k =
..., K;i=1,....m;l=1,...,n;} are the hyperparameters of the corresponding dis-
tributions. Assuming that the parameter vectors a and ®y; are independent, the joint
prior distribution of all the parameters is

K m
Di(prs.o o ik HH (ki - - Ohin,)

As shown in [7, 13], with the above assumptions, the posterior probability of complete
data (Dybs, Dimis) for a K-cluster finite mixture model class Mg can be written as

P(Dapes Donie | Mic) = / P(Dupes Donic | ©, MYP(O | My) dO (9)

B (Zk 1Mk) ﬁ 7 (hg —I—/M ﬁ ﬁ ( (> oki) H T (fra —I-O'/m)) .

(N + Zk 1 Mk) k=1 [ E=1i=1 (he + 3202 oar) =1 T (okit)



Data set Size  #Attrs  F#FClasses

Australian 690 15 2
Glass 214 10 6
Heart disease 270 14 2
Hepatitis 150 20 2
Primary tumor 339 18 21
Breast cancer 286 10 2
Diabetes 768 9 2
Iris 150 ) 3
Lymphography 148 19 4

Table 1: The data sets used in our experiments.

As discussed in Section 2, computing the stochastic complexity measure for the in-
complete data case requires marginalizing out the missing data D, ;s:

SC(DO},S | MK) = flog P(Dobs | MR’) = *]092 Z P(Dobsvpmis | Mf\”)v (]0)

Dimis

where P(Dobe, Dinis | Mx) is given by (9), and the sum goes over all the KV possible
clusterings of the data Dg,s = ((71 R, JN) clearly a computationally infeasible task.
In the following section we empirically compare the different stochastic complexity ap-
proximation methods described in Section 3 in the task of computing the finite mixture
incomplete data stochastic complexity (10).

4.2 The experimental setting

When evaluating the quality of the stochastic complexity approximations we encounter
interesting methodological problems. From (10) we saw that due to the exponential
summation, calculating the stochastic complexity measure for a finite mixture model
class My is not feasible for any reasonable sized data set. How do we then evaluate the
approximation quality if we do not have any reference measure?

In [5, 17], the problem of not knowing the actual stochastic complexity for incomplete
data is circumvented by using synthetic data in a model class selection problem. For
synthetic data one assumes that the correct value is “implicitly known”. since the number
of mixing distributions used for generating data can be controlled. Unfortunately such an
empirical study can face serious validity problems. First of all, when data is generated
for planned experiments, one does not know whether the results can be generalized to
real-world problem domains, or whether they are simply caused by some anomaly in the
artificial data generating method. Hence such empirical tests do not necessarily tell us
much about the approximation quality for real data sets.

A more severe problem is, however, that when approximative stochastic complex-
ity measures are validated against generated data, one should be extremely careful in
providing samples that are representative to the intended mixing distributions. Negative
results, i.e., approximations suggesting model classes differing from the “true number”
of mixture components Mg can also be caused by the fact that the data in the sample
can indeed be described best with a different model class My, since no finite sample



can capture all the information of the generating process. The amounts of data needed
to represent the underlying distribution are substantial (thousands of data vectors for
parameter spaces of only moderate dimensionality), which defies the whole purpose of
finding out the approximation quality for small sample sizes encountered in real life. The
results reported in [5, 17] clearly reflect this difficulty.

Since we cannot calculate the stochastic complexity for real data sets, an alternative
solution, commonly suggested for model class selection problems, is to compare the
stochastic approximation methods against some other, more easily computable measure,
such as the leave-one-out crossvalidation measure [26]. In the beginning of this paper
we have argued that stochastic complexity provides a principled measure for model
selection and prediction tasks. However, we know that the crossvalidation measure is
in fact an average value of the last term in the sequential decomposition of the actual
stochastic complexity [6], under random re-orderings of the data. Thus it will be very
hard to judge the quality of other approximations based on such a coarse measure. The
relationship between the stochastic complexity measure (called “scientific criterion”) and
crossvalidation measure (called “engineering criterion”) together with some experimental
results in model class selection tasks are discussed in [12].

In an earlier study [15] we have demonstrated that for some commonly used bench-
mark data sets, on the average very small random samples (less than 10%) are sufficient
to construct good predictive models. By good models we mean that they provide pre-
diction performance comparable to the performance of models constructed from the full
data set D. This prompted an interesting novel alternative for evaluating the quality
of stochastic complexity approximations with real data sets. For such benchmark data
sets, without any loss of generality, we can in fact restrict our comparative study to
a small random sample D' |D|" << |D| and calculate all the terms in the exponential
sum in (10). Thus by using this “brute force method” we are able to calculate the
stochastic complexity exactly, giving us a measure against which we can then compare
the approximations for real data sets.

For our experiments, we have chosen nine data sets from the collection discussed
in [28]. Many of these data sets appeared in the extensive comparative study performed
by the Statl.og-project [18], and are standard benchmarks in the machine learning com-
munity. The main criteria for selecting these particular data sets was the observed
learning rate in our earlier experiments, i.e., we preferred data sets for which (on the
average) already less than 10% of the full training data was enough to produce good
predictive models. Many of the full data sets were less than 270 data vectors, and con-
tained natural data from various problem domains (a short description of the data sets
used can be found in Table 1'. For our experiments we used random samples )’ of size
10 or less, as the need for computing resources increases exponentially with the size of
the sample. Tt should be observed that even for these small samples we used parallel
processing power of 30 networked Pentiums running dedicated software on Linux, which
allows us use the network as a “supercomputer” for repeated stochastic experiments.
Many of the figures presented in Section 4.4 have required more than 30 Pentium CPU
days, and are by no means easily obtainable.

"The data sets can he obtained from the UCI data repository at URIL address
“http://www.ics.uci.edu/~mlearn/”.



4.3 The algorithms

As noted in Section 4.1, computing the stochastic complexity for a data set D with N
vectors, given a K-cluster finite mixture model class My, requires computing over a sum
with KN terms, corresponding to all the possible clusterings of the data. More precisely,
let Zy,...,7, denote the possible clusterings (so n = K). Now we can compute the
stochastic complexity of D by

SC(D| M) = —log 3" P(Z,,D | M), (11)

=1

where P(Z;,D | M) can be computed by using formula (9).

In the following, we use SC for denoting the (true) stochastic complexity obtained
by using formula (11). For approximating this measure, we used in our experiments the
following methods:

e BIC: The Bayesian information criterion as defined in (4).

o AIC: The Akaike information criterion as defined in (5).

o (-S: The Cheeseman-Stutz approximation method as defined in (6).
o [LN: The local neighborhood approximation method as defined in (7).

In order to be able to use the AIC, BIC,C-S, and LN methods for approximating
SC, we need a method for providing estimates of the missing data. In the experiments
reported here, we used the Frpectation Mazimization (EM) [9] algorithm for computing
Dy and @(Dobs,@mis | M). As EM is a locally optimal search algorithm, the algorithm
was repeated in each case 20 times, starting from randomly chosen initial locations.
As the final result of the algorithm, we used the model O with the highest posterior
probability. To see how much the methods depend on the estimates found by the EM
algorithm, we also computed their “optimal” performance, i.e., the performance the
methods would have obtained if EM would have found the clustering V/ maximizing the
probability P(Z,D | M). This type of an optimized version of a method “X” will be
denoted by “X*” in the discussion below.

For the LN method, we used in this paper a version where we used formula (11), but
instead of summing over all the possible clusterings Z, we used only the minimal local
neighborhood of 27 i.e., the N - (K — 1) clusterings that could be obtained from 7 by

changing the value of one component only.

4.4 The results

In our first set of experiments, the goal was to study how the exponential sum (11)
behaves as a function of the terms included in the sum. For a given data set D, we
computed first all the n = KV possible clusterings by using a network of workstations
as described in Section 4.2. These clusterings Z,...,7Z, were then ordered and re-
indexed in descending order according to probability P(Z,D | M). Figure 1 presents
the cumulative sum SC'(s),

SC(s) = —log " P(Z:,D | M), (12)

=1

9
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Figure 1: Cumulative distribution of the stochastic complexity for all the data sets,
where the terms are arranged in descending order. Here the x-axis is the percentage of
the number of terms in the sum (12) and the y-axis gives the percentage of the actual
SC measure value obtained by using this number of clusterings.

for the case with K = 3 clusters, and for all the data sets in Table 1 with sample sizes
of 7 data vectors, and illustrates how the cumulative sum behaves as s approaches n. As
the clusterings are arranged in descending order, the “best” clustering can be found on
the left. It should be noticed that the behavior of the cumulative sum varies only slightly
with the different data sets. For most data sets, less than 10% of the largest terms are
needed on the average to reach an error level below 10%. However, one of the data sets
(Diabetes) has much less steep curve and needs clearly much more terms (in relative
sense) than the others. For this type of data sets we can expect our LN method not to
work well.

In Figure 2 we illustrate in the Hepatitis data set case how many terms are needed
in the sum (12) for obtaining F% (where F goes from 90 to 99) of the true stochastic
complexity as a function of the size of the data set (N). The clusterings are here arranged
in descending order as in Figure 1. The results show that although the size of the
data space grows exponentially with increasing N, the absolute number of clusterings
needed for a good approximation of SC remains surprisingly small. This observation was
the initial motivation for our experiments with the local neighborhood approximation
approach.

The results for a 10 data vector sample from the Hepatitis data set (with K=3) are
presented in Figure 3. Several observations can be made from these results. First, it is
clear that the approximations are sensitive to the missing data estimate and behave very
poorly with low posterior models. The results also support the observations in [5, 16]
where C-S was found to outperform both AIC and BIC. In fact we can also see that

10
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Figure 2: The number of clusterings needed in the sum (12) for obtaining F% (F=90 99)

of the true stochastic complexity as a function of the size of the sampled data set.

this does not hold only for the approximations using the estimates found, but also the
optimal version C-S* outperforms AIC* and BIC*. However, most interestingly the
simple version of the LN approximation outperforms all the other stochastic complexity
approximations, both in the “optimal” and “pragmatic” sense.

In the third set of experiments we studied the behavior of the methods in the model
class selection setting, which is a typical application of the stochastic complexity measure.
Figure 4 illustrates the typical behavior of the methods for a 6 data vector sample from
the Hepatitis data set, where the number of mixture components was varied from 1 to
6. Here we again see that the LN method performs best in following the behavior of
the correct SC measure, and that the C-S methods outperforms both the BIC and ATC
approximations. The behavior of the BIC and ATIC methods turned out to be quite
similar, which is not surprising considering the minor difference between equations (4)

and (5).

5 Conclusion

In this paper we investigated empirically the performance of different stochastic com-
plexity approximation methods in an attempt to understand their small sample behavior
for the incomplete data framework. The comparison was based on a novel idea of us-
ing small, but demonstrably representative samples from real data sets, which made it
possible (although with a considerable computational effort) to compute the stochastic
complexity measure exactly by marginalizing out the missing data. This ‘brute force”
approach allowed us to make a fair comparison between the different approximation
methods, since the difference between their results and the correct solution could now
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Figure 3: The performance of all the methods for Hepatitis data set (with K=3) with
both the optimal estimates and the estimates found by EM. The x-axis is arranged in
ascending order of the model posterior. The line in the upper portion of the figure is the
actual stochastic complexity. The dots on the x-axis mark the solutions found by the

EM algorithm.

be computed. In these experiments, the Cheeseman-Stutz approximation turned out to
be superior when compared to the BIC and ATC methods. This supports the results
obtained earlier by using alternative approaches for comparing the stochastic complexity
approximation methods.

In addition to comparing the performances of the different approximation methods,
the experimental setup could be used for exploring the general shape of the stochastic
complexity space with incomplete data. The results suggest that the shape of the
stochastic complexity space is extremely peaked, so that most of the probability mass is
concentrated near few local optima. This observation encouraged us to start experiments
with local approximations, where instead of marginalizing out all the possible combin-
ations for the missing data, we concentrated on a small area around a local optimum
point. The empirical results show that at least for the small sample cases studied, the
local neighborhood approximation performs better than the other approximations that
were included in our study. It is also evident that the LN algorithm can be improved
substantially by extending the approach to the case where, instead of using only one
local neighborhood, we sum over several neighborhoods around local optimum points.
We are currently pursuing this line of research further.
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value of the measures (including the stochastic complexity SC).

graphy domains were obtained from the University Medical Centre, Institute of Oncology,

[jubljana, Yugoslavia. Thanks go to M. Zwitter and M. Sokli¢ for providing the data.
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