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By and large, the treatment of constraints in typesystems has been syntactic: constraints were regardedas sets of formulas, often of a speci�c form. On theother hand, constraint programming now generally usesa semantic de�nition of constraint systems, taking aconstraint system as a cylindric algebra with some ad-ditional properties [HMT71, Sar93]. Cylindric algebrasde�ne a projection operator 9�� that binds some sub-set of variables �� in the constraint. In the usual casewhere constraints are boolean algebras, projection cor-responds to existential quanti�cation.Following the lead of constraint programming, wetreat a constraint system as a cylindric algebra witha projection operator. Projection is very useful for ourpurposes for two reasons: First, projection allows us toformulate a logically pleasing and pragmatically usefulrule (8 Intro) for quanti�er introduction:(8 Intro) C ^D;� ` e : � �� 62 fv(C) [ fv(�)C ^ 9��:D;� ` e : 8��:D ) �Here, C and D are constraints over the type variablesin the type context � and the type scheme � . Wediscuss some other proposals for quanti�er introductionand show how our approach improves already existingones.Second, projection is an important source of op-portunities for simplifying constraints [Jon95, Pot96,EST95a]. In our framework, simplifying means chang-ing the syntactic representation of a constraint withoutchanging its denotation. For example, the subtypingconstraint 9�:(� <: �) ^ (� <: 
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can safely be simpli�ed to(� <: 
)since the denotation is the same for both constraints.Without the projection operator, the two constraintswould be di�erent, since one restricts the variable �while the other does not.Two of the main strengths of the Hindley/Milner sys-tem are a type soundness result and the existence of atype inference algorithm that computes principal types.HM(X) stays in the tradition of the Hindley/Milnertype system. Type systems in HM(X) are sound under astandard untyped compositional semantics provided theunderlying constraint system X is sound. This resultcan be summarized in the slogan \well{typed programscan not go wrong". One of the key ideas of our pa-per is to present su�cient conditions on the constraintdomain X so that the principal types property carriesover to HM(X). The conditions are fairly simple andnatural. For those constraint systems meeting the con-ditions, we present a generic type inference algorithmthat will always yield the principal type of a term.The type inference algorithm is explained by treat-ing the typing problem itself as a constraint. Gener-ally, the constraint system X needs to be rich enoughto express all constraint problems that can be gener-ated by type derivations. On the other hand, we admitthe possibility that constraints on the left hand side ofthe turnstile and in type schemes come from a morerestricted set which we call solved forms. The task oftype inference is then to split a typing problem into asubstitution and a residual constraint in solved form.This we call constraint normalization. We require thatnormalization always yields a \best" solution, if thereis a solution at all. This ensures that the type inferencealgorithm computes principal types.Our work generalizes Milner's results to systems withnon-standard constraints and thus makes it possible toexperiment with new constraint domains without hav-ing to invent yet another type inference algorithm andwithout having to repeat the often tedious proofs ofsoundness and completeness of type inference.Object{oriented languages. Object oriented lan-guages are often based on record calculi andtype systems supporting a notion of subtyping.Cardelli/Wegner [CW85] gave an early survey aboutgeneral research directions. Reynolds [Rey85] andMitchell [Mit84] are foundational papers that developbasic concepts of constraints and subtyping. Pals-berg [Pal95] gave an e�cient inference algorithm fora calculus of objects.Subtyping is orthogonal to the notion of paramet-ric polymorphism supported by the Hindley/Milner sys-tem. A natural approach for a type system that sup-ports both notions is to add subtype constraints to

types [AW93, EST95a]. Such systems can be expressedas instances of the HM(X) system (or, if they are basedon recursive records, in an extension of it). Other en-codings of object-oriented languages forgo subtyping,and are instead based on calculi for extensible recordsor overloading [R�em89, Wan89, OWW95, BM97]. Suchsystems can also be regarded as instances of our frame-work. We demonstrate this using Ohori's system[Oho95] as an example.Outline. The rest of this paper is structured as follows:The next section discusses previous approaches to typesystems with constraints. Section 3 gives a character-ization of constraint systems. Section 4 presents ourframework HM(X) for Hindley/Milner style type sys-tems with constraints. Section 5 presents an ideal se-mantics for type systems in the framework from whicha type soundness theorem is derived. Section 6 estab-lishes conditions on the constraint system so that typeinference is feasible and a principal types theorem holds.Section 7 describes as an instance of our framework atype system for polymorphic records. Section 8 con-cludes.2. Related workHindley/Milner style type systems with constrainedtypes have been used in a number of instances. All suchtype systems extend the type judgments � ` e : � ofthe original Hindley/Milner system with a constrainthypothesis on the left side of the turnstile, writtenC;� ` e : �. Furthermore, they extend the typeschemes 8��:� of the Hindley/Milner system with a con-straint component; we write8��:C ) �to express that the constraint C restricts the types thatcan legally be substituted for the bound variables ��.All type systems have essentially the same rule foreliminating quanti�ers, which we write as follows:(8 Elim) C;� ` e : 8��:D ) � 0 C `e [��=��]DC;� ` [��=��]� 0The rule is a re�nement of the corresponding rule inthe Hindley/Milner system. It says that, when instanti-ating a type scheme 8��:D ) � 0, the only valid instancesare those instances [��=��]� 0 which satisfy the constraintpart D of the type scheme.While there is agreement about the proper techniquefor eliminating quanti�ers in type schemes, there is re-markable disagreement about the proper way to intro-duce them. Figure 1 shows four di�erent rules thathave all been proposed in the literature. We have editedthese rules somewhat to present them in a uniform style,and have attempted to compensate for the consider-able variations in detail between published type sys-2 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)



No satis�ability check[Jon92]: C ^D;� ` e : � �� 62 fv(C) [ fv(�)C;� ` e : 8��:D ) � (8 Intro-1)Weak satis�ability check[AW93]: C ^D;� ` e : � 9D �� 62 fv(C) [ fv(�)C;� ` e : 8��:D ) � (8 Intro-2)Strong satis�ability check[Smi91]: C ^D;� ` e : � C ` [��=��]D �� 62 fv(C) [ fv(�)C;� ` e : 8��:D ) � (8 Intro-3)Duplication[EST95b]: C ^D;� ` e : � �� 62 fv(C) [ fv(�)C ^D;� ` e : 8��:D ) � (8 Intro-4)FIG. 1. Versions of the quanti�er introduction ruletems. Even though these details matter for each partic-ular type system, we have to abstract from them herein order to concentrate on general principles. We nowdiscuss each of the four schemes in turn.In his work in quali�ed types [Jon92], Jones usesa general framework for type quali�cation with a ruleequivalent to rule (8 Intro-1). Any constraint can beshifted from the assumption on the left to the typescheme on the right of the turnstile; it is not checkedwhether the traded constraint is satis�able. This mightlead to programs that are well-typed as a whole, eventhough some parts have unsatis�able constraints.To give an example, assume that our constraintsare subtyping constraints (�) in a type system withclasses and a subtyping relation determined by pro-grammer declarations. Let us assume that there is aparametrized class List� which is a subtype of typeComparable (List�), where Comparable is declared asfollows:type Comparable � = fless : � ! BoolgLet us further assume that there is a value Nil of type8�:true ) List� that represents the empty list. Con-sider the following (nonsensical) program.Example 1.letf: 8�:(List� � Comparable�)) List�! List�f x = if x.less(true) then x else Nilin 1We use a Haskell-style notation, adding type anno-tations for illustration purposes. Using rule (8 Intro-1), the program in Figure 1 is well-typed, even thoughwe would not expect the constraint in function f's typescheme to have a solution, since the function type List�would not be a subtype of ComparableBool.In the ideal semantics of types [MPS86], which rep-resents universal quanti�cation by intersection, f 's typewould be an empty intersection, which is equal to the

whole type universe including the error element wrong.However, the whole program in Figure 1 is still soundbecause every application of f must provide a valid in-stantiation of the constraint. Since the constraint is un-satis�able, no application is possible. In essence, Jonestreats constraints as proof obligations that have to beful�lled by presenting \evidence" at the instantiationsite. This scheme is clearly inspired by Haskell's imple-mentation of overloading by dictionary passing. It runsinto problems if one ever wants to compute a value of aconstrained type without any instantiation sites, as inthe following slight variation of Example 1.Example 2.let y: 8�:(List� � Comparable�)) Booly = Nil.less(true)in 1Jones excludes this code on the grounds that y's typeis ambiguous, but it is unclear how to generalize thisrestriction to arbitrary constraint systems.Nevertheless, it is possible to integrate Jones' ap-proach into our HM(X) framework, thus giving it a se-mantic basis independent of dictionary passing. Theessential idea is that we have to restrict ourselves toconstraint systems in which projections of solved con-straints are trivial, i.e `e 9�:C, for all constraints Cthat can appear on the left hand side of the turnstile,and for all type variables � 2 fv(C). In this case, ourrule (8 Intro) simpli�es to (8 Intro-1).Note that trivial projections correspond well toHaskell's \open world" assumption, which says that therange of possible instance types for an overloaded oper-ation is not �xed in advance. Therefore, we can neverrule out that a given constraint which still has free vari-ables might have a solution. A formalization of thisprinciple using a \bottom type" [OWW95] makes it pos-sible to de�ne a compositional semantics for Haskell{style overloading.THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 3



In the type system of Aiken/Wimmers [AW93], mov-ing a constraint from the left hand side of the turnstileto the right-hand side is allowed only if the constraint issatis�able (i.e. has a solution). Hence, none of the pre-vious examples would be typable with rule (8 Intro-2),which they use. However, this example is typable.Example 3.let f: 8�:� ! Intf x =let y: 8�:(List� � Comparable�)) Booly = Nil.less(x)in 1in f trueThe constraint List� � Comparable� has a solution,namely � = List�. Therefore, using rule (8 Intro-2) wecan generalize y's type to8�:(List� � Comparable�):Bool:On the other hand, if we substitute the actual parame-ter true in f's de�nition, we get again Example 1 whichis not typable under the system with (8 Intro-2). Hence,the system with (8 Intro-2) does not enjoy the propertyof subject reduction, which says that if a term is ty-pable then its reduction instances are typable as well.In a later version, they use rule (8 Intro-4) instead.Where Aiken and Wimmers require only a weak formof satis�ability for traded constraints, G. Smith requiresa strong one [Smi91]. In rule (8 Intro-3), the traded con-straint D must be solvable by instantiation of only thequanti�ed variables ��. Hence, all three previous exam-ples would be untypable under his system. However, (8Intro-3) rule seems overly restrictive, depending on theconstraint system used. For instance, let's assume thatComparable has precisely two instances:Int � Comparable IntChar � Comparable CharNow consider the following program:Example 4.let f: 8�:� ! Intf x =let g y = y.less(x)in 1in 1When typing the de�nition of g, Smith's system requiresa solution of the constraint � � Comparable � , where �is y's type. Two solutions exist: � = Int or � = Char,and there is no best type for y that improves on bothsolutions.The system of the Hopkins Objects Group [EST95b]di�ers from the previous three systems in that in rule(8 Intro-4) the constraint D is copied instead of moved;there are no restrictions on when the copying can take

place. Under this scheme, the �rst three exampleswould be rejected and the fourth one would be accepted,which corresponds fairly well to our intuition. At thesame time, rule (8 Intro-4) seems strange in that its con-clusion contains two copies of the constraint D, one inwhich the type variables � are bound and one in whichthey are free. Actually, the Hopkins Objects Groupuses a slightly di�erent system in which generalizationis coupled with the let rule and one of the two con-straints undergoes a variable renaming. HM(X) canbe seen as the proper logical formulation of their morealgorithmically{formulated type system. Furthermore,instead of dealing exclusively with subtype constraints,we admit arbitrary constraint systems.3. Constraint systemsWe present a characterization of constraint sys-tems along the lines of Henkin [HMT71] andSaraswat [Sar93]. Building on the standard notions ofsimple and cylindric constraint systems we introduceterm constraint systems as constraint systems whichhave a well-behaved notion of substitution. These con-straint systems will be the parameter which allows ourframework to be customized to di�erent application do-mains.We start with the de�nition of a simple constraintsystem.De�nition. A simple constraint system is a structure(
; `e ) where 
 is a non{empty set of tokens or (prim-itive) constraints. We also refer to such constraints aspredicates. The relation `e� p
�
 is an entailmentrelation where p
 is the set of �nite subsets of 
. Wecall C 2 p
 a constraint set or simply a constraint.A constraint system (
; `e ) must satisfy for all con-straints C;D 2 p
:C1 C `e P whenever P 2 C andC2 C `e Q wheneverC `e P for all P 2 D and D `e QWe extend `e to be a relation on p
�p
 by: C `e Di� C `e P for every P 2 D. Furthermore, we de�neC =e D i� C `e D and D `e C. The term `e C isan abbreviation for ; `e C and true = fP j ; `e Pgrepresents the true element.We give an example how to generate a simple con-straint system based on a �rst{order language L.Example 5. For any �rst{order language L, andcountably in�nite set of variables Var, take 
 to be anarbitrary subset of open (L, Var){formulas, and `e tobe the entailment relation with respect to some class �of L{structures. That is, fP1; : : : ; Png `e Q i� for ev-ery structureM 2 �, an M{valuation realizes Q when-ever it realizes each of P1; : : : ; Pn. Such a (
; `e ) is a4 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)



simple constraint system.We now extend a simple constraint system with aprojection operator 9��. This leads to a cylindric con-straint system.De�nition. A cylindric constraint system is a struc-ture CS = (
; `e ;Var; f9� j� 2 Varg) such that:� (
; `e ) is a simple constraint system,� Var is an in�nite set of variables,� For each variable � 2 Var, 9� : p
! p
is an operation satisfying:E1 C `e 9�:CE2 C `e D implies 9�:C `e 9�:DE3 9�:(C ^ 9�:D) =e (9�:C) ^ (9�:D)E4 9�:9�:C =e 9�:9�:CRemark. For simplicity, we omit set notation forconstraints, and connect constraints by ^ instead of theunion operator [. Also, we generally do not enclosesimple constraints P in opening and closing braces. Forinstance, P ^ Q is an abbreviation for fPg [ fQg. Weassume that ^ binds tighter than 9��. For instance,9��:C ^D stands for 9��:(C ^D). We write C =e D i�C `e D and D `e C.Example 6. Let the token set 
 consist of some sub-class of (L,Var) formulas closed under existential quan-ti�cation of �nite conjunctions. Each operator 9�� isthen interpreted by the function which maps each �-nite set fP1; : : : ; Png of tokens to the set of tokensf9��:P1 ^ : : : ^ Png. It is easy to see that the four con-ditions above are satis�ed.The projection operator 9�� allows us to bind vari-ables �� in a constraint. That means we can project awayinformation. If the constraint system models a booleanalgebra, projection corresponds to existential quanti�-cation. Based on the projection operator we de�ne thefree variables fv(C) and satis�ability of a constraint C.De�nition. Let C be a constraint. Then fv(C) =f� j 9�:C 6=e Cg.De�nition. Let C be a constraint. Then C is satis-�able i� `e 9fv(C):C.The next lemma states an important property aboutthe projection operator. Projection of a constraint doesnot in
uence the satis�ability of the constraint.Lemma 1. Let C be a constraint. Then C is satis�ablei� 9�:C is satis�able.The �nal step in our modeling of constraint systemsis the extension from cylindric constraint systems toterm constraint systems. We assume a term algebraT with signature � = (Var, Cons) as given. Var is aset of variables and Cons is a set of type constructors

containing at least the function constructor! of arity 2.In examples below we will sometimes use a multi-sortedalgebra, in which terms and constructors are partitionedinto sorts. Always present will be the sort of types whichis ranged over by � .De�nition. A substitution � is an idempotent map-ping from the set of variables Var to the term algebraTerm(�) which is the identity everywhere except on a�nite set of variables.De�nition. A term constraint system T CST =(
; `e ;Var; f9� j� 2 Varg) over a term algebra T is acylindric constraint system with predicates of the formp(�1; : : : ; �n) (�i 2 T )such that the following holds:� For each pair of types �; � 0 there is an equalitypredicate (� = � 0) in T CST , which satis�es:D1 `e (� = �)D2 (� = �) `e (� = �)D3 (� = �) ^ (� = 
) `e (� = 
)D4 (� = �) ^ 9�:(C ^ (� = �)) `e CD5 (� = � 0) `e (T [� ] = T [� 0])where T [] is an arbitrary term context� For each predicate P ,D6 [�=�]P =e 9�:(P ^ (� = �))where � 62 fv(�)Remark. Conditions D1 { D4 are the conditionsimposed on a cylindric constraint system with diago-nal elements, which is usually taken as the foundationof constraint programming languages. D4 says thatequals can be substituted for equals; it is in e�ect theLeibniz principle. D5 states that (=) is a congruence.D6 connects the syntactic operation of a substitutionover predicates with the semantic concepts of projec-tion and equality. Substitution is extended to arbitraryconstraints in the canonical way:[�=�](P1 ^ : : : ^ Pn) = [�=�]P1 ^ : : : ^ [�=�]Pn:Here are some basic lemmas which hold in term con-straint systems.Lemma 2 Renaming. Let C be a constraint and �a new type variable. Then 9�:C =e 9�:[�=�]C.Lemma 3 Normal Form. Let C be a constraint and� = [��=��] be a substitution. Then �C =e 9��:C^ (�1 =�1) ^ : : : ^ (�n = �n).In the above lemma it is essential that substitutionsare idempotent mappings. In the case of substitution �this ensures that none of the type variables �� appearsin the types �� .Lemma 4 Substitution. Let C;D be constraintssuch that C `e D and � be a substitution. Then�C `e �D.THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 5



We now discuss several instances of term constraintsystems. Section 7 will present a more elaborate exam-ple of a term constraint system that deals with records.Example 7. For any term algebra T let HERBRAND =(
; `e ;Var; f9� j� 2 Varg) be the minimal term con-straint system where 
 contains only primitive con-straints of the form (� = � 0) where � and � 0 are typesfrom T . Equality in HERBRAND is syntactic, i.e. Tis a free algebra. Entailment between two constraints Cand D can be checked by the matching algorithm. Forexample, (f(x; y) = f(a; g(b; c))) must entail (x = a)and (y = g(b; c)). Satis�ability can be checked by (�rst{order) uni�cation.A more re�ned example of a term constraint sys-tem deals with physical dimension types in the style ofKennedy [Ken96]:Example 8. Let T be the two-sorted term algebra con-sisting of dimensions and types.Dimensions d ::� � j i(d) j prod(d; d) j 1 jm j sTypes � ::= � j dim(d) j � ! �The dimension constructor i(�) corresponds to the in-verse of a dimension and prod(�; �) to the product oftwo dimensions. Dimension constants are 1 for theunit measure, m for meters and s for seconds. Theremight be other dimension constructors besides the men-tioned ones. A type is either a type variable, or a di-mension, or a function type. DIM is then the termconstraint system which obeys the following additionalconditions, which specify that dimension types form anabelian group.DIM1 `e (prod(�; �) = prod(�; �))DIM2 `e (prod(�; prod(�; 
)) = prod(prod(�; �); 
))DIM3 `e (prod(�; 1) = �)DIM4 `e (prod(�; i(�)) = 1)As our �nal example, we consider an extension of aterm constraint system with subtyping.Example 9. A subtype constraint system over a termalgebra T is a term constraint system with a subtypepredicate (� <: � 0) for each pair of types � and � 0 whichsatis�es the following conditions.SUB1 (� = �0) =e (� <: �0) ^ (�0 <: �)SUB2 D `e (�01 <: �1) D `e (�2 <: �02)D `e (�1 ! �2 <: �01 ! �02)SUB3 D `e (�1 <: �2) D `e (�2 <: �3)D `e (�1 <: �3)Let SC be a subtype constraint system with primitivetypes Int and Float and record types of the form fl1 :�1; : : : ; ln : �ng. Records are modeled by admitting con-

structors of the forml1 : : : ln : �1 ! : : :! �n ! fl1 : �1; : : : ; ln : �ngin the term algebra. We assume that record �elds areordered with respect to a given ordering relation on �eldlabels. The additional types obey the following rules.SUB4 `e (Int <: Float)SUB5 `e (fl1 : �1; : : : ; ln : �n; : : :g <: fl1 : �1; : : : ; ln : �ng)SUB6 D `e (�1 <: � 01) : : : D `e (�n <: � 0n)D `e (fl1 : �1; : : : ; ln : �ng <: fl1 : � 01; : : : ; ln : � 0ng)4. The HM(X) frameworkThis section describes a general extension HM(X) ofthe Hindley/Milner type system with a term constraintsystem X over a term algebra T .Our development is similar to the original presen-tation [DM82]. We work with the following syntacticdomains.Values v ::= x j�x:eExpressions e ::= v j e e j let x = e in eTypes � ::= � j � ! � jT ��Type schemes � ::= � j 8�:C ) �We consider only one{sorted algebras here, but itis straightforward to extend the treatment to multi{sorted algebras. This formulation generalizes the onein [DM82] in two respects. First, types are now mem-bers of an arbitrary term algebra, hence there might beother constructors besides!. In the above de�nition Tstands for additional type constructors which vary de-pending on a speci�c HM(X) instance. We have alreadyseen examples where T has been instantiated to dimen-sion and record types. Second, type schemes 8�:C ) �now include a constraint component C, which restrictsthe types that can be substituted for the type variable�. We require that the constraint C has to be satis-�able. On the other hand, the language of terms isexactly as in [DM82]. That is, we assume that any lan-guage constructs that make use of type constraints areexpressible as prede�ned values, whose names and typesare recorded in the initial type environment.The typing rules of our system can be found in Fig-ure 2. Typing judgments are of the form C;� ` e : �where C is a satis�able constraint in X, � a type en-vironment and � a type scheme. A typing judgment isvalid if it can be derived by application of the typingrules and its constraint component is satis�able.Quite often we restrict the set of constraints C thatcan appear in type schemes and on the left hand sideof the turnstile to so called solved forms. The set of6 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)



(Var) C;� ` x : � (x : � 2 �)(Sub) C;� ` e : � C `e (� � � 0)C;� ` e : � 0(Abs) C;�x:x : � ` e : � 0C;�x ` �x:e : � ! � 0(App) C;� ` e1 : �1 ! �2 C;� ` e2 : �1C;� ` e1e2 : �2(Let) C;�x ` e : � C;�x:x : � ` e0 : � 0C;�x ` let x = e in e0 : � 0(8 Intro) C ^D;� ` e : � �� 62 fv(C) [ fv(�)C ^ 9��:D;� ` e : 8��:D ) �(8 Elim) C;� ` e : 8��:D ) � 0 C `e [��=��]DC;� ` e : [��=��]� 0FIG. 2. Logical type systemsolved forms, denoted by S, is always a subset of thesatis�able constraints in X.The most interesting rules in Figure 2 are the(8 Intro) rule and the (8 Elim) rule. By rule (8 Intro)we quantify some type variables. We often use vec-tor notation for type variables in type schemes. Theterm 8��:D ) � is an abbreviation for 8�1:true ): : :8�n:D ) � and 9��:D is an abbreviation for9�1: : : : 9�n:D.Unlike in standard treatments of Hindley/Milnerstyle systems we also have a subsumption rule (Sub),which allows us to derive term e with type � 0 if we canderive term e with type � and type � subsumes type � 0.The subsumption relation � is determined by the con-straint system X, and is assumed to satisfy the standardaxioms for a partial ordering plus the contra-variancerule:REFL (� = �0) `e (� � �0) ^ (�0 � �)ASYM (� � �0) ^ (�0 � �) `e (� = �0)TRANS D `e (�1 � �2) D `e (�2 � �3)D `e (�1 � �3)CONTRA D `e (�01 � �1) D `e (�2 � �02)D `e (�1 ! �2 � �01 ! �02)Except for these conditions, the choice of � is arbitrary.

Example 10. The Hindley/Milner system is an in-stance of our type system framework. Take X to be theHerbrand constraint system over the algebra of types � .Take the set of solved forms to be the set consistingonly of true, which is represented by the empty tokenset. Take � to be syntactic type equality. Then theonly type schemes arising in proof trees of valid typingjudgments are of the form 8�:fg ) �, which we equatewith Hindley/Milner type schemes 8�:�. The subsump-tion rule becomes the trivial tautology which states thata judgment can be derived if it can be derived. It is easyto convince oneself that a judgment � ` e : � is deriv-able in Hindley/Milner if and only if fg;� ` e : � isderivable in HM(HERBRAND).Example 11. Let X be the constraint system DIM, letthe set of solved forms be the set consisting only of true,and let subsumption � be the equality relation = inDIM. Then Kennedy's system can be recovered sim-ply by adding primitives to the initial type environment�0 that deal with dimensions. E.g. we assume thatdiv : 8d1; d2: dim(d1)! dim(d2)! dim(prod(d1; i(d2)))is contained in �0. Other basic connectives are treatedanalogously.Example 12. Let X be the subtype constraint systemSC and let the subsumption relation � be equal to thesubtyping relation <:. Let the set of solved forms Sbe all satis�able constraints in SC. For every recordfl1 : �1; : : : ; ln : �ng in a program we add a datatypeTHEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 7



constructorl1 : : : ln : �1 ! : : :! �n ! fl1 : �1; : : : ; ln : �ngand for every �eld label l we add a function.l : fl : �g ! �to the initial type environment �0. The �rst correspondsto record creation, the second to record selection. Otherbasic primitive functions are de�ned analogously.The resulting system is related to the subtyping ap-proach of the Hopkins Object Group [EST95b]. Themain di�erence is that we use logical rules for quanti�erintroduction and elimination where they use a syntacticapproach where quanti�er introduction is coupled withlet and quanti�er elimination is coupled with variableuse. Another important di�erence is that their systemalso includes recursive types. Recursive types are be-yond the scope of this paper, so we cannot deal with theirsystem in its full generality. We can however deal witheither a variant of their system without recursive types,or with a system of recursive records that are given asinstances of explicitly declared classes, similar to thedatatype constructions in functional languages or theclass and interface system of Java [GLS96].Further applications with non-trivial constraint sys-tems include overloading [Jon92, Kae92, VHJW96,NP93, CHO92, OWW95, BM97], record calculi [R�em89,Wan89], and static program analysis techniques such asbinding time analysis [DHM95]. As an extended exam-ple we will present in Section 7 a record calculus similarto Ohori's [Oho95].5. SemanticsWe give a type soundness theorem based on an idealsemantics [MPS86] for HM(X) type systems. We showthat our type system is sound, provided the underlyingconstraint system is sound and the subsumption predi-cate (�) satis�es a coherence property. We say a con-straint system is sound if every satis�able constraint hasa monotype solution. Coherence of a constraint systemmeans that if a type � subsumes a type � 0, then thedenotation of � in the ideal model is a subset of thedenotation of � 0.De�nition. A monotype is a type � with fv(�) = ;.We let � range over monotypes.De�nition. A constraint system X is sound if for alltype variables � and constraints C 2 S, if `e 9�:C thenthere is a monotype � such that `e 9�:(� = �) ^ C.The soundness proof is based on an ideal semanticsof types which is a direct extension of the semantics in[Mil78].

The meaning of a term is a value in the CPO V ,where V contains all continuous functions from V to Vand an error element W, usually pronounced \wrong".Depending on the concrete type system used, V mightcontain other elements as well. We require that thevalues of additional type constructors are representablein the CPO V . Then V is the least solution of theequationV = W? + V ! V + Pk2K (k V1 : : :Varity(k))?where K is the set of values of an additional type con-structor T .The meaning function on terms is the same as in theoriginal semantics of Hindley/Milner terms. That is,we assume that any language constructs that make useof type constraints are expressible as prede�ned values,whose names and types are recorded in the initial typeenvironment.[[x]]� = �(x)[[�u:e]]� = �v:[[e]]�[u := v][[e e0]]� = if [[e]]� 2 V ! V ^ [[e0]]� 6=Wthen ([[e]]�) ([[e0]]�)elseW[[letx = e in e0]]� = if [[e]]� 6=Wthen [[e0]]�[x := [[e]]�]elseWWe will show in the following that the meaning of awell-typed program is always di�erent from \wrong".As a �rst step, we give a meaning to types. Fol-lowing [Mil78], we let types denote ideals, i.e. non{empty, downward-closed and limit-closed subsets of V .The meaning function [[�]] maps closed types and typeschemes to ideals. On function types and type schemesit is de�ned as follows:[[�1 ! �2]] =ff 2 V ! V j v 2 [[�1]]) f v 2 [[�2]]g[[T �1 : : : �m]] =f?g [Sfk [[�01]] : : : [[�0n]] jtrue;�0 ` k : �01 ! : : :! �0n ! T �1 : : : �mg[[8��:C ) � ]] =Tf[[[��=��]� ]] j `e [��=��]CgWe are now in the position to de�ne coherence of thesubsumption predicate (�).De�nition. The constraint system X is coherent iffor all monotypes � and �0, if `e (� � �0) then [[�]] �[[�0]].Lemma 5. Let � be a closed type scheme. Then [[�]]is an ideal.Proof. A straightforward induction on the struc-ture of �.8 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)



Furthermore, we conclude that in a sound constraintsystem the error element is not contained in a closedtype scheme.Lemma 6. Given a sound constraint system X and aclosed type scheme �. Then W 62 [[�]].Proof. This is true for all monotypes �. Considernow a type scheme � = (8��:C ) �). Because � isclosed we get `e 9��:C (remember that all constraintsthat appear in the typing judgments of a derivation needto be least satis�able). Also, C is sound, thus there isa monotype vector �� such that `e [��=��]C. Hence, thedenotation of [[�]] is not an empty intersection. W is notcontained in the denotation of any monotype [��=��]�� .Thus W is not contained in [[�]].De�nition. A variable environment � models aclosed typing environment �, written � j= �, if for allx : � 2 �, �(x) 2 [[�]].Theorem 7 Type Soundness. Let C;� ` e : � bea valid typing judgment in HM(X), where X is a soundand coherent constraint system. Let � be a substitutionsuch that �� and �� are closed and such that `e �C.Let � be a variable environment such that � j= ��. Then(1) W 62 [[��]](2) [[e]]� 2 [[��]]Proof. (1) follows immediately from Lemma 6.We prove now (2) by a structural induction on typingderivations. There are three interesting cases.Case (Var) The last step of the derivation is:C;� ` x : � (x : � 2 �)Therefore x : �� 2 ��. Since � j= ��, [[x]]� = �(x) 2[[��]].Case (8 Intro) The last step of the derivation is:C ^D;� ` e : � �� 62 fv(C) [ fv(�)C ^ 9��:D;� ` e : 8��:D ) �Let � be such that �� and �(8��:D ) �) are closed andsuch that `e �(C ^ 9��:D). Furthermore, we assumethere are no name clashes between � and ��. Let �� bean arbitrary vector of monotypes such that`e 9��:((�� = ��) ^ �D)Since C is sound there is at least one such vector ��. Let�0 = [��=��] � �. Then since �� 62 fv(C), �0(C ^ D) =�C ^ �0D, which expands to �C ^ 9��:((�� = ��) ^ �D).By our assumption this constraint is valid. Further-more, �0� and �0� are both closed. By the inductionhypothesis, [[e]]� 2 [[�0� ]]. Since �� was arbitrary suchthat `e [��=��](�D),[[e]]� 2 Tf[[[��=��](��)]] j `e [��=��](�D)g= [[�(8��:D ) �)]]:

Case (Sub) The last step of the derivation is:C;� ` e : � C `e (� � � 0)C;� ` e : � 0We know that there is a substitution � such that �� and�� 0 are closed and such that `e �C. It follows that `e(�� � �� 0). It might be the case that �� still containssome free variables. We can extend � to a substitution�0 such that �0� is closed. Because �0 is an extension of� we get that �0� is closed and `e �0C. Applying theinduction hypothesis, we get that [[e]]� 2 [[�0� ]]. BecauseX is coherent we know that [[�0� ]] � [[�0� 0]]. Because �� 0is a closed type and �0 extends � we get that [[�0� 0]] =[[�� 0]] and this yields [[e]]� 2 [[�� 0]].The type soundness theorem can be simpli�ed totop{level programs. As a corollary, we �nd Milner'sslogan \well types programs do not go wrong" carriesover to sound constraint extensions.Corollary. Let X be a sound and coherent constraintsystem. Let true;� ` e : � be a valid closed typingjudgment in HM(X). If � j= � then [[e]]� 6=W.Proof. Immediate from (1) and (2) of Theo-rem 7.We �nd that HM(HERBRAND), HM(DIM) andHM(SC) satisfy the requirements. Hence, these applica-tions are sound with respect to the provided semantics.6. Type inferenceWe now turn to the problem of type inference inHM(X) type systems. We follow the standard approachof translating a typing problem into a constraint prob-lem. Then a typing problem is solvable if the constraintproblem is solvable. The solution of a constraint prob-lem is a constraint in solved form in S . If no solutionexists then the typing problem is not solvable. For in-stance, consider a function application e1e2 where e1has inferred type �1 and e2 has inferred type �2. Tosolve the typing problem e1e2 we need to solve the con-straint (�1 � �2 ! �) with the fresh type variable �corresponding to the yet unspeci�ed result type of theapplication e1e2.For the moment, we take a closer look at two speci�ctyping situations. In HM(SC) the subsumption predi-cate � corresponds to the subtype predicate <:. Theset S is de�ned as the set of all satis�able constraintsin SC. Then solving a constraint problem means sim-ply checking whether the constraint is satis�able or not.In another example we considered the Hindley/Milnersystem as an instance HM(HERBRAND) of the HM(X)THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 9



framework. Here, the subsumption predicate � corre-sponds to the type equality predicate = and S is theset consisting of just true. In this case solving a con-straint problem requires more than just a satis�abilitytest. We additionally have to discard all equality prob-lems, which can be achieved by Herbrand uni�cation.We can observe that type inference consists of twophases: constraint generation and constraint solving.Constraint generation is always the same for all HM(X)type systems. We simply generate constraints of theform (� � � 0). But the kind of constraint solving mightdi�er in di�erent typing situations. Depending on thestructure of the set S of solved forms we have to ap-ply di�erent methods to obtain a constraint in solvedform. The least requirement which we put on S is thatthe constraints in S are satis�able. Hence, solving ofa constraint problem requires at least a satis�abilitytest. But our constraint systems and the structure ofthe set S can be arbitrary complex. Therefore, solvingof constraint problems might involve more sophisticatedmethods than e.g. a satis�ability test or Herbrand uni-�cation. In the latter, we refer to solving of constraintproblems as constraint normalization or normalizationfor short. In the next section we give a formal treat-ment of normalization in a constraint system X. Then,we give a generic type inference algorithm for HM(X)type systems and state our main results, namely thattype inference is sound, and under su�cient conditionson X also complete.6.1 NormalizationIn this section we study normalization of constraints.Before giving an axiomatic description of normalization,we �rst introduce some preliminary de�nitions.Preliminaries: Let �jU be the restriction of thesubstitution � to the domain U . That is, �jU (x) = �(x)if x 2 U and �jU (x) = x otherwise. For substitutions� and  we write  =U � i� `e ( (x) = �(x)) for allx 2 U . We write  ��0U � i� �0 �  =U �. We write �U � if 9�0 :  ��0 �. Sometimes, we omit the setU .Note that this makes the \more general" substitutionthe smaller element in the pre{order �U . This choice,which reverses the usual convention in treatments ofuni�cation (e.g. [LMM87]), was made to stay in linewith the semantic notion of type instances.We make �U a partial order by identifying substitu-tions that are equal up to variable renaming, or equiv-alently, by de�ning  =U � i�  �U � and � �U  .It follows from [LMM87] that �U is a complete lowersemi{lattice where least upper bounds, if they exist,correspond to uni�cations and greatest lower boundscorrespond to anti{uni�cations.

We consider now the task of normalization. Gener-ally, a typing problem is translated into a constraint Cin the term constraint system C and a substitution  .We will refer to the pair (C; ) as a constraint prob-lem. Normalization means then computation of a nor-mal form of a constraint problem (C; ).De�nition. Let X be a term constraint system overa term algebra T and S be the set of solved constraintsin X. Let C 2 S and D 2 X be constraints and let �, be substitutions. Then (C; ) is a normal form of (D;�)i� � �  , C `e  D and  C = C.(C; ) is principal if for all normal forms (C 0;  0) of(D;�) we have that  �  0 and C 0 `e  0C.The principal normal form represents the best solu-tion of a constraint problem. As an example considerthe constraint system HERBRAND. There, a principalnormal form corresponds to a most general uni�er anda normal form corresponds to a uni�er of a constraintproblem.The next lemma states that all principal normalforms are unique up to variable renaming.Lemma 8 Uniqueness. Let (C; ) and (C 0;  0) beprincipal normal forms of (D;�). Then there is a vari-able renaming �0 such that C 0 =e �0C and  0 = �0 � .We identify two normal forms that are equivalent upto variable renaming. We can thus de�ne a well{de�nedfunction normalize from constraint problems (D;�) tonormal forms as follows:normalize(D;�)= (C; ) if (C; ) principal normal form of (D;�)= fail otherwiseWe now extend the property of having a principal nor-mal form to constraint systems.De�nition. Given a constraint system X over a termalgebra T and a set of solved constraints S in X. Theconstraint system X has the principal constraint prop-erty if for every constraint D 2 X and substitution �,either (D;�) does not have a normal form or (D;�) hasa principal normal form.We also say that the HM(X) type system has theprincipal constraint property if X has the principal con-straint property.In Section 7 we discuss in detail a type systemfor Ohori-style records that satis�es the principal con-straint property. This example belongs to a class of con-straint systems where constraint solving involves someform of uni�cation. Further examples of constraint sys-tems of this kind are HERBRAND and DIM. We canapply similar techniques as those introduced in Sec-tion 7 to show that HERBRAND and DIM satisfy theprincipal constraint property.The situation is di�erent for the constraint sys-tem SC. There, the set S of solved forms consists of10 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)



(Var) x : (8��:D ) �) 2 � �� new(C; ) = normalize(D; [ ��=��]) jfv(�); C;� `W x :  �(Abs)  ;C;�x:x : � `W e : � � new nf�g; C;�x `W �x:e :  (�)! �(App)  1; C1;� `W e1 : �1  2; C2;� `W e2 : �2 0 =  1 t  2D = C1 ^ C2 ^ (�1 � �2 ! �) � new(C; ) = normalize(D; 0) jfv(�); C;� `W e1e2 :  (�)(Let)  1; C1;�x `W e : � (C2; �) = gen(C1;  1�; �) 2; C3;�x:x : � `W e0 : � 0 0 =  1 t  2 D = C2 ^ C3(C; ) = normalize(D; 0) jfv(�x); C;�x `W let x = e in e0 :  � 0FIG. 3. Type inferenceall satis�able constraints. Given a constraint problem(D;�) we distinguish between two cases. If �D is un-satis�able then (D;�) does not have a normal form. As-sume �D is satis�able then (�D; id) is the principal nor-mal form of (D;�). Given another normal form (D0; �0)of (D;�). Then it holds that � � �0 and D0 `e �0D.But then it follows immediately that (�D; id) is princi-pal. We conclude that the constraint system SC satis�esthe principal constraint property, and that a normalizefunction can be de�ned as follows:normalize(C; �)= (�C; id) if�C is satis�able= fail otherwiseThe normalization function is computable since satis-�ability in SC is decidable. This follows easily by adapt-ing techniques developed in [TS96].6.2 Type inference algorithmWe now connect the principal constraint property ofa constraint system with the principal types propertyof a type system. Figure 3 gives a generic type in-ference algorithm that computes principal types if theconstraint system satis�es the principal constraint prop-erty. The algorithm is formulated as a deduction systemover clauses of the form  ;C;� `W e : � with type en-vironment �, expression e as input values and substitu-tion  , constraint C, type � as output values. For eachsyntactic construct of expressions e we have one clause.

The deduction rules can be interpreted operationally, asa logic program that constructs a bottom{up derivationof `W clauses.In the (Var) rule, we assume that an unquali�ed type� can be represented as 8;:true) � . This avoids a sep-arate case of this rule for unquali�ed types. Note that(Var) makes use of the function normalize, speci�ed inthe last subsection. Our deduction rules yield an algo-rithm only if normalize is computable. In the following,we assume that we are dealing only with computablenormalization functions.The type inference algorithm `W is a straightfor-ward extension of algorithm W, see [DM82]. The algo-rithm `W consists of the following three basic compo-nents: constraint generation, constraint normalizationand generalization of unbound type variables. All threecomponents can already be found in the original algo-rithmW but are now extended to deal with constraints.We already discussed constraint generation and normal-ization. The generalization procedure for our algorithmis left underspeci�ed; we only require that it satis�es:gen(C;�; �) = (D ^ 9��:C 0;8��:C 0 ) �)where C is a constraint such that C =e C 0 ^ D,� is a type environment, � is a type scheme, �� =(fv(�)[ fv(C))nfv(�) and fv(D)\ �� = ;. That is, gener-alization splits a constraint into two parts. Generalizedvariables can be free only in one of the two parts, C 0,but not the other, D. Only the C 0 part ends up as aconstraint in the generalized type scheme. Note thatthe above requirement can always be ful�lled by tak-THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 11



ing D to be true. However, depending on the actualconstraint system used there might exist better strate-gies, which keep the constraint in the generalized typescheme smaller.Our type inference algorithm interleaves constraintgeneration and normalization. Each inference rule com-bines the constraint problems of the premises and per-forms then a normalization step. That means we per-form strict normalization during type inference. Inessence, we only need to perform normalization rightbefore a (Let) rule (because the constraint in a typescheme needs to be in normal form) or at the end. Thiscorresponds to lazy normalization. An example of a lazyformulation of type inference for the Hindley/Milnertype system can already be found in [Wan87]. The fol-lowing lemma states that both views are equivalent. Wecan perform normalization in any order and always ob-tain the same result.Lemma 9. Given constraints D;D0 and substitutions�; �0. Then normalize((D;�) t (D0; �0))=normalize(normalize(D;�) t normalize(D0; �0))where the term (D;�)t (D0; �0) stands for (D ^D0; �t�0).6.3 Main resultsTo state our main results concisely, we extend thesubsumption predicate � to type schemes. Subsump-tion on type schemes is de�ned by a deduction systemwith clauses of the form C `i � � �0, which state thatthe type scheme � is more general than the type scheme�0 under the constraint C. The deduction system is de-�ned as follows.(Sub) C `e (� � � 0)C `i � � � 0(� 8) C ^D `i � � �0 � 62 tv(�) [ tv(C)C ^ 9�:D `i � � (8�:D ) �0)(8 �) C `i [�=�]� � �0 C `e [�=�]DC `i (8�:D ) �) � �0The result triple of the type inference algorithm `Wforms a typing con�guration (C; �;  ), which consists ofa constraint C 2 S, a type scheme � and a substitution such that  C = C,  � = � and  is consistent withrespect to �. A substitution � is consistent with respectto a type scheme � = 8��:D ) � if  D 2 S where weassume there are no name clashes between �� and  .This extends naturally to type environments. Giventwo typing con�gurations (C; �;  ), (C 0; �0;  0) we say

(C; �;  ) is more general than (C 0; �0;  0) i�  ��0fv(�)  ,C 0 `e �0C and C 0 `i �0� � �0. In such a situation wewrite (C; �;  ) � (C 0; �0;  ).Lemma 10. Given a type environment � and a term e.If  ;C;� `W e : � then (C; �;  ) is a typing con�gura-tion.Furthermore, this typing con�guration always repre-sents a valid typing of the given term under the giventype environment.Theorem 11 (Soundness of Inference). Given aterm e and a type environment �. If  ;C;� `W e : �then C; � ` e : � ,  C = C and  � = � .A sketch of the proofs of soundness and completenessof type inference can be found in the appendix. For amore detailed discussion we refer to [Sul97].We now discuss completeness of type inference forHM(X) type systems. In general, we always requirethat an HM(X) type system has to ful�ll the principalconstraint property to achieve complete type inference.But as it turns out this is not su�cient. There are ex-amples of non{regular equational theories where uni�-cation is unitary (that means we have most general uni-�ers) but algorithm `W does not infer principal types.An equational theory is regular if `e (� = � 0) impliesfv(�) = fv(� 0). We say a constraint system X is regularif the underlying equational theory is regular. An exam-ple of a non{regular theory is the dimension constraintsystem DIM. We �nd that `e (prod(i(d); d) = 1) butfv(prod(i(d); d)) = fdg 6= ; = fv(1). In Section 6.1we observed that DIM satis�es the principal constraintproperty. But algoritm `W fails to infer principal typesfor the dimension type system HM(DIM). This obser-vation is due to A.J. Kennedy. At the end of this sectionwe give a concrete example where we can see why algo-rithm `W fails.Nevertheless, we can state a completeness theoremfor two large classes of HM(X) type systems. First, weconsider the class of constraint systems X where theset S of solved forms in X contains all satis�able con-straints in X. We denote by X a the set of all those con-straint systems that additionally satisfy the principalconstraint property. In the second class we put furtherrestrictions on the set S of solved forms. We assumethat all constraints in S are in simpli�ed form, whichmeans that all non{trivial equality problems have beenresolved. A constraint C 2 S is in simpli�ed form ifC `e (� = � 0) implies `e (� = � 0). We denote by X rthe set of all regular constraint systems X which satisfythe principal constraint property and for which everysolved form is also a simpli�ed form.An example for a member of X a is the constraintsystem SC. The constraint systems HERBRAND andthe record constraint system introduced in Section 712 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)



are examples for members of X r. But DIM is not in X rbecause DIM is non{regular.To obtain a completeness result for type inference,we assume that we have an HM(X) type system whereX belongs to X a or X r. Furthermore, we consider onlythose typing judgments C;� ` e : � where the typeenvironment and the constraint on the left hand side ofthe turnstile are realizable, i.e. have a type instance. Atype environment � is realizable in a constraint C if forevery x : � 2 � there is a � such that C `i � � � .Now, we present our completeness result. Informallyspeaking, we want to have the following. Given a deriva-tion C 0; �� ` e : �0, our type inference algorithmshould report a constraint that is at least as small asC 0 and a type that is at least as general as �0.Theorem 12 (Completeness of Inference). LetC 0; �� ` e : �0 be a typing judgment such that �� isrealizable in C 0. Then ;C;� `W e : �for some substitution  , constraint C, type � , such thatgen(C; �; �) = (Co; �o)(Co; �o;  ) � (C 0; �0; �)The completeness theorem can be simpli�ed for top{level programs to the following corollary, which statesthat our type inference algorithm computes principaltypes.Corollary. Let true;� ` e : � be a closed typ-ing judgment such that � is realizable in true. Then�;C;� `W e : � for some substitution �, constraint C,such that gen(C; ��; �) = (true; �o)`i �o � �In the case of HM(X) type systems where X in X a wehave formulated the completeness result in more gen-eral terms than actually necessary. In Section 6.1 weobserved that normalization in SC corresponds to a sat-is�ability test. This observation can be generalized toall constraint systems in the class X a. But then we canconclude that type inference always returns the identitysubstitution. Type inference only consists in accumu-lating constraints and checking whether the constraintsare satis�able or not. This holds for the (Var) case.We rename the bound type variables in the constraintand check satis�ability of the renamed constraint. Ifthis constraint is satis�able we return the renamed con-straint. The renaming substitution is equivalent to theidentity substitution on the free type variables of thegiven type environment. We �nd that no substitutionsare introduced in the base case nor through the normal-ization procedure. Then type inference in X a always re-turns the identity substitution. Hence, substitution  

is always the identity substitution in the completenesstheorem for the class X a.In case of HM(X) type systems where X in X r wehave put stronger conditions on the set S of solved con-straints. The set S must now be in simpli�ed form.Therefore, normalization also involves computation ofa residual substitution. The restriction to regular the-ories in case of the class X r is important to establishcomplete type inference as we will see in the followingexample, due to A.J. Kennedy [Ken96].In the dimension type system HM(DIM), de�ne aninitial type environment as follows:� = fkg : dimMs : dimTdiv : 8d1; d2: dim prod(d1; d2)!dim d1 ! dimd2pair : 8t1; t2:t1 ! t2 ! t1 � t2gHere, kg and s are some basic dimensions, pair is thepairing operator and div is a primitive operation on di-mensions. Now consider the following expression:e = �x:let y = div x in pair(y kg)(y s)We want to type e under the type environment �. Thesubexpression div x has the following type under typeenvironment �:x : dimprod(d1; d2) :�:x : dimprod(d1; d2) ` div x : dimd1 ! dim d2Here, it is not possible to quantify over the type vari-ables d1 and d2. But we can derive another type fordiv x under the same type environment:�:x : dimprod(d1; d2)`div x : dimprod(d1; d3)! dimprod(i(d3); d2)We have simply instantiated d1 with prod(d1; d3) andd2 with prod(i(d3); d2). Kennedy calls this the problemof unrevealed polymorphism. Neither of the two typesfor div x is more general than the other, and there isno third type that generalizes both. Hence, algorithm`W fails to infer a principal type for expression e undertype environment �.It is interesting to point out that `W computes prin-cipal types for dimension types if S contains all satis�-able constraints in DIM. Then DIM belongs to X a andfor that class we have a completeness result. The rea-son is that now all uni�cation problems are explicit. Nouni�cation is involved during type inference. Type in-ference performs only a satis�ability test. The problemof unrevealed polymorphism comes into play if normal-ization involves uni�cation in a non{regular theory.7. Polymorphic recordsFollowing ideas of Ohori [Oho95] we give an instanceof our HM(X) system which deals with polymorphicTHEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 13



records. Ohori's system, abbreviated O in the follow-ing, has besides type variables and function types alsorecord types denoted by fl1 : �1; : : : ; ln : �ng, where liis an element of an enumerable set of record labels. Weassume that there is an ordering relation between all�eld labels. All record �elds are ordered with respectto this ordering relation. Because we have a �xed order-ing of record �elds we can apply Herbrand uni�cationfor solving equality constraints between records.Type quanti�cation in O is kinded; in the typescheme 8�:� :: � ) � the type variable � ranges onlyover kind �. A kind is of the form hl1 : �1; : : : ; ln : �ni;it comprises all records that contain at least �eldsl1; : : : ; ln with types �1; : : : ; �n.Instead of a constraint on the left hand side of atyping judgment, Ohori uses a kind assignment K whichcan be considered as a function which assigns each typevariable � its kind k. He writes K ^ (� :: k) for thedisjoint extension of K with a new type variable � withkind k.Here's an example of a program typed in O.Example 13.f: 8�; �:(� :: hl : �i)) � ! Intf x =let g: � ! Boolg = � y. eq y (x.l)in 1We use a Haskell-style notation, with type scheme an-notations added for illustration purposes. The programassumes that there is a functioneq : 8�:�! �! Boolin the initial type environment.7.1 Type systemWe now translate O into the HM(X) framework. Weadd to the initial type environment �0 primitive con-structs that deal with record formation, selection andupdate. For every ordered sequence of record labelsl1; : : : ; ln we postulate an n-ary parameterized datatype Rl1 ::: ln . The record type fl1 : �1; : : : ; ln : �ng isthen represented as Rl1 ::: ln�1 : : : �n. For simplicity wewill keep using the record type notation as a synonymfor the datatype notation. For every record datatypeRl1 ::: ln we have in the initial environment a datatypeconstructorl1 : : : ln : �1 ! : : :! Rl1 ::: ln�1 : : : �nThen, l1 : : : ln e1 : : : en represents record formationfl1 = e1; : : : ; ln = eng. For each �eld label l we addto the initial type environment �0 the two functions.l : 8�; �:(� :: hl : �i)) �! �modifyl : 8�; �:(� :: hl : �i)) �! � ! �

The �rst function corresponds to record selection, thesecond to record update.Kinded quanti�cation in O is modeled by primitiveconstraints of the form (� :: k) where � is a type and kis a kind. Technically, this means we add (� :: k) to theset 
 of primitive constraints where (::) is a primitivepredicate of arity 2. We de�ne REC as the smallest termconstraint system that satis�es the following additionalrules:REC1 `e (fl1 : �1; : : : ln : �ng :: hli : �ii)where l1; : : : ; ln are distinctREC2 (� :: hl : �1i) ^ (� :: hl : �2i) `e (�1 = �2)REC3 (f: : : ; l : �1; : : :g :: hl : �2i) `e (�1 = �2)REC4 9�:(� :: k) =e truewhere � 62 fv(k)Note that these conditions rule out recursive records,since our type algebra does not have recursive types.On the other hand, we do allow recursive constraintsbetween type variables in REC. For instance, the con-straint (� :: hl : �! �i) is well-formed. But that con-straint is not satis�able and therefore cannot appear asa solved form. Also ruled out (by conditions REC2and REC3) is overloading of �eld labels.The set S of solved forms in HM(REC) consists ofall satis�able constraints of the formC ::= fg j (� :: hl : �i) jC ^ C j 9��:Cwhere we take the empty token set as a representationof true. Furthermore, we require that the constraints inS are in simpli�ed form, i.e. C `e (� = � 0) must imply`e (� = � 0). For instance,(� :: hl : �i) ^ (� :: hl : 
 ! 
i)is not in simpli�ed form and is therefore excluded.The type system HM(REC) is as given in Figure 2,with subsumption (�) being modeled by (=). As anexample, here the annotated program from Example 7re-formulated in HM(REC):Example 14.f: 8�:(9�:(� :: hl : �i))) � ! Intf x =let g : 8�:(� :: hl : �i))� ! Boolg = � y. eq y (x.l)in 1In HM(REC) we quantify in the innermost let overtype variable �, leaving just � to be quanti�ed in thetoplevel function f. This is not possible in O, since�'s kind depends on �. The question arises whetherthis makes HM(REC) a more permissive type systemthan O. Speci�cally, are there examples where wecan use function g polymorphically? The answer isno. Every instance of g has to satisfy the constraint14 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)



9�:(� :: hl1 : �i). But � can only have one �eld entrywith label l1. Therefore, we can use g in the let-bodyonly monomorphically. In general, we can observe thatO and HM(REC) type exactly the same programs, butthe types are more precise in HM(REC).Theorem 13 Full and Faithful. Every program ty-pable in O is typable in HM(REC) and vice versa.7.2 Type inferenceWe now consider type inference for HM(REC). SinceREC is a regular constraint system, we can obtain typeinference with principal types, provided it ful�lls theprincipal constraint property. To show the principalconstraint property for REC, we proceed in three steps.First, we show that it is always possible to formulatea constraint as a projection over a projection{free sub-part. A constraint D is projection{free if D (consideredas a set) contains only tokens of the form (� :: k) and(� = � 0). Then we give a procedure which computes theprincipal normal form of projection{free constraints, orfails if no normal form exists. Finally, we show thatit is su�cient to compute principal normal forms ofprojection{free constraints. This is achieved by a liftingmethod. Given an arbitrary constraint C we computethe principal normal form of the projection{free part.Then we lift this result to the projected part. We showthat this lifting method is sound and complete.In a �rst step we transform a constraint into a pro-jection over a projection{free subpart. The idea is thatwe can always rename type variables which are boundby the projection operator. It holds that9�:C =e 9�:[�=�]Cwhere � is a new type variable. That means, w.l.o.g.there are no name clashes between two projected con-straints (9�:C)^(9�:D). Then we can lift all projectionoperators to the outermost level using condition E3 ofa cylindric constraint system:(9�:C) ^ (9�:D) =e 9�:(9�:(C ^D))We can summarize these observations in the followinglemma.Lemma 14. Let C 2 REC. Then there exists aprojection{free constraint D such that C =e 9��:D .In the next step we show how to compute princi-pal normal forms for projection{free constraints. Weassume that we have a projection{free constraint Dwhich contains only primitive predicates of the form(=) and (::). W.l.o.g., we can assume that all predi-cates (::) are of the form (� :: k). This can be achievedbecause we know that(� :: k) =e 9�:((� = �) ^ (� :: k))

where � is a new type variable. The closure Cl(D) ofD is the smallest constraint which ful�lls the followingconditions:1. D � Cl(D)2. If (� = fl1 : �1; : : : ; ln : �ng) 2 Cl(D)then (� :: hl1 : �1i); : : : ; (� :: hln : �ni) 2 Cl(D)3. If (� :: hl : �1i); (� :: hl : �2i) 2 Cl(D)then (�1 = �2) 2 Cl(D)From a semantic view point we have not done any-thing because Cl(D) =e D. We only have changedthe syntactic representation of D. The intention ofbuilding the closure of D is to generate all predicates(� :: hl : � 0i) which might cause any inconsistencies.Given all such predicates we can generate all uni�ca-tion problems (� = � 0) which have to be resolved. Thefollowing lemma states that we really have generated allsuch predicates.Lemma 15. Given a �eld label l and types �; � 0. If6 `e (� :: hl : � 0i) then (� :: hl : � 0i) 2 Cl(D) i� D `e(� :: hl : � 0i). Furthermore, if 6 `e (� = � 0) then (� =� 0) 2 Cl(D) i� D `e (� = � 0).We can apply uni�cation over Herbrand terms [Rob65]to resolve all equality predicates (=) in Cl(D). We ob-tain a most general uni�er � of the equality predicates(=) in Cl(D). It remains to check whether this mostgeneral uni�er � is consistent with Cl(D). This can bedone by checking whether there are any inconsistenciesin �Cl(D). If not, (�Cl(D); �) represents the principalnormal form of (D; id). We can summarize this obser-vation in the following lemma.Lemma 16. Given a projection{free constraint D 2REC and a substitution �. Then (D;�) has a principalnormal form, which can be computed by the proceduredescribed above, or else no normal form exists.It remains to lift this procedure to arbitrary con-straints. First, we state some essential lemmas that arenecessary to establish this lifting method. Then we ap-ply this lifting method to state that REC satis�es theprincipal constraint property.The next lemma gives us a procedure to lift principalnormal forms of constraints to arbitrary constraints. Itstates that whenever we can compute the principal nor-mal form of a constraint D then we get the principalnormal form of the constraint 9�:D for free.Lemma 17. Let D 2 REC and � be a sub-stitution where � 62 codom(�) [ dom(�). If(C; ) = normalize(D;�) then (9�:C;  nf�g) =normalize(9�:D; �).The next lemma states that a normal form of a con-straint exists i� a normal form of the projected con-straint exists.THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 15



Lemma 18. Given a substitution � where � 62codom(�) [ dom(�) and a constraint D 2 REC. Then(D;�) has a normal form i� (9�:D; �) has a normalform.We have now everything at hand to prove that RECsatis�es the principal constraint property. The proof ofthe theorem consists in describing a method how to liftcomputation of principal normal forms for projection{free constraints to arbitrary constraints.Theorem 19. The constraint system REC satis�es theprincipal constraint property.Proof. Given an arbitrary constraint problem(D;�) where D =e 9��:D0 such that D0 is projection{free. We consider two cases.First, assume (D;�) has no normal form. Because ofLemma 18 we know that this holds i� (D0; �) does nothave a normal form either. The latter can be checkedby the normalization procedure for projection{free con-straints.Now, assume (D;�) does have a normal form. Weapply Lemma 18 and �nd that the normal form of(D0; �) exists. By assumption we know how to normal-ize (D0; �). That means (D0; �) does have a principalnormal form and we can compute its principal normalform. With Lemma 17 we can lift the principal nor-mal form of the projection{free constraint problem andobtain the principal normal form of (D;�).We can conclude that REC satis�es the principalconstraint property.8. ConclusionWe have presented a general framework for Hind-ley/Milner style type systems with constraints. An in-novative aspect of the framework is its new formula-tion of the quanti�er introduction rule, which avoidsproblems in previous work. The formulation requiresthe presence of a projection operator 9 on constraints.This requirement was the main motivation to progressfrom a syntactic notion of constraints as sets of for-mulas to a semantic notion of constraints as cylindricalgebras. Cylindric algebras always have a projectionoperator even though the operator need not be presentin syntactic form. Projection is also readily available forthe syntactic constraint systems that have been used intype system literature. A simple way to introduce it isby marking some variables as projected. In fact sucha marking can usually be reconstructed from a typejudgment: simply mark all variables that appear free inneither the �nal type schemes or the �nal type environ-ment as projected.Projection provides an important opportunity forconstraint simpli�cation: It is legal to eliminate vari-ables from constraints as long as these variables are

projected since such an elimination does not change theconstraint's denotation. Simpli�cation in the contextof subtypes has already been studied by Pottier [Pot96]and the Hopkins Object Group [TS96]. We plan toinvestigate in the future how their simpli�cation tech-niques �t into the HM(X) framework.Since our framework also includes a subsumptionrule based on a given subsumption relation in the con-straint system, it can be adapted to a wide variety oftype system instances. For instance, the classical Hind-ley/Milner system falls out by taking subsumption to besyntactic equality in a free algebra, Wand/R�emy stylerecords [R�em89, Wan89] or dimension types [Ken96] fallout by taking some richer notion of equality as sub-sumption, and standard object calculi [EST95a] fall outby identifying the subtyping and the subsumption rela-tions.We could give a type soundness result for sound andcoherent HM(X) type systems based on a standard un-typed denotational semantics. Furthermore, we formu-lated a generic type inference algorithm for HM(X) typesystems. For a large class of constraint systems we couldstate su�cient conditions under which type inferencecomputes principal types. To design a full language orstatic analysis based on our approach, one must sim-ply check that the conditions on the constraint systemare met. If this is the case, one gets a type inferencealgorithm and the principal type property for free.We hope that our results will open the door to a newclass of program analyses for program checking whichcan be tailored to speci�c application domains. Forinstance, it should be possible to add a dimension anal-ysis to an existing programming language after the factand in a modular way, without changing the semanticsof the base language or its compiler. Our type sys-tem framework would then be the basis of a languagetool framework which can be tailored to speci�c analy-sis needs. The construction and investigation of such atool framework remains a topic for future research.ACKNOWLEDGEMENTSWe thank Alex Aiken, Kim Marriott, Harald Sonder-gaard, Phil Wadler and the referees for their valuablecomments.
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Appendix: Proof of Theorem 11 (Soundness)The following two lemmas can both be proven bya straightforward induction on the derivation ` . Wesay a substitution � is consistent with respect to a typescheme � = 8��:D ) � if  D 2 S where we assumethere are no name clashes between �� and  . This ex-tends naturally to type environments. Furthermore, asubstitution � is consistent with respect to a constraintC if �C 2 S .Lemma 1. Given C;� ` e : � and a substitution �such that � is consistent with respect to C and �. Then�C; �� ` e : ��.Lemma 2. Given C;� ` e : � and a constraint D 2 Ssuch that D `e C. Then D;� ` e : �.We restate Theorem 11 in the following lemma.Lemma 3 Soundness of `W . Given a type envi-ronment � and a term e. If  ;C;� `W e : � thenC; � ` e : � ,  C = C and  � = � .Proof. We apply induction on the derivation `W .We only consider one case. The other cases can beproven in a similar style.Case (App) We have the following situation: 1; C1;� `W e1 : �1  2; C2;� `W e2 : �2 0 =  1 t  2D = C1 ^ C2 ^ (�1 � �2 ! �) � new(C; ) = normalize(D; 0) jfv(�); C;� `W e1e2 :  (�)We apply the induction hypothesis to the left and rightpremise and obtainC1;  1� ` e1 : �1  1C1 = C1  1�1 = �1and C2;  2� ` e2 : �2  2C2 = C2  2�2 = �2With Lemma 2 we can conclude thatC; 1� ` e1 : �1 C; 2� ` e2 : �2W.l.o.g. we can assume that all identi�er in � are con-tained in e1 and e2 and not more. This fact and normal-ization ensures that  is consistent in C and �. Thenwe can apply Lemma 1 and obtainC; � ` e1 :  �1 C; � ` e2 :  �2We know that C `e ( �1 �  �2 !  (�)) and apply the(Sub) rule to get C; � ` e :  �2 !  (�). It remainsto apply the (App) rule and we �ndC; � ` e1e2 :  (�)

Appendix: Proof of Theorem 12 (Completeness)We give now a proof sketch for completeness forHM(X) type systems where X 2 X r satis�es the princi-pal constraint property. Some technical lemmas (whichwe will point out) rely on the fact that X is regular. Theproof for X ais similar, but there we only need weakerversions of these technical lemmas which do not relyon the regularity of the constraint system. In order toprove completeness we have to do a little more work.The idea is to introduce two intermediate derivations,and to show that all derivations have the same expres-sive power.First, we introduce some conventions. The general-ization procedure gen takes a constraint C, a type envi-ronment � and a type � and returns the generalized con-straint and type, written gen(C;�; �) = (C 0; �). We usetwo specialized generalization versions: gen1(C;�; �) re-turns only the constraint part and gen2(C;�; �) returnsonly the type scheme part.We introduce some basic lemmas. Most of themare stated without proof. A detailed discussion can befound in [Sul97]. The following two lemmas rely on thefact that we only consider regular theories. We give theproof for one lemma where one can see that X needs tobe a regular theory. The �rst lemma states that we canlift entailment between two constraints to the general-ized constraints.Lemma 1. Given a type context �, constraints C; ~C,types �; � 0 and substitutions �; �0;  such that C `e �0 ~Cand  ��0fv(�) �. Then Co `e �0 ~Co where Co =gen2(C; ��; � 0) and ~Co = gen2( ~C; �; �).Proof. W.l.o.g. we assume Co = 9��:C and~Co = 9��: ~C. We show that �� 62 fv(�0 ~Co). Assume thecontrary. W.l.o.g.�� 62 fv(�) [ fv( ~Co) [ codom(�) (A1)because we can always rename bound variables and dur-ing type inference always new type variables have beenintroduced. That means there is a 
 2 fv( ~Co) such that�� 2 fv(�0(
)). Further it holds that 
 62 fv( �). As-sume 
 2 fv( �) then there is a � 2 fv(�) such that� 2 fv( (
)). We know that �(�) = �0 �  (�) (herewe need the fact that X is regular, both sides of theequation contain the same set of free variables) andthen we �nd �� 2 codom(�) which is a contradictionto A1. We get 
 62 fv( �) and 
 2 fv( ~Co). But this isagain a contradiction because ~Co is a generalized con-straint. Our starting assumption was false and we �ndthat �� 62 fv(�0 ~Co).18 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)



Now, we can conclude that ~C `e ~Co. Then it followsthat �0 ~C `e �0 ~Co. This yields C `e �0 ~Co. Finally, weobtain Co `e 9��:�0 ~Co and because �� 62 fv(�0 ~Co) thatwe means we get Co `e �0 ~Co as desired.Remark. The proof of the previous lemma relies onthe fact that X is regular. For X in X a we only need arestricted version of this lemma. Therefore, we still canachieve complete type inference for X in X a.The next lemma is similar to the previous one, exceptthat it compares types instead of constraints.Lemma 2. Given a type context �, constraints C; ~C,types �; � 0 and substitutions �; �0;  such that C `e�0 ~C, C `i �0� � � 0 and  ��0fv(�) �. Then `i �0~�o ��o where �o = gen1(C; ��; � 0) and ~�o = gen1( ~C; �; �).The next lemma states that we can lift some proper-ties about a constraint and a substitution to the sameconstraint but extended substitution.Lemma 3. Given a set U of variables, constraintsC1; C 0 and substitutions  ;  1;  2; �; �1 such that 1C1 = C1, C 0 `e �01C1,  =  1t 2,  ��0U �,  1 ��01U�, codom( 2)\fv(C1) � U and codom( 1)\fv(C2) � U .Then C 0 `e (�0 �  )C1.The next Lemma is similar to the previous one butit is stated for the `i relation.Lemma 4. Given a set U of variables, a constraintC 0, type schemes ~�; �00 and substitutions  ;  1;  2; �; �1such that  1~� = ~�, C 0 `i �01~� � �00,  =  1 t  2, ��0U �,  1 ��01U �, codom( 2) \ fv(C1) � U andcodom( 1) \ fv(C2) � U . Then C 0 `i (�0 �  )~� � �00.Now, we introduce the intermediate derivations. Weintroduce a derivation `2 which is based on derivation` in �gure 2. Instead of rule (8 Elim) we have thefollowing new rule:(Inst) C;� `2 x : � (x : � 2 � C `i � � �)All other rules stay unchanged. Note, also the (Var)rule is still present in derivation `2 . The idea of deriva-tion `2 is simply to enforce (8 Elim) steps as early aspossible.Next, we consider a syntax directed derivation `d .We also want to get rid of the (8 Intro) rule. This rule iscombined with the (Let) rule. Furthermore, the (Var)

and (Inst) rules are combined in the (Var{Inst) rule.The rules are as follows:(Var{Inst) C;� `d x : � (x : � 2 � C `i � � �)(Abs) C;�x:x : � `d e : � 0C;�x `d �x:e : � ! � 0(App) C;� `d e1 : �1 ! �2 C;� `d e2 : �1C;� `d e1e2 : �2(Sub) C;� `d e : � C `e (� � � 0)C;� `d e : � 0(Let) C;�x `d e : � (C 0; �) = gen(C;�x; �)C 00;�x:x : � `d e0 : � 0C 0 ^ C 00;�x `d let x = e in e0 : � 0In the (Let) rule we implicitely require that the con-straint C 0^C 00 is in solved form. Remember that the setof constraints of solved forms is not necessarily closedunder ^. That means, when we apply the (Let) rule wealways have to ensure that C 0 ^ C 00 is in solved form.The next lemmas state how these derivations are con-nected. The �rst two of these lemmas can both beproven by a straightforward induction on the derivationrelation.Lemma 5 Equivalence of ` and `2 . Given a typeenvironment �, a constraint C, a term e and a typescheme �. Then C;� ` e : � i� C;� `2 e : �.Lemma 6 Soundness of `d . Given C;� `d e : � .Then C;� ` e : � .We now show that `d is complete with respect to `2and `W is complete with respect to `2 . In order toprove it we have to strengthen the assumption about thegiven type environment. This is due to the (Let) rulewhere the two premises use di�erent type environments.Therefore, we introduce the following de�nition.De�nition. Let C be a constraint and � and �0 betype environments such that � = fx1 : �1; : : : ; xn : �ngand �0 = fx1 : �01; : : : ; xn : �0ng. Then C `i �0 � � i�C `i �0i � �i 8i : i 2 f1; : : : ; ng.In the following theorem it is essential that the typeenvironment �0 is realizable. Remember, a type envi-ronment �0 is realizable in a constraint C if for everyx : � 2 �0 there is a � such that C `i � � � .Lemma 7 Completeness of `d . Given C 0;�0 `2e : �0, C 0 `i � � �0 and �0 is realizable in C 0. Then(a) �0 = � : C;� `d e : � C 0 `e C(b) otherwise : C;� `d e : � (�o; Co) = gen(C;�; �)C 0 `e Co C 0 `i �o � �THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 19



Proof. We use induction on the derivation `d .Due to space limitation we only show two cases.Case (Var) We know that C 0;�0 `2 x : �0 where x :�0 2 �0. By assumption we know there is a x : � in� such that C 0 `i � � �0. If �0 = � then we canimmediately apply the (Var{Inst) rule and we are done.Otherwise, w.l.o.g. we can assume that � = 8��:D ) � 0.We set C = [��=��]D and � = [��=��]� 0 where �� are freshtype variables. We apply again the (Var{Inst) rule and�nd C;� `d x : � . We set (�o; Co) = gen(C;�; �) where�o is essentially a renamed version of �. We �nd thatC 0 `i �o � �0. By assumption �0 is realizable in C 0,hence there is a � such that C 0 `e [��=��]D. This leadsus to the conclusion that C 0 `e Co and we are done.Case (Let) We have the following situation:C 0;�0x `2 e : � C 0;�0x:x : � `2 e0 : � 0C 0;�0x `2 let x = e in e0 : � 0First, we consider the case if � is a type � . We ap-ply the induction hypothesis to left premise and ob-tain C1;�x `d e : � and C 0 `e C1. We set(�o; Co) = gen(C1;�x; �). It is an easy observationthat C 0 `i �o � � holds. Now, we apply the in-duction hypothesis to the right premise. This yieldsC2;�x:x : �o `d e0 : � 0 and C 0 `e C2. We knowthat C 0 `e Co ^ C2 which ensures that Co ^ C2 is insolved form. We can apply the (Let) rule and obtainCo ^ C2;�x `d let x = e in e0 : � 0.Now, let us consider the case if � is a type scheme.Application of the induction hypothesis to the leftpremise yields:C1;�x `d e : � (�o; Co) = gen(C1;�x; �)C 0 `i �o � � C 0 `e Co:To apply the induction hypothesis to the right premisewe have to show that �0x:x : � is realizable in C 0. Weknow that C 0;�0x:x : � `2 e : � 0 holds. If x does notappear in the free variables of e it is su�cient to con-sider only �0x which is by assumption realizable. Oth-erwise we know that that the type of x must have beeninstantiated to a monomorphic type which shows that�0x:x : � is realizable in C 0. Then we can apply theinduction hypothesis to the right and �ndC2;�x:x : �o `d e : � 0 C 0 `e C2:We can conclude that C 0 `e Co^C2 which ensures thatCo ^ C2 is in solved form. We can apply the (Let) ruleand �nd Co ^ C2;�x `d let x = e in e0 : � 0

Lemma 8. (Completeness of `W ) Given C 0; �� `de : � 0. Then  ;C;� `W e : �for some substitutions  , �0, constraint C and type �such that, ��0fv(�) � C 0 `e �0C C 0 `i �0� � � 0Proof. We use induction on the derivation `d .Due to space limitationwe only show the two interestingcases.Case (App) We have the following situation:C 0; �� `d e1 : � 01 ! � 02 C 0; �� `d e2 : � 01C 0; �� `d e1e2 : � 02Application of the induction hypothesis yields 1; C1;� `W e1 : �1  1 ��01fv(�) �C 0 `e �01C1 C 0 `i �01�1 � � 01 ! � 02 (A2)and  2; C2;� `W e2 : �2  2 ��02fv(�) �C 0 `e �02C2 C 0 `i �02�2 � � 01We set  0 =  1 t  2. Then we �nd that  0 ��0fv(�) �.We want to apply Lemmas 3, 4. We identify the setU in these lemmas with fv(�). We assume that typevariables introduced in one part of the inference tree donot appear in the other part. Formally, this means thatcodom( 2) \ fv(C1) � fv(�)and codom( 1) \ fv(C2) � fv(�)All preconditions of Lemmas 3, 4 are ful�lled. We canconclude thatC 0 `e (�0 �  0)C1 C 0 `i (�0 �  0)�1 � � 01 ! � 02C 0 `e (�0 �  0)C2 C 0 `i (�0 �  0)�2 � � 01We set D = C1 ^C2 ^ (�1 � �2 ! �) where � is a freshtype variable. Then we obtain that C 0 `e (�0 �  0 �[� 02=�])D. We �nd that (C 0; �0 � 0 � [� 02=�]) is a normalform of (D; 0). By assumption HM(X) satis�es theprincipal constraint property. We obtain that (C; )is the principal normal form of (D; 0) where  ��00�0 � 0 � [� 02=�]. Because (C; ) is principal we �nd thatC 0 `e �00C. W.l.o.g. (�0 �  0)� 02 = � 02. Then, we canconclude that (�0 �  0 � [� 02=�])jfv(�) = �. This leadsto  ��00fv(�) �. Furthermore, it holds that �00(�) = � 02because� 02 = �0 �  0 � [� 02=�](�) = �00 �  (�) = �00(�)The last reasoning steps holds because � is a new typevariable therefore � 62 dom( ). Finally, we apply the(App) rule and �nd jfv(�); C;� `W e1e2 :  (�)20 THEORY AND PRACTICE OF OBJECT SYSTEMS|(Year)



which establishes the induction step.Case (Let) We have the following situation:C1; ��x `d e : � (�;C2) = gen(C1; ��x; �)C3; ��x:x : � `d e0 : � 0C2 ^ C3; ��x `d let x = e in e0 : � 0Induction hypothesis applied to the left part yields 1; ~C1;�x `W e : �1  1 ��01fv(�x) �C1 `e �01 ~C1 C1 `i �01�1 � � (A3)From Lemma 2 and Lemma 1 and A3 we obtain thatC2 `e �01 ~C2 `i �01�1 � � (A4)where (�1; ~C2) = gen( ~C1;  �x; �1). We set ~� = �01 � �.Then it holds that`i ~�(�x:x : �1) � ��x:x : � (A5)because~��1 = (�01 � �)�1 = (�01 � (�01 �  1)jfv(�))�1 = �01�1An easy observation yields~�jfv(�x) = � (A6)We rewrite the right premise with the stronger typeenvironment in A5 (this fact is stated without proofbut can be found in detail in [Sul97]) and �ndC3; ~�(�x:x : �1) `d e0 : � 0Now, we are able to apply the induction hypothesis tothe right part and �nd 2; ~C3;�x:x : �1 `W e0 : � 01 2 ��02fv(�x)[fv(�1) ~�C3 `e �02 ~C3 C3 `i �02� 01 � � 0 (A7)From A3 we can deduce that 1 ��01fv(�x)[fv(�1) ~� (A8)because of A3 and A6 it holds that(�01 �  1)jfv(�x) = � = ~�jfv(�x)and if � 2 fv(�1) we can assume that � 62 fv(�x) thenwe know that �(�) = �  1(�) = �We can deduce that�01 �  1(�) = �01(�) = ~�(�)

Then from A7 and A8 we �nd that the least upperbound of  1 and  2 exists. It holds that 0 ��0fv(�x)[fv(�) � (A9)where  0 =  1t 2. With A6 and from A9 we �nd that 0 ��0fv(�x) �From A4 and A3 we know thatC2 `e �01 ~C2 C3 `e �02 ~C3 C3 `i �02� 01 � � 0As in the (App) case we can conclude from Lemmas 3, 4that C2 `e (�0 �  0) ~C2 C3 `e (�0 �  0) ~C3and C3 `i (�0 �  0)� 01 � � 0We set D = ~C2 ^ ~C3. Then we obtain that (C2 ^C3; �0 �  0) is a normal form of (D; 0). By assump-tion HM(X) satis�es the principal constraint property.Assume (C; ) is the principal normal form of (D; 0)where  ��00 �0 �  0. Now, we can apply the (Let) ruleand �nd  jfv(�); C;�x `W let x = e in e0 :  � 01Furthermore, we obtain thatC2 ^ C3 `e �00C C2 ^ C3 `i (�00 �  )� 01 � � 0where  ��00fv(�x) �.Now we have everything at hand to prove complete-ness of type inference.Theorem 9. Given C 0; �� ` e : �0 and �� is realiz-able in C 0. Then  ;C;� `W e : �for some substitutions �0,  , constraint C and type �such that, ��0fv(�) � C 0 `e �0Co C 0 `i �0�o � �0where (�o; Co) = gen(C; �; �).Proof. First, we apply Lemma 5 in order to get aderivation in `2 . Then, we can apply Lemma 7 (com-pleteness of `d ). This yields(a) �0 = � : C; �� `d e : � C 0 `e C(b) otherwise : C; �� `d e : � (�o; Co) = gen(C; ��; �)C 0 `e Co C 0 `i �o � �0 (A10)After that we apply Lemma 8 (completeness of `W )and �nd  ; ~C;� `W e : ~�  ��0fv(�) �C `e �0 ~C C `i �0~� � �We set (�o; Co) = gen(C; �; �). It remains to showTHEORY AND PRACTICE OF OBJECT SYSTEMS|(Year) 21



1. C0 `i �0~�o � �02. C0 `e �0 ~Co. This fact follows by application of the Lifting Lem-mas 3, 4.
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