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We present a general framework HM(X) for type systems
with constraints. The framework stays in the tradition of
the Hindley/Milner type system. Its type system instances
are sound under a standard untyped compositional seman-
tics. We can give a generic type inference algorithm for
HM(X) so that, under sufficient conditions on X, type in-
ference will always compute the principal type of a term.
We discuss instances of the framework that deal with poly-
morphic records, equational theories and subtypes.

1. Introduction

Many type systems extend the Hindley /Milner[Mil7§]
system with constraints. Examples are found in record
systems [Oho95, Rém89, Wan89], overloading [Jon92,
Kae92, VHIWO96, NP93, CHO92, OWW95, BM97], and
subtyping [CCH*89, BSv(G95, AW93, EST95b, Smi9l].
Extensions of Hindley /Milner with constraints are also
increasingly popular in program analysis [DHM95,
TJ92).

Even though these type systems use different con-
straint domains, they are largely alike in their type-
theoretic aspects. In this paper we present a general
framework HM(X) for Hindley/Milner style type sys-
tems with constraints, analogous to the CLP(X) frame-
work in constraint logic programming [JM94]. Partic-
ular type systems can be obtained by instantiating the
parameter X to a specific constraint system. The Hind-
ley/Milner system itself is obtained by instantiating X
to the standard Herbrand constraint system.

*Supported by DARPA Grant F30602-96-2-0232.

© (Year) John Wiley & Sons, Inc.

By and large, the treatment of constraints in type
systems has been syntactic: constraints were regarded
as sets of formulas, often of a specific form. On the
other hand, constraint programming now generally uses
a semantic definition of constraint systems, taking a
constraint system as a cylindric algebra with some ad-
ditional properties [HMT71, Sar93]. Cylindric algebras
define a projection operator J& that binds some sub-
set of variables & in the constraint. In the usual case
where constraints are boolean algebras, projection cor-
responds to existential quantification.

Following the lead of constraint programming, we
treat a constraint system as a cylindric algebra with
a projection operator. Projection is very useful for our
purposes for two reasons: First, projection allows us to
formulate a logically pleasing and pragmatically useful
rule (V Intro) for quantifier introduction:

CAD,TFe:T a ¢ fu(C) U fu(l)
CA3da.D,T'Fe:Va.D =1

(V Intro)

Here, C and D are constraints over the type variables
in the type context I' and the type scheme 7. We
discuss some other proposals for quantifier introduction
and show how our approach improves already existing
ones.

Second, projection is an important source of op-
portunities for simplifying constraints [Jon95, Pot96,
EST95a]. In our framework, simplifying means chang-
ing the syntactic representation of a constraint without
changing its denotation. For example, the subtyping
constraint

B(a < B)AN (B <)
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can safely be simplified to

(a <)

since the denotation is the same for both constraints.
Without the projection operator, the two constraints
would be different, since one restricts the variable (8
while the other does not.

Two of the main strengths of the Hindley /Milner sys-
tem are a type soundness result and the existence of a
type inference algorithm that computes principal types.
HM(X) stays in the tradition of the Hindley/Milner
type system. Type systems in HM(X) are sound under a
standard untyped compositional semantics provided the
underlying constraint system X is sound. This result
can be summarized in the slogan “well-typed programs
can not go wrong”. One of the key ideas of our pa-
per is to present sufficient conditions on the constraint
domain X so that the principal types property carries
over to HM(X). The conditions are fairly simple and
natural. For those constraint systems meeting the con-
ditions, we present a generic type inference algorithm
that will always yield the principal type of a term.

The type inference algorithm is explained by treat-
ing the typing problem itself as a constraint. Gener-
ally, the constraint system X needs to be rich enough
to express all constraint problems that can be gener-
ated by type derivations. On the other hand, we admit
the possibility that constraints on the left hand side of
the turnstile and in type schemes come from a more
restricted set which we call solved forms. The task of
type inference is then to split a typing problem into a
substitution and a residual constraint in solved form.
This we call constraint normalization. We require that
normalization always yields a “best” solution, if there
is a solution at all. This ensures that the type inference
algorithm computes principal types.

Our work generalizes Milner’s results to systems with
non-standard constraints and thus makes it possible to
experiment with new constraint domains without hav-
ing to invent yet another type inference algorithm and
without having to repeat the often tedious proofs of
soundness and completeness of type inference.

Object—oriented languages. Object oriented lan-
guages are often based on record calculi and
type systems supporting a notion of subtyping.
Cardelli/Wegner [CW85] gave an early survey about
general research directions. Reynolds [Rey85] and
Mitchell [Mit84] are foundational papers that develop
basic concepts of constraints and subtyping. Pals-
berg [Pal95] gave an efficient inference algorithm for
a calculus of objects.

Subtyping is orthogonal to the notion of paramet-
ric polymorphism supported by the Hindley /Milner sys-
tem. A natural approach for a type system that sup-
ports both notions is to add subtype constraints to

2 THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year)

types [AW93, EST95a]. Such systems can be expressed
as instances of the HM(X) system (or, if they are based
on recursive records, in an extension of it). Other en-
codings of object-oriented languages forgo subtyping,
and are instead based on calculi for extensible records
or overloading [Rém89, Wan89, OWW95, BM97]. Such
systems can also be regarded as instances of our frame-
work. We demonstrate this using Ohori’s system
[Oho95] as an example.

Outline. The rest of this paper is structured as follows:
The next section discusses previous approaches to type
systems with constraints. Section 3 gives a character-
ization of constraint systems. Section 4 presents our
framework HM(X) for Hindley/Milner style type sys-
tems with constraints. Section 5 presents an ideal se-
mantics for type systems in the framework from which
a type soundness theorem is derived. Section 6 estab-
lishes conditions on the constraint system so that type
inference is feasible and a principal types theorem holds.
Section 7 describes as an instance of our framework a
type system for polymorphic records. Section 8 con-
cludes.

2. Related work

Hindley /Milner style type systems with constrained
types have been used in a number of instances. All such
type systems extend the type judgments I' - e : o of
the original Hindley/Milner system with a constraint
hypothesis on the left side of the turnstile, written
C,T' - e : 0. Furthermore, they extend the type
schemes Va.r of the Hindley /Milner system with a con-
straint component; we write

Va.C = 1

to express that the constraint C restricts the types that

can legally be substituted for the bound variables a.
All type systems have essentially the same rule for

eliminating quantifiers, which we write as follows:

C,T' - e:Va.D =1 C ¢ [7/a]D

(v Elim) C.T F [7/a]r

The rule is a refinement of the corresponding rule in
the Hindley /Milner system. It says that, when instanti-
ating a type scheme V&.D = 7', the only valid instances
are those instances [7/a]7’ which satisfy the constraint
part D of the type scheme.

While there is agreement about the proper technique
for eliminating quantifiers in type schemes, there is re-
markable disagreement about the proper way to intro-
duce them. Figure 1 shows four different rules that
have all been proposed in the literature. We have edited
these rules somewhat to present them in a uniform style,
and have attempted to compensate for the consider-
able variations in detail between published type sys-



No satisfiability check[Jon92]:

Weak satisfiability check[AW93]:

Strong satisfiability check[Smi91]:

Duplication[EST95b]:

CADTFe:T a ¢ fu(C)U fu(T)

¢ (V Intro-1)
C,'te:Ya.D=r1
CADTFe:T iD a ¢ fu(C) U fo(I) (V Intro-2)
C,'te:Va.D=rT1
CAND,T'Fe:r CHrIf/alD  a¢ fu(C)U fu(l) (V Intro-3)
C,'Fe:Ya.D=rT
CAD,T'Fe:7 a¢f(C)Uful) (V Intro-4)

CAD,T'Fe:Va.D =T

FIG. 1.

tems. Even though these details matter for each partic-
ular type system, we have to abstract from them here
in order to concentrate on general principles. We now
discuss each of the four schemes in turn.

In his work in qualified types [Jon92], Jones uses
a general framework for type qualification with a rule
equivalent to rule (V Intro-1). Any constraint can be
shifted from the assumption on the left to the type
scheme on the right of the turnstile; it is not checked
whether the traded constraint is satisfiable. This might
lead to programs that are well-typed as a whole, even
though some parts have unsatisfiable constraints.

To give an example, assume that our constraints
are subtyping constraints (<) in a type system with
classes and a subtyping relation determined by pro-
grammer declarations. Let us assume that there is a
parametrized class Lista which is a subtype of type
Comparable (List @), where Comparable is declared as
follows:

type Comparable a = {less : @ — Bool}

Let us further assume that there is a value Nil of type
Va.true = Lista that represents the empty list. Con-
sider the following (nonsensical) program.

Ezample 1.

let
f: Va.(List @ < Comparable @) = Lista — Lista
f x = if x.less(true) then x else Nil
in1
We use a Haskell-style notation, adding type anno-
tations for illustration purposes. Using rule (V Intro-
1), the program in Figure 1 is well-typed, even though
we would not expect the constraint in function f’s type
scheme to have a solution, since the function type List «
would not be a subtype of Comparable Bool.
In the ideal semantics of types [MPS86], which rep-
resents universal quantification by intersection, f’s type
would be an empty intersection, which is equal to the

Versions of the quantifier introduction rule

whole type universe including the error element wrong.
However, the whole program in Figure 1 is still sound
because every application of f must provide a valid in-
stantiation of the constraint. Since the constraint is un-
satisfiable, no application is possible. In essence, Jones
treats constraints as proof obligations that have to be
fulfilled by presenting “evidence” at the instantiation
site. This scheme is clearly inspired by Haskell’s imple-
mentation of overloading by dictionary passing. It runs
into problems if one ever wants to compute a value of a
constrained type without any instantiation sites, as in
the following slight variation of Example 1.

Ezample 2.

let
y: Va.(List « < Comparable @) = Bool
y = Nil.less(true)
inl
Jones excludes this code on the grounds that y’s type
is ambiguous, but it is unclear how to generalize this
restriction to arbitrary constraint systems.

Nevertheless, it is possible to integrate Jones’ ap-
proach into our HM(X) framework, thus giving it a se-
mantic basis independent of dictionary passing. The
essential idea is that we have to restrict ourselves to
constraint systems in which projections of solved con-
straints are trivial, i.e F¢ Ja.C, for all constraints C
that can appear on the left hand side of the turnstile,
and for all type variables a € fu(C). In this case, our
rule (V Intro) simplifies to (V Intro-1).

Note that trivial projections correspond well to
Haskell’s “open world” assumption, which says that the
range of possible instance types for an overloaded oper-
ation is not fixed in advance. Therefore, we can never
rule out that a given constraint which still has free vari-
ables might have a solution. A formalization of this
principle using a “bottom type” [OWW95] makes it pos-
sible to define a compositional semantics for Haskell-
style overloading.
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In the type system of Aiken/Wimmers [AW93], mov-
ing a constraint from the left hand side of the turnstile
to the right-hand side is allowed only if the constraint is
satisfiable (i.e. has a solution). Hence, none of the pre-
vious examples would be typable with rule (V Intro-2),
which they use. However, this example is typable.

Ezample 3.

let
f:VB.6 — Int
fx=
let y: Va.(List @ < Comparable 3) = Bool
y = Nil.less(x)
inl
in f true
The constraint Listaw < Comparable 3 has a solution,
namely 8 = List . Therefore, using rule (V Intro-2) we
can generalize y’s type to

Va.(List @« < Comparable 3).Bool.

On the other hand, if we substitute the actual parame-
ter true in f’s definition, we get again Example 1 which
is not typable under the system with (V Intro-2). Hence,
the system with (V Intro-2) does not enjoy the property
of subject reduction, which says that if a term is ty-
pable then its reduction instances are typable as well.
In a later version, they use rule (V Intro-4) instead.

Where Aiken and Wimmers require only a weak form
of satisfiability for traded constraints, G. Smith requires
a strong one [Smi91]. In rule (V Intro-3), the traded con-
straint D must be solvable by instantiation of only the
quantified variables a. Hence, all three previous exam-
ples would be untypable under his system. However, (V
Intro-3) rule seems overly restrictive, depending on the
constraint system used. For instance, let’s assume that
Comparable has precisely two instances:

Int < Comparable Int
Char < Comparable Char

Now consider the following program:

Ezxzample 4.
let
f: V3.8 — Int
fx=
let g y = y.less(x)
inl
in1

When typing the definition of g, Smith’s system requires
a solution of the constraint 7 < Comparable r, where 7
is y’s type. Two solutions exist: 7 = Int or 7 = Char,
and there is no best type for y that improves on both
solutions.

The system of the Hopkins Objects Group [EST95b]
differs from the previous three systems in that in rule
(V Intro-4) the constraint D is copied instead of moved;
there are no restrictions on when the copying can take
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place. Under this scheme, the first three examples
would be rejected and the fourth one would be accepted,
which corresponds fairly well to our intuition. At the
same time, rule (V Intro-4) seems strange in that its con-
clusion contains two copies of the constraint D, one in
which the type variables a are bound and one in which
they are free. Actually, the Hopkins Objects Group
uses a slightly different system in which generalization
is coupled with the let rule and one of the two con-
straints undergoes a variable renaming. HM(X) can
be seen as the proper logical formulation of their more
algorithmically—formulated type system. Furthermore,
instead of dealing exclusively with subtype constraints,
we admit arbitrary constraint systems.

3. Constraint systems

We present a characterization of constraint sys-
tems along the lines of Henkin [HMT71] and
Saraswat [Sar93]. Building on the standard notions of
simple and cylindric constraint systems we introduce
term constraint systems as constraint systems which
have a well-behaved notion of substitution. These con-
straint systems will be the parameter which allows our
framework to be customized to different application do-
mains.

We start with the definition of a simple constraint
system.

Definition. A simple constraint system is a structure
(Q, F¢) where Q is a non—empty set of tokens or (prim-
itive) constraints. We also refer to such constraints as
predicates. The relation F¢ C p§) x Q is an entailment
relation where pQ) is the set of finite subsets of Q. We
call C € pQ a constraint set or simply a constraint.

A constraint system (Q, F¢) must satisfy for all con-
straints C, D € pQ:

C1l C ¢ P whenever P € C and
C2 C F° Q whenever
CF¢ P forallPeD and D F°¢ @Q

We extend ¢ to be a relation on pQ2 x pQ2 by: C' +¢ D
iff ¢ K¢ P for every P € D. Furthermore, we define
C =Diff C +¢ D and D F¢ C. The term ¢ C is
an abbreviation for § +¢ C and true = { P |0 ¢ P}
represents the true element.

We give an example how to generate a simple con-
straint system based on a first—order language L.

Ezxample 5.  For any first-order language L, and
countably infinite set of variables Var, take ) to be an
arbitrary subset of open (L, Var)-formulas, and ¢ to
be the entailment relation with respect to some class A
of L—structures. That is, {Py,...,P,} F¢ Q iff for ev-
ery structure M € A, an M —valuation realizes Q@ when-
ever it realizes each of Py,..., P,. Such a (,+¢) is a



simple constraint system.

We now extend a simple constraint system with a
projection operator 3&. This leads to a cylindric con-
straint system.

Definition.
ture CS =

A cylindric constraint system is a struc-

(Q, F°,Var,{3a|a € Var}) such that:

o (Q, F¢) is a simple constraint system,

e Var is an infinite set of variables,

e For each variable o € Var, da : pQ) — pQ2
s an operation satisfying:

El C F° Ja.C

E2 CHF D implies Ja.C +° Ja.D
E3 Ja.(C AJa.D) =°¢ (3a.C) A (Ja.D)
E4 Ja.38.C =°¢ 38.3a.C

Remark. For simplicity, we omit set notation for
constraints, and connect constraints by A instead of the
union operator U. Also, we generally do not enclose
simple constraints P in opening and closing braces. For
instance, P A @ is an abbreviation for {P} U {Q}. We
assume that A binds tighter than 3&. For instance,
Jda.C A D stands for 3a.(C A D). We write C =¢ D iff
C F¢ Dand D ¢ C.

Ezxample 6. Let the token set Q consist of some sub-
class of (L,Var) formulas closed under existential quan-
tification of finite conjunctions. FEach operator & is
then interpreted by the function which maps each fi-
nite set {Py,...,P,} of tokens to the set of tokens
{3a.Py A...AP,}. It is easy to see that the four con-
ditions above are satisfied.

The projection operator J&@ allows us to bind vari-
ables & in a constraint. That means we can project away
information. If the constraint system models a boolean
algebra, projection corresponds to existential quantifi-
cation. Based on the projection operator we define the
free variables fu(C') and satisfiability of a constraint C.

Definition. Let C be a constraint. Then fu(C) =
{a|Fa.C £° C}.
Definition. Let C be a constraint. Then C' is satis-

fiable iff ¢ 3fv(C).C

The next lemma states an important property about
the projection operator. Projection of a constraint does
not influence the satisfiability of the constraint.

Lemma 1. Let C be a constraint. Then C is satisfiable
iff da.C is satisfiable.

The final step in our modeling of constraint systems
is the extension from cylindric constraint systems to
term constraint systems. We assume a term algebra
T with signature ¥ = (Var, Cons) as given. Var is a
set of variables and Cons is a set of type constructors

containing at least the function constructor — of arity 2.
In examples below we will sometimes use a multi-sorted
algebra, in which terms and constructors are partitioned
into sorts. Always present will be the sort of types which
is ranged over by 7.

Definition. A substitution ¢ is an idempotent map-
ping from the set of variables Var to the term algebra
Term(X) which is the identity everywhere except on a
finite set of variables.

Definition. A term constraint system 7CSy =
(Q, k¢, Var,{3a |« € Var}) over a term algebra T is a
cylindric constraint system with predicates of the form

(11, vy Tn) (i €T)

such that the following holds:

e For each pair of types 7,7’ there is an equality
predicate (1 = 7') in TCST, which satisfies:
D1 F¢ (a= a)

D2 (a=p) F (B=a)

D3 (a—ﬁ)A( =7) F (a=17)
D4 (a )/\Ha CA(a=p)) Fe
D5 (r=1) F* (T[r] = T[7")

where T[] is an arbitrary term context
e For each predicate P,
D6 [r/a]P =° Ja.(P A (a=T))
where o & fu(T)

Remark. Conditions D1 — D4 are the conditions
imposed on a cylindric constraint system with diago-
nal elements, which is usually taken as the foundation
of constraint programming languages. D4 says that
equals can be substituted for equals; it is in effect the
Leibniz principle. D5 states that (=) is a congruence.
D6 connects the syntactic operation of a substitution
over predicates with the semantic concepts of projec-
tion and equality. Substitution is extended to arbitrary
constraints in the canonical way:

[t/a](PLA...ANP,)=[r/a]PL A...N][T/a]P,

Here are some basic lemmas which hold in term con-
straint systems.

Lemma 2 Renaming. Let C be a constraint and 3
a new type variable. Then Ja.C =¢ 3B.[F/a]C

Lemma 3 Normal Form. Let C be a constraint and
= [T/a] be a substitution. Then ¢C =¢ Fa.C A (ay =
Tl)/\.../\(an =Tn).

In the above lemma it is essential that substitutions
are idempotent mappings. In the case of substitution ¢
this ensures that none of the type variables & appears
in the types 7.

Lemma 4 Substitution.
such that C k¢
¢oC F¢ ¢D.

Let C,D be constraints
D and ¢ be a substitution. Then
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We now discuss several instances of term constraint
systems. Section 7 will present a more elaborate exam-
ple of a term constraint system that deals with records.

Example 7. For any term algebra T let HERBRAND =
(Q, k¢, Var,{3a|a € Var}) be the minimal term con-
straint system where ) contains only primitive con-
straints of the form (7 = 71') where T and 7' are types
from T. Equality in HERBRAND is syntactic, i.e. T
is a free algebra. Entailment between two constraints C
and D can be checked by the matching algorithm. For
example, (f(z,y) = f(a,g(b,c))) must entail (z = a)
and (y = g(b,¢)). Satisfiability can be checked by (first—

order) unification.

A more refined example of a term constraint sys-
tem deals with physical dimension types in the style of
Kennedy [Ken96]:

Example 8. Let T be the two-sorted term algebra con-
sisting of dimensions and types.

Dimensions d :
Types T =

a|i(d) | prod(d,d)|1|m|s
a|dim(d) |t =T

Iy

The dimension constructor i(-) corresponds to the in-
verse of a dimension and prod(-,-) to the product of
two dimensions. Dimension constants are 1 for the
unit measure, m for meters and s for seconds. There
might be other dimension constructors besides the men-
tioned ones. A type is either a type variable, or a di-
mension, or a function type. DIM is then the term
constraint system which obeys the following additional
conditions, which specify that dimension types form an
abelian group.

DIM1 ¢ (prod(a, ) = prod(B,a))

DIM2 F¢ (prod(a, prod(8,v)) = prod(prod(a, B),7))
DIM3 F¢ (prod(a,1) = )

DIM4 F¢ (prod(a,i(a)) =1)

As our final example, we consider an extension of a
term constraint system with subtyping.

Example 9. A subtype constraint system over a term
algebra T is a term constraint system with a subtype
predicate (T <: 7') for each pair of types T and T which
satisfies the following conditions.

SUB1 (a=da') =° (a<d)A(d < a)

DFe (o) <ar) DFE (< al)
D F¢ (a1 = ag < o] — ay)

SUB2

D ¢ (Oél < Oég) D ¢ (a2 < 013)
D k¢ (a1 < a3)

SUB3

Let SC be a subtype constraint system with primitive
types Int and Float and record types of the form {l; :
Tiy---sln : Tn}. Records are modeled by admitting con-
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structors of the form

T A e I e (s PRI S o
in the term algebra. We assume that record fields are
ordered with respect to a given ordering relation on field

labels. The additional types obey the following rules.

SUB4 ¢ (Int < Float)
SUB5 +¢ ({ly:7m,...,0n i7py o < {ly 71, ..

Dt (mm<m)...DFE (1, < 7))

7ln : Tn})

SUBG6
Dte ({ly:m,..lp iy <{liir,...;0ln:7]

4. The HM(X) framework

This section describes a general extension HM(X) of
the Hindley/Milner type system with a term constraint
system X over a term algebra 7.

Our development is similar to the original presen-
tation [DM82]. We work with the following syntactic

domains.
Values v u= z|Az.e
Expressions e = v]ee|letz =eine
Types T o= al T>7|TT
Type schemes o 1= 7|Va.C =0

We consider only one—sorted algebras here, but it
is straightforward to extend the treatment to multi—
sorted algebras. This formulation generalizes the one
in [DM82] in two respects. First, types are now mem-
bers of an arbitrary term algebra, hence there might be
other constructors besides —. In the above definition T'
stands for additional type constructors which vary de-
pending on a specific HM(X) instance. We have already
seen examples where T" has been instantiated to dimen-
sion and record types. Second, type schemes Va.C = o
now include a constraint component C, which restricts
the types that can be substituted for the type variable
a. We require that the constraint C' has to be satis-
fiable. On the other hand, the language of terms is
exactly as in [DM82]. That is, we assume that any lan-
guage constructs that make use of type constraints are
expressible as predefined values, whose names and types
are recorded in the initial type environment.

The typing rules of our system can be found in Fig-
ure 2. Typing judgments are of the form C,T' - e: o
where C' is a satisfiable constraint in X, I' a type en-
vironment and o a type scheme. A typing judgment is
valid if it can be derived by application of the typing
rules and its constraint component is satisfiable.

Quite often we restrict the set of constraints C' that
can appear in type schemes and on the left hand side
of the turnstile to so called solved forms. The set of



(Var) C'tz:0 (z:0€l)
C,I'Fe: Ckre (=7
(Sub) , e: T (r =<7
CTFe:7
Cl,z:tke:T
(Abs) ezt ket
CT,FXpe:7—17
ClkFe :mm—m CI'Fe:m
(App)
C,F"EleziTz
(Let) Cl,Fe:o C,I’z..m:a Fe:7
CT,Fletz=cine :7
CAD,I'Fe:T a ¢ fu(C) U fu(T)
(V Intro) — =
CAn3a.D,T Fe:Va.D=rT
C,I'Fe:Va.D ! C ¢ [t/alD
(¥ Elim) 2 e:Va.D =T [7/a]
C,T Fe:[7/a]r

FIG. 2.

solved forms, denoted by &, is always a subset of the
satisfiable constraints in X.

The most interesting rules in Figure 2 are the
(V Intro) rule and the (V Elim) rule. By rule (V Intro)
we quantify some type variables. We often use vec-
tor notation for type variables in type schemes. The
term Va.D = 7 is an abbreviation for Voj.true =
...Va,.D = 1 and dJa.D is an abbreviation for
dagy....3Jay,.D.

Unlike in standard treatments of Hindley/Milner
style systems we also have a subsumption rule (Sub),
which allows us to derive term e with type 7’ if we can
derive term e with type 7 and type T subsumes type 7'.
The subsumption relation < is determined by the con-
straint system X, and is assumed to satisfy the standard
axioms for a partial ordering plus the contra-variance
rule:

REFL (a=d) F (a=<ad)A(a R )
ASYM (a=xad)A(d Ra) F¢ (a=a)
D F (a1 < D Fe (ap <
TRANS (o1 5 ao) L)
D ¢ (a1 j Oég)
CONTRA Dt (o) fa1) D F (a2 < a))

Dt (a1 = as Xa) — a))

Except for these conditions, the choice of < is arbitrary.

Logical type system

Ezample 10.  The Hindley/Milner system is an in-
stance of our type system framework. Take X to be the
Herbrand constraint system over the algebra of types T.
Take the set of solved forms to be the set consisting
only of true, which is represented by the empty token
set. Take < to be syntactic type equality. Then the
only type schemes arising in proof trees of valid typing
judgments are of the form Ya.{} = o, which we equate
with Hindley/Milner type schemes Va.o. The subsump-
tion rule becomes the trivial tautology which states that
a judgment can be derived if it can be derived. It is easy
to convince oneself that a judgment T' & e : o is deriv-
able in Hindley/Milner if and only if {},I' F e: o is
derivable in HM(HERBRAND).

Ezample 11. Let X be the constraint system DIM, let
the set of solved forms be the set consisting only of true,
and let subsumption < be the equality relation = in
DIM. Then Kennedy’s system can be recovered sim-
ply by adding primitives to the initial type environment
[y that deal with dimensions. E.g. we assume that

div : ¥dy,ds. dim(d;) — dim(ds) — dim(prod(da, i(da)))

is contained in I'y. Other basic connectives are treated
analogously.

Ezample 12. Let X be the subtype constraint system
SC and let the subsumption relation < be equal to the
subtyping relation <:. Let the set of solved forms S
be all satisfiable constraints in SC. For every record
{li : 71,...,0, : T} in a program we add a datatype
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constructor

Lheooodp:mn = oo —={b i, by T}

and for every field label | we add a function
Al

to the initial type environment I'y. The first corresponds
to record creation, the second to record selection. Other
basic primitive functions are defined analogously.

The resulting system is related to the subtyping ap-
proach of the Hopkins Object Group [EST95b]. The
main difference is that we use logical rules for quantifier
introduction and elimination where they use a syntactic
approach where quantifier introduction is coupled with
let and quantifier elimination is coupled with variable
use. Another important difference is that their system
also includes recursive types. Recursive types are be-
yond the scope of this paper, so we cannot deal with their
system in its full generality. We can however deal with
either a variant of their system without recursive types,
or with a system of recursive records that are given as
instances of explicitly declared classes, similar to the
datatype constructions in functional languages or the
class and interface system of Java [GLS96].

Further applications with non-trivial constraint sys-
tems include overloading [Jon92, Kae92, VHIWO96,
NP93, CHO92, OWW95, BM97], record calculi [Rém89,
Wang89], and static program analysis techniques such as
binding time analysis [DHM95]. As an extended exam-
ple we will present in Section 7 a record calculus similar
to Ohori’s [Oho95].

5. Semantics

We give a type soundness theorem based on an ideal
semantics [MPS86] for HM(X) type systems. We show
that our type system is sound, provided the underlying
constraint system is sound and the subsumption predi-
cate (=) satisfies a coherence property. We say a con-
straint system is sound if every satisfiable constraint has
a monotype solution. Coherence of a constraint system
means that if a type 7 subsumes a type 7', then the
denotation of 7 in the ideal model is a subset of the
denotation of 7'.

Definition. A monotype is a type T with fu(t) = 0.
We let u range over monotypes.

Definition. A constraint system X is sound if for all
type variables o and constraints C € S, if F° Ja.C then
there is a monotype pu such that F¢ Ja.(a = p) AC.

The soundness proof is based on an ideal semantics
of types which is a direct extension of the semantics in
[Mil78].
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The meaning of a term is a value in the CPO V),
where V contains all continuous functions from V to ¥V
and an error element W, usually pronounced “wrong”.
Depending on the concrete type system used, V might
contain other elements as well. We require that the
values of additional type constructors are representable
in the CPO V. Then V is the least solution of the
equation

V=W, +V3V+ 3k EVi Varityw) |

where /C is the set of values of an additional type con-
structor 7'.

The meaning function on terms is the same as in the
original semantics of Hindley/Milner terms. That is,
we assume that any language constructs that make use
of type constraints are expressible as predefined values,
whose names and types are recorded in the initial type
environment.

[z]n = 1n(z)

[Mu.e]n = Av.[e]n[u := v]

[ee'ln = iffelne V>V A[eln#W
then ([e]n) ([¢']n)
else W

[letz =eine']ln = iffen # W
then [e'Tn[a := [e]n]
else W
We will show in the following that the meaning of a
well-typed program is always different from “wrong”.
As a first step, we give a meaning to types. Fol-
lowing [Mil78], we let types denote ideals, i.e. non-
empty, downward-closed and limit-closed subsets of V.
The meaning function [-] maps closed types and type
schemes to ideals. On function types and type schemes
it is defined as follows:

[k = o] =
{fev-=Vivelm]= fve [u]}
[T o] =
{L}u
ULk D] - [e] |
true, To Fk:p)— ..o pu, =T tm}
[Va.C = 7] =
N{llz/alr]| v [z/a]C}
We are now in the position to define coherence of the
subsumption predicate (=<).

Definition. The constraint system X is coherent if
for all monotypes u and p', if F¢ (u = ') then [u] C

[1']-

Lemma 5. Let o be a closed type scheme. Then [o]
is an ideal.

Proof. A straightforward induction on the struc-
ture of o. -



Furthermore, we conclude that in a sound constraint
system the error element is not contained in a closed
type scheme.

Lemma 6. Given a sound constraint system X and a
closed type scheme o. Then W ¢ [o].

Proof. This is true for all monotypes p. Consider
now a type scheme ¢ = (Va.C = 7). Because o is
closed we get ¢ 3a.C' (remember that all constraints
that appear in the typing judgments of a derivation need
to be least satisfiable). Also, C is sound, thus there is
a monotype vector i such that +¢ [a/a&]C. Hence, the
denotation of [o] is not an empty intersection. W is not
contained in the denotation of any monotype [i/&]7.
Thus W is not contained in [o]. -

Definition. A wariable environment 1 models a
closed typing environment T, written n |= T, if for all
z:0 €T, n(z) € [o].

Theorem 7 Type Soundness. Let C,' F e : o be
a valid typing judgment in HM(X), where X is a sound
and coherent constraint system. Let ¢ be a substitution
such that ¢I' and ¢o are closed and such that F¢ ¢C.
Let n be a variable environment such thatn |= ¢I'. Then

(1) W ¢ [¢o]
(2) [eln € [¢0]

Proof. (1) follows immediately from Lemma 6.
We prove now (2) by a structural induction on typing
derivations. There are three interesting cases.

Case (Var) The last step of the derivation is:
C'Fz:o (z:0€l)

Therefore z : ¢o € ¢I'. Since n = ¢TI, [z]n = n(z) €

[¢o].
Case (Y Intro) The last step of the derivation is:
CADTFe:T a & fu(C) U fu(T)
CA3da.D,T'Fe:Va.D =T

Let ¢ be such that ¢I" and ¢(Va.D = 1) are closed and
such that F¢ ¢(C A d@.D). Furthermore, we assume
there are no name clashes between ¢ and a. Let g be
an arbitrary vector of monotypes such that

F¢ 3a.((a = g) A ¢D)

Since C is sound there is at least one such vector . Let
¢' = [g/a] o . Then since & ¢ fu(C), ¢'(C A D) =
¢C A ¢' D, which expands to ¢C A Ja.((& = &) A ¢D).
By our assumption this constraint is valid. Further-
more, ¢'I' and ¢'7 are both closed. By the induction
hypothesis, [e]n € [¢'7]. Since i was arbitrary such
that F* [5/a](6D),

leln € N{llE/al(¢7)]| ¢ [a/al(¢D)}
= [¢(vVa.D = 7)].

Case (Sub) The last step of the derivation is:

ClFre:t Cte (r=x71)
CT'ke:7

We know that there is a substitution ¢ such that ¢I" and
¢7' are closed and such that F¢ ¢C'. It follows that ¢
(¢7 < ¢7'). It might be the case that ¢7 still contains
some free variables. We can extend ¢ to a substitution
@' such that ¢'7 is closed. Because ¢’ is an extension of
¢ we get that ¢'T" is closed and ¢ ¢'C. Applying the
induction hypothesis, we get that [e]n € [¢'7]. Because
X is coherent we know that [¢'7] C [¢'7']. Because ¢7'
is a closed type and ¢' extends ¢ we get that [¢'7'] =
[¢7'] and this yields [e]n € [¢7']. -

The type soundness theorem can be simplified to
top—level programs. As a corollary, we find Milner’s
slogan “well types programs do not go wrong” carries
over to sound constraint extensions.

Corollary. Let X be a sound and coherent constraint
system. Let true,I' - e : o be a valid closed typing
judgment in HM(X). If n =T then [e]n # W.

Proof. Immediate from (1) and (2) of Theo-
rem 7. -
We find that HM(HERBRAND), HM(DIM) and
HM(SC) satisfy the requirements. Hence, these applica-
tions are sound with respect to the provided semantics.

6. Type inference

We now turn to the problem of type inference in
HM(X) type systems. We follow the standard approach
of translating a typing problem into a constraint prob-
lem. Then a typing problem is solvable if the constraint
problem is solvable. The solution of a constraint prob-
lem is a constraint in solved form in S. If no solution
exists then the typing problem is not solvable. For in-
stance, consider a function application e;es where e;
has inferred type 71 and e; has inferred type 7. To
solve the typing problem e;e; we need to solve the con-
straint (77 < 72 — «) with the fresh type variable «
corresponding to the yet unspecified result type of the
application ejes.

For the moment, we take a closer look at two specific
typing situations. In HM(SC) the subsumption predi-
cate < corresponds to the subtype predicate <:. The
set S is defined as the set of all satisfiable constraints
in SC. Then solving a constraint problem means sim-
ply checking whether the constraint is satisfiable or not.
In another example we considered the Hindley/Milner
system as an instance HM(HERBRAND) of the HM(X)
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framework. Here, the subsumption predicate < corre-
sponds to the type equality predicate = and S is the
set consisting of just true. In this case solving a con-
straint problem requires more than just a satisfiability
test. We additionally have to discard all equality prob-
lems, which can be achieved by Herbrand unification.

We can observe that type inference consists of two
phases: constraint gemeration and constraint solving.
Constraint generation is always the same for all HM(X)
type systems. We simply generate constraints of the
form (7 < 7'). But the kind of constraint solving might
differ in different typing situations. Depending on the
structure of the set S of solved forms we have to ap-
ply different methods to obtain a constraint in solved
form. The least requirement which we put on § is that
the constraints in S are satisfiable. Hence, solving of
a constraint problem requires at least a satisfiability
test. But our constraint systems and the structure of
the set S can be arbitrary complex. Therefore, solving
of constraint problems might involve more sophisticated
methods than e.g. a satisfiability test or Herbrand uni-
fication. In the latter, we refer to solving of constraint
problems as constraint normalization or normalization
for short. In the next section we give a formal treat-
ment of normalization in a constraint system X. Then,
we give a generic type inference algorithm for HM(X)
type systems and state our main results, namely that
type inference is sound, and under sufficient conditions
on X also complete.

6.1 Normalization

In this section we study normalization of constraints.
Before giving an axiomatic description of normalization,
we first introduce some preliminary definitions.

Preliminaries: Let ¢y be the restriction of the
substitution ¢ to the domain U. That is, ¢y (z) = ¢(z)
if z € U and ¢jy(z) = z otherwise. For substitutions
¢ and ¢ we write ¥ =y ¢ iff F¢ (Y(z) = ¢(z)) for all
x € U. We write ¢ §(g ¢ iff ¢' o) =y ¢. We write
Y <y ¢ if 3¢' : ¥ <? ¢. Sometimes, we omit the set
U.

Note that this makes the “more general” substitution
the smaller element in the pre—order <y. This choice,
which reverses the usual convention in treatments of
unification (e.g. [LMMS8T7]), was made to stay in line
with the semantic notion of type instances.

We make <y a partial order by identifying substitu-
tions that are equal up to variable renaming, or equiv-
alently, by defining ¢ =y ¢ iff ¥ <y ¢ and ¢ <y ¥.
It follows from [LMMS87] that <y is a complete lower
semi—lattice where least upper bounds, if they exist,
correspond to unifications and greatest lower bounds
correspond to anti—unifications.
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We consider now the task of normalization. Gener-
ally, a typing problem is translated into a constraint C'
in the term constraint system C and a substitution .
We will refer to the pair (C,%) as a constraint prob-
lem. Normalization means then computation of a nor-
mal form of a constraint problem (C, ).

Definition. Let X be a term constraint system over
a term algebra T and S be the set of solved constraints
inX. Let C € § and D € X be constraints and let ¢,
be substitutions. Then (C,v) is a normal form of (D, ¢)
iff o <o, C F® YD and vC = C.

(C, ) is principal if for all normal forms (C',v') of
(D, ) we have that p < ' and C' k¢ ¢'C.

The principal normal form represents the best solu-
tion of a constraint problem. As an example consider
the constraint system HERBRAND. There, a principal
normal form corresponds to a most general unifier and
a normal form corresponds to a unifier of a constraint
problem.

The next lemma states that all principal normal
forms are unique up to variable renaming.

Lemma 8 Uniqueness. Let (C,v) and (C',¢') be
principal normal forms of (D, ¢). Then there is a vari-
able renaming ¢' such that C' =¢ ¢'C and ¢' = ¢' 0.

We identify two normal forms that are equivalent up
to variable renaming. We can thus define a well-defined
function normalize from constraint problems (D, ¢) to
normal forms as follows:

normalize(D, ¢)
(C,4) if (C, ) principal normal form of (D, ¢)
fail otherwise

We now extend the property of having a principal nor-
mal form to constraint systems.

Definition. Given a constraint system X over a term
algebra T and a set of solved constraints S in X. The
constraint system X has the principal constraint prop-
erty if for every constraint D € X and substitution ¢,
either (D, @) does not have a normal form or (D, ¢) has
a principal normal form.

We also say that the HM(X) type system has the
principal constraint property if X has the principal con-
straint property.

In Section 7 we discuss in detail a type system
for Ohori-style records that satisfies the principal con-
straint property. This example belongs to a class of con-
straint systems where constraint solving involves some
form of unification. Further examples of constraint sys-
tems of this kind are HERBRAND and DIM. We can
apply similar techniques as those introduced in Sec-
tion 7 to show that HERBRAND and DIM satisfy the
principal constraint property.

The situation is different for the constraint sys-
tem SC. There, the set S of solved forms consists of
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FIG. 3. Type inference

all satisfiable constraints. Given a constraint problem
(D, ) we distinguish between two cases. If ¢D is un-
satisfiable then (D, ¢) does not have a normal form. As-
sume ¢D is satisfiable then (¢D, id) is the principal nor-
mal form of (D, ¢). Given another normal form (D', ¢')
of (D, ). Then it holds that ¢ < ¢’ and D' F¢ ¢'D.
But then it follows immediately that (¢D, id) is princi-
pal. We conclude that the constraint system SC satisfies
the principal constraint property, and that a normalize
function can be defined as follows:

normalize(C, @)
= (¢C,id) if¢C is satisfiable
= fail otherwise

The normalization function is computable since satis-
fiability in SC is decidable. This follows easily by adapt-
ing techniques developed in [TS96].

6.2 Type inference algorithm

We now connect the principal constraint property of
a constraint system with the principal types property
of a type system. Figure 3 gives a generic type in-
ference algorithm that computes principal types if the
constraint system satisfies the principal constraint prop-
erty. The algorithm is formulated as a deduction system
over clauses of the form ¢, C,I' k" e: 7 with type en-
vironment [', expression e as input values and substitu-
tion 1, constraint C, type 7 as output values. For each
syntactic construct of expressions e we have one clause.

The deduction rules can be interpreted operationally, as
a logic program that constructs a bottom—up derivation
of FW clauses.

In the (Var) rule, we assume that an unqualified type
7 can be represented as V(.true = 7. This avoids a sep-
arate case of this rule for unqualified types. Note that
(Var) makes use of the function normalize, specified in
the last subsection. Our deduction rules yield an algo-
rithm only if normalize is computable. In the following,
we assume that we are dealing only with computable
normalization functions.

The type inference algorithm FW is a straightfor-
ward extension of algorithm W, see [DM82]. The algo-
rithm " consists of the following three basic compo-
nents: constraint generation, constraint normalization
and generalization of unbound type variables. All three
components can already be found in the original algo-
rithm W but are now extended to deal with constraints.
We already discussed constraint generation and normal-
ization. The generalization procedure for our algorithm
is left underspecified; we only require that it satisfies:

gen(C,T,o) = (D A Ja.C",Va.C' = o)

where C is a constraint such that ¢ =¢ C' A D,
I' is a type environment, ¢ is a type scheme, & =
(fu(o) U fu(C))\fu(T') and fu(D)Na = (. That is, gener-
alization splits a constraint into two parts. Generalized
variables can be free only in one of the two parts, C’,
but not the other, D. Only the C' part ends up as a
constraint in the generalized type scheme. Note that
the above requirement can always be fulfilled by tak-
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ing D to be true. However, depending on the actual
constraint system used there might exist better strate-
gies, which keep the constraint in the generalized type
scheme smaller.

Our type inference algorithm interleaves constraint
generation and normalization. Each inference rule com-
bines the constraint problems of the premises and per-
forms then a normalization step. That means we per-
form strict normalization during type inference. In
essence, we only need to perform normalization right
before a (Let) rule (because the constraint in a type
scheme needs to be in normal form) or at the end. This
corresponds to lazy normalization. An example of a lazy
formulation of type inference for the Hindley/Milner
type system can already be found in [Wan87]. The fol-
lowing lemma states that both views are equivalent. We
can perform normalization in any order and always ob-
tain the same result.

Lemma 9. Given constraints D, D' and substitutions

¢,¢'. Then
normalize((D, ¢) U (D', ¢"))

normalize(normalize(D, ¢) U normalize(D', ¢'))

where the term (D, ¢) U (D', ¢') stands for (DA D', ¢l
')

6.3 Main results

To state our main results concisely, we extend the
subsumption predicate < to type schemes. Subsump-
tion on type schemes is defined by a deduction system
with clauses of the form C +? ¢ < ¢', which state that
the type scheme o is more general than the type scheme
o' under the constraint C'. The deduction system is de-
fined as follows.

C '_6 < !
(Sub) o r=r
CFr 717
(<V) CADF o=<0 a & tv(o) Utv(C)
- CA3Ja.D F o < (Ya.D = o')
v <) C Vi [r/alo <o’ C ¢ [t/a]D

C F (Va.D = 0) <o’

The result triple of the type inference algorithm %W
forms a typing configuration (C,o,), which consists of
a constraint C € S, a type scheme ¢ and a substitution
1 such that YC = C, Yo = o and ¢ is consistent with
respect to . A substitution ¢ is consistent with respect
to a type scheme 0 = Va.D = 7 if YD € S where we
assume there are no name clashes between a and .
This extends naturally to type environments. Given
two typing configurations (C,o,v), (C',o',9') we say
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(C,0,4) is more general than (C', o', ¢") iff ¢ g?;(r) W,
C' F¢ ¢'C and C' F* ¢'0 < ¢'. In such a situation we
write (C,0,¢) = (C',0",¢).

Lemma 10. Given a type environment ' and a term e.
If ¢, C,T W e: 1 then (C,1,%) is a typing configura-
tion.

Furthermore, this typing configuration always repre-
sents a valid typing of the given term under the given
type environment.

Theorem 11 (Soundness of Inference). Given a
term e and a type environment L. Ifyp,C,T W e: 7
then C,9I' - e: 71, vC =C and YT =T.

A sketch of the proofs of soundness and completeness
of type inference can be found in the appendix. For a
more detailed discussion we refer to [Sul97].

We now discuss completeness of type inference for
HM(X) type systems. In general, we always require
that an HM(X) type system has to fulfill the principal
constraint property to achieve complete type inference.
But as it turns out this is not sufficient. There are ex-
amples of non-regular equational theories where unifi-
cation is unitary (that means we have most general uni-
fiers) but algorithm " does not infer principal types.
An equational theory is regular if F¢ (7 = 7') implies
fo(t) = fu(r"). We say a constraint system X is regular
if the underlying equational theory is regular. An exam-
ple of a non-regular theory is the dimension constraint
system DIM. We find that ¢ (prod(i(d),d) = 1) but
fo(prod(i(d),d)) = {d} # 0 = fu(1). In Section 6.1
we observed that DIM satisfies the principal constraint
property. But algoritm " fails to infer principal types
for the dimension type system HM(DIM). This obser-
vation is due to A.J. Kennedy. At the end of this section
we give a concrete example where we can see why algo-
rithm "W fails.

Nevertheless, we can state a completeness theorem
for two large classes of HM(X) type systems. First, we
consider the class of constraint systems X where the
set S of solved forms in X contains all satisfiable con-
straints in X. We denote by X' the set of all those con-
straint systems that additionally satisfy the principal
constraint property. In the second class we put further
restrictions on the set S of solved forms. We assume
that all constraints in S are in simplified form, which
means that all non—trivial equality problems have been
resolved. A constraint C' € § is in simplified form if
C ¢ (r =7') implies F¢ (7 = 7'). We denote by X"
the set of all regular constraint systems X which satisfy
the principal constraint property and for which every
solved form is also a simplified form.

An example for a member of X? is the constraint
system SC. The constraint systems HERBRAND and
the record constraint system introduced in Section 7



are examples for members of X”. But DIM is not in X"
because DIM is non-regular.

To obtain a completeness result for type inference,
we assume that we have an HM(X) type system where
X belongs to X* or X”". Furthermore, we consider only
those typing judgments C,I' e : o where the type
environment and the constraint on the left hand side of
the turnstile are realizable, i.e. have a type instance. A
type environment I is realizable in a constraint C' if for
every ¢ : 0 € I there is a 7 such that C' F* o < 7.

Now, we present our completeness result. Informally
speaking, we want to have the following. Given a deriva-
tion C',¢I' + e : o', our type inference algorithm
should report a constraint that is at least as small as
C' and a type that is at least as general as o’.

Theorem 12 (Completeness of Inference).  Let
C',¢T' + e : o' be a typing judgment such that @I is
realizable in C'. Then

v, 0, T KV e:r

for some substitution v, constraint C, type T, such that

gen(C, Yr, T) = (Coa Uo)
(Coa Oo, ¢) = (C’, Ula ¢)

The completeness theorem can be simplified for top—
level programs to the following corollary, which states
that our type inference algorithm computes principal

types.

Corollary. Let true,I' + e : o be a closed typ-
ing judgment such that T is realizable in true. Then
¢, C,T W e: 7 for some substitution ¢, constraint C,
such that

gen(C, o', 7) = (true,o,)
oo, < o

In the case of HM(X) type systems where X in X'* we
have formulated the completeness result in more gen-
eral terms than actually necessary. In Section 6.1 we
observed that normalization in SC corresponds to a sat-
isfiability test. This observation can be generalized to
all constraint systems in the class X*. But then we can
conclude that type inference always returns the identity
substitution. Type inference only consists in accumu-
lating constraints and checking whether the constraints
are satisfiable or not. This holds for the (Var) case.
We rename the bound type variables in the constraint
and check satisfiability of the renamed constraint. If
this constraint is satisfiable we return the renamed con-
straint. The renaming substitution is equivalent to the
identity substitution on the free type variables of the
given type environment. We find that no substitutions
are introduced in the base case nor through the normal-
ization procedure. Then type inference in X'* always re-
turns the identity substitution. Hence, substitution ¢

is always the identity substitution in the completeness
theorem for the class X°.

In case of HM(X) type systems where X in X" we
have put stronger conditions on the set S of solved con-
straints. The set & must now be in simplified form.
Therefore, normalization also involves computation of
a residual substitution. The restriction to regular the-
ories in case of the class X" is important to establish
complete type inference as we will see in the following
example, due to A.J. Kennedy [Ken96].

In the dimension type system HM(DIM), define an
initial type environment as follows:

' = {kg : dimM
s : dimT
div : Vdiy,ds.dim prod(d;, ds) —
dim d1 — d1md2
pair : th,tQ.tl —ty — 11 X tz}

Here, kg and s are some basic dimensions, pair is the
pairing operator and div is a primitive operation on di-
mensions. Now consider the following expression:

e = Az.let y = divzin pair(y kg)(y s)

We want to type e under the type environment I'. The
subexpression divz has the following type under type
environment .z : dim prod(d;, ds) :

.z : dim prod(di,ds) b+ divz : dimd; — dimds

Here, it is not possible to quantify over the type vari-
ables d; and d>. But we can derive another type for
divz under the same type environment:

[.z : dim prod(d;, ds)
l_
divz : dim prod(dy, d3) — dim prod(i(ds), ds)

We have simply instantiated d; with prod(d:, ds) and
dy with prod(i(ds),ds). Kennedy calls this the problem
of unrevealed polymorphism. Neither of the two types
for divz is more general than the other, and there is
no third type that generalizes both. Hence, algorithm
FW fails to infer a principal type for expression e under
type environment [

It is interesting to point out that " computes prin-
cipal types for dimension types if S contains all satisfi-
able constraints in DIM. Then DIM belongs to A* and
for that class we have a completeness result. The rea-
son is that now all unification problems are explicit. No
unification is involved during type inference. Type in-
ference performs only a satisfiability test. The problem
of unrevealed polymorphism comes into play if normal-
ization involves unification in a non-regular theory.

7. Polymorphic records

Following ideas of Ohori [Oho95] we give an instance
of our HM(X) system which deals with polymorphic
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records. Ohori’s system, abbreviated O in the follow-
ing, has besides type variables and function types also
record types denoted by {l; : 71,...,l, : 7.}, where [;
is an element of an enumerable set of record labels. We
assume that there is an ordering relation between all
field labels. All record fields are ordered with respect
to this ordering relation. Because we have a fixed order-
ing of record fields we can apply Herbrand unification
for solving equality constraints between records.

Type quantification in O is kinded; in the type
scheme Va.a :: K = o the type variable a ranges only
over kind k. A kind is of the form (I : 71, ..., ls : To);
it comprises all records that contain at least fields
li, ..., l,, with types 11, ..., 7.

Instead of a constraint on the left hand side of a
typing judgment, Ohori uses a kind assignment KC which
can be considered as a function which assigns each type
variable « its kind k. He writes IC A (« :: k) for the
disjoint extension of X with a new type variable a with
kind k.

Here’s an example of a program typed in O.

Ezample 13.
f:Va,B.(a:: (1: B)) = a — Int

fx=
let g: B — Bool
g=Ay eqy (xl)
inl
We use a Haskell-style notation, with type scheme an-
notations added for illustration purposes. The program
assumes that there is a function

eq : Ya.a — a — Bool

in the initial type environment.

7.1 Type system

We now translate O into the HM(X) framework. We
add to the initial type environment 'y primitive con-
structs that deal with record formation, selection and
update. For every ordered sequence of record labels
li, ..., l, we postulate an n-ary parameterized data
type Ry,_...1,- The record type {l1 : 71, ..., L, : 7, } is
then represented as R;, .. ;, 71 ...7,. For simplicity we
will keep using the record type notation as a synonym
for the datatype notation. For every record datatype
Ry, _.. 1, we have in the initial environment a datatype
constructor

li_..._ ly:mn = ...—= Ry .5, m1...Ty

...ep represents record formation
{ly = e1,...,l, = en}. For each field label | we add
to the initial type environment I'y the two functions

Vo, B(ax{l:B)=a—p0
modify, : Vo, B.(a=(l:6))=>a—=F—a
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The first function corresponds to record selection, the
second to record update.

Kinded quantification in O is modeled by primitive
constraints of the form (7 :: k) where 7 is a type and k
is a kind. Technically, this means we add (7 :: k) to the
set Q of primitive constraints where (::) is a primitive
predicate of arity 2. We define REC as the smallest term
constraint system that satisfies the following additional
rules:

REC1 ¢ ({li:7m,... by i1} (o 1))

where [q,...,[, are distinct
REC2 (r:(l:m)A (T {l:m)) F¢ (11 =12)
REC3 ({...,0l:7,..} = {l: 1)) F¢ (11 =)
REC4 Fa.(a:: k) =° true

where a & fu(k)

Note that these conditions rule out recursive records,
since our type algebra does not have recursive types.
On the other hand, we do allow recursive constraints
between type variables in REC. For instance, the con-
straint (a == ({ : @ — «a)) is well-formed. But that con-
straint is not satisfiable and therefore cannot appear as
a solved form. Also ruled out (by conditions REC2
and REC3) is overloading of field labels.

The set S of solved forms in HM(REC) consists of
all satisfiable constraints of the form

C == {}|(a:

where we take the empty token set as a representation
of true. Furthermore, we require that the constraints in
S are in simplified form, i.e. C ¢ (7 = 7') must imply
k¢ (7 = 7'). For instance,

(I:m)|cnc|3aC

(a={l:B)A(a={l:y—=7))

is not in simplified form and is therefore excluded.

The type system HM(REC) is as given in Figure 2,
with subsumption (<) being modeled by (=). As an
example, here the annotated program from Example 7
re-formulated in HM(REC):

Ezample 1j.
f:Va.(38.(a:: (1 : B))) = a — Int

fx=
let g : VB.(a = (1: ) =
B — Bool
g=Ay eqy (xli)
inl
In HM(REC) we quantify in the innermost let over
type variable 3, leaving just o to be quantified in the
toplevel function f. This is not possible in O, since
a’s kind depends on 8. The question arises whether
this makes HM(REC) a more permissive type system
than (. Specifically, are there examples where we
can use function g polymorphicallyl' The answer is
no. FEvery instance of g has to satisfy the constraint



36.(a = (1 : B8)). But « can only have one field entry
with label /;. Therefore, we can use g in the let-body
only monomorphically. In general, we can observe that
O and HM(REC) type exactly the same programs, but
the types are more precise in HM(REC).

Theorem 13 Full and Faithful. FEvery program ty-
pable in O is typable in HM(REC) and vice versa.

7.2 Type inference

We now consider type inference for HM(REC). Since
REC is a regular constraint system, we can obtain type
inference with principal types, provided it fulfills the
principal constraint property. To show the principal
constraint property for REC, we proceed in three steps.
First, we show that it is always possible to formulate
a constraint as a projection over a projection—free sub-
part. A constraint D is projection—free if D (considered
as a set) contains only tokens of the form (« :: k) and
(T = 7'). Then we give a procedure which computes the
principal normal form of projection—free constraints, or
fails if no normal form exists. Finally, we show that
it is sufficient to compute principal normal forms of
projection—free constraints. This is achieved by a lifting
method. Given an arbitrary constraint C' we compute
the principal normal form of the projection—free part.
Then we lift this result to the projected part. We show
that this lifting method is sound and complete.

In a first step we transform a constraint into a pro-
jection over a projection—free subpart. The idea is that
we can always rename type variables which are bound
by the projection operator. It holds that

Ja.C =° 3B.[8/alC

where (3 is a new type variable. That means, w.l.o.g.
there are no name clashes between two projected con-
straints (3a.C)A(38.D). Then we can lift all projection
operators to the outermost level using condition E3 of
a cylindric constraint system:

(3a.C) A (38.D) =¢ Ja.(3B.(C' A D))

We can summarize these observations in the following
lemma.

Lemma 14. Let C € REC.
projection—free constraint D such that C =° 3a.D .

Then there exists a

In the next step we show how to compute princi-
pal normal forms for projection—free constraints. We
assume that we have a projection—free constraint D
which contains only primitive predicates of the form
(=) and (::). W.lLo.g., we can assume that all predi-
cates (::) are of the form (« :: k). This can be achieved
because we know that

(r::k) =° Ja.((a=71)A(a k)

where « is a new type variable. The closure Cl(D) of
D is the smallest constraint which fulfills the following
conditions:

1. D C CI(D)
2. f(a={ly:m,..., 1, :1}) € CI(D)
then (a :: {1 : 11)),..., (a = (I, : 7)) € CI(D)

3. If (au(l:m)),(a:(l:m)) € ClY(D)
then (1 = ) € CI(D)

From a semantic view point we have not done any-
thing because Cl(D) =° D. We only have changed
the syntactic representation of D. The intention of
building the closure of D is to generate all predicates
(r :x (L:7')) which might cause any inconsistencies.
Given all such predicates we can generate all unifica-
tion problems (7 = 7') which have to be resolved. The
following lemma states that we really have generated all
such predicates.

Lemma 15. Given a field label | and types 7,7'. If
Fe (7 (l:7") then (t = (L: 7)) € CUD) iff D k¢
(7 = (I :7")). Furthermore, if ¢ (v = 7') then (7 =
7)€ CUD) iff D +¢ (r =1").

We can apply unification over Herbrand terms [Rob65]
to resolve all equality predicates (=) in C1(D). We ob-
tain a most general unifier ¢ of the equality predicates
(=) in CI(D). It remains to check whether this most
general unifier ¢ is consistent with Cl(D). This can be
done by checking whether there are any inconsistencies
in ¢Cl(D). If not, (¢C1(D), ¢) represents the principal
normal form of (D, id). We can summarize this obser-
vation in the following lemma.

Lemma 16. Given a projection—free constraint D €
REC and a substitution ¢. Then (D, $) has a principal
normal form, which can be computed by the procedure
described above, or else no normal form exists.

It remains to lift this procedure to arbitrary con-
straints. First, we state some essential lemmas that are
necessary to establish this lifting method. Then we ap-
ply this lifting method to state that REC satisfies the
principal constraint property.

The next lemma gives us a procedure to lift principal
normal forms of constraints to arbitrary constraints. It
states that whenever we can compute the principal nor-
mal form of a constraint D then we get the principal
normal form of the constraint Ja.D for free.

Lemma 17. Let D € REC and ¢ be a sub-
stitution where o & codom(d) U dom(p). If
(C,y) = mnormalize(D,¢) then (Ia.C,\(ay) =
normalize(3a.D, ¢).

The next lemma states that a normal form of a con-
straint exists iff a normal form of the projected con-
straint exists.

THEORY AND PRACTICE OF OBJECT SYSTEMS—(Year) 15



Lemma 18. Given a substitution ¢ where o ¢&
codom(p) U dom(¢) and a constraint D € REC. Then
(D, @) has a normal form iff (3a.D,¢) has a normal
form.

We have now everything at hand to prove that REC
satisfies the principal constraint property. The proof of
the theorem consists in describing a method how to lift
computation of principal normal forms for projection—
free constraints to arbitrary constraints.

Theorem 19. The constraint system REC satisfies the
principal constraint property.

Proof. Given an arbitrary constraint problem
(D, ¢) where D =¢ Ja@.D' such that D’ is projection—
free. We consider two cases.

First, assume (D, ¢) has no normal form. Because of
Lemma 18 we know that this holds iff (D', ¢) does not
have a normal form either. The latter can be checked
by the normalization procedure for projection—free con-
straints.

Now, assume (D, ¢) does have a normal form. We
apply Lemma 18 and find that the normal form of
(D', ¢) exists. By assumption we know how to normal-
ize (D', ¢). That means (D', #) does have a principal
normal form and we can compute its principal normal
form. With Lemma 17 we can lift the principal nor-
mal form of the projection—free constraint problem and
obtain the principal normal form of (D, ¢).

We can conclude that REC satisfies the principal
constraint property. -

8. Conclusion

We have presented a general framework for Hind-
ley/Milner style type systems with constraints. An in-
novative aspect of the framework is its new formula-
tion of the quantifier introduction rule, which avoids
problems in previous work. The formulation requires
the presence of a projection operator 3 on constraints.
This requirement was the main motivation to progress
from a syntactic notion of constraints as sets of for-
mulas to a semantic notion of constraints as cylindric
algebras. Cylindric algebras always have a projection
operator even though the operator need not be present
in syntactic form. Projection is also readily available for
the syntactic constraint systems that have been used in
type system literature. A simple way to introduce it is
by marking some variables as projected. In fact such
a marking can usually be reconstructed from a type
judgment: simply mark all variables that appear free in
neither the final type schemes or the final type environ-
ment as projected.

Projection provides an important opportunity for
constraint simplification: It is legal to eliminate vari-
ables from constraints as long as these variables are
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projected since such an elimination does not change the
constraint’s denotation. Simplification in the context
of subtypes has already been studied by Pottier [Pot96]
and the Hopkins Object Group [TS96]. We plan to
investigate in the future how their simplification tech-
niques fit into the HM(X) framework.

Since our framework also includes a subsumption
rule based on a given subsumption relation in the con-
straint system, it can be adapted to a wide variety of
type system instances. For instance, the classical Hind-
ley /Milner system falls out by taking subsumption to be
syntactic equality in a free algebra, Wand/Rémy style
records [Rém89, Wan89] or dimension types [Ken96] fall
out by taking some richer notion of equality as sub-
sumption, and standard object calculi [EST95a] fall out
by identifying the subtyping and the subsumption rela-
tions.

We could give a type soundness result for sound and
coherent HM(X) type systems based on a standard un-
typed denotational semantics. Furthermore, we formu-
lated a generic type inference algorithm for HM(X) type
systems. For a large class of constraint systems we could
state sufficient conditions under which type inference
computes principal types. To design a full language or
static analysis based on our approach, one must sim-
ply check that the conditions on the constraint system
are met. If this is the case, one gets a type inference
algorithm and the principal type property for free.

We hope that our results will open the door to a new
class of program analyses for program checking which
can be tailored to specific application domains. For
instance, it should be possible to add a dimension anal-
ysis to an existing programming language after the fact
and in a modular way, without changing the semantics
of the base language or its compiler. Our type sys-
tem framework would then be the basis of a language
tool framework which can be tailored to specific analy-
sis needs. The construction and investigation of such a
tool framework remains a topic for future research.
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Appendix: Proof of Theorem 11 (Soundness)

The following two lemmas can both be proven by
a straightforward induction on the derivation F. We
say a substitution ¢ is consistent with respect to a type
scheme 0 = Va.D = 7 if YD € S where we assume
there are no name clashes between @ and . This ex-
tends naturally to type environments. Furthermore, a
substitution ¢ is consistent with respect to a constraint
CifeCeS.

Lemma 1. Given C,T' e : 0 and a substitution ¢
such that ¢ is consistent with respect to C' and I'. Then
¢C,¢I' - e: ¢o.

Lemma 2. Given C,T'  e: o and a constraint D € S
such that D +¢ C. Then D,T - e:o.

We restate Theorem 11 in the following lemma.

Lemma 3 Soundness of . Given a type envi-
ronment T and a term e. If ¥,C,T W e : 7 then
Coyl'Fe:7,yC =C and Y7 =T.

Proof. We apply induction on the derivation
We only consider one case. The other cases can be
proven in a similar style.

W

Case (App) We have the following situation:
P1,C1, T FW ey i1y P2, Co, T FW ey : 1y
P =11 Uy
D=CiANCoN (11 212 = Q)
(C,v) = normalize(D, ")
Y| fu(r), C, T FW eres : ()

We apply the induction hypothesis to the left and right
premise and obtain

a new

Ci,ynl'Fer:mn 1C1=Cr Y1 =1
and
Coypol' Fea i 99202 = C2 9o =T
With Lemma 2 we can conclude that
Copnl'Fer:m Copal Foes:my

W.l.o.g. we can assume that all identifier in I" are con-
tained in e; and es and not more. This fact and normal-
ization ensures that ¢ is consistent in C' and I'. Then
we can apply Lemma 1 and obtain

Coyl' F ey C,YU F e : 91

We know that C' +¢ (Y11 < 972 — ¥(a)) and apply the
(Sub) rule to get C,yT" F e : o — (). It remains
to apply the (App) rule and we find

C,yT F ejes: ¢Y(a)
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Appendix: Proof of Theorem 12 (Completeness)

We give now a proof sketch for completeness for
HM(X) type systems where X € X" satisfies the princi-
pal constraint property. Some technical lemmas (which
we will point out) rely on the fact that X is regular. The
proof for X'%is similar, but there we only need weaker
versions of these technical lemmas which do not rely
on the regularity of the constraint system. In order to
prove completeness we have to do a little more work.
The idea is to introduce two intermediate derivations,
and to show that all derivations have the same expres-
sive power.

First, we introduce some conventions. The general-
ization procedure gen takes a constraint C, a type envi-
ronment I and a type 7 and returns the generalized con-
straint and type, written gen(C,T, 7) = (C',0). We use
two specialized generalization versions: gen, (C,T, T) re-
turns only the constraint part and gen,(C, T, 7) returns
only the type scheme part.

We introduce some basic lemmas. Most of them
are stated without proof. A detailed discussion can be
found in [Sul97]. The following two lemmas rely on the
fact that we only consider regular theories. We give the
proof for one lemma where one can see that X needs to
be a regular theory. The first lemma states that we can
lift entailment between two constraints to the general-
ized constraints.

Lemma 1. Given a type context ', constraints C,C,
types T, 7' and substitutions ¢, ¢, such that C' F¢ ¢'C
and S?v(l") é. Then C, F¢ ¢'C, where C, =
geny (C, ¢T, ') and C, = geny(C,yT, 7).

Proof. Wlo.g. we assume C, = Ja.C' and
C, = 38.C. We show that a ¢ fu(¢'C,). Assume the
contrary. W.l.o.g.

a ¢ fo(T) U fu(C,) U codom(e) (A1)

because we can always rename bound variables and dur-
ing type inference always new type variables have been
introduced. That means there is a v € fo(C,) such that
a € fu(¢'(y)). Further it holds that v ¢ fu(¢I'). As-
sume v € fu(yT') then there is a 6 € fu(I") such that
0 € fu(¥(vy)). We know that ¢(5) = ¢’ o () (here
we need the fact that X is regular, both sides of the
equation contain the same set of free variables) and
then we find @ € codom(¢) which is a contradiction
to Al. We get v & fo(yl') and v € fo(C,). But this is
again a contradiction because C, is a generalized con-
straint. Our starting assumption was false and we find

that & & fu(¢'C,).



Now, we can conclude that C' F¢ C,. Then it follows
that ¢'C +¢ ¢'C,. This yields C ¢ ¢'C,. Finally, we
obtain C, +° Ja.¢'C, and because a ¢ fu(¢'C,) that
we means we get C, ¢ ¢'C, as desired. -

Remark. The proof of the previous lemma relies on
the fact that X is regular. For X in X'* we only need a
restricted version of this lemma. Therefore, we still can
achieve complete type inference for X in X'?.

The next lemma is similar to the previous one, except
that it compares types instead of constraints.

Lemma 2. Given a type contest I', constraints C,C,
types T, 7' and substitutions (15 @',y such that C +*
¢'C, C + @'t <1 and ¢ < ry ¢ Then o o¢'5, <
oo where o, = gen, (C, ¢T", ') and 6o = gen, (C,yT, 7).

The next lemma states that we can lift some proper-
ties about a constraint and a substitution to the same
constraint but extended substitution.

Lemma 3. Given a set U of variables, constraints

C1,C" and substitutions 9,1, @, (151 such that
$1C1 = C1, €' ¢{Cr, § = U, ¥ <f/ &, v <f}
@, codom(p2)Nfu(C1) C U and codom(zpl)ﬂfv((}’g) C U
Then C' ¢ (¢’ o 9)Cy

The next Lemma is similar to the previous one but
it is stated for the F? relation.

Lemma 4. Given a set U of variables, a constraint
C', type schemes &,0" and substitutions 1, Y1, Y2, @, P1
such that Y16 = g, C' F ¢l = o, v = 1 U,
¥ <G ¢ %1 <4 ¢, codom(yy) N foCy) C U and
codom(11) N fo(C2) CU. Then C' ¢ (¢' o) < 0"

Now, we introduce the intermediate derivations. We
introduce a derivation F2 which is based on derivation
F in figure 2. Instead of rule (V Elim) we have the
following new rule:

(Inst) C,T F2 z:7 (z:0€l CH+ o=71)

All other rules stay unchanged. Note, also the (Var)
rule is still present in derivation F2. The idea of deriva-
tion 2 is simply to enforce (V Elim) steps as early as
possible.

Next, we consider a syntax directed derivation F¢.
We also want to get rid of the (V Intro) rule. This rule is
combined with the (Let) rule. Furthermore, the (Var)

and (Inst) rules are combined in the (Var-Inst) rule.
The rules are as follows:

(Var-Inst) C,T +F¢ z:7 (z:0€l CFio=71)

Clyxz:T7Fte:r

Abs
(Abs) C, T, dge:7— 7'
(App) CTFle:mm -1 CTFey:r
C,F "d €1€9 ! Ty
(Sub) CTFle:7 Cre(r=x7)
u
C,TFe:7!
C,T, Fle:r (C',0)= gen(C,Ty,T)
(Let) C'" Tyx:okde 7

C'ANC"T, Flletz=eine : 7'

In the (Let) rule we implicitely require that the con-
straint C' AC" is in solved form. Remember that the set
of constraints of solved forms is not necessarily closed
under A. That means, when we apply the (Let) rule we
always have to ensure that C' A C"' is in solved form.

The next lemmas state how these derivations are con-
nected. The first two of these lemmas can both be
proven by a straightforward induction on the derivation
relation.

Lemma 5 Equivalence of - and F2. Given a type
environment ', a constraint C, a term e and a type

scheme 0. Then C,I' - e:0 iff C,T F2 e: 0.
Given C,T' ¢ e

Lemma 6 Soundness of F¢.

Then C,T + e:T.

We now show that -7 is complete with respect to 2
and F" is complete with respect to F2. In order to
prove it we have to strengthen the assumption about the
given type environment. This is due to the (Let) rule
where the two premises use different type environments.
Therefore, we introduce the following definition.

Definition. Let C be a constraint and I' and T be
type environments such that T = {z1 : 01,...,2p : On}
and I' = {zy : 0},...,2, : 0L }. Then C ' " < T iff
Ctiol<0; Virie{l,...,n}.

In the following theorem it is essential that the type
environment I is realizable. Remember, a type envi-
ronment [ is realizable in a constraint C if for every
z:0 €I there is a 7 such that C F* o < 7.

Given C',T" 2

Lemma 7 Completeness of 9.

e:o', C'" F' T <T and T is realizable in C'. Then
(a) o'=7: CTFle:r C'FC
(b) otherwise : C,T F¥ e: 1 (0,,C,) = gen(C,T,T)

C'reC, C'Foo,<0
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Proof. We use induction on the derivation 9.
Due to space limitation we only show two cases.

Case (Var) We know that C',I" F? z : ¢ where z :
o' € T'. By assumption we know there is a z : ¢ in
I such that C' +* ¢ < ¢'. If o' = 7 then we can
immediately apply the (Var—Inst) rule and we are done.
Otherwise, w.l.o.g. we can assume that ¢ = Va.D = 7'.
We set C' = [3/a]D and 7 = [3/a]r" where 3 are fresh
type variables. We apply again the (Var—Inst) rule and
find C,T F* z: 7. Weset (0,,C,) = gen(C,T,7) where
0, is essentially a renamed version of . We find that
C' F 0, < ¢'. By assumption I" is realizable in C',
hence there is a 7 such that C' +¢ [7/a]D. This leads
us to the conclusion that C' +¢ C, and we are done.

Case (Let) We have the following situation:

C'\I' F2e:0 C' TLz:obk2e:7

C',T, F2 letx =eine : 7'

First, we consider the case if o is a type 7. We ap-
ply the induction hypothesis to left premise and ob-
tain C1,I; F¢ e 7 and C' F¢ C;. We set
(00,C») = gen(Cy,T;, 7). It is an easy observation
that C' F* o, < 7 holds. Now, we apply the in-
duction hypothesis to the right premise. This yields
Cy,Tpx : 0, F* € : 7" and C' F° C,. We know
that C' +¢ C, A Cy which ensures that C, A C5 is in
solved form. We can apply the (Let) rule and obtain
CoNCy, Ty Feletz =eine : 7.

Now, let us consider the case if o is a type scheme.
Application of the induction hypothesis to the left
premise yields:

C, T, Fte:17 (0,,C,) = gen(C1,T4,7)
C'Fio,<0 C'FeC,.

To apply the induction hypothesis to the right premise
we have to show that I'/,.z : o is realizable in C'. We
know that C',T’.z : 0 F? e : 7/ holds. If = does not
appear in the free variables of ¢ it is sufficient to con-
sider only T'!, which is by assumption realizable. Oth-
erwise we know that that the type of z must have been
instantiated to a monomorphic type which shows that
I..z : o is realizable in C'. Then we can apply the
induction hypothesis to the right and find
Co,Tpx:io, FE e C' e C,.

We can conclude that C' F¢ C,AC5 which ensures that
C, A Oy is in solved form. We can apply the (Let) rule
and find

CoNCy, T, F letz =eine : 7'
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Lemma 8. (Completeness of -V ) Given C',¢I' 2
e:7'. Then

v, 0, T KV e:r

for some substitutions i, ¢', constraint C' and type T
such that,

¢ S?;(F) ¢ O ke ¢’C O Hi ¢’T jT’

Proof. We use induction on the derivation 9.
Due to space limitation we only show the two interesting
cases.

Case (App) We have the following situation:

C'¢l' F ey :rl =15 C'ol' F ey: 1]
C’,¢F "d €1€9 ! T2’

Application of the induction hypothesis yields

¥1,C,T FW erim g <50 ¢

! € ! ! i ! ! ! (A2)
C'"Fe ¢1C1 C'F pim 21 = 1y

and '
¥5,Co, T FW er i1y 0 <92 ¢
C' ¢ ¢’202 c'’ "Z ¢’2T2 j Tll

We set 1’ = tb; L 1b. Then we find that ¢’ gjj;(r) 0.
We want to apply Lemmas 3, 4. We identify the set
U in these lemmas with fu(I'). We assume that type
variables introduced in one part of the inference tree do
not appear in the other part. Formally, this means that

codom(tz) N fo(Ch) C fo(T)

and
codom(t1) N fu(Cq) C fu(T")

All preconditions of Lemmas 3, 4 are fulfilled. We can
conclude that
C'F (¢ og)Cr O (¢ oy )n < o 7
C'F (#oy)Cr O F (¢ od)m <7

We set D =C; ACy A (11 < 72 — a) where « is a fresh
type variable. Then we obtain that C' F¢ (¢’ o' o
[15/a])D. We find that (C', ¢’ o ¢’ o [15/a]) is a normal
form of (D,v'). By assumption HM(X) satisfies the
principal constraint property. We obtain that (C,)
is the principal normal form of (D, ') where ¢ <9"
¢' o) o[15/a]. Because (C, 1) is principal we find that
C' ¢ ¢"C. W.lo.g (¢'ot')ry = 75, Then, we can
conclude that (¢’ o ¢’ o [15/a])|fur) = ¢ This leads
to ¢ g;’f;(r) ¢. Furthermore, it holds that ¢''(a) = 74
because

7 =¢' oy’ o[n/al(a) = ¢" o ¢p(a) = ¢"(a)

The last reasoning steps holds because « is a new type
variable therefore a ¢ dom(vy). Finally, we apply the
(App) rule and find

'(/)\fv(F)aCaF W €1€2 ! ¢(04)



which establishes the induction step.

Case (Let) We have the following situation:

Cr,¢T, Fle:7 (0,0y) = gen(Cy, ¢TIy, 7)
Cs,¢pl'px:o Fl e o7
Cy A C3, 9T, F?

let z =eine : 7’
Induction hypothesis applied to the left part yields

¢1aélarz l_W
Cy F° ¢ Cy

e:m Y < _fv @

A3
Cy + (A3)

17'1 j T
From Lemma 2 and Lemma 1 and A3 we obtain that
Cy F¢ ¢, Co = (A4)

01-<J

where (01,C5) = gen(Ch, Ty, 11).
Then it holds that

Wesetquqﬁfloqﬁ.

i (13(me 201) 3¢l o (A5)
because
$o1 = (1 0 p)or = (¢ o (¢ 0 %) fu(r))or = Pron
An easy observation yields
pur,) = (A6)

We rewrite the right premise with the stronger type
environment in A5 (this fact is stated without proof
but can be found in detail in [Sul97]) and find

Cg,(i(I’z.a: cop) Fel !

Now, we are able to apply the induction hypothesis to
the right part and find

’lpz,Cg,F I 01 "W "Tll

¥2 <foir. oo 9
Cs F° ¢5C3 C3 ' ¢hr] < 7'

(A7)

From A3 we can deduce that

va(o'l) ¢ (A8)

1 S?:,
because of A3 and A6 it holds that
(87 0%1) | fo(rs) = & = G| fu(r

and if @ € fu(o1) we can assume that a ¢ fu(T,
we know that

») then

¢pl@) =a ¢i(a) =

We can deduce that

¢ o Y1 (e)

= ¢1(a) = ¢(a)

Then from A7 and A8 we find that the least upper
bound of ¥; and 1, exists. It holds that

¢I
P <tor.)ufo(o) @ (A9)
= 11 U1hy. With A6 and from A9 we find that
¢/
V' <tor.) @
From A4 and A3 we know that
Cy ¢ ¢1Cy Cs = ¢4Cs

where 1)’

03 |—l ¢2T1 =

As in the (App) case we can conclude from Lemmas 3, 4
that

Cy K¢ (¢'09p')Cy  C3 F¢ (¢ 09')Cs
and

Gy b (¢ o), <7

We set D = Cy A C3. Then we obtain that (Ca A
C3,¢' o ¢') is a normal form of (D,%'). By assump-
tion HM(X) satisfies the principal constraint property.
Assume (C, ) is the principal normal form of (D, ')
where ¢ <% ¢’ 0 1)’. Now, we can apply the (Let) rule
and find

bigu(r)
Furthermore, we obtain that

CaNC3 F¢ ¢"C CyNCs F (¢ o
r,) ¢

,C, Ty FW let z =ein e : ¢r)

gy <7

¢Il
where 9 va(

|
Now we have everything at hand to prove complete-

ness of type inference.

Theorem 9. Given C',¢I' - e:
able in C'. Then

o' and ¢I' is realiz-

¥, 0, T F% e

for some substitutions ¢', ¥, constraint C' and type T
such that,
¥ <y @ C'F $C, C'H glo, <o
where (0,,Cy) = gen(C, YT, 7).
Proof. First, we apply Lemma 5 in order to get a
derivation in F2. Then, we can apply Lemma 7 (com-
pleteness of ). This yields

C,¢gl' Fle:17 C' k¢ C
C,ol' F e: 1 (0,,C,) = gen(C, ¢T', T)
C'kC, C'Fio,=<0

(a) o' =71:
(b) otherwise :
(A10)

After that we apply Lemma 8 (completeness of F")
and find

,C, T W e 7 ¢_fv r ¢
Cre¢gC CH ¢7=<71
We set (0,,C,) = gen(C, ¢TI, 7). It remains to show
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1.C'F ¢'6,=0 This fact follows by application of the Lifting Lem-
: mas 3, 4.
2. 0" F° ¢'C,. -
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