
0

Evaluation of Hardware-Based Stride and Sequential Prefetching
in Shared-Memory Multiprocessors

Fredrik Dahlgren and Per Stenström
Department of Computer Engineering, Lund University

P.O. Box 118, S-221 00 LUND, Sweden
Internet: {fredrik,per}@dit.lth.se, http://www.dit.lth.se/cachemire/

Abstract. We study the efficiency of previously proposed stride and sequential
prefetching—two promising hardware-based prefetching schemes to reduce read-
miss penalties in shared-memory multiprocessors. Although stride accesses domi-
nate in four out of six of the applications we study, we find that sequential
prefetching does as well as and in same cases even better than stride prefetching
for five applications. This is because (i) most strides are shorter than the block
size (we assume 32 byte blocks), which means that sequential prefetching is as
effective for these stride accesses, and (ii) sequential prefetching also exploits the
locality of read misses with non-stride accesses. However, since stride prefetching
in general results in fewer useless prefetches, it offers the extra advantage of con-
suming less memory-system bandwidth.

Corresponding author: Fredrik Dahlgren

Keywords: Hardware-Controlled Prefetching, Latency Tolerance, Performance Evaluation,
Relaxed Memory Consistency, Shared-Memory Multiprocessors.

To appear inIEEE Transactions on Parallel and Distributed Systems

1

Evaluation of Hardware-Based Stride and Sequential Prefetching
in Shared-Memory Multiprocessors

Fredrik Dahlgren and Per Stenström
Department of Computer Engineering, Lund University

P.O. Box 118, S-221 00 LUND, Sweden

Abstract. We study the efficiency of previously proposed stride and sequential
prefetching—two promising hardware-based prefetching schemes to reduce read-
miss penalties in shared-memory multiprocessors. Although stride accesses domi-
nate in four out of six of the applications we study, we find that sequential
prefetching does as well as and in same cases even better than stride prefetching
for five applications. This is because (i) most strides are shorter than the block
size (we assume 32 byte blocks), which means that sequential prefetching is as
effective for these stride accesses, and (ii) sequential prefetching also exploits the
locality of read misses with non-stride accesses. However, since stride prefetching
in general results in fewer useless prefetches, it offers the extra advantage of con-
suming less memory-system bandwidth.

1 Introduction

Large-scale shared-memory multiprocessors with a general interconnection network often suffer from a

significant processor stall time, mostly because of the large latencies associated with read and write

accesses. While the latency of write accesses can easily be hidden by appropriate write buffers and relaxed

memory consistency models [11], most processors have to stall on read accesses until the requested data

has been provided by the memory system. Private caches in conjunction with hardware-based cache coher-

ence maintenance [21] are quite effective at reducing the average read stall time. However, due to cache

block coherence maintenance and replacements, additional techniques are needed to reduce the number of

read misses.

Prefetching is a promising approach to reduce the number of read misses, and thus to reduce the read

penalty. Non-binding prefetching [12] does this by bringing into the cache the blocks which will be refer-

enced in the future and are not present in cache. The value returned by the prefetch is not bound; the

prefetched block is still subject to invalidations and updates by the cache coherence mechanism. Non-

binding prefetching approaches proposed in the literature can be either software- or hardware-based. Soft-

ware-controlled prefetching schemes [16, 17] rely on the user/compiler to insert prefetch instructions prior

to a reference triggering a miss. By contrast, hardware-controlled prefetching schemes utilize the regular-

ity of data accesses in applications, and need no software support to decide what and when to prefetch.

Two promising non-binding hardware-based prefetching strategies in shared-memory multiprocessors

are sequential [6, 20] and stride prefetching [5, 9, 13, 19]. Sequential prefetching tries to exploit spatial

locality across block boundaries by prefetching consecutive blocks in anticipation of future misses. By

contrast, stride prefetching detects and prefetches blocks associated with strides only but does not require

2

spatial locality to be effective. Clearly, the relative performance between the two approaches depends on

the amount of spatial locality and stride accesses in an application.

Another notable difference between the two approaches is the amount of hardware support needed.

Whereas sequential prefetching in its simplest form only requires a counter associated with each cache [6],

previously published stride prefetching schemes, e.g. [1], require fairly complex detection mechanisms

and also some modification to the processor.

This paper evaluates the relative performance as well as implementation implications of a variety of

stride and sequential prefetching schemes in a unified framework consisting of a cache-coherent NUMA

architecture which is discussed in detail in Section 2. We continue in Section 3 to review previously pro-

posed hardware-based prefetching schemes and develop in the process a classification scheme based on (i)

how strides are detected and (ii) how prefetching is kept going, once it has been enabled. This classifica-

tion is important in order to understand the implementation cost of each prefetching scheme as well as the

performance benefit of a certain feature. In a previous study [8], we compared the effectiveness of two spe-

cific implementations of sequential and stride prefetching schemes. In this paper, we extend that work by a

detailed analysis of a range of implementations as well as different strategies to keep prefetching going,

once it has been enabled. In addition, while all results in [8] are for infinite caches only, we also cover in

this paper the effect of finite caches on the performance of stride and sequential prefetching schemes.

In Sections 4 and 5, we evaluate the relative performance of the prefetching schemes using a detailed

architectural simulator and a set of six scientific benchmarks, in which stride accesses dominate in four of

them. Surprisingly, we find that one of the simplest variations of sequential prefetching does as well and in

some cases even better than the most aggressive stride prefetching scheme for five out of the six applica-

tions we use. The intuitive reason for this is twofold: First, since strides are shorter than the block size (we

have assumed a relatively small block size of 32 bytes), prefetching of consecutive blocks will cut the

number of misses of stride accesses substantially. Second, unlike stride prefetching schemes, sequential

prefetching can also attack misses caused by non-stride accesses that exhibit a high spatial locality. This

type of misses is fairly dominant in the applications we study. An observed shortcoming of sequential

prefetching, however, is that its prefetch efficiency is in general lower which could speak in favor for stride

prefetching schemes if the memory-system bandwidth is not sufficient. We end this paper by relating our

work to that of others in Section 6 and conclude in Section 7.

2 The Baseline Architecture

The architectural framework in which we evaluate the implementation cost as well as the performance of a

some stride as well as sequential prefetching schemes consists of a cache-coherent NUMA (non-uniform

memory access-time) architecture. The shared-memory is distributed across the processing nodes, which

are interconnected by a general interconnection network. The overall organization of each processing node

is shown in Figure 1.

The key feature of this particular design of the processing node is its lockup-free [14, 22] second-level

cache (SLC) which is a key component to the support of non-binding prefetching schemes as well as

relaxed memory consistency models. Moreover, we assume a blocking-load processor which is interfaced

to a simple, and thus fast, on-chip, first-level data cache (FLC).

3

The FLC is a write-through, direct-mapped data cache with no allocation of blocks on write misses

that blocks on read misses, and has a block-invalidation pin connected to the outside of chip. Write

requests, synchronization requests and read-miss requests issued by theFLC are buffered in FIFO order in

the first-level write-buffer (FLWB). TheSLC, which is larger than theFLC, is a write-back cache. Because

the FLC is direct-mapped and write-through, there is full inclusion between theFLC and SLC, which

makes it possible to migrate all mechanisms for maintaining cache coherence to theSLC.Besides imple-

menting a write-invalidate protocol, which is presented in Section 4, the lockup-free capability of theSLC

is supported by the second-level write-buffer (SLWB)which buffers all pending requests such as prefetch,

read miss, and invalidation requests.

Since the focus of this study is how to reduce the read-miss penalty for processors that block on loads,

techniques for dealing with write-penalty reduction are orthogonal. One such technique is relaxation of the

memory consistency model which has implications for the programmer as well as the design of the pro-

cessing-node memory subsystem. To reduce the design space, however, our study assumesrelease consis-

tency [11]. Under release consistency, write requests can be overlapped so that their penalties can be

completely eliminated [11]. This overlapping of write requests is made possible through the lockup-free

mechanism implemented in theSLC controller working in conjunction with theSLWB. Note that theSLWB

is needed to buffer prefetch requests also under a sequentially consistent implementation.

We concentrate on off-chip mechanisms that interfere little or nothing with the processor chip. In order

to focus on how to hide the large latencies involved with internode accesses rather than the substantially

shorter latencies involved with local actions, this study only considers prefetching into theSLC. Thus, all

prefetching mechanisms require modifications to theSLC. In order not to cause any page fault in the vir-

tual memory system because of a useless prefetch, prefetching across page-boundaries is not allowed. The

next section explains how this baseline architecture is extended with various stride and sequential

prefetching mechanisms.

3 Evaluated Prefetching Algorithms

We now describe the prefetching schemes, and how they are incorporated into the baseline system. We

start in Section 3.1 by introducing a terminology for stride prefetching. We continue in Sections 3.2 and

3.3 with descriptions of the evaluated stride prefetching schemes, and in Section 3.4 with the evaluated

Figure 1. The processor environment and the simulated architecture.

FLWB SLWB

Standard Interface for hiding
microprocessor memory latency

FLC

Memory module

Network
interface
control

Lo
ca

l b
us

P SLC

Prefetch

4

sequential prefetching schemes. Finally, in Section 3.5 we compare the implementation cost of the evalu-

ated schemes and build intuition into expected performance differences.

3.1 Stride Prefetching Terminology
Stride prefetching aims at detecting sequences of data accesses whose addresses are equidistant with a cer-

tain stride. To illustrate the key concepts involved, let us consider the matrix multiplication program of

Figure 2. In this example, we assume that matricesA andB are allocated row-wise in memory. In the inner

loop, the sequence of reads from matrixA has a stride of one vector element. By contrast, the sequence of

reads fromB has a stride equal to N; the size of a row. We will refer to a sequence of reads with a constant

stride as astride sequence.

There are two issues that must be addressed in order for a stride-prefetching scheme to be effective.

First, it must dynamically identify the stride in a stride sequence, which is done in thedetection phase.

Second, when a stride is detected it must issue prefetch requests early enough so that the block will be

available in the cache when the processor eventually accesses it. This is done in theprefetching phase.

Note that the second issue is applicable also to other hardware-based prefetching schemes and to other

access patterns than stride sequences.

The performance improvement provided by stride-prefetching schemes is dictated by the fraction of

read misses caused by stride sequences. Moreover, since prefetching can not start until a stride sequence is

detected, the length of a stride sequence becomes critical as to how many misses can be removed. In the

next section, we specifically study various approaches to detect strides.

3.2 The Stride Detection Phase
The stride detection phase aims at detecting a stride sequence. Since stride sequences are typically inter-

leaved with read and write accesses that do not belong to a stride sequence, detecting a sequence is not

trivial. However, on the premise that all such sequences are generated in loops, (e.g. the vector accesses in

Figure 2), all accesses for a certain stride sequence originate from the same load instruction. Thus, by

keeping track of the instruction address associated with each read or write access, it is possible to compare

the data address of a memory access with previous accesses evolving from the same instruction and this

way detect a stride. This approach requires that the instruction address (i.e. the program counter) is avail-

able to the detection mechanism; hence we refer to it as anI-detection mechanism. The implication for our

baseline architecture is thatFLC read-miss requests must include the instruction address of the corre-

sponding load instructions causing these misses. To avoid this, people have also considered detection

mechanisms that do not require that the instruction address is available; rather they analyze all read

addresses in order to isolate possible strides. Such detection mechanisms will be referred to asD-detection

mechanisms.

Examples of I-detection algorithms can be found in [5, 9, 19]. In this study, we only consider prefetch-

ing into theSLC; i.e., only read requests that miss in theFLC can trigger prefetching. For all I-detection

Figure 2. Example matrix multiplication algorithm.

for (i=0; i<L; i++)
for (j=0; j<M; j++)
for (k=0; k<N; k++)
C[i,j] = C[i,j] + A[i,k] * B[k,j];

5

schemes we consider, the instruction address of the load instruction that misses in theSLC is matched

against previous entries in aReference Prediction Table(RPT) which is organized as a cache.

The simplest stride prefetching scheme works as follows. The first time a certain load instruction

misses in theSLC, the corresponding instruction address, I (used as the tag), and data address, D1, are

inserted in the RPT, and the state is set to the initial stateno-prefetch. Subsequently, when a new read miss

is encountered with the same instruction address and with a data address D2, there will be a hit in the RPT.

Potentially, this is the beginning of a stride sequence, and the following actions take place: (i) the stride is

calculated as S = D2 - D1, (ii) D2 as well as S are inserted in the RPT, and (iii) the state is set toprefetch.

At this point, we can prefetch D2+S, D2+2*S, etc. The structure of the RPT is shown in Figure 3. This

simple 2-state scheme succeeds in detecting most strides, but has the drawback of producing useless

prefetches in situations where the same load instruction is executed twice and the addresses do not form a

stride sequence.

In order to study how the number of useless prefetches can be reduced by more selective mechanisms,

we will also consider two other schemes. The most straightforward technique is a3-state scheme that

requires three read-miss requests whose addresses are separated by the same stride and generated from the

same instruction to start prefetching. The state transition graph of the 3-state scheme is similar to the stride

prefetching scheme proposed by Sklenar in [19].

Another approach is the4-state scheme proposed by Baer and Chen in [1], where the sequence of

events that leads to the detection of a stride is shown by the state-transition graph in Figure 4. The second

time the same instruction address appears, a stride is calculated, the state is set toinit, and prefetching

begins. All read requests presented to theSLC are matched against the RPT in order to see whether the pro-

cessor continues to access a detected stride sequence (correct) or whether a new possible stride

sequence is initiated by the same load instruction (incorrect). When the same load instruction has gen-

erated accesses that belong to the same stride sequence three times in a row, the state becomessteady. A

singleincorrect (possible change of stride sequence) does not imply a recalculation of the stride;

instead, a transition to stateinit occurs. However, a second incorrect prediction in a row leads to the

statetransient, and a new stride is calculated as the difference between the preceding two data

addresses from that instruction. One of the most important features of this 4-state scheme is the stateno-

pref, which means that prefetches are stopped for a load instruction, if three incorrect predictions happen

in a row. This reduces the number of useless prefetches.

I. Addr. Data Addr. Stride

I. Addr

New Data Addr.

 = ?

Add
Prefetch

State

Reference Prediction Table, RPT

Figure 3: I-detection scheme

6

We have slightly modified our implementation of the Baer and Chen scheme [1] as follows. Instead of

using an additional program counter that looks ahead the same number of instructions as the miss latency

we want to overlap, counted in instruction cycle-times, our implementation uses a mechanism incorpo-

rated in theSLC with the purpose of issuing prefetches to blocks belonging to the detected stride sequences

which is explained in Section 3.3. The RPT in our evaluations is organized as a 256-entry, direct-mapped

cache; having the same size and organization as the one used by Chen and Baer in [5].

In contrast to I-detection schemes, D-detection schemes must compare a data address against all previ-

ous data addresses in order to detect regularities, which makes the detection phase much more compli-

cated. We consider the D-detection algorithm proposed by Hagersten in [13], which is the only one we are

aware of. Conceptually, it works as follows. The address of each read miss is matched against recent

misses buffered in amiss list, all possible strides are calculated, and afrequency table for strides is

updated. If a stride has appeared a certain number of times, called thestride-threshold, it is moved to alist

of common strides. If a stride that is calculated already belongs to the list of common strides, a stride is

potentially detected and inserted in thestream list. In our implementation, the miss list, the frequency

table, the list of common strides, and the stream list each has 16 entries and uses a LRU replacement pol-

icy. The stride threshold is 3, which means that if the stride has not occurred previously four misses

belonging to the same stride sequence are required before it is recorded in the list of common strides.

When this happens, two additional misses are required to initiate prefetching.

3.3 Stride Prefetching Phase
Orthogonal to the selection of a stride detection mechanism is the choice of a stride prefetching mecha-

nism which aims at determining how many blocks to prefetch. As soon as a stride sequence has been

detected, prefetch requests are issued for predicted addresses. Since the length of a stride sequence is not

known, a heuristic is needed to decide how many blocks to prefetch. Of course, if a predicted block already

resides in the cache, or if the block is already requested but has not yet arrived, a prefetch request is never

issued. We have studied two simple but effective schemes for the prefetching phase, referred to as thefixed

andalive prefetching schemes, which are both applicable for I-detect as well as D-detect.

The simplest prefetching scheme is thefixed scheme which works as follows. When a stride is detected

starting at data addressB, and the stride is calculated toS, the blocks to prefetch areB+S, B+2*S,...,

B+d*S, whered is referred to as thedegree of prefetching. If the processor continues to access blocks in

the same stride sequence, there will be hits in the SLC for these blocks as long as they are not replaced or

init

no-pref.

steady

transient

correct

incorrect

correct
correct

correct

incorrect

incorrect

incorrect

new stride

new stride

new stride

Figure 4: State-transition graph of the 4-state stride prefetching scheme.

7

invalidated. If the stride sequence contains more thand blocks, there will be a new miss. The data and

instruction addresses of this miss are then matched against the corresponding entry in the RPT (I-detec-

tion) or in the stream list (D-detection). If the miss belongs to a recorded stride sequence,d new prefetches

are issued. Thus, prefetch requests are only issued on read misses, and a fixed number (d) of prefetch

requests are issued at a time.

The alive scheme we will evaluate is described in Figure 5. Like the fixed scheme, blocksB+S,

B+2*S, ..., B+d*S are prefetched when a stride is initially detected at block addressB. Unlike the fixed

scheme, however, thesed blocks are tagged as prefetched, which requires 1 bit per block in theSLC. More-

over, if theSLC subsequently encounters a read request by the same instruction to the tagged blockB+S,

and if there is a hit in the RPT, the strideS is read from the RPT and the next block in the stride sequence

at addressB+S+d*S is prefetched. Subsequently, the 1-bit tag of the accessed block is reset. Consequently,

as long as the processor accesses the same stride sequence, the prefetching mechanism continues to

prefetch, and prefetched data will be available when the processor needs it. As a result, there will be no

read misses beyond the ones in the detection phase1. The alive scheme is similar to the prefetching-phase

mechanism proposed by Hagersten in [13].

3.4 Sequential Prefetching
Sequential prefetching is based upon the assumption that cache misses exhibit high spatial locality; if the

processor accesses blockB, the probability is high that the processor will also reference blockB+1. There-

fore, if the cache experiences a miss on blockB, it prefetches blocksB+1, B+2,..., B+d, if these blocks are

not already in the cache, whered is referred to as thedegree of prefetching. Sequential prefetching has

been shown to perform well for parallel applications on a shared-memory multiprocessor by Dahlgrenet

al. in [6, 7], and in multiprocessor vector machines by Fu and Patel in [9]. In general, sequential prefetch-

ing requires much less hardware complexity. This is simply because no detection phase is needed and

because sequential prefetching can adopt the same schemes for the prefetching phase as stride prefetching

schemes.

1This assumes that the stride sequence is within the same page and that a prefetched block is neither inval-
idated nor replaced.

. . . B B+S B+d*S B+S+d*S

PrefetchesRead

Prefetch B+S + d*S

hit

detection
phase

Figure 5: The alive scheme in the prefetching phase.

miss

8

This study covers two prefetching-phase mechanisms for sequential prefetching, in essence the same

as fixed and alive for stride prefetching.Fixed sequential prefetching works as follows. On a read miss on

block B, the corresponding read request is issued immediately and blocksB+1, B+2,...,B+d are

prefetched. This scheme requires (i) no extra bit for prefetched blocks, (ii) no cache controller action on

read hits; prefetching is only done when the processor is blocked because of the read miss. Thus, the extra

complexity is negligible.

Alive sequential prefetching works as follows. On a read miss on blockB, the corresponding read

request is issued immediately and blocksB+1, B+2,..., B+d are prefetched. These blocks are tagged as

prefetched. Each time a processor hits on a block that is tagged as prefetched, the 1-bit tag is reset, and the

block that appears d blocks ahead is prefetched. For example, if the processor continues to access consecu-

tive blocks, it will hit onB+1, which is tagged, and blockB+1+d will be prefetched. IfB+2 is accessed

block B+2+d is prefetched, etc. Like the alive stride prefetching scheme, only one miss will be encoun-

tered initially for a whole sequence. In the next section we will summarize the differences between the

stride and sequential prefetching schemes in terms of complexity and expected performance.

3.5 Summary
In order to compare the prefetching schemes implementation-wise, Table 1 summarizes the extra hardware

needed for the I-detection (4-state), the D-detection, and the sequential prefetching schemes. I-detection

needs support from the processor chip in terms of the instruction address of the load instruction that missed

in theFLC, while neither D-detection nor sequential prefetching need such support. Table 1 clearly shows

that the hardware needed for the I- and D-detection stride prefetching schemes is substantially higher than

for sequential prefetching, even though the size of the RPT or the associative buffers are fairly small. The

complexity of handling anSLC miss is also substantial, especially for D-detection, whereas it is negligible

for sequential prefetching. In particular, sequential prefetching with the alive prefetching phase andd=1

only needs to prefetch one block ahead (if any) onSLC misses or on hits on tagged blocks.

Table 1: Hardware extensions for three prefetching schemes.

4-state I-detect D-detect Sequential Prefetching

Processor
chip

Instruction address avail-
able for read misses in
theFLC.

No No

SLC RPT (256 entries) + state
machine + calculation of
strides.

Prefetched blocks are
tagged.

4 associative buffers, 16
entries each.

Calculation of strides

At least one buffer is
scanned and potentially
updated on each miss

Alive: Prefetched blocks
are tagged

Fixed: No additional
hardware except for issu-
ance of prefetches

Alive: Prefetched blocks
are tagged.

9

The difference in hardware complexity between stride and sequential prefetching is entirely due to the

mechanisms needed for the stride detection phase, which do not have a counterpart in sequential prefetch-

ing schemes. As a result, the stride prefetching schemes can predict future references for any constant

stride, while the sequential prefetching schemes rely on a high spatial locality to perform well. Important

questions concerning the effectiveness of these schemes become: (i) Are there enough references and

misses that belong to stride sequences to justify the complexity of stride prefetching schemes? (ii) Are the

stride sequences long enough that the misses needed to detect a stride sequence become negligible? (iii) Is

the stride often shorter than the number of words contained in a cache block? If it is, sequential prefetching

is expected to be as effective for stride sequences. Finally, (iv) how much spatial locality do accesses that

do not belong to stride sequences exhibit? We focus on the above questions in the following sections.

4 Simulation Methodology and Benchmark Programs

We have developed simulation models of the baseline architecture and all the prefetching algorithms pre-

sented in the previous section. The simulation platform is the CacheMire Test Bench [3], a program-driven

functional simulator of multiple SPARC processors. It consists of two parts: (i) a functional simulator and

(ii) a memory-system simulator that models the functionality of the memory system so that the same inter-

leaving of memory-system events is maintained as in the target system we model. The SPARC processors

in the functional simulator issue memory references and the architectural simulator delays the simulated

processors according to its timing model. Consequently, the same interleaving of memory references is

maintained as in the target system we model. To reduce the simulation time, we simulate all instructions

and private data references as if they always hit in the first-level cache.

We model a system containing 16 processing nodes with an organization according to Figure 1. At the

system level, the baseline architecture implements a write-invalidate protocol with a full-map directory

similar to Censier and Feautrier’s [4]. A presence-flag vector associated with each memory block points to

the processor nodes with a copy in their caches. AnSLC read miss sends a read miss message to thehome

memory module (the node at which the physical memory page containing the block is allocated). If the

home memory is the local node and if the block is clean (unmodified), the miss is serviced locally. Other-

wise, the miss is serviced either in two or in four node-to-node transfers depending on whether the block is

dirty (modified) in some other cache. A write access to a shared or invalid copy in theSLC sends an own-

ership request to the home node; in response, the home node sends invalidations to all nodes with a copy,

waits for acknowledgments from these nodes, and, finally, sends an ownership acknowledgment to the

requesting node plus the copy of the block if needed. While the home node is waiting for the completion of

a coherence action—e.g., the invalidation of copies—the memory block is in a transient state. If a read

miss or ownership request reaches the memory while the block is in a transient state, it is rejected and must

be retried.

The architectural parameters that are kept constant in all simulations appear in Table 2. As for the size

of theFLC, we have chosen 4 Kbytes to get a realistic replacement miss rate. Moreover, although a large

block size would be advantageous for the sequential prefetching scheme to be effective for large strides,

we pessimistically assume a fairly small block size of 32 bytes. In [6], Dahlgrenet al. evaluate how

sequential prefetching behaves for larger block sizes.

10

The timing assumptions are based on a processor clock (or pclock) rate of 100 MHz. TheFLC has the

same cycle time as the processor with anFLC fill time of 3 cycles. TheSLC is built from static RAMs with

a cycle time of 30 ns. Whereas we assume an infinitely largeSLCby default, we will also study the effect

of a finiteSLC. The memory in each node is fully interleaved with an access time of 90 ns, and a 256-bit

wide local split-transaction bus clocked at 33 MHz. The sizes of theFLWB and theSLWB are 8 and 16

entries, respectively. The word size is 4 bytes.

We assume a single 4-by-4 Mesh network clocked at 100 MHz with wormhole routing and with a flit

size of 32 bits. The node fall-through latency is two network cycles. Throughout the study, contention is

accurately modelled in all parts of the system. The last two rows in Table 2 show the time it takes to ser-

vice a read request provided that there is no contention and if the average distance between nodes are con-

sidered for the network latency. A read request is sent to the memory module where the block and its

directory is located, denoted thehome of the block. If the home has a clean copy of the block it responds

directly, and if the home is not in the requesting node there will be a network latency of two node-to-node

transfers, resulting in a total read stall of 75 pclocks. However, if the block is dirty, the home must first

request a shared copy from the cache holding the dirty copy, which results in a total of four node-to-node

transfers and a read stall time of 143 pclocks. Synchronization is based on a queue-based lock mechanism

at memory similar to the one implemented in DASH, with a single lock variable per memory block. In

addition, pages (4 Kbytes) are allocated across nodes in a round-robin fashion based on the least significant

bits of the virtual page number.

The selection of benchmarks is critical in any evaluation study, and this one is not an exception. Since

the success of stride prefetching is dictated by the occurrence of strides in the applications, we have chosen

four applications that have a substantial amount of stride accesses and two where strides are rare. These are

summarized in Table 3. Four of them are taken from the SPLASH suite (MP3D, Water, Cholesky, and

PTHOR) [18]. The other two applications (LU and Ocean) have been provided to us from Stanford Uni-

versity. They are all written in C using the ANL macros to express parallelism and are compiled bygcc

Table 2. Fixed architectural parameters.

Parameter Value (1 pclock = 10 ns)

Number of processors 16

First-level cache (FLC) size 4 Kbytes

Block size (FLC andSLC) 32 bytes

Read fromFLC 1 pclock

Read fromSLC 6 pclocks

Read from local memory 30 pclocks

Read from Home (two node-to-node traversals) 75 pclocks

Read from Remote (four node-to-node traversals) 143 pclocks

11

(version 2.1) with optimizationO2. For all measurements, we gather statistics during the parallel sections

only according to the recommendations in the SPLASH report [18].

Table 4 shows the cold, coherence, and total cache read miss rates for each of the applications for the

baseline architecture without prefetching and with infiniteSLCs. Since we assume full inclusion between

theFLC and theSLC, the miss rates is calculated as the total number of read misses in theSLCs divided by

the total number of read accesses to shared data in the system. A miss is classified as being a cold miss of

the block has not previously been fetched into the cache.

5 Experimental Results

We start in Section 5.1 with an analysis of the application characteristics in terms of some key metrics in

order to provide an intuition for the results we show in the subsequent sections. We continue in Sections

5.2 - 5.3 by analyzing different stride detection and prefetching phases assuming an infiniteSLC. We eval-

uate the relative effectiveness of stride and sequential prefetching in Section 5.4, before we broaden the

results to cover finite second-level caches as well as larger data sets in Sections 5.5 and 5.6, respectively.

5.1 Application Characteristics
In order to quantify the potentials of stride and sequential prefetching, we have used the following metrics:

(i) the fraction of the original read misses that belong to stride sequences, (ii) the average length of the

stride sequences, and (iii) the strides. In particular, if only a small fraction of all read misses belongs to

Table 3. Benchmark programs.

Benchmark Description Data Sets

MP3D 3-D particle-based wind-tunnel simulator 10 K parts, 10 time steps

Water Water molecular dynamics simulation 288 molecules, 4 time steps

Cholesky Cholesky factorization of a sparse matrix matrix bcsstk14

LU LU-decomposition of a dense matrix 200x200 matrix

Ocean Ocean basin simulator 128x128 grid, tolerance 10-7

PTHOR Distributed time digital circuit simulator RISC circuit, 1000 time steps

Table 4: Miss rates for the baseline architecture (no prefetching) and infiniteSLCs.

Benchmark
Cold miss

rates
Coherence
miss rates

Total miss
rates

MP3D 1.3% 8.9% 10.2%

Water 0.04% 0.72% 0.76%

Cholesky 1.0% 0.35% 1.35%

LU 0.86% 0.05% 0.91%

Ocean 0.02% 0.75% 0.77%

PTHOR 2.5% 3.8% 6.3%

12

stride sequences, stride prefetching is not expected to be effective. In addition, if the length of the stride

sequence is short, the detection phase will be a significant part of the sequence, which limits the effective-

ness of stride prefetching. If the stride is close to 1 block, sequential prefetching will perform well, while

for strides larger than 1 block, stride prefetching has a possibility to outperform sequential prefetching pro-

vided that the spatial locality for other accesses is low.

The analysis is based upon an execution on the baseline architecture, and we only consider the read

requests that miss in the second-level cache. In order to concentrate on cold and coherence misses, we

assume an infiniteSLC. In contrast to Sections 5.2-5.4, we only consider requests from one processor in

this section, which has been shown to be representative. In the measurements, we have characterized a

stride sequence as being generated by the same load instruction, and it requires at least three read misses

with equidistant addresses. We use I-detection in order to identify stride sequences, and at least three

accesses with the same instruction address and with equidistant data addresses (the stride) are required to

tag the accesses as belonging to a stride sequence. The results of this experiment are shown in Table 5.

For MP3D, we see that only 9.2% of all misses belong to stride sequences. This means that stride

prefetching based on I-detection is limited to these 9.2%, and since it requires some misses for the detec-

tion phase before prefetches are issued, the actual miss reduction will be even lower. Since the average

length of a stride sequence is only 5.2 block references, and at least two references are required to detect a

stride, we cannot expect to gain more than a 5-6% reduction of read misses from I-detection stride

prefetching. The most common stride is 1 block (76% of all stride accesses belong to sequences with stride

1), which means that most of the stride access misses are also covered by sequential prefetching. In addi-

tion, the accesses to theParticles data structure show a reasonably high spatial locality, and we can

expect sequential prefetching to perform reasonably well.

For Cholesky, Water, and LU, almost all misses belong to stride sequences. They are in general larger

than in MP3D, on average between 7.2 and 16.9 references, which means that the detection overhead is

expected to be smaller. Stride prefetching thus has a potential to perform well for these applications. For

Cholesky and LU, almost all strides are 1 block, and sequential prefetching is expected to do equally well.

For Water, on the other hand, most strides are substantially longer than one, and sequential prefetching is

limited to the spatial locality of references belonging to different stride sequences and non-stride accesses.

For Ocean, most misses belong to stride sequences (66%), and the length of the sequences are 7.6 on

average, which indicates that stride prefetching should do reasonably well. Even if 31% of all misses

Table 5: Application characteristics. Infinitely large second-level cache.

MP3D Cholesky Water LU Ocean PTHOR

Read misses
within stride
sequences

9.2% 80% 79% 93% 66% 4.1%

Avg. length of
sequence

5.2 7.2 8.0 16.9 7.6 3.4

Most com-
mon strides

1 (76%) 1 (95%) 21 (99%) 1 (93%) 65 (42%),
 1 (31%)

1 (37%)

13

belong to sequences with a stride of 1 block, this is not a sufficient reason for sequential prefetching to per-

form as well as stride prefetching, if there is no spatial locality in non-stride accesses. Thus, stride

prefetching is expected to be more effective than sequential prefetching at reducing the number of read

misses for Ocean.

For PTHOR, there are almost no stride sequences, and those that exist are very short. In addition, other

experimental observations have shown that the spatial locality of misses is low in PTHOR [6]. Therefore,

neither stride nor sequential prefetching are expected to work well for PTHOR.

In this section, we have used some key parameters in order to build an intuition of the relative poten-

tials of stride and sequential prefetching. In the following sections, we will evaluate different stride

prefetching techniques and the relative effectiveness of stride and sequential prefetching, and we will use

above metrics in order to explain the results. Subsequently, we will use the same key parameters and

broaden the analysis in order to make an intuition about the relative effectiveness of stride and sequential

prefetching for finite sized second-level caches in Section 5.5 and larger data sets in Section 5.6.

5.2 The Stride Detection Phase
In this section, we analyze the read miss reduction and prefetch efficiency of three different I-detection

mechanisms denoted the 2, 3, and 4-state schemes as introduced in Section 3.2. To simplify the wording,

we refer to them as 2-state, 3-state, and 4-state. The prefetch efficiency is the fraction of all prefetched

blocks that are accessed during their lifetime in the cache. For all three mechanisms, we assume thefixed

prefetching scheme withd = 1, 2, and 8, and an infiniteSLC. Figure 6 shows the reduction of read misses

relative to the baseline architecture (with no prefetching), while Figure 7 shows the prefetch efficiency.

Read misses for blocks that are being prefetched but have not yet arrived in the cache are counted as hits in

the diagram. This is justified by the observation that the read stall time for such accesses with the fixed

prefetching scheme is on average significantly shorter than the total time of servicing a read miss. The rea-

son for this is that prefetches are only issued at read misses. Since prefetching across page boundaries is

not supported, and the memory is distributed across the memory modules page-wise, prefetch requests

always go to the same memory module as the read-miss request that triggered prefetching. Since prefetch

requests are issued immediately after the read-miss request is issued, they are often completed soon after

the block for the read-miss request has returned.

As can be seen in Figure 6, the reduction of read misses for MP3D is very low, regardless of the degree

of prefetching,d, and the detection mechanism. For 3-state and 4-state, the reduction lies between 2% and

5%, while it is slightly higher for 2-state. The reason for the modest reduction is explained in the previous

section; the fraction of read misses that belongs to stride sequences is low. 3-state and 4-state are more

selective than 2-state at detecting stride sequences and decide when to prefetch, which is why their reduc-

tions of read misses are lower. Whereas 3-state only prefetches when it is definitely a stride sequence and

4-state does not prefetch at instruction addresses that previously did not request stride sequences, 2-state

continuously issue prefetches as long as it finds at least 2 read requests at the same instruction address.

These expectations are shown in Figure 7; the prefetch efficiency of 2-state is extremely low for MP3D,

which means that a large number of blocks which are never accessed are prefetched. On the other hand, the

more selective detection mechanisms, 3-state and 4-state, have a much higher prefetch efficiency. As can

14

be seen for 4-state, the prefetch efficiency is lower for a higherd — it is decreased from 84% ford=1 to

60% ford=8. When the stride sequence comes to an end, all subsequent prefetches issued to that sequence

will normally be useless. For the fixed prefetching scheme withd=1, the number of useless prefetches per

stride sequence can be no more than 1, since no more than one prefetch is issued at a time to the same

sequence, while ford=8 it can be up to 8.

For Cholesky, Water, and LU, the reduction of misses is much larger. This also follows from Table 5 in

the previous section, where most read misses for these applications belong to stride sequences. In general,

2-state removes more misses because it prefetches more and needs fewer misses to detect a stride

sequence. Unfortunately, it has a lower prefetch efficiency. A higherd means a larger reduction of read

misses. Since the fixed scheme requires one miss ford blocks to be potentially prefetched, we note that the

 d=8
� d=2
� d=1

| ||0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

|55

|60

|65

|70

|75

 R
ed

u
ct

io
n

 o
f

R
ea

d
 M

is
se

s
(P

er
ce

n
t)

�
� �

�

�
�

�

�
�

�

�
�

�

� �

�

� �

�
� �

�

�
� �

�

�

�
�

�

�

�
�

�

� �

MP3D Cholesky Water LU Ocean PTHOR

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

Figure 6. Reduction of read misses (in percent) relative to the baseline
architecture.

� d=1
� d=2
 d=8

| ||0

|10

|20
|30

|40

|50

|60

|70

|80

|90

|100

 P
re

fe
tc

h
 E

ff
ic

ie
n

cy
 (

P
er

ce
n

t)

�

�

�

�

�
�

�

�
�

�

�
�

�

�

�

�

�

�

�

�

�

�

� �

�

� �

�

� �

�

�

�

�

�

�

MP3D Cholesky Water LU Ocean PTHOR

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

2-
st

at
e

3-
st

at
e

4-
st

at
e

Figure 7. Prefetch efficiency in percent.

15

number of misses will be decreased whend increases. On the other hand, a higherd can imply a lower

prefetch efficiency which we see in MP3D.

For Ocean, the reduction of read misses as well as prefetch efficiency is between that of MP3D and

LU. This is expected, since the fraction of read misses that does not belong to stride sequences is higher

than in LU but lower than in MP3D (see Table 5.) In PTHOR, the reduction of misses shown in Figure 6 is

extremely low, which is explained by the absence of stride sequences as seen in Table 5. 2-state shows a

higher reduction, because it still issues a large number of prefetch requests, but just like in MP3D, most of

these are useless, and the prefetch efficiency is thus extremely low.

Overall, even though 2-state is shown to reduce the number of misses slightly more than 3-state and 4-

state, the cost is a higher traffic. For applications like Cholesky, Water, and LU, this is not a problem, since

the prefetch efficiency is still reasonably high. On the other hand, for applications like MP3D and PTHOR,

where the potential of stride prefetching is small, the low prefetch efficiency implies a large increase in

network traffic at the same time as the number of read misses is only marginally reduced. This clearly

shows the importance of a selective stride detection mechanism in order not to degrade the performance

due to contention effects. For the other applications, especially when the stride sequences are long, the dif-

ference in the miss reduction capability between 2-state, 3-state, and 4-state is small. The difference

between 3-state and 4-state turned out to be small. In the following, the only I-detection mechanism that

will be considered is 4-state.

5.3 The Stride Prefetching Phase
In order to evaluate the relative merits of the fixed and the alive prefetching mechanisms, we show below

the reduction of read misses in Figure 8, the read stall time in Figure 9, and the prefetch efficiency in Fig-

ure 10. All measurements assume 4-state as the stride detection mechanism and an infiniteSLC.

As can be seen in Figure 8, the alive prefetching mechanism results in general in a larger reduction of

read misses than fixed. In addition, the reduction for alive seems to be independent ofd. The reason for this

is that, for each stride sequence, almost all read misses encountered are those in the detection phase. After

that, prefetching is continuously issued as long as prefetched blocks are being accessed and page bound-

aries are not crossed. (A page boundary crossing affects fixed and alive prefetching in the same way and

leads to an extra miss whereafter prefetching is continued.)

As in the previous section, read misses for blocks that are being prefetched but have not yet arrived in

the cache are counted as hits in the diagram. This is intuitively justified for the fixed scheme, since the pro-

cessor is stalled during most of the latency of the prefetch requests. For the alive scheme, however, a

prefetch is issued every time the processor reads a block tagged as prefetched, and the processor is poten-

tially not stalled more than a few cycles before its next read request to the same stride sequence. Thus, a

block that is being prefetched might soon be referenced, which leads to a processor stall while waiting for

the prefetched block to arrive. Figure 9 shows the fraction of the read stall time that comes from read

requests that miss in theSLC and encounter the full latency of the memory-system (labelled miss stall in

Figure 9) and the fraction that comes from waiting for blocks that have already been requested by previ-

ously issued prefetches or write-miss requests (pending stall). The baseline architecture has less pending

stall time since no prefetches are issued. For the alive scheme, labelled Alive-x (the alive scheme with

16

d=x), the pending stall component is decreased asd increases from 1 to 8. The reason is that ford=8,

prefetching is carried out 8 blocks ahead of the processor’s read requests to each stride sequence, while for

d=1, prefetching is only 1 block ahead (when one block is requested the subsequent one is prefetched). On

the other hand, for most of the applications, the miss stall time is marginally increased whend increases

because of increased contention in the wormhole routed mesh and in the memory modules. Overall, the

pending-stall component is small, and the difference between the read stall time for differentd is small for

the alive scheme.

Continuing with the prefetch efficiency in Figure 10, the number of useless prefetches tends to be

larger for alive at the end of each stride sequence, since prefetches are continuously issued as the stride

sequence is being accessed. On the other hand, the number of useful prefetches is larger along the

sequence, since no further read miss is encountered. As a result, the prefetch efficiency is approximately

the same as long asd is the same, which is shown in Figure 10.

 d=8
� d=2
� d=1

| ||0

|5

|10

|15

|20

|25

|30

|35

|40

|45

|50

|55

|60

|65

|70

|75

|80

 R
ed

u
ct

io
n

 o
f

R
ea

d
 M

is
se

s
(P

er
ce

n
t)

 � �

�

�

�

�

�

�

�

�

�
��

�

�

�

�

�

�

�

�

�

� �

Figure 8: Reduction of read misses relative to the baseline architecture.

MP3D Cholesky Water LU Ocean PTHOR

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

||0

|10

|20

|30

|40
|50

|60

|70

|80

|90

|100

|110

 N
o

rm
al

iz
ed

 R
ea

d
 S

ta
ll

T
im

e

Pending stall

Miss stall

Figure 9: Read stall time relative to the baseline architecture divided into
stall times because of read misses and wait times for pending request.

A
liv

e-
1

A
liv

e-
2

A
liv

e-
8

B
as

el
in

e

A
liv

e-
1

A
liv

e-
2

A
liv

e-
8

B
as

el
in

e

A
liv

e-
1

A
liv

e-
2

A
liv

e-
8

B
as

el
in

e

A
liv

e-
1

A
liv

e-
2

A
liv

e-
8

B
as

el
in

e

A
liv

e-
1

A
liv

e-
2

A
liv

e-
8

B
as

el
in

e

A
liv

e-
1

A
liv

e-
2

A
liv

e-
8

B
as

el
in

e

MP3D Cholesky Water LU Ocean PTHOR

17

Because of a lower prefetch efficiency, the amount of network traffic is much higher ford=8 than for

d=1 for fixed as well as for alive. Since the miss-reduction capability of the alive scheme withd=1 is as

large as for fixed withd=8, but at a lower network bandwidth consumption, we will in the following only

consider the alive prefetching scheme withd=1 for stride prefetching.

5.4 Stride vs. Sequential Prefetching
In order to develop intuition in how the read stall time as well as the amount of network traffic are affected

by each type of prefetching scheme, we start by showing the effects they have on the number of read

misses and the prefetch efficiency.

Figure 11 shows the number of read misses for each prefetching scheme relative to the baseline archi-

tecture. For each application, there are three bars: (from left) the I-detection scheme (the 4-state detection

scheme), denoted I-det; the D-detection scheme, denoted D-det; and the sequential prefetching scheme,

denoted Seq. Each bar consists of two sections: cold misses (on the bottom) and coherence misses. A miss

is classified as being a cold miss if the block has never been fetched or prefetched into the corresponding

cache previously. All three schemes use the alive prefetching phase mechanism withd=1.

Concentrating on MP3D, we can see that I-detection and D-detection reduce the number of read

misses by only 5%, which is consistent with the results from Section 5.1. Sequential prefetching, on the

other hand, reduces the number of misses by 28%. The reason behind this is that sequential prefetching

covers most of the stride sequences (recall that 76% of all strides are 1 block) and that it exploits spatial

locality. This shows that the spatial locality is high enough for sequential prefetching to outperform stride

prefetching. For Cholesky, Water, and LU, all three prefetching techniques perform well. Still, sequential

prefetching shows fewer read misses than stride prefetching, while I-detection is more effective than is D-

detection. While these results can be expected for Cholesky and LU from the observations in Section 5.1,

the reason why sequential prefetching works well for Water is the high spatial locality of accesses belong-

ing to different stride sequences. For Ocean, on the other hand, stride prefetching is more effective than

sequential prefetching. Our expectation from Section 5.1 is that stride prefetching should perform reason-

ably well, while there is neither enough 1-block strides nor enough spatial locality of accesses belonging to

� d=1
� d=2
 d=8

| ||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 P
re

fe
tc

h
 E

ff
ic

ie
n

cy
 (

P
er

ce
n

t)

�

� � �

�
�

� �

� �

�
�

�
�

�
�

�
�

� �

� �

� �

Figure 10: Prefetch efficiency.

MP3D Cholesky Water LU Ocean PTHOR

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

F
ix

ed

A
liv

e

18

different strides for sequential prefetching to perform equally well. For PTHOR, all three techniques per-

form poorly, although sequential prefetching manages to reduce the number of misses to some extent. We

also see that the prefetching schemes are more effective at reducing the cold miss rate than the coherence

miss rate for all applications.

Overall, for all applications but Ocean, sequential prefetching is more effective than stride prefetching

at reducing the number of misses, while I-detection is in general more effective than D-detection.

Figure 12 shows the prefetch efficiency. For the applications for which all three schemes are effective

at reducing the number of misses (Cholesky, Water, and LU), all three schemes also have a very high

prefetch efficiency. For the other three applications, MP3D, Ocean, and PTHOR, I-detection has in general

a higher prefetch efficiency than D-detection and sequential prefetching. The reason why I-detection has a

reasonably high prefetch efficiency for all applications is because it is more selective in the detection

phase; a stride is detected through the instruction stream only, which means that the probability is high that

a detected stride sequenceis a stride sequence. The sequential prefetching scheme, on the other hand,

always prefetches on a cache miss, regardless of whether the spatial locality is high or low. As a result, the

sequential prefetching scheme issues a larger number of useless prefetches for the applications where the

reduction of read misses is not as high, e.g. in Ocean and PTHOR. These useless prefetches increase the

traffic, and may introduce contention.

We now interpret how the read stall time is reduced based on the effects on read misses and prefetch

efficiency. The read stall times are shown in Figure 13. The reduction of the read stall times follows to

some extent the reduction of read misses, but the reduction of the former is in general not as dramatic. The

effect on the read stall times is due to two effects: (i) the number of misses is reduced, and (ii) the amount

of traffic sent to the network during an execution is increased because of useless prefetches. As a result, the

load on the network is increased. Overall, sequential prefetching is more effective at reducing the read stall

time for three out of six applications.

Figure 14 shows the total execution times. Each bar is decomposed into busy time, read stall time,

acquire stall time (the time spent waiting for an acquire to complete), and buffer stall time (the processor is

stalled due to a filledFLWB). The execution times follow the trends of read stall time reductions. The dia-

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 N
o

rm
al

iz
ed

 N
u

m
b

er
 o

f
R

ea
d

 M
is

se
s

100
94 94

72

100

42 45

20

100

53

67

36

100

25

36

23

100

69
76

84

100 98 95

81

Coherence

Cold

I-
de

t
D

-d
et

S
eq

MP3D Cholesky Water LU Ocean PTHOR

Figure 11: Number of read misses relative to the baseline architecture.

B
as

el
in

e

I-
de

t
D

-d
et

S
eq

B
as

el
in

e

I-
de

t
D

-d
et

S
eq

B
as

el
in

e

I-
de

t
D

-d
et

S
eq

B
as

el
in

e

I-
de

t
D

-d
et

S
eq

B
as

el
in

e

I-
de

t
D

-d
et

S
eq

B
as

el
in

e

19

gram shows that the execution time for sequential prefetching is lower than I-det as well as D-det for three

out of six applications, and equally low as for I-det for two of the others. Ocean is the only application

where sequential prefetching performs worse than stride prefetching.

The corresponding network traffic is shown in Figure 15. The network traffic clearly follows the

prefetch efficiency trends shown in Figure 12, with the difference that the prefetch efficiency only shows

the fraction of prefetches that are useful, but not how many blocks that were prefetched. This is why

sequential prefetching, despite of a higher prefetch efficiency, generates more traffic than D-detection for

MP3D and PTHOR — the number of issued prefetches is much larger under sequential prefetching since

there is no selection mechanism that avoids prefetching when no stride is detected.

Overall, the above results show that sequential prefetching is more effective at reducing the number of

read misses, while the I-detection scheme in general has a higher prefetch efficiency because it is more

selective in the detection phase. However, sequential prefetching reduces the read stall time more than the

other schemes do for three out of six applications, despite its much simpler and less sophisticated hardware

mechanism. We have also shown that the key application parameters presented in Section 5.1 are useful to

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

 P
re

fe
tc

h
 E

ff
ic

ie
n

cy

88

13

42

86 84 86
80

86
92 90 90 88

81

58

31

53

32
36

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

MP3D Cholesky Water LU Ocean PTHOR

Figure 12: Prefetch efficiency.

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
o

rm
al

iz
ed

 R
ea

d
 S

ta
ll

T
im

e

98 98

88

57
63

48

58

72

57 55

65
58

80
86

96
100 101 101

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

MP3D Cholesky Water LU Ocean PTHOR
Figure 13: Read stall time relative to the baseline architecture.

20

explain the results. In the next two sections, we will use these parameters in order to broaden the results to

cover finite caches as well as larger data sets.

5.5 Finite Sized Second-Level Caches
Table 6 shows the application characteristics for a 16kbyte direct-mappedSLC. The methodology used

was the same as the one in Section 5.1. The first row shows the number of replacement misses relative to

total number of read misses, while the rest of the table has the same layout as Table 5. A read miss to a

block that was prefetched, but was replaced out from the cache before it was accessed, is classified as a

replacement miss in Table 6. The most remarkable differences as compared to Table 5 (infiniteSLC) are

for MP3D and Ocean. For MP3D, more than 90% of all replacement misses belong to stride sequences

with stride 1. For Ocean, 84% of all replacement misses belong to stride sequences, and 92% of these

belong to sequences with stride 1. Now, stride prefetching is expected to work reasonably well for MP3D

and Ocean too. Because most strides are 1 block, sequential prefetching will cover these misses as well.

This explains the results on stride prefetching for MP3D presented by Chen and Baer in [5] as well as the

results on sequential prefetching with finiteSLCs presented by Dahlgrenet al. in [6].

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

99 99
92

76
81

74

97 98 97
88 91 88

95 97 100 99 99 96

Buffer

Acquire

Read

Busy
I-

de
t

D
-d

et
S

eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

MP3D Cholesky Water LU Ocean PTHOR
Figure 14: Execution time relative to the baseline architecture.

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

|140

 N
o

rm
al

iz
ed

 N
et

w
o

rk
 T

ra
ff

ic

101

119 121

106 107 107 106 103 103 104 104 105 107
114

132

100
105

122

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

I-
de

t
D

-d
et

S
eq

MP3D Cholesky Water LU Ocean PTHOR
Figure 15: Network traffic relative to the baseline architecture.

21

Figures 16 - 18 show the number of read misses, the network traffic, and the read stall times for the

16kbyteSLCs. Since above sections have shown I-detect to consistently provide a higher performance than

D-detect, we will in this section only show results for sequential prefetching and I-detect stride prefetching

as compared to the baseline architecture with no prefetching. Since the fraction of all misses that belong to

stride sequences is slightly lower for finiteSLCs than for infiniteSLCs (cf. Tables 5 and 6), I-detect stride

prefetching does not perform as well for finite caches as for infinite caches, as can be seen by comparing

Figure 16 with Figure 11. The only exceptions are for MP3D and Ocean, where the replacement misses

almost always belong to stride sequences. Because of a larger number of useless prefetches for sequential

prefetching, one could believe that cache pollution would lead to a larger number of read misses than for

stride prefetching. However, as can be seen in Figure 16, sequential prefetching is more effective than I-

detect at reducing the number of misses for all applications. Except for Ocean, these results are consistent

with the results for infiniteSLCs. For Ocean, the reason is the increased amount of unit strides and the fact

that sequential prefetching utilizes spatial locality for non-stride accesses as well.

Looking at the network traffic in Figure 17, it is clear that sequential prefetching leads to a larger

increase in network traffic as compared to I-detect stride prefetching. For sequential prefetching, it is inter-

esting to notice that the amount of network traffic is closer to that of the baseline architecture for MP3D

and Ocean, the two applications where the number of unit strides is increased. Figure 18 shows the corre-

sponding read stall times. The major difference from the results shown in Section 5.4 is for MP3D and

Ocean where both sequential prefetching and I-detect now perform well. For PTHOR, on the other hand,

the large increase in network traffic for sequential prefetching results in a read stall time that is 10% longer

than that of the baseline architecture.

Table 6: Application characteristics for finite 16 kbyte direct-mapped SLC.

MP3D Cholesky Water LU Ocean PTHOR

Percentage
repl. misses

32% 45% 45% 76% 82% 39%

Read misses
within stride
sequence

34% 73% 67% 91% 81% 4.8%

Avg. length of
sequence

7.0 8.7 8.8 13.2 6.2 3.6

Most com-
mon strides

1 (96%) 1 (97%) 21 (98%) 1 (91%) 1 (87%),
65 (9%)

1 (25%)

22

Figure 19 shows the execution times. For the first four applications, the reduction of the execution time

is similar to the results for infinite caches, as was shown in Figure 14. For Ocean, sequential prefetching

reduces the execution time with 11%, which is more than stride prefetching does. The reason for this is the

good spatial locality of replacement misses that results in a high prefetch efficiency. On the other hand,

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
u

m
b

er
 o

f
R

ea
d

 M
is

se
s

100

74

57

100

51

29

100

63

48

100

34

23

100

58

44

100 100

85

Coherence

Cold

Replacement

I-
de

t
S

eq

MP3D Cholesky Water LU Ocean PTHOR
Figure 16: Number of read misses relative to the baseline architecture for 16KbyteSLCs.

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

|120

|130

|140

 N
o

rm
al

iz
ed

 N
et

w
o

rk
 T

ra
ff

ic

100 102

117

100
106

113

100
108

121

100
107

112

100

117
122

100
105

137

Figure 17: Network traffic relative to the baseline architecture for 16KbyteSLCs.

I-
de

t
S

eq

MP3D Cholesky Water LU Ocean PTHOR

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
o

rm
al

iz
ed

 R
ea

d
 S

ta
ll

T
im

e

100

90 87

100

63

51

100

64
56

100

66 67

100

80
71

100 102
110

Figure 18: Read stall time relative to the baseline architecture for 16KbyteSLCs.

I-
de

t
S

eq

MP3D Cholesky Water LU Ocean PTHOR

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

23

neither sequential nor stride prefetching lead to any reduction of the execution time, in contrast to the situ-

ation with infinite caches where sequential prefetching reduced the execution time with 4% (shown in Fig-

ure 14). Overall, sequential prefetching reduces the execution time more than I-detect stride prefetching

does for four out of the six applications used.

5.6 Larger Data Sets
We have also studied how our results are affected by larger data sets for five of the applications, and stud-

ied how the three key application parameters varied with increased data sets. The results are shown in

Table 6 in terms of expected tendencies. All trends correspond to infinite second-level caches. For MP3D,

we simulated 40 K particles. For Cholesky, we used matrix bcsstk15. Water was run with 576 molecules

for 8 time steps. LU was run with a 400x400 matrix. For Ocean, because of time limitations for simula-

tions, we actually simulated a smaller data set, a 64x64 grid and a tolerance of 10-3, and thereafter ana-

lyzed the code in order to predict the application and sharing behavior for larger data sets. The reason why

PTHOR is not analyzed with a larger data set is because of time limitations for simulations. However, we

do not expect that the results for PTHOR will change dramatically.

For MP3D, using more particles does not increase the fraction of read misses within stride sequences,

and the average length of the stride sequences will be slightly increased but is limited. Thus, the effective-

ness of I-detect is not expected to increase significantly as compared to the results of Section 5.4, and we

Table 7: Expected application characteristics for infinite direct-mapped SLC and larger data sets.

MP3D Cholesky Water LU Ocean

Read misses
within stride
sequence

about the same increase increase increase increase

Avg. length of
sequence

limited increase increase increase increase

Most com-
mon strides

still 1 block almost all 1 block not changed almost all 1 block longer, > 65

||0

|10

|20

|30

|40

|50

|60

|70

|80

|90

|100

|110

 N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e 100
95 92

100

80
75

100
96 95

100

83 83

100
93

89

100 100 100

Buffer

Acquire

Read

Busy

I-
de

t
S

eq

MP3D Cholesky Water LU Ocean PTHOR

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

I-
de

t
S

eq

B
as

el
in

e

Figure 19: Execution time relative to the baseline architecture for 16KbyteSLCs.

24

still expect sequential prefetching to be more effective. For Cholesky, Water, and LU, the fraction of read

misses within stride sequences will be closer to 100% and the sequences will be longer as we increase the

data sets. Therefore, we expect stride prefetching to be more effective as we increase the data sets. In addi-

tion, since the sequence length will be increased, the detection overhead will be negligible. On the other

hand, sequential prefetching will continue to perform as well as stride prefetching, since almost all strides

are one block in Cholesky and LU, and since the spatial locality of accesses belonging to different strides

is still very high in Water. For Ocean, stride prefetching is expected to perform better for larger data sets.

For infinitely largeSLCs, the spatial locality will not be increased, and sequential prefetching is expected

to perform poorly. For finite caches, the effectiveness of sequential prefetching depends on the cache size

due to the results in Section 5.5. Overall, for these five applications, the relative effectiveness of stride and

sequential prefetching showed in above sections is not expected to be dramatically changed with larger and

more realistic data sets, and we believe stride and sequential prefetching to perform equally well for

Cholesky, Water, and LU, whereas sequential prefetching would perform better for MP3D. For Ocean,

stride prefetching is expected to perform better as long as replacement misses are not dominating.

6 Discussion and Related Work

One of the advantages of I-detect over D-detect and sequential prefetching as implemented in this study, is

the fact that I-detect does not issue many useless prefetches. This is partly because using instruction

addresses seems to be an efficient way to detect stride sequences, and partly because of the no-pref state of

the 4-state transition graph; for instructions where prefetching has not turned out to be effective, no

prefetches are issued. In [6] Dahlgrenet al. propose an adaptive sequential prefetching mechanism that

dynamically changes the degree of prefetching based on an approximation of the spatial locality. In partic-

ular, the degree of prefetching can reach zero, which means that no prefetch requests are issued. This

means that for phases of execution where the spatial locality is low, no or few prefetches are issued, and

thus the traffic can be kept on a low level. A similar mechanism is proposed for the prefetching phase of

the D-detection scheme by Hagersten in [13]. The reason why we did not consider such mechanisms in the

study is because this study should base the evaluation on equally simple prefetching phase mechanisms.

The need for a more sophisticated prefetching phase mechanism is higher for sequential prefetching and

D-detection, since they are less selective in the detection phase, and such mechanisms will be considered

in future work.

The stride prefetching scheme of Baer and Chen, proposed in [1] and used in [5], also uses an RPT in

order to detect the stride sequences, and uses the same 4-state transition graph. However, their mechanism

differs in that it uses a lookahead-PC, which is a predicted program counter that ideally is as much ahead

of the normal PC as the maximum latency of a read request. While our schemes prefetch blocks for a read

request at a previous reference from the same load instruction, the scheme by Baer and Chen prefetches a

block when the load instruction that accesses that block appears at the address of the lookahead-PC. Thus,

their scheme might result in fewer useless misses, but requires more sophisticated hardware mechanisms

on the processor chip. The potential of their scheme is still limited by the same application parameters as

the ones we have identified in this paper, and we feel that the performance difference between the two is

small. In particular, if the stride sequences are long, and the number of misses to detect a stride becomes

25

insignificant, the effectiveness of the 4-state scheme and the scheme by Baer and Chen will be nearly iden-

tical.

The prefetching phase of Hagersten’s prefetching scheme presented in [13] is different from the one

used in this study. When his scheme detects a stride, it prefetches the next block, and when that block is

requested, the next block is prefetched. So far it is similar to the alive scheme in this study. However, if the

prefetched block is accessed before it has arrived to the cache, the number of blocks that are prefetched is

increased. In this way, the intention is to adjust the lookahead distance to the latency of a prefetch request.

In this study, we have seen no need for such a mechanism, since the time the processor has to stall due to

outstanding prefetches is on average very short. In addition, by using the same prefetching phases for I-

detect, D-detect, and sequential prefetching, we have been able to compare the fundamental characteristics

of each scheme using the same assumptions.

In [9], Fu and Patel evaluate sequential prefetching and stride prefetching for multiprocessor vector

caches. They do not assume any specific stride detection mechanism, rather they assume the information

about the stride sequence and the stride to be provided by the vector instruction. For scalar and short-stride

vector accesses, the prefetcher behaves as a sequential prefetcher, while for long-stride vector accesses it

behaves as a stride prefetcher. They show that the stride prefetching scheme was more effective than

sequential prefetching for their vector applications. In [10], Fuet al. evaluate a stride prefetching approach

for scalar uniprocessors. The stride detection scheme is an I-detection scheme similar to the 2-state scheme

that uses aStride Prediction Table (SPT) which is in essence the same as the RPT as used in this paper as

well as by Baer and Chen in [1]. They evaluate three different schemes for the prefetching phase for read

accesses that belong to stride sequences:pf_miss which only issues prefetches on read misses,pf_hit which

only issues prefetches on read hits, andpf_all that issues prefetches on all read accesses that belong to

stride sequences. The pf_miss is similar to the fixed scheme with degree of prefetchingd=1, whereas the

pf_all scheme is similar to the alive scheme withd=1. They find that their stride prefetcher was very effec-

tive at reducing the number of read misses for applications dominated by vector accesses, while the over-

head in terms of useless prefetches could be large for other applications. This is in accordance with our

results, indicating a low prefetching efficiency for the 2-state scheme for applications where a minority of

the misses belong to stride sequences. Further, they also show that, while pf_all is capable of reducing the

number of read misses the most, pf_all and pf_hit have a substantially higher overhead in terms of useless

prefetches.

In [2], Bianchini and LeBlanc propose a stride prefetching technique with software support called

hybrid prefetching. The compiler or programmer provides the hardware with stride information, which

means that the detection phase does not have to be implemented in hardware. Thus, their proposed scheme

is less expensive in terms of hardware support than the stride prefetching schemes considered in this study,

but imposes constraints for the programmer or for the compiler.

7 Conclusions

We have evaluated the relative effectiveness of hardware-based stride and sequential prefetching for

shared-memory multiprocessors. The major assumptions of the work are a write-invalidate protocol and

prefetching into the second-level cache only, and we assume in principal no additions to the processor

26

chip. Based on detailed simulations and a set of six scientific benchmarks executed under release consis-

tency, we have studied the miss rates, the prefetch efficiency, the network traffic, and the effects on the read

stall time. In order to understand the results, we have identified some key application parameters that are

useful to predict the relative performance of stride and sequential prefetching schemes. These parameters

include the fraction of read misses within stride sequences and the length of stride sequences and the

strides themselves.

Our results show that sequential prefetching does better or at least equally well as stride prefetching,

despite its much simpler hardware mechanisms. This is because (i) most strides are 1 block which means

that sequential prefetching is as effective for most stride sequences, and (ii) sequential prefetching also

exploits the locality of read misses for non-stride accesses. However, this study also shows that one of the

most important design issues of a stride prefetching mechanism is the stride detection phase, since it

affects the number of useless prefetches. Since the stride sequences of many applications are long enough

for the stride detection overhead to be negligible, the detection phase can be optimized to keep the number

of useless prefetches on a minimum. Because of the lower fraction of useless prefetches, stride prefetching

can perform better than sequential prefetching if the memory-system bandwidth is not sufficient. However,

in situations where the memory bandwidth is not a limitation, it appears that sequential prefetching is more

cost-effective because of the much simpler hardware mechanisms needed.

Acknowledgments

We are indebted to our colleagues Mats Brorsson, Håkan Grahn, and Jonas Skeppstedt of Lund

University and to the anonymous reviewers for helpful comments on earlier drafts of this paper.

This research has been supported by the Swedish National Board for Industrial and Technical

Development under contract number 9001797.

References

[1] J.-L. Baer and T.-F. Chen, “An Effective On-Chip Preloading Scheme To Reduce Data Access Penalty,” in

Proc. Supercomputing ‘91, 1991, pp.176-186.

[2] R. Bianchini and T.J. LeBlanc, “A Preliminary Evaluation of Cache-Miss-Initiated Prefetching Techniques in

Scalable Multiprocessors,” Tech. Rep. 515, Comput. Sci. Dept., University of Rochester, USA, May 1994.

[3] M. Brorsson, F. Dahlgren, H. Nilsson, and P. Stenström, “The CacheMire Test Bench — A Flexible and Effec-

tive Approach for Simulation of Multiprocessors,” inProc. 26th Ann. Sim. Symp., 1993,pp. 41-49.

[4] L.M. Censier and P. Feautrier, “A New Solution to Coherence Problems in Multicache Systems,” inIEEE

Trans. Comput., vol. 27, pp. 1112-1118, Dec. 1978.

[5] T.-F. Chen and J.-L. Baer, “A Performance Study of Software and Hardware Data Prefetching Schemes,” in

Proc. 21st Int. Symp. Comput. Architecture, 1994, pp.223-232.

[6] F. Dahlgren, M. Dubois, and P. Stenström, “Fixed and Adaptive Sequential Prefetching in Shared-Memory

Multiprocessors,” inProc. Int. Conf. Parallel Processing, Vol. I, 1993, pp. 56-63.

[7] F. Dahlgren, M. Dubois, and P. Stenström, “Combined Performance Gains of Simple Cache Protocol Exten-

sions,” inProc. 21st Int. Symp. Comput. Architecture, 1994, pp.187-197.

[8] F. Dahlgren and P. Stenström, “Effectiveness of Hardware-Based Stride and Sequential Prefetching in Shared-

Memory Multiprocessors,” inProc. First Int. Symp. High-Performance Comput. Architecture, Jan. 1995.

27

[9] J. Fu and J.H. Patel, “Data Prefetching in Multiprocessor Vector Cache Memories,” inProc. 18th Int. Symp.

Comput. Architecture, 1991, pp.54-63.

[10] J. Fu, J.H. Patel, and B.L. Janssens, “Stride Directed Prefetching in Scalar Processors,” inProc. 25th Ann. Int.

Symp. Microarchitecture, 1992, pp.102-110.

[11] K. Gharachorloo, A. Gupta, and J. Hennessy, “Performance Evaluation of Memory Consistency Models for

Shared-Memory Multiprocessors,” inProc. ASPLOS IV, 1991, pp. 245-257.

[12] A. Guptaet al., “Comparative Evaluation of Latency Reducing and Tolerating Techniques,” inProc. 18th Int.

Symp. Comput. Architecture, 1991, pp.254-263.

[13] E. Hagersten, “Towards Scalable Cache Only Memory Architectures,” PhD thesis, SICS Dissertation Series

08, Swedish Inst. of Computer Science, Oct. 1992.

[14] D. Kroft, “Lockup-free Instruction Fetch/Prefetch Cache Organization,” inProc. 8th Int. Symp. Comput.

Architecture, 1981, pp.81-87.

[15] R. Lee, P-C. Yew, and D. Lawrie, “Data Prefetching in Shared-Memory Multiprocessors,” inProc. Int. Conf.

Parallel Processing, 1987, pp. 28-31.

[16] T. Mowry and A. Gupta, “Tolerating Latency through Software-Controlled Prefetching in Scalable Shared-

Memory Multiprocessors,” inJ. Parallel and Distrib. Computing, Vol. 12, pp. 87-106, Jun. 1991.

[17] T. Mowry, “Tolerating Latency Through Software Controlled Data Prefetching,” PhD Thesis, Dept. of Comp.

Sc., Stanford University, USA, March 1994.

[18] J.P. Singh, W.-D. Weber, and A. Gupta, “SPLASH: Stanford Parallel Applications for Shared-Memory,” in

Comput. Architecture News, vol. 20, pp. 5-44, Mar. 1992.

[19] I. Sklenar, “Prefetch Unit for Vector Operations on Scalar Computers,” inComput. Architecture News, vol. 20,

pp. 31-37, Sep. 1992.

[20] A.J. Smith, “Sequential Program Prefetching in Memory Hierarchies,” inIEEE Comput., Vol. 11, No. 12,

pp.7-21, Dec. 1978.

[21] P. Stenström, “A Survey of Cache Coherence Scheme for Multiprocessors,” inIEEE Comput., Vol. 23, No. 6,

pp. 12-24, Jun. 1990.

[22] P. Stenström, F. Dahlgren, and L. Lundberg, “A Lockup-free Multiprocessor Cache Design,” inProc. Int.

Conf. Parallel Processing, Vol. I, 1991, pp. 246-250.

