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LATTICE-BASED SEARCH STRATEGIESFOR LARGE VOCABULARY SPEECH RECOGNITION(Order No. )FREDERICK S. RICHARDSONBoston University, College of Engineering, 1995Major Professor: Mari Ostendorf,Associate Professor of Electrical, Computerand Systems EngineeringAbstractThe design of search algorithms is an important issue in recognition, particularlyfor very large vocabulary, continuous speech. It is an especially crucial problem whencomputationally expensive knowledge sources are used in the system, as is necessaryto achieve high accuracy. Recently, multi-pass search strategies have been used as ameans of applying inexpensive knowledge sources early on to prune the search spacefor subsequent passes using more expensive knowledge sources. Three multi-passsearch algorithms are investigated in this thesis work: the N-best search algorithm, alattice dynamic programming search algorithm and a lattice local search algorithm.Both the lattice dynamic programming and lattice local search algorithms are shownto achieve comparable performance to the N-best search algorithm while running asmuch as 10 times faster on a 20,000 word vocabulary task. The lattice local searchalgorithm is also shown to have the additional advantage over the lattice dynamicprogramming search algorithm of allowing sentence-level knowledge sources to beincorporated into the search. v
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Chapter 1IntroductionThe goal of much development of speech recognition technology is to allow people tointeract with machines using speech. This is an important problem because there aremany circumstances in which a person needs to interact with a machine but cannotuse their hands to control input devices. For example, a disabled person may needto use a computer but may not be able to use a mouse or keyboard, or a repairtechnician may need to access a computer during a di�cult procedure which requiresthe use of both hands. There are also many other examples of applications of speechrecognition technology to education, language translation and computer informationaccess over the phone. Clearly, the speech recognition problem is a very importantone and, if solved, could improve many aspects of our lives.Although speech recognition technology has started to appear in high end andeven a�ordable personal computer systems, the technology has not yet reached a pointwhere a person can interact with a computer by only using their voice. This is despitethe fact that many important advances have been made over the past few decadesof speech recognition research. During this time, the speech recognition problem hasproven to be a di�cult one, and, in order to tackle it more e�ectively, it has been1



2partitioned into several di�erent areas of focus including speech recognition search,acoustic modeling and language modeling.One important problem in speech recognition is how to �nd the best sentencehypothesis for an utterance given various information sources for evaluating di�erenthypotheses. This is the speech recognition search problem. To solve this problem,all sentence hypotheses must be evaluated over all time alignments with the acousticsignal. The search problem is a di�cult one because, in general, it is impracticalto compare all possible hypotheses for an utterance due to the amount of time andstorage that is required. Therefore, the goal for speech recognition search is to designan algorithm that is both e�cient (in terms of storage and time) and accurate (interms of minimizing search errors). A search error occurs when a sentence hypothesisis not considered by the search algorithm but it would actually score higher than thebest hypothesis found for the given knowledge sources.State-of-the-art speech recognition systems today are able to perform speakerindependent recognition for vocabularies of 20,000 or more words. For a typicalspeech recognition system, the search computation grows on the order of V n whereV is the size of the vocabulary and n depends on the word sequence dependencerepresented in the language model. For example for a typical speech recognitionsystem using a 20,000 word vocabulary and a trigram language model, the full searchcomputation is potentially on the order of (20; 000)3 = 8 � 1012 times the length ofthe utterance, or roughly O(V 2) for a trigram LM in practice. The computation isreduced by using pruning techniques during the search, but the size of the vocabularystill has a profound e�ect on the speed of a search algorithm.Search techniques for speech recognition have long been an important researcharea, because the search problem is fundamentally linked to the type of modelingassumptions made. The design of a search algorithm determines how various models



3and techniques for comparing di�erent word or sentence hypotheses will be appliedto �nd a \best" sentence hypothesis given a speech utterance.Speech recognition search is still an important problem today. Over the pastfew years, the vocabulary size for speech recognition has grown from 1,000 words to50,000 words or more. This has increased the search computation mentioned aboveby a factor of at least 502 = 2500, assuming no pruning is used for the search andexcluding the additional costs due to advances in modeling. With this increase incomputational requirements, new approaches have to be considered for designing aspeech recognition search algorithm. This is despite advances in the computationalcapacity of computers which have been increasing by about a factor of two every twoyears.One approach that has been used for incorporating sentence-level or expensivemodels into the recognition search has been the N-best search paradigm. In thisparadigm, a list of sentences is generated for an utterance by one system and the listis re-evaluated by another system. Then the overall best sentence out of the list isselected as the output of the system. The problem with this approach is that theN-best list needs to be long if the vocabulary is large or if the error rates are high, inorder to increase the chances that the second system will have the opportunity to pickthe highest scoring hypothesis. In any multi-pass speech recognition system, the �rstpass should ideally keep the answer that would be considered the \best" hypothesisby later passes, otherwise a search error has been made. Unfortunately, evaluatingthe hypotheses in the list becomes more expensive for a longer list. Therefore, theapproach taken in this thesis work is to use a di�erent representation of sentencehypotheses with the goal of solving two problems: 1) increasing the chance thatthe highest scoring sentence is available to the second pass scoring algorithm and 2)decreasing the computation of the second pass algorithm.



4In this work, a word lattice is a directed graph of words with a unique start andend node and implicit time information. A sentence hypothesis is a path from thestart node to the end node through the lattice. Word lattices are an e�cient meansof representing the same information that is in an N-best list, in terms of storage.This is especially true if the hypotheses in the N-best list only vary by one or twowords. Also, it will be shown in this thesis that there are algorithms that can be usedfor searching lattices which are much more e�cient than the comparable algorithmused in the N-best search paradigm.Two lattice search algorithms are investigated in this work. The �rst algorithm�nds the optimal answer in the lattice using dynamic programming (DP), abreadth �rst search on the entire lattice. The second algorithm performs a suboptimalsearch on the lattices using an iterative local search algorithm, that evaluates entiresentence hypotheses in the lattice. The key advantage of the lattice local searchover the lattice DP algorithm is that it allows sentence-level knowledge sources to beused in the search. Only Markov knowledge sources can be used with the lattice DPalgorithm.There are several key contributions presented in this thesis work. The BBNdecoder was modi�ed to produce lattices with acoustic scores and phonetic seg-mentations. A lattice �le format speci�cation, included in the appendix of thisthesis, was de�ned that is being considered as a standard by the speech recognitioncommunity. Two lattice search algorithms were shown to be a factor of ten fasterthan N-best rescoring and one of them, the lattice local search algorithm, allows forthe incorporation of sentence-level knowledge sources. Also, the Boston Universitymixture language model, which is a sentence-level knowledge source, was incorporatedinto the lattice local search.The thesis is organized as follows: Chapter 2 provides background information



5on the search problem in speech recognition, and discusses word and phone repre-sentations, search strategies, the N -best paradigm and local search. Then Chapter3 outlines the speech corpora used for evaluating the di�erent lattice-based searchalgorithms and the modi�cations that were made to the BBN decoder in orderto produce lattices that were used for this work. The formulation for the latticeDP search algorithm, and the approach taken for N-best rescoring with the latticesare presented in Chapter 4. The lattice local search algorithm is then described inChapter 5, along with the de�nition of the local neighborhood used for the search andalgorithms for local path scoring and score caching. Chapter 6 gives experimentalresults for the di�erent algorithms, and �nally Chapter 7 gives an overview of thesigni�cance of this work and possible future directions.



Chapter 2BackgroundThis chapter gives an overview of a recognition system and the di�erent types ofknowledge sources and search strategies that are commonly used today. First, weoverview a generic speech recognition system. The concept of a knowledge sourceis de�ned, and the criterion for �nding the best sentence given a set of knowledgesources is given. Then the two main types of knowledge sources, language and acousticmodels, are discussed followed by a description of the principle search constraints.Two types of one-pass search algorithms, the breadth-�rst beam search and the depth-�rst stack search are also presented. In the second half, we describe several algorithmsthat are used in the multi-pass search paradigms. The N-best rescoring paradigmis outlined along with various N-best search algorithms. Following that, the term\lattice" and \N-best lattice" are de�ned and lattice-based search algorithms arediscussed. Finally, some details about local search algorithms are presented.2.1 Overview of a Speech Recognition SystemSpeech recognition involves a search process that incorporates information from a6
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ConstraintsFigure 2.1: Block diagram of a speech recognizer and the information sources that itmay rely on.variety of di�erent sources. There are two types of information sources that are used:those which provide constraints for the search, such as phonetic dictionaries and wordgrammars, and those which provide scores for di�erent word sequence hypotheses,such as language and acoustic models (Figure 2.1). The second type of informationsource, which provides scores, will be referred to as a \knowledge source" throughoutthe thesis. The constraints can be thought of as knowledge sources which assignprobability zero to speci�c sequences. However, they are often used in a deterministicstructural manner which is why we consider them separately.2.1.1 Knowledge SourcesFor statistical approaches to speech recognition, the goal is to �ndargmaxW P(W jX) = argmaxW flog P (XjW ) + logP (W )g (2:1)where W is a sequence of words and X is the acoustic data for the utterance. Thelog probabilities can be thought of as scores. The score logP (X jW ) is found using anacoustic model, while the score logP (W ), is found using a language model. Often,



8other knowledge sources are also included in Equation 2.1 and weights are used forlinearly combining them. A more general equation for �nding the maximumcombinedscore is then given by: maxW f KXi=1 �iKSi(W;X)g (2:2)where fKSig are knowledge sources which produce a score (which is generally a logprobability) for the word sequence and acoustic observations and f�ig are the weightsfor combining these scores.Some knowledge sources used for speech recognition are Markov, that is theyproduce a score for a word or sub-word unit dependent on a �xed-length history ofwords or sub-word units. Other types of knowledge sources require information aboutthe whole utterance such as sentence- or phrase-level models. The type of searchalgorithm that can be used for recognition is dependent on the type of knowledgesources that are being combined. For example, if only Markov knowledge sources arecombined, then an optimal shortest path algorithm such as dynamic programmingcan be used for the search. However, if sentence- or phrase-level knowledge sourcesare used then an optimal search must consider each possible hypothesis separately,which is impractical.Language ModelAn important category of language models (LM's) is statistical language models.One type of statistical model, the n-gram LM, models the probability of a word giventhe previous n�1 words. Then the Markov property is used to obtain the probabilityof the whole utterance. The most popular types of n-gram LM's are the trigram LM(n = 3) and the bigram LM (n = 2). Since n-gram LM's are Markov, they can beused with an e�cient optimal search algorithm so long as the other knowledge sourcesused for recognition are also Markov.



9Other types of statistical, but non-Markov language models include long distanceLM's which require knowledge of the entire sequence of words corresponding to anutterance. Some typical examples of long distance LM's include trigger pair LM's [1]and the Boston University sentence-level mixture model [2]. Since these LM's are notMarkov, they cannot be used with an e�cient optimal search algorithm.Acoustic ModelThe acoustic model gives a score dependent on the observed speech data and ahypothesized word or sub-word unit. Word acoustic models give a score for a wholeword for some start and end time, while phonetic (or sub-word) acoustic models givea score for a phoneme for some start and end time. Phonetic acoustic models have theadvantage over word models of being more robust when the recognition vocabularyis large. This is because each phone will have many observations in the training datasince they are shared by di�erent words.Phonetic acoustic models can be broken down into two categories: context-dependent and context-independent models. Context-dependent models represent theprobability of the acoustic observations given a phone and one or more of its neighbors,so there may be several di�erent models for each phone (there are approximately�fty di�erent phones used in this work). Context-independent models represent theprobability of the observations given a phone assuming the phones are independent,in which case there is one model per phone which is independent of the phone'sneighbors. The most common context-dependent models depend on a phone's rightand left context and are referred to as \triphone models". Two examples of phoneticacoustic models are the hidden Markov model (HMM) [3] and the stochastic segmentmodel (SSM) [4, 5].An HMM consists of a set of states, where each state i corresponds to a speci�c
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12frames Y T1 = fy1; :::; yTg, the total likelihood of the segment using the SSM is foundby: P(YT1 j��l[�]�r) = TYt=1 p(ytj��l[�]�r�T (t) )where ��l[�]�r is the SSM for the triphone � with left context �l and right context �r.��l[�]�rj indicates the jth SSM model parameters, and �T (i) is the warping functionwhich returns an SSM distribution index for each time i within a segment of lengthT . For this thesis, the SSM triphone acoustic score, or the log likelihood given thetriphone SSM model, is used as a knowledge source and is de�ned asL(�l[�]�r; t; � ) = ln[P(Y�t j��r[�]�l)]:2.1.2 Search ConstraintsGrammarGrammars provide a means of constraining the word sequences that a recognitionsystem can hypothesize. A �nite-state grammar is a directed graph of possible wordtransitions that spans the entire utterance and speci�es allowable word transitions.The arcs of a �nite-state grammar can be assigned probabilities to specify the topologyof an LM. Also, a �nite-state grammar can be constructed from an n-gram LM. Forexample, for a bigram LM and a vocabulary of size V , the �nite-state grammarconsists of V nodes and V 2 arcs connecting each node to every other node.A word-pair grammar dictates the possible words that can follow each word inthe lexicon and is a special case of a �nite-state grammar. A word-pair grammar issimilar to the �nite-state grammar corresponding to a bigram LM, except that someword transitions may not be allowed. Therefore, there may be fewer than V 2 arcs ina word-pair grammar for a vocabulary of size V .
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IY[T]AXFigure 2.6: Triphone network for the word sequence \the tomato".context and the triphones going into the terminal node of each PPN have no rightcontext (the phone \#" is used to indicate a word beginning or ending). If triphonesare going to be used to model the phonetic contexts between words, then the arcscoming out of the source node and going in to the terminal node must be duplicatedfor each cross-word context. Figure 2.6 depicts an example of cross word triphonearcs between the words \the" and \tomato" where the � indicates the word transitionnodes. The cross-word triphone arcs are represented with dashed lines.The search space for speech recognition is built by expanding each word in a�nite-state grammar with its PPN. The type of �nite-state grammar that is expandeddepends on the size of n for the n-gram LM used in the search. Also, each PPN mustbe expanded if context-dependent acoustic models are being used. Therefore, the sizeof the search space is dependent on the size of the vocabulary, the order of the n-gram



15model and the type of acoustic model that are used for recognition.2.1.3 Scoring and 1-Pass SearchWord ScoringFor this thesis work, the most likely segmentation and pronunciation of a word issought. Therefore, a maximization is taken over all segmentations and pronunciationsof a word. If the total probability of a word was required, then the sum would betaken over all pronunciations and segmentations instead of the maximum.Given an observation sequence fy0; : : : ; yT�1g corresponding to a whole word,�nding the most likely pronunciation �i = f�i;1; : : : ; �i;lig and segmentation ST�10 =f(�0 = 0; �1); (�1+1; �2); : : : ; (�li�1+1; �li = T �1)g for a word w with a topologicallysorted PPN fnps; npt ; Np; Ag (so that no node is reached before its predecessors havebeen scored) requires solvingLw(w; 0; T � 1) = max�i;ST�10 liXj=1L(�; �j�1 + 1; �j)which can be accomplished jointly by using the following dynamic programming (DP)iteration:1. Initialize: J�(0; nps) = 02. For t = 1; : : : ; T � 1For each nj 2 fNp � npsg calculate:J�(t; nj) = max�2R(t;�);�l[�]�r(ni;nj)2A fJ�(�; ni) + �aL(�l[�]�r(ni; nj); �; t)+ �d log P(t� � + 1j�) + �p log p(nijnj)g(2:4)where the times � 2 R(t; �) are allowable starting times determined by the phone



16�'s minimum and maximum duration, P(t � � + 1j�) is the phoneme segment du-ration probability, p(nijnj) is the node transition pronunciation probability, andf�a; �d; �pg are the weights for combining the acoustic, duration and pronunciationscores. J�(t; nj) is the best combined score reaching node nj at time t. The �nal valueat the end J�(T � 1; npt ) is the word's total combined score. For this work, di�erentpronunciations are treated as being equally likely and thus the node transition prob-abilities p(nijnj) are left out of the total score for a word to avoid penalizing wordswith multiple pronunciations since we are taking the most likely pronunciation andnot the sum over all pronunciations.In systems which use an HMM for the acoustic model, the algorithm for obtaininga word score is similar to Equation 2.4. The main di�erence is that a word's triphonePPN is expanded so that each triphone arc is replaced by the topology of an HMM.The PPN nodes then include HMM states (which are the nodes within a triphone)and null nodes (which are the nodes between triphones). Then the maximization ofEquation 2.4 is always taken over the previous HMM state ni at the previous timeframe � = t� 1 for the next set of possible HMM states nj at time t. Note that thereis no concept of a triphone segment within the HMM framework so the duration scoreP(Lj�) is left out.Word Sequence ScoringThe search space for the �rst stage of recognition is dependent on the numberof words in the lexicon V , the type of language model that is used, the type ofacoustic model that is used, the length of each utterance and the PPN topologies inthe phonetic dictionary. For example, for an HMM acoustic model the search spaceat any given time is given by: Ka +KeV (2:5)



17where Ka is the number of active within-word nodes and Ke is the number of activeend-word nodes as determined by the PPN and HMM topologies. The last factor,KeV , is the number of unique words in context that will start at the next time frame.A node is \active" if it is currently in the search space, which for a beam searchmeans that the probability is above some threshold. For an n-gram language model,Equation 2.5 potentially approaches a degree n polynomial as the search progressesin time. The search space for the SSM is bigger, since each arc must be scored overa set of begin and end times for all the within-word and cross-word arcs (the searchspace for rescoring with the SSM will be discussed in more detail in Section 4). Thesearch objective with any acoustic model is to �nd the best scoring path forward intime through the search space from the beginning to the end of the utterance.There are two basic types of search algorithms that have been used in onepass recognition systems: depth-�rst search algorithms and breadth-�rst search al-gorithms. The most common depth-�rst algorithm used for speech recognition is anapproximate A� stack search algorithm [7, 8]. This is a best-�rst search which savesall incomplete sentence hypotheses on a stack and extends the hypothesis with thehighest estimated likelihood for the entire utterance. This search strategy requiresestimating the likelihood of an incomplete hypothesis to the end of the utterance andcombining this estimate with the partial score of the hypothesis to obtain an estimateof its overall likelihood.By far the most prevalent search technique is the breadth-�rst \beam search".This is also known as time-synchronous Viterbi decoding with a beam threshold.The beam search is essentially a DP search using an equation similar to Equation 2.4which is evaluated forward in time. If any state at a particular time has a likelihoodthat is below some �xed threshold (the \beam width") of the highest likelihood foundfor all states at this time, then that state is \deactivated" for this time. Thus low



18scoring hypotheses at a particular time are eliminated from the set of allowable pathsthrough this point in the search space. The result of this search can be visualized asa tree that extends through the search space towards the end of the utterance withmany branches \pruned" along the way.For very large vocabulary speech recognition, the beam search requires a largeamount of memory and computation in order to achieve good performance. The Cam-bridge University one pass decoder [9] uses special pruning and network constructiontechniques to overcome these problems. The decoder uses an algorithm similar toViterbi decoding where all states that can be merged are collapsed into a tree.2.2 Search Approaches { Multi-PassLarge vocabulary speech recognition systems generally use two or more searchstages. In the �rst stage, some kind of a \fast match" is used to limit the amountof searching that is done with computationally expensive knowledge sources (KS's).Figure 2.7 depicts two types of fast match stages: one where a fast match is used tolimit the word hypotheses evaluated with the other KS's within the utterance, andone where the fast match produces a �nite set of sentence hypotheses evaluated withthe other KS's for the entire utterance. Any combinations of the two stages depictedin Figure 2.7 can be used to design the �rst recognition stage. The design of the �rstrecognition stage is critical because it determines the complete set of hypotheses thatwill be passed on to later stages. The main focus of this work is in the last pass of amulti-pass recognition system so the fast match won't be discussed in this section.
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202.2.1 Fast Initial Search StagesThe forward-backward search [10] is a two-pass beam-search algorithm. Bothpasses use a beam search as described above, but they are initiated from opposite endsof the utterance. Also, the �rst pass may use less powerful and less computationallyexpensive acoustic and language models than the second pass. The second pass usesthe scores generated by the �rst pass to estimate the likelihood of a partial hypothesisto the end of the utterance for pruning. A lower beam width can then be used inthe second pass without increasing the number of decoding errors. Thus the searchspace is reduced for the more powerful models of the second pass. This algorithmhas been shown to increase the overall decoding speed by 40 times over the standardbeam search [10].The forward-backward search algorithm gets its name from the Baum-Welchforward-backward training algorithm for HMM's. In the Baum-Welch algorithm,forward and backward likelihoods are calculated using a similar approach to thebeam search. In contrast to the forward-backward search algorithm, the Baum-Welchalgorithm does not require �nding the most likely state sequence ending at a particulartime. Instead, the algorithm only requires obtaining the forward-backward likelihoodfor being in an HMM state at a particular time. These likelihoods are then used forestimating the parameters of the HMM.The above mentioned search techniques can be used as part of a strategy forgenerating lists of the most likely N hypotheses for an utterance. The N -bestsearch paradigm was originally proposed as a means of integrating natural languageprocessing in speech understanding or for subsequent rescoring by later recognitionstages [11]. There is an exact N -best algorithm that uses a beam search describedin [11]. In this algorithm, the N highest scoring unique partial sentence hypothesesending at a particular time are saved for all times during the beam search. Also,
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Figure 2.8: Performance vs. N for N -best search algorithms (from [12]).probabilities for di�erent paths with the same partial sentence hypothesis ending ata given time are summed, and a state-dependent threshold, which is higher than theglobal beam width, is used for pruning at the state level.More e�cient approximate N -best algorithms have been developed since theexact algorithm. These include the lattice and word-dependent N -best algorithms[12]. The lattice N -best algorithm saves a traceback reference at the beginning ofeach word for all entering words at each time within the utterance. Clearly this ismuch less information than is stored by the exact algorithm which saves the N uniquesentence hypotheses reaching each state and time. The word-dependent algorithmsaves separate theories for each state depending on the previous word. This algorithmis more expensive than the lattice algorithm, but it achieves better performance.Figure 2.8 shows a plot of the cumulative percentage of correct answers vs. the rankof the correct answer for the di�erent N -best algorithms [12].



22
Utterance

N-Best
Search

KS

KS

KS

1

2

K

λ

λ

λ

1

2

K

One Best

Hypothesis

MaxFigure 2.9: Schematic of the N -best paradigm.2.2.2 The N -Best Rescoring ParadigmOne of the most prevalent approaches for incorporating two or more stages in aspeech recognition system has been the \N -best search paradigm" [13]. Figure 2.9is a diagram of an N -best recognition system. The �rst stages generate a list of Nhypotheses for each utterance. This list is then passed on to other stages containingknowledge sources which are used to re-evaluate the list and produce a correspondingset of scores. At the end, the weighted combination of the scores obtained from eachstage is used to determine the one best hypothesis. N-best rescoring has been usedfor speech recognition by BU [14], BBN [15], SRI [16], MIT and NYU [17].A key issue for N -best systems is that the weights used for the score combinationmust be estimated. Weight estimation requires some kind of a design criterion, suchas minimum word error rate, and an optimization scheme using a development set ofutterances [13, 18]. The number of weights, or dimensionality of the weight vector, isan important consideration because there must be enough utterances and long enoughN -best lists to estimate them reliably.The BU recognition system [19, 14] uses the N -best paradigm with the SSMas one of the knowledge sources. The BBN BYBLOS HMM decoder [20] has beenused to provide N -best lists of hypotheses. Knowledge sources used for the �nal



23score combination of each hypothesis currently include some or all of the following:the phone duration scores, the number of words, the number of phones, the numberof silence phones, the SSM acoustic score, the BYBLOS HMM acoustic score, theBBN segmental neural net score, the BBN trigram language model score and theBU mixture LM score. The BU system searches for all allowable pronunciations ofeach word and also for optional silences between the words. The search space for theSSM is constrained to a time window around the phonetic segmentations from theBBN N -best decoder in order to reduce the order of complexity of the rescoring, asdescribed in Section 3.2.2.3 Lattice-Based Search ParadigmsLattice-based search approaches have evolved as another means of incorporatingtwo or more recognition passes into a speech recognition system. In some cases,N-best rescoring is still performed as the last recognition pass [20].The term \lattice" has been used inconsistently in the speech recognition liter-ature. In general, a lattice is a graph of words and word transitions that is usedto represent a pruned search space, or a set of hypotheses generated by a speechrecognition system. In some cases, a \lattice" is a �nite-state grammar with no timeinformation [20, 21]. In other cases, a \lattice" is an acyclic network of words withword transition time information [22]. In this work, we use the term \lattice" to meanan acyclic network of words with a unique start and end node annotated with timeand score information. In addition, the term \N-best lattice" refers to lattices whichare generated by the same algorithm which generates N-best hypotheses. The N-bestlattices used in this work will be discussed in greater detail in Section 3. The term\word graph" will be used to mean an unannotated lattice (i.e. a �nite-state wordgrammar).



24SRI has used word graphs in a \progressive search" paradigm [21]. In thisapproach, the word graphs do not contain any time or score information but areused by latter stages as grammars to constrain the search space [21]. A similarapproach has been used for the fourth pass of the BBN lattice decoder [20]. CMUhas used lattices, where the score and timing information produced by the �rst stageof recognition is retained and used for score combination and decoding during thesecond recognition stage [23].2.2.4 Local Search AlgorithmsLocal search algorithms have been used to solve NP-complete or NP-hard prob-lems, where there is no known algorithm that will take less than exponential time for�nding the exact solution [24]. For these problems, local search techniques have beenused to formulate an approximate algorithm that is not guaranteed to converge atthe globally optimal solution, but takes less than exponential time. There are severalother approximate algorithms that have been applied to NP-complete problems, mostnotably simulated annealing [25] and genetic algorithms [26].Local search algorithms are initiated at some feasible solution to an optimizationproblem. At each iteration, a local neighborhood of the current feasible solution issearched to �nd a better feasible solution. When no improvement can be found, thealgorithm has converged.A local search technique has been applied to speech recognition in the \splitand merge" algorithm [27], where it is used to solve a phone classi�cation andsegmentation problem. For this problem, a polynomial-in-time algorithm is known,but computation is dominated by Gaussian segment score calculations. Local searchtechniques are used as a way of reducing the size of the search space for the algorithmand hence reducing the number of segment score evaluations.



25A local search algorithm has been developed as part of this thesis work whichsearches lattices using the SSM to �nd the one-best answer. Like the phonemerecognition problem, this is a shortest path problem where the cost evaluation of eachword uses the SSM. The SSM is a computationally expensive model, and the exactsearch space is quite large. Therefore, local search techniques have been used to limitthe search space that is evaluated using the SSM, taking advantage of prior recognitionsearch passes to provide a good initial path. The local search algorithm also providesa means of incorporating sentence-level knowledge sources into the search since thereis a complete sentence hypothesis at each iteration of the search.2.2.5 Summary of Di�erent Search ApproachesIn this section, the N-best search algorithm and various types of lattice-basedsearch algorithms were presented. In general, all of these search approaches havesome obvious de�ciencies. The N-best algorithm has the problem of being expensivewhen N is large. The lattice-based search algorithms, on the other hand, are e�cient,but do not allow for the incorporation of sentence-level knowledge sources into thesearch. The lattice local search algorithm which will be discussed in Chapter 5,however, has the potential advantage over N-best rescoring of being more e�cientwhile also allowing for the incorporation of sentence-level knowledge sources into thesearch.



Chapter 3Paradigm for Speech RecognitionThis chapter gives an overview of the research paradigm that is used for evaluatingthe lattice DP, lattice local search and N-best search algorithms. The performanceof these three algorithms was examined on two tasks: the ARPA Wall Street Journaldictation task and the Switchboard task de�ned at the Rutger's 1994 workshopin speech recognition. A detailed description is given of how N-best rescoring isperformed by the BU recognition system and some important baseline results arepresented. Also, details are provided about the modi�cations that were made to theBBN lattice decoder in order to generate N-best lattices that could be used with theBU lattice recognizer for running on the di�erent tasks.3.1 CorporaThe N-best, lattice DP and lattice local search algorithms have been evaluatedon three di�erent tests. The tests include the P0 condition of the 5,000 word WallStreet Journal Hub 2 test (WSJ-H2-P0), the P0 condition of the 20,000 word WallStreet Journal H1 test (WSJ-H1-P0) and the 5,000 word Switchboard test set de�ned26



27at the 1994 Rutgers workshop in speech recognition [28]. The N-best search approachis used as both a baseline for speed and performance and as a means of estimatingweights for combining knowledge sources for the two lattice-based search algorithms.The corpora used in this work each consist of three sets of data: a training set, adevelopment test set, and an evaluation test set. The training set consists of speechdata for training acoustic models and textual data for training language models. Thedevelopment test set is intended to be used for tuning parameters and developing thespeech recognition system, and in our work is used for estimating weights for scorecombination. The evaluation test set is then used for occasional evaluations of thesystem. The design goal in all of the tasks is to minimize the over-all word error rate.The word error rate on a test set is de�ned as the total number of word insertions,deletions and substitutions that are made divided by the total number of words inthe test set.3.1.1 The ARPA WSJ CorpusThe purpose of the ARPA continuous speech recognition (CSR) evaluation isto sample the progress in speech recognition technology and provide a means ofcomparing di�erent approaches to the CSR problem. The November 1993 ARPAevaluation was designed to use a \hub and spoke" paradigm [29]. This evaluationparadigm consists of two \hub" tests, the 5,000 word \H1" test and the 20,000 word\H2" test, and nine spoke tests. Each test has a speci�ed number of optional andrequired conditions. The domain of all of these tests consists of Wall Street Journal(WSJ) news articles. All sites participating in the evaluation were required to runtheir systems on at least one of the hub tests.The two WSJ hub tests consist of WSJ articles read by a variety of di�erentspeakers. The speech for both the training and testing data was collected using the



28same low-distortion microphone and noise-free recording environment. The allowabletraining data used for each test depends on the speci�c condition of the test.The H1 hub has a required \C1" condition (H1-C1) and optional \P0" condition(H1-P0) and the H2 hub has a required \C1" condition (H2-C1) and an optional P0condition (H2-P0). The acoustic training data and the language model are speci�edfor the H1-C1, and H2-C1 conditions. Any acoustic training data and language modelcan be used for the H1-P0 and H2-P0 conditions.The test data for both hubs consists of a development test set and an evaluationtest set. Each development test set consists of �ve male and �ve female speakers withapproximately �fty utterances per speaker. The evaluation test also has �ve maleand �ve female speakers with approximately twenty utterances per speaker. Thedevelopment data is intended to be used for tuning parameters in the recognitionsystem and for performing research and development before running the system onthe evaluation data. Typical word error rates for the 1993 H1-P0 condition arebetween 12.2% and 16.8%, and between 11.7% and 19.0% for the H1-C1 condition[30]. Typical error rates on the 1993 H2-P0 evaluation test set are between 4.9% and9.2%.3.1.2 The Switchboard CorpusThe Switchboard corpus consists recorded conversations over the phone about avariety of di�erent topics. Unlike speech in the WSJ corpus, Switchboard speech isspontaneous and has many disuencies. Also, some of the utterances have backgroundnoise such as a television or a baby crying.During the 1994 Rutgers workshop in speech recognition, development and eval-uation test sets were selected from the Switchboard corpus. Both test sets have �ve



29female and �ve male speakers with about 30 utterances per speaker. In order togenerate the test sets, Switchboard telephone conversations where broken down into\turns" for each speaker where a \turn" corresponds to a speaker's turn to talk duringa telephone conversation. The utterances for the test sets were selected by using fullturns or phrases from the turns. Typical word error rates for both the developmentand evaluation test set are around 50%.3.2 The BU N-best Rescoring ParadigmThe Boston University speech recognition system performs recognition by usingthe SSM to rescore hypotheses that have been produced by a �rst{pass recognitionsystem. In some cases, the hypotheses are also rescored with the BU sentence-levelmixture LM. For both of these knowledge sources, the search space is very large. Therescoring paradigm provides a means of incorporating expensive knowledge sourcessuch as the SSM and long-distance knowledge sources such as the sentence-levelmixture LM into the speech recognition search by providing a constrained searchspace for them. In this section, we describe the N-best rescoring search algorithmthat was used prior to this thesis.N-best rescoring with the SSM requires performing the DP iterations similar toEquation 2.4 over a triphone-expanded network for each hypothesis. The networksare constructed by concatenating the PPN's for each word in a hypothesis and addingoptional silences between the words. Then the whole network is expanded to includetriphone contexts. If no constraints are provided other than the minimum andmaximum durations for each phone, then rescoring is expensive since each triphonein the network must be evaluated over a very large set of possible segmentations.Let the set fnts; ntt; N t; Ag represent the triphone-expanded network with source
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31segmentation. The nodes marked with an � are the transition nodes between thetwo words.Once the network has been marked, the time constraints for the unmarked nodesare found. The unmarked nodes correspond to all of the pronunciations in thehypotheses' phone network that were not observed in the initial HMM segmenta-tion. The constraints for the unmarked nodes were estimated by �rst �nding all theunmarked paths between marked nodes. For each unmarked node in each path, a timeis found by allowing all the unmarked nodes to be at equal time intervals betweenthe marked node times. Then the time constraints R(n) for an unmarked node nare represented by the minimum and maximum times which contain all estimatedsegmentation times for all paths through the node. In Figure 3.1 there is only oneunmarked path between t1 and t4 and the �rst unmarked node of this path is markedwith the time t1+(t4�t1)=3. Once all of the nodes have been marked, the constraintsfor each node are relaxed by allowing an additional wDP frames around each time ortime window where wDP is typically 10 frames.The time constraints for each node in the network are used as constraints for theDP iterations of Equation 3.1. The knowledge sources used for rescoring include theSSM, a segment duration model, the number of phones and the number of inter-wordsilences. In the past, no other knowledge sources were combined at this stage. Afterthe DP iterations are completed for a hypothesis, the SSM score, duration score,number of phones and number of silences for the rescored hypothesis are printed outto a �le.During DP, score caching is done to prevent redundant calculations, which canbe signi�cant for rescoring because many hypotheses share the same words. For theSSM, two types of score caches are used: a distribution score cache and a segmentscore cache. If a segment has already been scored, then its score is looked up in the



32segment score cache. If a segment has not been scored, then some of the frame scoreswithin the segment may have been computed and stored in the distribution scorecache.Once all of the hypotheses have been rescored, the next step is to �nd theoptimal weights for combining their scores. Weights are generally estimated usinga held-out set of utterances, such as a development test set. Weight estimation isan unconstrained multi-dimensional optimization problem, which we solve using agrid-based optimizer which searches for the weights that re-rank the hypotheses tominimize the word error rate over the entire set. Then the system is evaluated on anindependent set of utterances, such as an evaluation test set, using weights that are�xed to the values that were found using the grid-based optimizer.3.3 LatticesAs part of this thesis work, the BBN decoder was modi�ed in order to produce alattices of word hypotheses for each utterance in a test set. In order to rescore theselattices quickly using the BU SSM, the lattices had to contain a phonetic segmentationfor each word, as in N-best rescoring. Therefore, the BBN decoder was modi�ed tosave phonetic segmentations and to generate lattices.The BBN decoder is a four pass recognition system. The �rst pass is a forwardfast beam search using inexpensive (and inaccurate) models. The second pass isa backward beam search with �ve-state HMM's for each triphone, no cross-wordtriphones, and a bigram LM. Score information from the �rst pass is used for pruningin the backward pass. The third pass uses the same models as the second pass in aforward beam search. In the third pass, the second pass's backward scores are usedfor pruning.
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34After the third pass, a graph is constructed using \observations" of word transi-tions from the second and third passes. A word transition is \observed" if the forwardscore reaching the end of a word plus the backward score reaching the beginning ofthe next word is above some threshold for a window of times. In the graph, wordsare represented as nodes with the transition between words represented as arcs. Arcsare added to the graph when new word transitions are observed, and nodes are addedto the graph if new words are observed (a word is new if no transitions have beenobserved to the word for a given time window). After the graph has been fullyconstructed, it is expanded in the reverse direction so that each graph node has aunique right context. Figure 3.2 gives an example of a graph before and after theexpansion. Each arc in the graph now has a unique backward trigram context andcan be annotated with LM scores. For example, the arc D]F  F]H is annotatedwith the trigram language model probability P (DjF;H).The BBN decoder uses the backward trigram-expanded graph as a grammar forthe fourth recognition pass. First the word nodes of the graph are expanded to theirtriphone phonetic pronunciations. Pronunciation networks are not used so words withmultiple pronunciations must be duplicated in the graph. Then optional silences areadded between words. Next, cross word triphones are added. A merge is done toreduce the size of the triphone graph by merging the last cross-word triphones of allword nodes that share the same right context in the graph. Now all words in thetriphone-expanded graph have a single copy of their last cross word triphone for allcross-word transitions to the word.The cross-word triphone merge is an approximation since it assumes that thesegmentation of the last phone of a word is independent of the previous word in thebackward word graph. However, the approximation is reasonable since each word inthe graph has a unique right context. In most cases, the segmentations of the �rst
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38but the word scores (log probabilities) are calculated by subtracting the highestscore at the end of a word from the score reaching the beginning of the word (goingbackwards)1. The word scores correspond to the segmentations for the words whichare shifted by one phone, because of merging that is done inside the decoder to savecomputation and storage. The phone, silence and word insertion penalties and theweighted LM score are taken out of each word score, since new penalties will beestimated. Each arc in the N-best lattice is annotated with its corresponding trigramscore.The proposed standard lattice �le format speci�cation for use by the CSR com-munity is included in Appendix A and it also can be used with forward lattices.

1Actually, the sum of the scores at the end of the word should be subtracted from the scorereaching the beginning of the word.



Chapter 4The Lattice DP Search AlgorithmThe lattice DP algorithm is guaranteed to �nd the best scoring answer in a latticegiven a set of Markov knowledge sources and an optimized set of weights. The searchis more e�cient than N-best rescoring because each word node in the lattice is onlyevaluated once for all of its phonetic segmentations. While triphone caching doesimprove the speed of N-best rescoring, it does not eliminate redundant computationabove the segment level which can be substantial.This chapter describes how triphone-expanded networks are constructed usingthe information that is in the lattices and then how time constraints are calculatedfor each node in the triphone-expanded network. A formulation is given of a DPalgorithm that is performed backward in time (since the lattices are backwards) usingthe time constraints of the triphone-expanded network. Finally, weight optimizationand N-best rescoring with the lattices is discussed.
39



404.1 Lattice ExpansionThe lattice recognizer designed in this thesis reads in the lattices that are gen-erated by the modi�ed BBN decoder, described in Section 3.3, and constructs atriphone-expanded network which is used for rescoring with the SSM. The network isconstructed by looking up each word associated with a lattice node in the dictionaryand obtaining its PPN.The PPN is modi�ed to include a silence word1 which is either long or short,end-utterance or inter-word silence, and may or may not be optional for this word.An end-utterance silence word is added if the node is at the beginning or end of thelattice. The di�erence between the two silence words is that the end-utterance silenceword's PPN contains end-utterance silence phones while the inter-word silence word'sPPN contains inter-word silence phones. Experiments on the Resource Managementtask showed that a di�erent model for each type of silence improved performance ofthe recognition system.The long silence words have paths for one, two or three silence phones in a rowwhile the short silence words have only a single silence phone. The long silence wordsare used when more than ns frames of silence are segmented by the HMM for the word,otherwise the short silence word is used. Also, if less than no frames of silence areobserved, then the silence word is made optional in the modi�ed PPN. This approachsaves computation while allowing for some exibility in the way that silences can besegmented. This silence representation is di�erent from earlier BU rescoring workand the change was made to the lattice recognizer in order to save computation byrestricting the possible silence segmentations in some places. For this work, ns was1In this thesis, we use the terms \silence word" and \silence phone" to indicate the acousticmodel structure within the lattice. These are not \words" or \phones" in the normal sense of theseterms.



41
EY B AX L

-

-

- - -

#[EY]B EY[B]AX B[AX]L AX[L]-

AX[L]-

AX[L]-

L[-]- -[-]#

L[-]- -[-]- -[-]#

L[-]#

t1 t2 t3 t4 t5 t6

t1 t2 t3 t4

t5

t5

t5

t6

t6n1

n2

n3n6n8

n4n7n9

n5

n10n11n12Figure 4.1: PPN for the word \ABLE" modi�ed with a non-optional long inter-wordsilence (\-" is the inter-word silence phone). The corresponding triphone-expandedPPN is given below it.set to 10 frames and no was set to 20 frames. In other words, an optional short silenceword is used if there are less than 10 frames of silence, an optional long silence word isused if there are between 10 and 20 frames of silence and a non-optional long silenceword is used if there are more than 20 frames of silence.A triphone-expanded version of the modi�ed PPN is created and a list is keptof all the nodes in the triphone-expanded PPN that correspond to a given nodein the original PPN. Then the triphone-expanded PPN is added to the triphone-expanded network by attaching all of the cross-word triphone arcs. The newly addednodes are marked with segmentation times, and all nodes which correspond to thesame node in the original PPN are marked with the same time. Figure 4.1 is anexample of a modi�ed PPN before and after the triphone expansion with pointersindicating the association between nodes in each network. The initial segmentation,f(EY,t1,t2�1),(B,t2,t3�1),(AX,t3,t4�1),(L,t4,t5�1), (-,t5,t6�1)g, was used to markthe modi�ed PPN of Figure 4.1 and each associated node in the triphone-expanded



42network.The time constraints for all of the unmarked nodes are calculated by enumeratingall unmarked paths between marked nodes and using left-context mean durations.Speci�cally, the mean durations are used to determine how to proportion the un-marked node times between the marked node times. For example, in Figure 4.1 theunmarked paths are (n1; n4; n7) and (n1; n3; n6; n8). Each paths goes from right toleft since the triphone-expanded network is backward with respect to time. The timeconstraint for n3, using left-context mean duration, isT (n3) = (t6 � t5)(�L[� + ��[�)=(�L[� + ��[� + ��[�):If there had been more than one unmarked path going through n3 then the timeconstraints for n3 might have been a window with minimum and maximum constraintTmin(n3) and Tmax(n3). After all the nodes have been marked, the time constraintsR(n) for each node n are further relaxed by allowing an extra �DP frame windowaround each set of constraints:R(n) = fTmin(n)� �DP ; : : : ; Tmax(n) + �DP g:For this work, �DP was set to 10 frames.Figure 4.2 is an example of a lattice and its triphone expansion. Arrows indicatethe triphone expanded modi�ed PPN's in the network which correspond to words inthe lattice. The dashed arcs are cross-word triphones and the � symbol indicatesa word transition. Note that all of the nodes in the triphone-expanded network areeither cross-word nodes (the ones that are marked with an \�"), or within-wordnodes. \</s>" is the used to represent the silence word. Note that each modi�edPPN, which may include a silence word, is considered to be a single word in this work.Each triphone arc of the triphone-expanded network has an associated incre-mental graph score. The incremental graph score includes the weighted scores which
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Figure 4.2: Lattice and triphone-expanded network with arrows indicating the PPNcorresponding to each word, where \</s>" is the end-utterance silence word and \�"marks word junctures. Note that the end-utterance silence words are merged withpreceding or following word's PPN.



44are dependent on the topology of the triphone-expanded network alone such as theweighted LM score, the word insertion weight, the phone insertion weight and theinter-word silence insertion weight. The incremental graph score corresponds to theincremental combined score for traversing a triphone arc in the network from theseknowledge sources. For example, the cross-word triphones at the end of a word havean incremental graph score that is the weighted LM score from the correspondinglattice arc plus the word insertion weight, and all of the triphone arcs with an inter-word silence as the middle context have a graph cost that is the silence insertionweight. The SSM and segment duration scores are not included in the incrementalgraph score because they depend on the possible segmentation times of the triphonesin the network and not just the topology of the network. The incremental graph scoreis given by:G(�l[�]�r(ni; nj)) = 8>>>>>>>>><>>>>>>>>>: �P ni not �-word node, � 6= \-"�P + �S ni not �-word node, � = \-"�P + �W + �LM log pLM ni is �-word node, � 6= \-"�P + �S + �W + �LM log pLM ni is �-word node, � = \-"(4:1)where �P is the phone insertion weight, �S is the inter-word silence phone insertionweight, �W is the word insertion weight and �LM is the trigram LM weight. Notethat since silence words are only used for creating modi�ed PPN's (by adding silencephones in various places), and are not considered to be words themselves, the wordinsertion weight does not penalize silences. The method for estimating the weightsof Equation 4.1 is described in Section 4.3.



454.2 ScoringThe lattice DP algorithm is a straightforward extension of the word DP scoringalgorithm. Let the triphone-expanded network corresponding to a lattice be repre-sented by the set fnTs ; nTt ; NT ; ATg where nTs is the �rst node of the network (goingbackwards) nTt is the last node, NT is the set of all the nodes and AT is the set of alltriphone arcs. NT is topologically sorted so that all of the scores reaching a node ata given time have been evaluated before its successor nodes are reached. The latticeDP algorithm for an utterance of length T with observation sequence Y T�10 is:1. Initialize: J�(0; nTs ) = 02. For each ni 2 fNT � nTs g calculate:For each t 2 R(ni)J�(t; ni) = max�l[�]�r(ni;nj)2AT ;�2R(nj) fJ�(�; nj) + �aL(�l[�]�r(ni; nj); t; � )+ �d log P(� � t+ 1) +G(�l[�]�r(ni; nj))g(4:2)The di�erence between Equation 2.4 and Equation 4.2 is that that the DP iterationsspan sequences of words instead of just one word. Also, using the de�nition in Section4.1, here the incremental graph score G is included, and the time constraints R(n)are used for both the source and destination node of each triphone arc.During the iterations of the lattice DP algorithm, a traceback is saved for thebest sequence of arcs and times reaching each node and time. When the algorithmhas reached the beginning of the utterance (or end in a forward pass), the trace-back contains the optimal segmentation through the triphone network. The highestscoring hypothesis is found by following the traceback and printing out the wordscorresponding to each lattice node.



46The average complexity of the lattice DP algorithm depends on the averagewindow width for the time constraints of the nodes in the triphone network. Generally,this window wave is close to 2wDP . The average complexity is then jAjw2ave times thecost of an arc evaluation since each arc inA is scored over the minimumand maximumconstraints for its source and target nodes. Using the SSM, the evaluation of eacharc over a pair of times is dominated by the multivariate Gaussian computations.Therefore, all other factors, such as the length distribution calculations, are notincluded in this complexity estimate since they are relatively insigni�cant.4.3 Lattice N-best RescoringIn order to perform the lattice DP algorithm, score combination weights mustbe estimated using sentence hypothesis scores corresponding to the annotated lattice.In general, the SSM scores obtained this way may be di�erent than the SSM scoresobtained using some other initial segmentation such as the individually resegmentedN-best hypotheses that were used in prior BU recognition systems, because thesegmentation time windows may vary. Using the lattices for N-best rescoring is ameans of producing scores that come from the same knowledge sources and constraintsthat are used in the lattice DP and lattice local search algorithms. Therefore, wenext describe an algorithm for N-best rescoring on the lattices. This algorithm hasthe additional advantage of lower storage costs for representing the time and scoreinformation associated with the N-best hypotheses.In the lattice N-best rescoring algorithm, each hypothesis in the N-best list isrescored by turning o� all paths through the lattice except for the path correspondingto the hypothesis. Given a hypothesis W = (w1; w2:; ; ; ; wk), and a lattice with nodeset NL and arc set AL = fa(np; nq)jnp; nq 2 NLg, the path through the lattice



47corresponding to W is marked so thatFlag(a(np; nq)) = 8>>>>><>>>>>: TRUE if a(np; nq) 2 AL and np and nq are part of the pathcorresponding to WFALSE otherwiseNow let every arc of the triphone-expanded network have a reference to the corre-sponding arc in the lattice. The reference is nil unless the target node of the arc inthe triphone-expanded network is a cross-word node:LattArc(�l[�]�r(ni; nj)) = 8>>>>><>>>>>: a(np; nq) if nj is a �-word node and a(np; nq)corresponds to �l[�]�r(ni; nj)nil otherwiseHere it is important to distinguish between the lattice arcs, which are the arcs ofthe original word lattice that have been read in from a �le, and the triphone-expandedlattice arcs, which are the arcs of the lattice which has had all of its words expandedto triphones. During DP, references only exist to the triphone-expanded lattice arcs,and the ag for scoring words in the N-best hypotheses are on the original wordlattice arcs. Therefore, it is important to �rst �nd out if a lattice arc corresponds toa given triphone-expanded lattice arc (i.e. if LattArc() does not return nil for thetriphone-expanded arc) and then to check the ag corresponding to the lattice arc tosee if the DP should proceed (i.e. if Flag() returns TRUE for the lattice arc). In thecases where a triphone-expanded arc corresponds to a lattice arc and Flag() returnsFALSE for the lattice arc, the DP steps should be skipped for the following word inthe triphone-expanded lattice. To assure that the the word will be skipped, J�(t; ni)is de�ned as MinPossScore if node ni has never been reached at time t during theDP. Then the maximization step of the DP algorithm is only performed for priornodes and times which have a score greater than MinPossScore reaching them.Now the DP algorithm of Equation 4.2 becomes:



481. Initialize: J�(0; nts) = 02. For each ni 2 fN t � ntsg calculate:For each t 2 R(ni)if (LattArc(�l[�]�r(ni; nj)) 6= nil and !Flag(LattArc(�l[�]�r(ni; nj))))continueotherwiseJ�(t; ni) = max�l[�]�r(ni;nj)2AT ;�2R(nj);J�(�;nj)>MinPossScore fJ�(�; nj) + �aL(�l[�]�r(ni; nj); t; � )+ �d log P(� � t+ 1) +G(�l[�]�r(ni; nj))g(4:3)Equation 4.3 will be referred through out this thesis as the lattice N-best rescoringalgorithm2.Weights are estimated for all the lattice search algorithms by �rst performingN-best rescoring using the initial segmentations and N-best lists corresponding tothe lattices. After all the hypothese have been rescored, weights for combining thedi�erent knowledge sources are optimized using the procedure described in Section3.2.
2The lattice N-best rescoring algorithm should not be confused with the lattice N-best algorithmwhich is used to generating N-best hypotheses.



Chapter 5The Lattice Local SearchAlgorithmThe lattice local search algorithm, unlike the unpruned lattice DP algorithm, is asub-optimal search algorithm. That is, the lattice local search does not guaranteethat the optimal solution will be found given the knowledge sources that are usedfor the search. However, the lattice local search does allow for the incorporation ofsentence-level or long-distance knowledge sources which cannot be used in the latticeDP algorithm. Consequently, the lattice local search has the potential of achievinghigher accuracy than an optimal search which uses less powerful knowledge sources.This chapter presents the details of the lattice local search algorithm. First,the general approach is outlined and then the local neighborhood and a local pathare de�ned. Next, the evaluation criterion for choosing the best local path is de-scribed along with the approach taken for scoring di�erent local paths in the localneighborhood. Finally, word score caching and the implementation of sentence-levelknowledge sources into the local search algorithm are discussed.49



505.1 General ApproachThe local search algorithm is an iterative algorithm which is initialized at somesolution to a search problem. At each iteration, the local neighborhood of the currentsolution to the problem is evaluated and the best choice in this local neighborhoodbecomes the new current solution. Iterations of the algorithm continue until thelocal neighborhood of the current solution does not contain a better solution to theproblem. The local search algorithm consists of the following steps:1. De�ne:P0 is the initial pathPcur is the current pathF (P ) is the relative cost of path PNlocal(P ) is the local neighborhood of PCcur is the relative cost of the current path2. Initialize:Pcur = P0, Ccur = F (Pcur)3. Iterate:Cbest = inf, Pbest = nilFor all P 2 Nlocal(Pcur)If (F (P ) < Ccur and F (P ) < Cbest) thenCbest = F (P )Pbest = Pif (Pbest == nil) then stopPcur = PbestCcur = CbestGo to 3



51Note that unlike the DP algorithm, at each iteration of the local search algorithm anentire solution to the search problem is known.It is shown in [27] that, for the shortest path problem on an acyclic directedgraph, the smallest neighborhood that is guaranteed to contain the globally optimalsolution, or the \minimal exact" neighborhood, is the neighborhood which consistsof all paths that \form one loop" with Pcur, where a path forms a loop with Pcur ifit has two nodes in common with Pcur but no arcs in common with it.For this work, the local search algorithm is performed on an N-best lattice whichis an acyclic, directed graph. Also, F (P ) is the scoring function described in Section3.2. The lattice local search algorithm is initialized with the best hypothesis found bythe �rst pass recognition system. After the N-best lattice has been read in from a �le,the triphone network has been created and the time constraints for each node of thetriphone network have been calculated, all paths through the triphone network are\turned-o�" except for the paths corresponding to the initial hypothesis. Equation4.3, the lattice N-best algorithm, is used to �nd the best score and segmentation ofthe initial hypothesis (step 2, above). Then all local paths in the local neighborhoodof the initial hypothesis are evaluated to �nd the one which increases the score of theinitial hypothesis the most (step 3, above). Now a new hypothesis is constructed byadding this local path to the initial hypothesis and removing the part of the initialhypothesis which forms one loop with the local path. The new hypothesis becomesthe initial hypothesis for the next iteration of the local search.Clearly, if the lattice local search algorithm evaluates the entire minimal exactneighborhood to �nd the highest scoring hypothesis, it would be ine�cient comparedto DP. The goal in this work is to design a local neighborhood which can be searchede�ciently and that also yields the globally optimal solution in a few steps most ofthe time. The design of the local neighborhood used in this work will be more fully
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Figure 5.1: The six types of local paths that can be part of the local neighborhoodfor the lattice local search algorithm.discussed in the next section.5.2 Local NeighborhoodsThe local neighborhood used for this work was designed to include loops withPcur that correspond to the most frequent types of errors that are made in the N-bestlist. Most of the time, the hypotheses in the N-best list only di�er by one or twowords. Therefore, the loops included in Nlocal were selected so that they correspondto short loops of up to �ve nodes which are designed to bypass these types of errors.The local neighborhood used for the lattice local search algorithm is analogous
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B]Z Z]DFigure 5.2: Local neighborhood of some initial path through an N-best lattice.Speci�cally, the neighborhood is the set of local paths where each dotted path inthe �gure is a unique local path. In this case, there are six local paths in the localneighborhood.to the local search neighborhood used in the split-and-merge algorithm [27]. Forthe lattice local search algorithm, the local neighborhood is de�ned by six typesof local paths: \insertions," \deletions," \substitutions," \splits," \merges," and\double substitutions." Each local path forms one loop with an initial path throughthe lattice. For the trigram-expanded initial path \#]A A]B B]C C]D D]E" (from\# A B C D E") an insertion replaces \A]B" with \A]X X]B" (\X" is insertedbetween \A" and \B"), a deletion replaces \A]B B]C" with \A]C" (\B" is deleted),a substitution replaces \A]B B]C" with \A]X X]C" (\X" is substituted for \B"), asplit replaces \A]B B]C" with \A]X X]Y Y]C" (\B" is split into \X" and \Y"), amerge replaces \A]B B]C C]D" with \A]X X]D" (\B" and \C" are merged into \X")and a double substitution replaces \A]B B]C C]D" with \A]X X]Y Y]D" (\X" and\Y" are substituted for \A" and \B"). The local paths associated with each of theseactions are depicted in Figure 5.1. Note that the set of local paths for some initialpath through an N-best lattice depends on the topology of the N-best lattice. Figure5.2 is an example of some initial path and the corresponding local paths in the localneighborhood.



54Table 5.1: Di�erence in 1-step inclusion rate and n-step coverage for two di�erentlocal neighborhoods.Neighborhood 1-Step Inclusion Rate n-Step Coverage6 local paths 38.9% 92.8%3 local paths 35.9% 90.2%Two local neighborhoods were experimented with in this work. The �rst localneighborhood contained only three types of local paths: a \substitution," a \dele-tion," and a \split". This design decision was motivated by similarity between theselocal paths and the possible moves that are used in the split-and-merge algorithm[27]. The second type of local neighborhood consists of all six types of local pathsdescribed above. Table 5.1 gives the 1-step inclusion rate and n-step coverage forthe two local neighborhood de�nitions. The 1-step inclusion rate is the percentage oftime the correct hypothesis is in the local neighborhood of the HMM top hypothesisthat is used to initiate the search. The n-step coverage is the minimum overall errorrate that can be attained if the local path that reduces the number of word errors themost is picked at each iteration.5.3 Local Path EvaluationIn order to score local paths, it is important to keep track of where the localpath begins and ends in the triphone-expanded network. Also, the traceback forthe current hypothesis must not be changed until the the best local path is found.The approach taken here is to use the same traceback structure for scoring all localpaths in the local neighborhood. Therefore, the points of intersection between each



55local path and the current hypothesis must be kept track of. These intersections arereferred to as \common nodes," and Section 5.3.1 discusses the role common nodesplay in specifying local paths. Section 5.3.2 then outlines the algorithm for scoring thelocal path and updating the traceback structure after he best path has been found.5.3.1 Common NodesFor each triphone-expanded, modi�ed PPN in the lattice, there are a set ofunique nodes which are the �rst and last nodes common to all paths through thecorresponding word node in the lattice. These nodes are before and after the cross-word triphone nodes respectively. They are called \common nodes".For each word node in the lattice, two sets of common nodes are maintained: theset of all the common nodes which are the source of all triphone paths through thecorresponding triphone-expanded PPN and the set of all nodes which are the desti-nation of these paths. These sets are, respectively, the \source common nodes" and\destination common nodes" of the triphone-expanded, modi�ed PPN correspondingto that word node in the lattice. Figure 5.3 is the triphone-expanded PPN of Figure4.1. The word transitions nodes are marked with an � and the cross-word triphonearcs are the dashed lines.At each iteration of the local search, an estimate is found of the maximumamounteach local path can increase the score of the initial hypothesis for that iteration. Eachlocal path is scored from the point where it branches o� from the initial hypothesisto the point where it again meets the initial hypothesis. The nodes of the triphone-expanded network which correspond to the points where a local path branches o� fromthe initial hypothesis are called the \takeo� nodes" of the local path and the nodeswhich correspond to the points where a local path joins the initial hypothesis arecalled the \landing nodes" of the local path. Figure 5.4 is an example of a local path
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Figure 5.4: The local path corresponding to an insertion and the correspondingtriphone-expanded network. To simplify the illustration, all words only have onepronunciation with three phones and triphone context identi�ers have been left out.



58corresponding to an \insertion" and the corresponding triphone-expanded network'stakeo� and landing nodes, for a backwards lattice.A local path's takeo� nodes are the source nodes of the �rst word of the path whileits landing nodes are the destination nodes of the last word of the path. Under somecircumstances, the �rst or last word in a local path can be \skipped". This happensif there is a path through the word's triphone-expanded, modi�ed PPN which doesnot pass through any of the source or destination nodes of the PPN. For example, thetriphone-expanded, modi�ed PPN's for the one-phoneme words such as \A" or \I"would be skipped if they did not include a non-optional silence because there wouldbe a path through the PPN which consists of a single triphone and this would be inthe cross-word set of phones that is outside of the standard takeo� and landing nodede�nitions. To avoid \skipped" words, takeo� and landing nodes are moved outsidethe local path. Speci�cally, if the �rst word of a local path can be skipped, then thesource nodes of the previous word in the current hypothesis are designated as takeo�nodes for the path. If the last word of a local path can be skipped, then destinationnodes of the next word in the current hypothesis are designated landing nodes for thepath.5.3.2 Local Path ScoringThree steps are involved in evaluating the local paths in the local neighborhoodof the current solution. In the �rst step, the local path score must be found using DP.Then the second step involves caching the local path score so that it can be lookedup later since di�erent local neighborhoods can have the same local path. Finally,the third step involves calculating the increase in score for the local path relative tothe current hypothesis.After the initial hypothesis has been rescored, the traceback structure is modi�ed



59so that each common node, at each time within its time constraints, points back tothe best previous common node and time. Thus the traceback structure skips overall nodes that are not common nodes. This makes it possible to rescore local pathswithout touching the traceback for the initial hypothesis since the local paths willonly access the initial hypothesis' traceback at landing or takeo� nodes.Let the nodes fnLi ; :::; nLfg be the set of word nodes belonging to the local pathPlocal of an initial hypothesis where nLi is the initial word node of the path andnLf is the �nal word node of the path. Let PathNodes be a topologically sortedset of all nodes of the triphone-expanded N-best lattice which are contained in allpronunciations along the local path from its takeo� to its landing nodes including thetakeo� and landing nodes themselves. The traceback data structure, Trace(t; n), isused to store a reference to the best prior triphone node and time reaching node nat time t and the corresponding best path score within the local path. The cache forthe local path, PathCache(Plocal), is used to store an array of all the best takeo�nodes and times for each landing node and time and the di�erence in score betweenthe two.Now the �rst step DP algorithm for scoring a local path using a backward latticeis given by:Step 1:for each ns 2 PathNodes(Plocal)for each �l[�]�r(nd; ns) 2 A s.t. nd 2 PathNodesfor each ti 2 R(nd)for each tf 2 R(ns)score = �aL(�l[�]�r(nd; ns); ti; tf) + �d log P(tf � ti + 1) +G(�l[�]�r(nd; ns)) +Trace(tf ; ns):scoreif (nd 2 LandingNodes(Plocal)



60if (PathCache(Plocal; nd; ti):score < score)PathCache(Plocal; nd; ti):score = scorePathCache(Plocal; nd; ti):pre node = nsPathCache(Plocal; nd; ti):pre time = tfelse if (Trace(ti; nd):score < score)Trace(ti; nd):score = scoreTrace(ti; nd):pre node = nsTrace(ti; nd):pre time = tfwhere G is given by Equation 4.1. Note that, since PathNodes is sorted topologi-cally, the takeo� nodes are the �rst nodes in the set and the landing nodes are thelast nodes in the set. Also, note that the traceback is not touched at the landingnodes of the path and so the traceback of the current solution is not e�ected by thisoperation. The above algorithm assumes segmental acoustic models and a trigramLM are being used. Local path evaluations with a sentence-level LM will be discussedin Section 5.5.Now PathCache must be updated so that there is a reference back to the besttakeo� node and time for each landing node and time, and the di�erence in scorebetween these nodes and times is stored. This is essentially a traceback operation forall landing nodes and their associated times:Step 2:for each nd 2 LandingNodes(Plocal)for each ti 2 R(nd)ns = PathCache(Plocal; ti; nd):pre nodetf = PathCache(Plocal; ti; nd):pre timewhile (ns 62 Takeo�Nodes(Plocal))n = Trace(tf ; ns):pre node



61tf = Trace(tf ; ns):pre timens = nPathCache(Plocal; ti; nd):takeo� time = tfPathCache(Plocal; ti; nd):takeo� node = nsPathCache(Plocal; ti; nd):path score =PathCache(Plocal; ti; nd):score�Trace(tf ; ns):scoreAfter the PathCache has been brought fully up to date, the traceback correspondingto all nodes in PathNodes, except for the takeo� and landing nodes, is reset so thatit can be used again for scoring a di�erent path. Note that the best segmentation isnot available after this algorithm has completed, but it is also not required by thealgorithm.A paths's \delta score" is the maximum estimated amount that the path canincrease the score of the current hypothesis. A path's delta score is found using thefollowing algorithm:Step 3:max delta score =MinPossScorefor each nd 2 LandingNodes(Plocal)for each ti 2 R(nd)ns = PathCache(Plocal; ti; nd):takeo� nodetf = PathCache(Plocal; ti; nd):takeo� timepath delta score =PathCache(Plocal; ti; nd):path score�(Trace(ti; nd):score�Trace(tf ; ns):score)if (path delta score >max delta score)max delta score = path delta scoreNote that the maximum delta score is found by �nding the best takeo� node and



62time for a each landing node and time and comparing the di�erence in score betweenthe current hypothesis and the local path between these two points.After all delta scores of all paths in the local neighborhood of the current hy-pothesis have been found, the local path with the highest delta score is used to createthe hypothesis for the next iteration. The new hypothesis is created by substitutingthe local path for the nodes in the current hypothesis that they form one loop with.Now the new hypothesis is rescored by starting at the takeo� nodes of the local path.This must be done because the traceback corresponding to the local path has alreadybeen reset and it must be �lled in with the proper values. Also, the traceback timesand scores beyond the local path's landing nodes must be updated, which involvesresegmenting the rest of the utterance.An attempt was made to try to reduce the amount of DP used to rescore each newhypothesis. The approach was to increment the scores in the traceback by the deltascore for the best local path. This approach was found to hurt performance. Theperformance degradation may have been caused by the di�erence in segmentationfor short words reaching the landing nodes of the path. For instance, one or twophoneme words may have very di�erent segmentations if the previous words end atvery di�erent times. One approach for overcoming this problem would be to extendthe scoring of the local path by a few phones into the current hypothesis beyond thelanding nodes. After a few phones, the two separate paths should have the samesegmentations.5.4 Word CachingBoth the N-best and local search algorithm are plagued with the problem ofredundant calculations. The problem is that each word node in the N-best lattices is
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C]Q Q]R R]E

#]A A]B B]C C]D D]E E]F F]#

A]X X]B

Q]D

X]Y Y]B

D]RFigure 5.5: Example of local paths which share the same nodes in the lattice, whereshared nodes are circled.rescored many times by both algorithms. For instance, in the local search algorithm,many local paths share the same word nodes and they must be rescored separatelyfor di�erent paths. An example of local paths which share word nodes is given inFigure 5.5. This problem of redundant word node scoring can be alleviated throughword score caching.Since each word node in the N-best lattice has a unique right context, it isreasonable to assume that the segmentation and score of a word node is independentof the particular arc coming into that node. Word caching can be accomplished bekeeping track of the best start time and destination triphone node for a given end timeand source triphone node. If a word node has been cached, then DP is performed untilall of the destination triphone nodes of the word node have been reached. Then thetraceback is updated by adding each of the cached word scores associated with eachof the source triphone nodes and end times to the score reaching the correspondingdestination triphone node and start time in the traceback.During DP along the triphone-expanded N-best lattice in Step 2, a record iskept of how many destination nodes have been reached for each word node of theoriginal lattice. When all of the destination nodes have been reached for a particular



64word node, then the word is cached. Caching is performed by saving the best sourcenode and time for each destination node and time. Let SourceNodes(nL) be the setof all source nodes and DestNodes(nL) be the set of destination nodes for the wordnode nL of the N-best lattice. The traceback for the best source node and time for agiven destination node and time is stored in WordCache(nL):trace. The algorithmfor caching a word once all of the destination nodes have been reached is as follows:for each nd 2 DestNodes(nL)for each ti 2 R(nd)ns = Trace(nd; ti):pre nodetf = Trace(nd; ti):pre timewhile (ns 62 SourceNodes(nL))n = Trace(ns; tf ):pre nodetf = Trace(ns; tf):pre timens = nWordCache(nL):trace(nd; ti):score =Trace(nd; ti):score�Trace(ns; tf):scoreWordCache(nL):trace(nd; ti):pre time= tfWordCache(nL):trace(nd; ti):pre node = nsIf a word has been cached, and all of its source nodes have been reached duringDP, then the traceback is updated using the cached scores and DP resumes after the�rst destination node (all of the nodes between the source and destination nodes forthat word are skipped). This requires modifying Step 2 with the following algorithm.Assuming all of the source nodes have been reached, the algorithm is as follows:for each nd 2 DestNodes(nL)for each ti 2 R(nd)



65ns =WordCache(nL):trace(nd; ti):pre nodetf =WordCache(nL):trace(nd; ti):pre timeTrace(nd; ti):score =WordCache(nL):trace(nd; ti):score+Trace(ns; tf):scoreTrace(nd; ti):pre time = tfTrace(nd; ti):pre node = nsTable 5.2: Relative speed with and without word caching for the lattice N-best andlattice local search algorithms. The speed measure is de�ned in Section 3.2.Lattice N-best Lattice Local SearchNo Caching 87.4 8.6Caching 83.4 8.7Table 5.2 gives the relative speeds of the lattice N-best and lattice local searchalgorithms. The speed measurements are described in Section 6.1. Word cachingseems to help only a small amount for N-best rescoring and does not help at all forthe lattice local search. This could be because of the computation that is required tosave and look up the cached scores. In addition, word score caching is only useful forMarkov knowledge sources.5.5 Sentence{Level Knowledge SourcesSince an entire sentence hypothesis is known at each iteration of the lattice localsearch, sentence-level knowledge sources can easily be incorporated into it. The lattice



66local search has this advantage over the lattice DP algorithm. Also, the local searchalgorithm is more e�cient than N-best rescoring which is also commonly used forsearching with sentence-level knowledge sources.If sentence-level knowledge sources are used in the lattice local search algorithm,then Step 3 must be changed to include the di�erence in the sentence-level scorebetween the current hypothesis and the new hypothesis created by modifying thecurrent hypothesis with a local path. Speci�cally, for a current hypothesis Pcur, newhypothesis Pnew and a sentence-level knowledge source SentLevel() with weight �slStep 3 becomes:max delta score =MinPossScorefor each nd 2 LandingNodes(Plocal)for each ti 2 R(nd)ns = PathCache(Plocal; ti; nd):takeo� nodetf = PathCache(Plocal; ti; nd):takeo� timepath delta score =PathCache(Plocal; ti; nd):path score�(Trace(ti; nd):score�Trace(tf ; ns):score)path sent delta score =�sl(SentLevel(Pnew)� SentLevel(Pcur))if (path delta score+ path sent delta score >max delta score)max delta score = path delta score+ path sent delta scoreOne important example of a sentence-level knowledge source is a long-distancelanguage model. As an example, the BU sentence-level mixture language model[2] has been incorporated into the lattice local search. This model uses a mixturedistribution of n di�erent trigram models which are combined at the sentence level.



67That is, the trigram probability of an entire hypothesis using each model is determinedand the log of the weighted combination of these probabilities is the score for the entirehypothesis. In order to implement this model into the lattice local search, backwardtrigram models were built for each distribution (since the lattices are backwards).Then the arcs of each lattice were annotated with the n scores corresponding to thelog trigram probability of each mixture LM (n = 5 in this case).At each iteration of the local search, the total sentence-level mixture LM scorewas evaluated and weighted with its optimized weight from N-best rescoring. Foreach local path, another weighted sentence mixture LM score was calculated for thecorresponding sentence hypothesis. The di�erence between the weighted sentence-level mixture LM scores for the whole sentence with local path and the initial hy-pothesis was then added to the delta score for the path obtained from the otherknowledge sources and this score was used to determine the best local path in thelocal neighborhood.



Chapter 6Experimental ResultsThis chapter presents experimental results for the three di�erent lattice-based searchalgorithms and the older BU N-best recognizer. The speed and performance ofthe lattice N-best, lattice DP and lattice local search algorithms are given for theARPA 1993 WSJ and Rutgers 1994 Switchboard recognition tasks. In addition, someimportant conclusions and observations are made about these results. Results arealso presented using the BU sentence-level mixture model with the lattice N-best andlattice local search algorithms.6.1 ParadigmRecall that the BU N-best recognition system described in Chapter 3 that wasused prior to this thesis work required phonetic segmentations of each N-best hy-pothesis to constrain the search space for the SSM. This older system, which willbe referred to as the \old BU N-best recognition system" throughout this chapter,required a �fth pass of the BBN decoder to rescore and resegment each N-besthypothesis using the BBN HMM. The lattice N-best system, on the other hand, uses68



69the phonetic segmentations on the N-best lattices for each N-best hypothesis. Sincethe N-best lattices are created after the fourth pass of the BBN decoder, the �fth passof the BBN decoder is not needed. Thus the lattice N-best system is inherently morecomputationally e�cient than the old N-best system that relies on the �fth HMMdecoding pass.It is important to verify that the lattice N-best system performs at least as welland as e�ciently as the old BU N-best system. Therefore, comparable experimentsfor the lattice N-best and older N-best systems are reported for the WSJ H2-P0 andH1-P0 tasks. N-best segmentations are not available for the Rutgers Switchboardtask, so results are not reported on this task for the older BU N-best system.Table 6.1: Size of N for the N-best lists and lattices generated for each test.WSJH2P0 WSJH1P0 Switchboard100 500 2,000The N-best lattices used for each experiment were generated so that the latticescorrespond directly to an N-best list as described in Chapter 3. The size of N foreach test is di�erent. Table 6.1 gives N for each test reported on in this chapter.For WSJ-H2-P0, N = 100 was chosen to be consistent with the size of N used inprevious experiments with the older BU N-best system. For H1-P0, N = 500 waschosen because the vocabulary and word error rates are greater on this test conditionthan they are for H2-P0. For Switchboard, N = 2,000 was picked because the worderror rates are much higher (around 50%) for this task in general. However, weightswere estimated for the Switchboard experiments using only the top 500 hypothesesbecause rescoring and estimating weights for N of 2,000 was considered too expensive.For both H2-P0 and H1-P0, weights were estimated using all hypotheses in the N-best



70lists. Table 6.2: Top 1-best word error rates for the three di�erent tasks.Test WSJ-H2-P0 WSJ-H1-P0 SwitchboardDEV 9.2% 18.9% 56.8%EVAL 8.3% 16.7% 53.8%The word error rates for the top 1-best answer in the N-best lists are presentedin Table 6.2. Note that H2-P0 has the lowest 1-best error rates while Switchboardhas the highest. In each case, the 1-best error rates provide a sense of how di�culteach task is and provide a baseline for the the performance of each system discussedin this chapter.The reason the three lattice-based search algorithms are evaluated on threedi�erent tasks is to determine the robustness of the algorithms for di�erent sizelattices and for di�erent performance regions. The size of N that was chosen foreach task is based on the performance region of the task. For instance, since H2-P0has the lowest 1-best error rate of all the tasks, a relatively small N was used for itsN-best lattices. On the other hand, since Switchboard has the highest error rate of allthe tasks, a relatively large N was used. Consequently, it is expected that the speedand error rates for each algorithm on the three di�erent tasks will scale accordingly:the algorithms are expected to run the fastest and have the lowest error rates onH2-P0, and the algorithms are expected run the slowest and have the highest errorrates on Switchboard.The lattice inclusion rates and coverage statistics are presented in Table 6.3. Thesentence inclusion rate is the percentage of the time that the correct hypothesis is inthe lattices, while the word coverage rate is 100% minus the minimumattainable word



71Table 6.3: Lattice inclusion and coverage rates for the development test sets of eachtask. H2-P0 (N=100) H1-P0 (N=500) SWBD (N=2000)Sentence Inclusion 79% 53% 10%Word Coverage 97.8% 93.3% 64%error rate for the lattices. Note that H2-P0 has the highest inclusion rate and thehighest coverage while Switchboard has the lowest inclusion rate and lowest coverage.The knowledge sources used for the WSJ H2-P0 development and evaluationtests include the SSM, the BBN trigram LM and the number of words, phones andinter-word silences. The SSM was trained on all of the WSJ acoustic training data,and the BBN trigram LM was trained on the WSJ0 LM training data and additionalLM data processed by BBN. The knowledge sources used for H1-P0 are the same asthose used for H2-P0 except that the BU trigram LM is used [2]. This LM was trainedon the WSJ 1994 LM training data. For H1-P0, results are also reported using theBU sentence-level mixture LM which was also trained on the WSJ 1994 LM trainingdata. The approximate HMM scores in that N-best lattices were not used in theseexperiments.The knowledge sources used for the Switchboard experiments include the SSM,the BBN HMM, the BBN trigram LM and the number of words, phones, and inter-word silences. The SSM was trained on a subset of the BBN Switchboard trainingset based on the segmentations generated by J. Odell1 [28]. The HMM scores usedare approximate scores as described in Section 3.3.1An older version of the segmentations than the ones released on the CD-ROM were used forthese experiments



72Weights for the lattice N-best, lattice DP and lattice local search algorithms areidentical and were estimated using the optimization procedure described in Section3.2. The lattice N-best algorithm was used to generate the scores for the optimization.The speeds reported in this chapter for each algorithm are based on the numberof CPU seconds required for decoding a set of utterances divided by the number ofseconds of speech in the utterances. Therefore, each �gure is the \number of timesreal time" that it takes to decode speech for some algorithm. The machines used forobtaining these �gures were SUN Sparc 20 50's, Sparc 20 51's and Sparc 20 61's. TheSparc 20 50 has a 50 MHz clock speed, the Sparc 20 51 also has a 50 MHz clock speedand 1 Megabyte of cache RAM and the Sparc 20 61 has a 60 MHz clock speed and 1Megabyte of cache RAM. The speed rates are all adjusted to be approximately equalto speed of the algorithms on a Sparc 20 50.6.2 N-best RescoringRecall that the lattice N-best search rescores the top N sentence hypotheses byconstraining the lattice DP algorithm to paths through the lattice corresponding toone N-best hypothesis at a time. The lattice N-best algorithm provides an importantbaseline for the lattice DP and lattice local search algorithms. The lattice N-bestalgorithm also provides a means of estimating weights for the other two lattice basedalgorithms. The lattice N-best algorithm di�ers from the old N-best algorithm inthat the segmentation times (and therefore the DP time constraints) are di�erent,and the HMM scores (when used) are produced by a di�erent model.In this section, the lattice N-best results are compared to the old N-best algorithmand the relative performance of each are compared. Results are only presented forthe WSJ tasks since the appropriate data is not available to run the old system



73Table 6.4: H2-P0 results for the old N-best and lattice N-best algorithms (N=100).Old N-best Lattice N-bestSpeed Error Rate Speed Error RateDEV 11.3 7.5% 13.5 7.4%EVAL 13.9 6.2% 13.9 6.2%Table 6.5: H1-P0 results for the old N-best and lattice N-best algorithms (N=100).Old N-best Lattice N-bestSpeed Error Rate Speed Error RateDEV 20.3 16.0% 12.1 15.7%EVAL 23.6 14.6% 13.2 14.3%on the Switchboard task. The speed and performance for H2-P0 are presented inTable 6.4 while the speed and performance for H1-P0 are presented in Table 6.5. Allexperiments are based on the search algorithm which does not use word score cachingbecause little gain was observed in word caching experiments.Note that the lattice N-best system performs slightly better than the old N-best system on H1-P0. This is probably due to the di�erences in the way the timeconstraints are calculated as discussed in Chapter 3. In general, the time constraintsfor an unmarked node in the triphone-expanded lattice will depend on all pathspassing through that node. Since the lattice represents a large set of hypotheses,there will generally be more paths passing through an unmarked node in the triphone-expanded lattice used in the lattice N-best algorithm than there will be for anunmarked node in the triphone-expanded network used in the old N-best algorithm.This is because the triphone-expanded network represents only one N-best hypothesiswhile the triphone-expanded lattices represents all hypotheses. Therefore, the time



74constraints for unmarked nodes in the triphone-expanded lattices of the lattice N-bestalgorithm may tend to be more liberal than the time constraints for unmarked nodesin the triphone-expanded networks of the old N-best algorithm.The speeds of the lattice N-best and old N-best algorithms for H2-P0 presentedin Tables 6.4 are comparable. However, the old N-best algorithm has the additionalcomputational cost of requiring each N-best hypothesis to be individually resegmentedby the HMM. This makes the lattice N-best algorithm inherently more e�cient. ForH1-P0, on the other hand, the old N-best algorithm is a factor of 1.8 times slowerthan the lattice N-best algorithm. Since the size of the N-best list is the same forboth H1-P0 and H2-P0 in this case, the lattice N-best speed seem reasonable, and theincrease in cost for the old N-best algorithm is an anomalous result that we cannotyet explain.Note that the old N-best algorithm is a factor of 1.8 times slower on H1-P0 thanon H2-P0. This could be because H1-P0 is a larger vocabulary task (20,000 wordsvs. 5,000 words) and the N-best lists may represent a higher degree of variation. Ifthis is the case, then the N-best lists for H1-P0 would have a corresponding largernumber of unique triphones than the N-best lists for H2-P0. Consequently, triphonesegment and distribution caching would not save as much computation.Table 6.6: Lattice N-best results and speeds for H1-P0 test for N=500.WSJ-H1-P0Speed Error RateDEV 87.4 15.6%EVAL 94.6 14.3%The N-best results presented in this section indicate that the lattice N-best



75algorithm is comparable (or better) in performance and speed to the old N-bestalgorithm. This establishes that the lattice N-best algorithm is a valid baseline forthe lattice DP and lattice local search algorithms. For reference, lattice N-best resultsfor H1-P0 with N equal to 500 are presented in Table 6.6. Note that the speed isa factor of 10 times slower in this case than it is for N equal to 100, and there isno performance gain. N-best results for Switchboard will be presented later in thischapter.6.3 Local Search VariationsIn this section, the speed and performance of the local search algorithm areexamined under di�erent conditions. First, two di�erent de�nitions of the localneighborhood are investigated: a local neighborhood with three types of local pathsand a local neighborhood with six types of local paths. Then the e�ects of word scorecaching on speed and performance are examined.Table 6.7: WSJ H2-P0 development and evaluation results for the lattice N-best andlattice local search algorithms using three and six types of local paths without wordcaching. Lattice N-best Lattice Local Search Lattice Local Search3 local paths 6 local pathsTest Speed Error Rate Speed Error Rate Speed Error RateDEV 13.5 7.4% 3.8 7.8% 4.6 7.3%EVAL 13.9 6.2% 3.8 7.4% 3.7 6.2%Table 6.7 presents the results of the lattice N-best and lattice local search algo-



76rithm on the WSJ H2-P0 tests for the case when the local neighborhood includes onlythe \deletion," \substitution," and \split" local paths and the case where the localneighborhood includes the \insertion," \deletion," \substitution," \split," \merge,"and \double substitution" local paths. Note that the lattice local search algorithmis about 1.2 times slower when six types of local paths are used. However, in thiscase the results are as much as 14% better than the corresponding results with thesmaller local neighborhood. Therefore, the local neighborhood that includes all sixlocal paths seems to be a better choice.Table 6.8: WSJ H1-P0 development and evaluation results for the lattice N-best andlattice local search algorithms using six types of local paths with word caching.Lattice N-best Lattice Local SearchTest Speed Error Rate Speed Error RateDEV 83.4 15.6% 8.7 15.9%EVAL 89.2 14.3% 9.8 14.5%The results for using word caching with the local neighborhood that has six typesof local paths for H1-P0 are given in Table 6.8. In this case, the speed is increasedby only a small amount (less than 5%) for the lattice N-best algorithm. The speed isthe same for the lattice local search algorithm. Note that the word caching does notchange the performance of either algorithm.The remaining results reported in this chapter will use the lattice local searchalgorithm which has six types of local paths in its local neighborhood. In addition,word caching will not be used in either the lattice N-best or lattice local searchexperiments.



776.4 Search Tradeo�s with Markov AssumptionsTable 6.9: WSJ H2-P0 development and evaluation results for the three di�erentsearch algorithms.Lattice N-best Lattice Local Search Lattice DPTest Speed Error Rate Speed Error Rate Speed Error RateDEV 13.5 7.4% 4.6 7.5% 4.6 7.3%EVAL 13.9 6.2% 3.7 6.5% 4.1 6.2%Table 6.10: WSJ H1-P0 development and evaluation results for the three di�erentsearch algorithms.Lattice N-best Lattice Local Search Lattice DPTest Speed Error Rate Speed Error Rate Speed Error RateDEV 103 15.6% 8.6 15.9% 8.0 15.4%EVAL 95 14.3% 9.8 14.5% 9.1 13.9%Table 6.11: Switchboard development and evaluation results for the three di�erentsearch algorithms.Lattice N-best Lattice Local Search Lattice DPTest Speed Error Rate Speed Error Rate Speed Error RateDEV 133 56.3% 7.5 57.1% 15.4 58.0%EVAL 133 54.7% 7.5 54.6% 15.4 56.2%This section presents results for the lattice N-best, lattice DP and lattice localsearch algorithms on the WSJ H2-P0, WSJ H1-P0 and Switchboard tasks for thecase where only Markov knowledge sources are used. Both speed and performanceare reported for each algorithm on each task in Tables 6.9, 6.10 and 6.11.



78For both WSJ tasks, it was found that the lattice DP has performance slightlybetter than the lattice N-best and is a factor of 3 to 11 times faster depending on thesize of N. For H2-P0, N is equal to 100 and the lattice DP algorithm is about 3 timesfaster than the lattice N-best algorithm. For H1-P0, N is equal to 500 and the latticeDP algorithm is about 11 times faster.This increase in speed for the lattice DP algorithm over the lattice N-bestalgorithm is also observed on the Switchboard task, but not the improvement inaccuracy. There are two possible reasons for this. One is that the SSM acoustic modelmay not be as good as the HMM for the Switchboard task, in which case consideringmore hypotheses in the lattice would actually hurt performance. The second possiblereason is that the weights, which were estimated on the top 500 hypotheses, are notoptimized well enough for the full lattice which corresponds to an N of 2,000.For all three tasks, the lattice local search algorithm gives performance onlyslightly worse than the lattice N-best algorithm with increases in speed of 3 to 18times that of the lattice N-best algorithm depending on the size of the lattice. Thedi�erence in speed the lattice local search and the lattice DP algorithms depends onthe size of the lattices. For small lattices where the lattice local search algorithmscores most of the lattice, the lattice local search algorithm is slower than the latticeDP algorithm. For H1-P0, comparing the N=100 lattice N-best to the N=500 latticeDP, we �nd that we can save more than a factor of 2 in computation and reduce theerror rate by 4-5% through using the lattice DP algorithm. For the large Switchboardlattices, the lattice local search is actually faster than the lattice DP algorithm, butthis result is awed in that the rescoring SSM knowledge source is not as powerful asthe orignal HMM.The lattice local search algorithm converges in about 1.8 steps on the 5,000 wordH2 test and about 2.5 steps on 20,000 word H1 test. The faster convergence on H2 is



79consistent with the lower error rates on this task and the smaller size of the lattices.Recall that for H2 N=100 was used whereas N=500 was used for H1.6.5 Search Tradeo�s for a Sentence{Level Lan-guage ModelTable 6.12: WSJ H1-P0 development and evaluation results for lattice local searchalgorithm with the BU mixture LM.Lattice N-best Lattice Local SearchTest Speed Error Rate Speed Error RateDEV 103 15.4% 9.0 15.7%EVAL 95 13.7% 9.6 13.5%Results are presented for rescoring with the BU sentence-level mixture LM inTable 6.12. Note that the performance of the lattice local search algorithm is within2% of the performance of the lattice N-best algorithm. In fact, the lattice local searchalgorithm performs slightly better on the evaluation test set than the lattice N-bestalgorithm.The speed of the lattice local search algorithm using the sentence-level mixtureLM is about the same as the speed of the algorithm without this model. The reasonfor this is that the sentence-level mixture LM requires relatively little computationcompared to the SSM. Comparing the performance of the lattice local search withthe sentence-level mixture model to the lattice DP without the sentence-level model(Table 6.10) it is seen that the lattice local search provides a means of improvingrecognition performance with sentence-level knowledge sources without signi�cantly



80increasing computation.6.6 SummaryThe results presented in this chapter indicate that the lattice DP and latticelocal search algorithms exhibit comparable performance to N-best rescoring when thesame weights are used for combining knowledge sources. However, the results alsodemonstrate that the lattice DP and lattice local search algorithms are signi�cantlyfaster than than the N-best algorithm by factors of 3 to 18 depending on the size ofthe lattice. The results also show that the lattice N-best algorithm performs at leastas well as the old N-best algorithm, and thus provides a compact representation thatis useful in weight estimation as well as search.These results also show that, in general, a larger N leads to an increase in therelative computational e�ciency of the lattice DP and lattice local search algorithmscompared to the lattice N-best algorithm. Also, the lattice local search becomes moree�cient than the lattice DP algorithm when the lattices are larger. The lattice localsearch has the additional advantage of allowing sentence-level knowledge sources tobe incorporated into the search.Therefore, if large lattices and sentence-level knowledge sources are going to beused for recognition, then the lattice local search algorithm is a good choice. However,if small lattices are going to be used with only Markov knowledge sources, then thelattice DP algorithm is a good choice. In both of these cases, the lattice N-bestalgorithm is critical in training mode in order to generate weights to use for the DPor local search.The choice of the local neighborhood which has six types of local paths appearsto be a good one. The lattice local search algorithm is both e�cient and accurate



81using this neighborhood de�nition. A larger local neighborhood could be used butthis would increase the computational complexity of the algorithm. On the otherhand, a smaller local neighborhood leads to a decrease in performance.



Chapter 7ConclusionIn this thesis, three di�erent lattice-based search algorithms have been investigated:the lattice N-best algorithm, the lattice DP algorithm and the lattice local searchalgorithm. The lattice DP and lattice local search algorithms have been shown tobe e�cient alternatives to N-best rescoring. In addition, the lattice local searchalgorithm has been shown to be an e�ective means of incorporating sentence-levelknowledge sources, such as the BU sentence-level mixture LM, into the search.7.1 SummaryIn order to rescore lattices with the BU SSM and sentence-level language model,the BBN decoder was modi�ed so that N-best lattices could be produced. Thisinvolved saving information during the N-best traceback so that a lattice was createdcorresponding to the N-best list for each utterance. Since many other sites in theCSR community are also creating and potentially sharing lattices, a standard lattice�le format speci�cation was proposed for use by the community which is included inAppendix A along with some examples. 82



83The lattice DP algorithm was presented as an e�cient means of �nding thehypothesis with the highest combined score in an N-best lattice using an optimizedset of weights for combining the scores. In addition, it was shown that N-best rescoringcould be easily accomplished using a special case of the DP algorithm where all pathsthrough the lattice were turned o� except for the paths corresponding to an N-besthypothesis. This algorithm was called the lattice N-best rescoring algorithm and itcould be used as a means of estimating weights and as a performance baseline for theother lattice-based search algorithms.It was shown that the lattice N-best rescoring algorithm performed at least aswell as the older BU N-best rescoring algorithm while running just slightly faster.It was also shown that the lattice DP algorithm is much more e�cient than thelattice N-best algorithm for Markov knowledge sources because it avoids redundantcomputation. The lattice DP algorithm was shown to perform as well, and in somecases better, than the lattice N-best algorithm while running up to 11 times fasterfor the particular cases evaluated here.Then a novel lattice search approach, the lattice local search algorithm, wasintroduced. Although this algorithm was not guaranteed to �nd the globally optimalsolution, it held the promise of being e�cient and also of allowing for the incorporationof sentence-level knowledge sources into the search. Algorithms for caching andretrieving local path scores were presented, and �nally a procedure was outlinedfor caching and retrieving word scores in either the lattice N-best or lattice localsearch algorithms. The lattice local search algorithm also proved to perform aboutas well as the lattice N-best algorithm while running as much as 18 times faster. Thekey advantage of the lattice local search algorithm over the lattice DP algorithm wasshown to be its ability to incorporate the BU sentence-level mixture model into thesearch. Experiments showed that better results can be obtained by using the sub-



84optimal local search with sentence-level knowledge sources than by using the optimalDP search with only Markov knowledge sources.7.2 Future WorkThe work presented in this thesis could be extended in many directions. Thespeed of the lattice DP and local search algorithms could be further improved. Newways of estimating score combination weights could be explored since the lattice N-best algorithm is very expensive. Also, new types of hybrid lattice search algorithmscould be formulated. These possibilities are expanded on in this section.Di�erent approaches could be taken to speed up the di�erent search algorithms.The lattice DP algorithm search time could be reduced by using a pruning strategysimilar to that used in the standard beam search. The lattice local search algorithmcould be speeded up by improving word score caching and by eliminating some of theresegmenting.The local search algorithm could also be modi�ed so that larger local neigh-borhoods are considered without signi�cantly increasing the search time by usingthe HMM local path scores to determine which local paths to include in the localneighborhood. This could be done by including all paths that form one loop with thecurrent solution but also have an HMM local path delta score that is within some�xed threshold. The threshold would have to be adjusted to control the size andinclusion rate of the corresponding local neighborhood.The N-best lists corresponding to an N-best lattice are generally a sub-set ofthe paths through the lattices. Therefore, the weights obtained by optimizing scoresfrom these N-best lists are not necessarily the best weights for combining the Markovknowledge sources used in the search. A better set of weights could be found by �rst



85scoring and annotating the lattices with the Markov knowledge sources using someinitial set of weights and the lattice DP algorithm. Then candidate sets of weightswould be generated by setting up a uniformly spaced grid in the weight space in asimilar fashion to the approach used currently in the BU grid-based optimizer. Thelattice error rate at each grid point would be evaluated by using DP on the lattices to�nd the highest scoring hypothesis for the given weights. Once the grid point whichgives the lowest error rate is found, a more re�ned grid would be generated aroundthis point and the algorithm would iterate until the error rate stays the same.This approach would have the potential advantage of not using the lattice N-best algorithm which is much less e�cient than the lattice DP algorithm althoughthe weight optimization step would be more expensive. The trade-o� between thecost increase in the optimization step and the cost decrease in the scoring step hasto be assessed in experiments. We conjecture that performing DP with a candidateset of weights will not be expensive since scores are not actually calculated at thisstage: scores are simply looked up from the lattice and multiplied by the weights.Moreover, the overall word error rate could potentially be reduced since weights couldbe optimized on thousands of hypotheses for an utterance.A similar approach could be used for optimizing weights on the lattices if sentence-level knowledge sources are being used. This would require performing a local searchon the lattices with a candidate set of weights for combining the scores on the latticewith the scores from the sentence-level knowledge sources. Then the weights whichgive the lowest over-all error rate would be used for performing recognition with thelattice local search. In fact, the weights obtained by optimizing with the lattice localsearch may be better suited to performing recognition with this algorithm.The lattice local search algorithm could be used in cases where rescoring is goingto be performed with some kind of sentence-level model after the lattices have been



86rescored with an acoustic model by using a two-stage algorithm. First the latticeswould be annotated with the best acoustic score for each word after the lattice DPalgorithm has been performed with the Markov knowledge sources. Then, during thelocal search, each path in the local neighborhood would be evaluated by combiningthe score from the sentence-level knowledge source with the Markov scores from thelattice. This would provide a fast means of developing and evaluating sentence-levelknowledge sources such as long distance language models.The two stage lattice{based algorithm has the additional advantage of startingthe local search with a better initial solution. That is, instead of using the top N-best hypothesis from the BBN decoder as the initial starting point, the optimal pathgiven all of the Markov knowledge sources and associated score combination weightsis used. In theory, a better initial solution can increase the accuracy and speed ofthe lattice local search algorithm. The e�ciency of the two stage algorithm woulddepend on the computational complexity of the knowledge sources used used in eachstage. For instance, the two stage lattice algorithm would be a good choice for theBU SSM and sentence-level mixture LM used in this work because the computationfor the sentence-level LM is small compared to the SSM.Clearly there is more exploring to be done in the area of lattice search. As morepowerful and expensive acoustic and language model are applied to harder recognitiontasks, the search problem will become more important. The lattice search algorithmspresented in this thesis provide a means of handling these situations both in presentand future applications.
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Appendix ALattice File FormatThis section describes the lattice �le format speci�cation proposed for use by theARPA CSR community. This �le speci�cation is designed to allow for de�ninganything from a �nite state grammar to a word lattice with time, phone segmentationand language and acoustic model score information. Each node of the lattice eitherrepresents a word or is a \NULL node" while the arcs represent transitions betweenwords.File structure:The lattice �les consist of 3 sections: a header section, a node speci�cationsection and an arc speci�cation section. Each section is terminated by a single `>'character occurring at the beginning of a line. A line beginning with a `�' characteris a comment line which is intended as a means of providing useful information forhumans that are reading the �le. 91



921.0 Header Section:Each line of the header section contains a label followed by one or more values.The labels consist of any alpha-numeric characters and ` '. Upper vs. lower caseis signi�cant. The values can be strings, ints, oats or a combination of the three.There are some special labels which must appear in the header section as well asother prede�ned optional ones. Both will be discussed momentarily. Other user-de�ned labels can be added as needed but will be ignored by default.1.1 MANDATORY LABELSThe mandatory labels are:Labels Value typeFF VERS oatUTTERANCE stringN NODES intN ARCS intFIRST NODE intLAST NODE intDIRECTION stringNODE SPEC list of stringsARC SPEC list of stringsWORD LOC stringFF VERS:The value of this label corresponds to the �le format version. The �rst versionof this �le format will be 1.0 proceeded by 1.1, etc. Major revision will increment thepart of the number before the decimal point.



93UTTERANCE:The value of this label is a string corresponding to the identi�er of the utterancethat the lattice was generated for. This should be the standard utterance identi�er asspeci�ed for the corpus that is being used (i.e. full path name to data �les shouldn'tbe used).N NODES:The value of this label is the number of nodes in the lattice.N ARCS:The value of this label is the number of arcs in the lattice.FIRST NODE:The value of this label is the index of the �rst node of the lattice.LAST NODE:The value of this label is the index of the last node of the lattice.DIRECTION:The value of this label indicates the direction of the lattice. The meaningfulvalues this label can have are:Value Meaningforward lattice is in the forward directionbackward lattice is in the backward direction



94NODE SPEC:The value of this label is a list of string identi�ers which indicate the format forthe node speci�cation section. Essentially, each node is speci�ed by a single line whereeach column of the line contains a di�erent value for the node. The NODE SPEClabel indicates what values for each node are present and what order these valuesoccur in. Some values should only be de�ned if the value of the WORD LOC labelis NODES:Value Type MeaningINDEX int The corresponding column contains the uniqueindex of the node between 0 and N NODES-1.WORD string The transcription of the word associated withthis node. This �eld should not be de�ned ifWORD LOC is equal to ARCS. The string \#"means the node is a NULL node. In general, thelattice should begin and end with a NULL node.Other values NODE SPEC can have (if this information is provided as indicated inthe value of NODE SPEC):



95Value Type MeaningTIME oat The end time for the segmentation of the wordThe value of the optional label TIME must alsobe de�ned (see OPTIONAL LABELS below).SEG string This is a sequence of times and phone labelswhich correspond to the phonetic segmentationof the word node. The format is a sequence of<start time>:<phone label>:A single \:" is used to indicate that the wordhas no segmentation (i.e. if it's a NULL node).The value of the label TIME must alsobe de�ned (see OTHER LABELS below). This�eld should not be de�ned if WORD LOC isequal to ARCS.AC SCORE oat Acoustic score of this word ending at theabove time. The value of the labelAC LOG BASE must also be de�ned (see OTHERLABELS below). This �eld should not bede�ned if WORD LOC is equal to ARCS.ARC SPEC:The value of this label takes on a list of string identi�ers which indicate the formatfor the arc speci�cation section. Essentially, each arc is speci�ed by a single line whereeach column of the line contains a di�erent value for the arc. The ARC SPEC labelindicates what values for each arc are present and what order these values occur in.



96Value Type MeaningINDEX int The corresponding column contains the uniqueindex of the arc from 0 to N ARCS-1.S NODE int The index of the source node for this arc.T NODE int The index of the target node for this arc.WORD string The transcription of the word associated withthis arc. This �eld should not be de�ned ifWORD LOC is equal to nodes. The string \#"means the arc is a NULL arc.PRON int Pronunciation version number. WORD LOC must beNODES.



97Other optional values ARC SPEC can have:Value Type MeaningLM SCORE oat The LM score corresponding to the transitionfrom the S NODE to the T NODE.The value of the label LM LOG BASEmust also be de�ned (see OTHER LABELS below).SEG string This is a sequence of times and phone labelswhich correspond to the phonetic segmentationof the word arc. The format is a sequence of<start time>:<phone label>:A single \:" is used to indicate that the wordhas no segmentation (i.e. if it's a NULL arc).The value of the label TIME must alsobe de�ned (see OTHER LABELS below). This�eld should not be de�ned if WORD LOC isequal to NODES.AC SCORE oat Acoustic score of this word ending at thetime of the target node. The value of thelabel AC LOG BASE must also be de�ned (seeOTHER LABELS below). This �eld should not bede�ned if WORD LOC is equal to NODES.PRON int Pronunciation version number. WORD LOC must beARCS.



98WORD LOC:Location of the word names (and segmentations if they are provided). Possiblevalues are:Value MeaningNODES Words (and segmentations) appear on nodesARCS Words (and segmentations) appear on arcs1.2 OTHER LABELS:Labels Value typeAC LOG BASE stringLM LOG BASE stringTIME oatAC WT oatLM WT oatWRD WT oatPHN WT oatSIL WT oatAC LOG BASE:If acoustic scores are provided, then this label must be included. The value ofthe label is the logarithm base for acoustic scores. This is actually a string withmeaningful values:



99Value Meaninge natural log10 log base 10<number> log base <number>- No log is takenLM LOG BASE:If LM scores are provided, then this label must be included. The value of thelabel is the logarithm base for language model scores. The values this label can haveare the same as for the label AC LOG BASE.TIME:If any time information is included in the lattice, then this label must be de�ned.The value of this label is the number of seconds corresponding to one unit of time.For example:Value Meaning1 Time is in seconds0.01 Time is in 10ms framesAC WT, LM WT, WRD WT, PHN WT, SIL WT:The weights for combining the acoustic model, LM, <# of words>, <# ofphones> and <# of silences> scores. These weights were used during decodingto produce the lattice.2.0 Node Speci�cation SectionEach line of the node speci�cation section de�nes the information for each nodeof the lattice. The meaning of each column in each line is de�ned by the value of



100the label NODE SPEC de�ned above. The minimum node speci�cation correspondsto a unique index for the node (from 0 to N NODES-1) and an orthographic tran-scription of the word (where \#" means the node is a NULL node). Optionally, timeinformation, phone segmentations and acoustic scores can be included.3.0 Arc Speci�cation SectionEach line of the arc speci�cation section de�nes the information for each arc ofthe lattice. The meaning of each column in each line is de�ned by the value of thelabel ARC SPEC de�ned above. The minimum arc speci�cation corresponds to aunique index for the arc (from 0 to N ARCS-1), the index of the arc's source nodeand the index of the arcs target node. Optionally, LM scores can be provided. Anexample of the N-best lattices used in this work is given below in the proposed lattice�le format speci�cation. Note that `�' indicates a comment line.�� This is a comment line� FF VERS = File Format VersionFF VERS 1.0�� Identi�er string for the utterance:�UTTERANCE 4kac020jN NODES 16N ARCS 19FIRST NODE 0LAST NODE 15WORD LOC NODES



101�� Log base \-" means logs aren't used, \e" means natural logs�AC LOG BASE 10LM LOG BASE 10DIRECTION backward�� Time in secs/unit, i.e. 10ms frames are 0.01.�TIME 0.01�� Now specify what each column in the node speci�cation section represents�NODE SPEC INDEX TIME WORD SEG AC SCORE�� And specify what each column in the arc speci�cation section represents�ARC SPEC INDEX S NODE T NODE LM SCORE�� Weights for score combinationAC WT 1.0LM WT 2.4WRD WT 0.0PHN WT 0.0SIL WT 0.0�� Header ends with a single `>' at the beginning of the line:



102�>�� Next, nodes are de�ned:� word label \#" means the node is a null node.�Node speci�cation is: <node ID><time><word label><segmentation><acousticscore>�0 2.89 # : 01 2.89 OUT 254:T:257:-: -88.34252 2.24 TAPPED 196:AE:210:P:219:T:224:AW: -190.7083 1.82 BASICALLY 133:EY:147:S:154:IX:157:K:168:L:174:IY:182:T: -226.4994 1.26 ARE 126:B: -22.13325 1.19 CONSUMERS 60:AX:64:N:69:S:82:Y:91:UW:94:M:99:AXR:110:Z:119:AXR: -252.6096 1.26 AS 124:Z:129:B: -33.6497 1.19 CONSUMERS 60:AX:64:N:69:S:82:Y:91:UW:94:M:99:AXR:110:Z:119:AE: -245.5058 1.26 TO 121:AX:125:B: -39.96989 1.19 CONSUMERS 60:AX:64:N:69:S:82:Y:91:UW:94:M:99:AXR:110:Z:118:T: -238.04610 1.26 AND 123:N:126:D:129:B: -35.240511 1.19 CONSUMERS 60:AX:64:N:69:S:82:Y:91:UW:94:M:99:AXR:110:Z:119:AX: -240.62612 1.26 HAVE 120:AE:123:V:128:B: -42.852413 1.19 CONSUMERS 60:AX:64:N:69:S:82:Y:91:UW:94:M:99:AXR:110:Z:117:HH: -234.30414 0.60 </sil> 0:-:50:K: -168.06415 0.00 # : 0



103�� Arc speci�cations end with a single `>' at the beginning of the line:�>�� Arc speci�cation is: <arc ID> <start node ID> <end node ID> <LM score>�0 14 15 01 13 14 -0.7816522 12 13 -3.037283 3 12 -2.054634 2 3 -1.652645 1 2 -4.712256 11 14 -1.741977 10 11 -3.640278 3 10 -2.590629 9 14 -2.3449610 8 9 -3.662611 3 8 -1.9429612 7 14 -1.3846413 6 7 -3.7072614 3 6 -1.764315 5 14 -0.87098416 4 5 -3.327617 3 4 -1.0943118 0 1 -2.79161||||||||||||||||||||||||||||||



104Here is an HTK lattice converted to this format:||||||||||||||||||||||||||||||� Lattice generated by CU-HTK 23 Feb 94�� File : \/data/wsj/wsj1/si dt 20/4k0/4k0c030t.wv2"�� Best hypothesis \!SENT START IT DIDN'T ELABORATE !SENT END" Score=-20218.25�� Language model scores from \/lib/baseline-lm/bg-boc-lm20o.nvp".� Dictionary used \/lib/dictionaries/dragon/wsj.sls".� Acoustic scores from \/models/htk2/hmm11".�� Header�FF VERS 1.0UTTERANCE 4k0c030tN NODES 24N ARCS 39FIRST NODE 0� This is the only node without any out arcs so it must be the last one:LAST NODE 23WORD LOC ARCSAC LOG BASE eLM LOG BASE eAC WT 1.0



105LM WT 16.0WRD WT 0.0DIRECTION forwardTIME 1.0NODE SPEC INDEX TIMEARC SPEC INDEX S NODE T NODE WORD PRON AC SCORE LM SCORE>0 0.001 0.252 0.263 0.614 0.625 0.626 0.717 0.728 0.729 0.7210 0.7211 0.7212 0.7213 0.7314 0.7815 0.7816 0.8017 0.8018 0.8119 0.81



10620 1.3321 2.0922 2.0923 2.85>0 0 1 !SENT START 0 -1432.27 0.001 0 2 !SENT START 0 -1500.93 0.002 0 3 !SENT START 0 -3759.32 0.003 0 4 !SENT START 0 -3829.60 0.004 1 5 TO 3 -2434.05 -87.295 2 5 TO 1 -2431.55 -87.296 4 6 AND 3 -798.30 -69.717 4 7 IT 0 -791.79 -62.058 4 8 AND 2 -836.88 -69.719 3 9 BUT 0 -965.47 -51.1410 4 10 A. 0 -783.36 -105.9511 4 11 IN 0 -835.98 -49.0112 4 12 A 0 -783.36 -59.6613 4 13 AT 0 -923.59 -77.9514 4 14 THE 0 -1326.40 -27.9615 4 15 E. 0 -1321.67 -121.9616 4 16 A 2 -1451.38 -59.6617 4 17 THE 2 -1490.78 -27.9618 4 18 IT 0 -1450.07 -62.0519 5 18 IT 0 -1450.07 -110.4220 6 18 IT 0 -775.76 -85.1221 7 18 IT 0 -687.68 -125.32



10722 8 18 IT 0 -687.68 -85.1223 9 18 IT 0 -687.68 -50.2824 10 18 IT 0 -689.67 -108.9125 11 18 IT 0 -706.89 -113.7826 12 18 IT 0 -689.67 -194.9127 13 18 IT 0 -619.20 -100.2428 4 19 IT 1 -1567.49 -62.0529 14 20 DIDN'T 0 -4452.87 -195.4830 15 20 DIDN'T 0 -4452.87 -118.6231 16 20 DIDN'T 0 -4303.97 -189.8832 17 20 DIDN'T 0 -4303.97 -195.4833 18 20 DIDN'T 0 -4222.70 -78.7434 19 20 DIDN'T 0 -4235.65 -78.7435 20 21 ELABORATE 2 -5847.54 -62.7236 20 22 ELABORATE 0 -5859.59 -62.7237 21 23 !SENT END 0 -4651.00 -13.8338 22 23 !SENT END 0 -4651.00 -13.83


