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The intention in designing data structures with relaxed balance, such
as chromatic search trees, is to facilitate fast updating on shared-memory
asynchronous parallel architectures. To obtain this, the updating and
rebalancing have been uncoupled, so extensive locking in connection
with updates is avoided. In this paper, we prove that only an amortized
constant amount of rebalancing is necessary after an update in a
chromatic search tree. We also prove that the amount of rebalancing
done at any particular level decreases exponentially, going from the
leaves toward the root. These results imply that, in principle, a linear
number of processes can access the tree simultaneously. We have
included one interesting application of chromatic trees. Based on these
trees, a priority queue with possibilities for a greater degree of parallelism
than previous proposals can be implemented. © 1997 Academic Press

1. INTRODUCTION

A chromatic search tree [ 21, 8] is a binary search tree for
shared-memory asynchronous parallel architectures. It was
introduced with the aim of allowing processes to lock nodes,
in order to avoid inconsistencies from updates and rebalan-
cing operations, without decreasing the degree of parallelism
too much. The means for obtaining this was a new balance
criteria, referred to as relaxed balance, along with new
uncoupled operations for updating and rebalancing.

The rebalancing is taken care of by background processes
in small independent steps; the processes do only a constant
amount of work before they release locks and move on to
another problem. This means that the traditional exclusive
locking of whole paths or step-wise exclusive locking down
paths, which would limit the amount of parallelism possible
to the height of the tree, does not take place. Another
advantage of the uncoupling of the rebalancing from the
updating is that all or parts of the rebalancing can be post-
poned until after peak working hours. The disadvantage, of
course, is that the tree can become very unbalanced if there
are not enough background processes doing the rebalancing.

Since the rebalancing is done in small independent steps,
which can be interspersed with other updating and rebalan-
cing operations, an actual proof of complexity is not straight-
forward, and the original proposal in [ 21] did not contain
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any such proof. In [ 8], the proposal of [ 21 ] was analyzed,
and it was proven that some updating could give rise to a
super-logarithmic number of rebalancing operations. A
modified set of rebalancing operations was proposed, and it
was proven that the new set of rebalancing operations give
rise to at most | log,(n+7)_| rebalancing operations per
insertion and at most | log,(n + i) |— 1 rebalancing opera-
tions per deletion, if i insertions are performed on a tree
which initially contains 7 leaves. Furthermore, most of these
rebalancing operations do no restructuring at all; they simply
move weights around. The number of operations which
actually change the structure of the tree is at most one per
update. Compared to [21], a small constant number of
extra locks per rebalancing operation are necessary in [8].

Having obtained logarithmic worst-case bounds, the next
result to hope and search for when dealing with trees is an
amortized constant number of rebalancing operations. It
turns out that the proposal from [ 8] has these properties,
although in order to get the best possible constant, one
operation should be modified slightly. In this paper, we
prove that, starting with an empty tree, i insertions and d
deletions give rise to at most 3/ + 3 d + 4 rebalancing opera-
tions. We also show that the number of rebalancing
operations which can occur at weighted height / is at most
3i/2" =1, The latter result is especially important in a parallel
environment, since many of the rebalancing operations
require exclusive locks on the nodes they are accessing. The
higher up in the tree a lock occurs, the larger the subtree
which cannot be accessed by other operations. Our
amortization results imply that, in principle, ©(n) processors
can simultaneously access the tree, since searching does not
require exclusive locking. The results are obtained assuming,
as is standard in amortized analyses, that the structure is
initially empty, although we also have results for the case
where the structure is initially nonempty.

In the last part of the paper, we discuss one particularly
interesting application of chromatic trees in greater detail.
From the sequential case, it is known that in some cases
search tree implementations of priority queues give better
performance than heap implementations [ 12]. In our setting
of a shared-memory architecture, it turns out that a variation
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of a chromatic search tree, used as a priority queue, allows
for a greater degree of parallelism than in previous
proposals for priority queues. The priority queue is suited
for branch and bound and similar applications.

Our results, some of which appeared in [ 7], build upon
a long sequence of work on search trees that deals with the
idea of uncoupling the updating from the rebalancing. At
first, this was only done partially, but later the separation
became complete. The more important results introducing
the idea of separating updating and rebalancing and
partially obtaining this include [9, 14-16, 19, 24-26]. In
[21, 22], rebalancing is separated entirely from the updating.
States of unbalance are merely registered, and background
processes deal with these problems of unbalance in parallel
with searches and updates. This type of search tree is
referred to as a search tree with relaxed balance.

Several complexity results have been obtained for relaxed
search trees. The analysis of the behavior of a relaxed version
of AVL trees [ 1] introduced in [22] was given in [ 17]. The
structure chromatic search tree of interest in this paper is
a relaxed version of red-black trees [3, 9]. As already
mentioned, this structure was introduced in [21] and
analyzed in [ 8]. A relaxed version of (a, b)-trees [ 11] was
analyzed in [ 18 ]. Both of the common B-trees [4], 2-3 trees
[2, 10], and 2-3-4 trees [9] have relaxed versions, the
properties of which are also discussed in [18]. The first
relaxed version of a B-tree is from [ 22 ]. Some implementa-
tion experience with a modified version of [ 8 ] can be found
in [20].

2. CHROMATIC SEARCH TREES

In this section, we describe chromatic search trees, noting
a couple of minor changes from earlier definitions [ 21, 8].
Chromatic trees are leaf-oriented binary search trees, so the
keys are stored in the leaves and the internal nodes only
contain routers which guide the search through the tree. The
router stored in a node v is greater than or equal to any key
in the left subtree and less than any key in the right subtree.
The routers are not necessarily keys which are present in the
tree, since the node containing the corresponding key may
have been deleted. The tree is a full binary tree, so each node
has either zero or two children.

Since chromatic trees are a relaxation of red—black trees,
the nodes have weights, which are restricted to being only
zero or one in a red—black tree, but can be greater than one
in a chromatic tree. This relaxation means that the data
structure can simply be left as it is after an update; the
rebalancing is taken care of by other processes.

In earlier definitions of chromatic trees, the weights were
associated with the edges, but here we place them on the
nodes to conform with standard usage. The results in this
paper and [ 8] hold in either formulation. Here, each node
v in the tree has an associated nonnegative integer weight
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w(v). If w(v) =0, we call the node red; if w(v) = 1, we say the
node is black; and if w(v)>1, we say the node is over-
weighted. The weight of a path is the sum of the weights of
its nodes, and the weighted level of a node is the weight of
the path from the root to that node.

For completeness, we give definitions for both red—black
trees and chromatic trees.

DEerFINITION 1. A red-black tree is a full binary search
tree T with the following balance conditions:

B1: The leaves of T are black.
B2: All leaves of T have the same weighted level.

B3: No path from 7°s root to a leaf contains two
consecutive red nodes.

B4: T has only red and black nodes.

Chromatic trees are defined similarly to red—black trees,
except that the balance conditions are relaxed.

DEFINITION 2. A chromatic tree is a full binary search
tree T with the following conditions:

C1: The leaves of T are not red.

C2: All leaves of T have the same weighted level.

The insertion and deletion operations are depicted in
Appendix A, along with the rebalancing operations. Squares
denote leaves, circles denote general nodes (either internal
nodes or leaves), and the labels denote weights. For the sake
of intelligibility, the subtrees of internal nodes are not
shown. However, note that for all operations there are the
same number of these subtrees before and after the operation.
The in-order ordering of the tree enforces a one-to-one
correspondence between these subtrees. For instance, in the
operation labelled (rb2), there are five subtrees not shown.
These are simply attached again in the same order (but to
new nodes) after the operation. Also, in all rebalancing
operations there are the same number of nodes before and
after the operation, so updating the routers after a rebalanc-
ing operation is simple: the same routers can be used again,
and their distribution among the nodes is determined by the
in-order ordering. The updating of the routers during
updates is as follows: For an insertion, the router in the new
internal node is given the value of the key in its left child.
For a deletion, the router in the sibling of the node deleted
becomes the router of the single node remaining after the
operation.

It is easy to verify that the operations alter chromatic
trees in a well-defined manner; that is, if the tree is a chromatic
tree before an operation, it is still a chromatic tree after the
operation.

Note that we do not list symmetric cases. We also omit
showing separately the special cases which apply at the root.
Whenever an operation changes the weight of the root, as
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part of the operation, the weight of the root is set to one
(thus, the weight of the root is always one).

The order in which operations are applied is unrestricted.
All results stated in this paper are independent of the order
in which operations are carried out. An operation can be
applied in any circumstances that match the lefthand side
depicted, except for the blacking operation, which has one
more restriction: it can only be applied if at least one of the
two lower nodes has a child of weight zero.

Note that the third weight-decreasing operation from [ 8 ]
has been modified slightly in order to obtain the results in
this paper. Instead of the operation given in Fig. 1, we use
the similar operation given in Fig. 2. The results of [ 8] still
hold with this modification.

The proper location for an insertion or deletion is found
by searching, as in any binary search tree. Thus, an insertion
will take logarithmic time if the structure is still reasonably
close to being a red—black tree. The actual update, however,
only requires constant time.

The rebalancing operations are defined so that if, at any
point, no further updates occur, but rebalancing occurs as
long as any operation is applicable, then the chromatic tree
will eventually become red-black. This was proven in [8],
and the same proof holds with the one modified operation.

The rebalancing operations are employed as follows. If a
chromatic tree is not a red-black tree, it must have either
two consecutive red nodes on some root-to-leaf path (a red—
red conflict) or a node with weight greater than one (an
overweighted node). These problems are casily identified
when they are created. When a problem is identified, a pointer
to one of the nodes involved is placed in a problem queue
for the rebalancing processes. In the case of a red-red conflict,
the pointer should be to the lower node involved, and in the
case of overweight, the pointer should be to the actual node
involved. This ensures that pointers to problems never get
separated from these problems, even though other rebalancing
operations may change the structure of the tree. (We do not
address the problem of maintaining a “problem queue” in
this paper, although we anticipate that each rebalancing
processor would have its own dequeue, so it could add or
remove problems from one end, while the other is used for
load balancing. One could possibly use a method similar to
that in [6].) If a rebalancing process creates another red—
red conflict or another overweighted node, it can also easily
recognize this and put a pointer to it in the problem queue.
Clearly, a rebalancing process handling a red-red conflict

Wo We
1 0 0
0 Wy > 0 wy — 1 Wo
FIG. 1. The old operation.
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FIG. 2. The new operation.

will need to find the parent and grandparent of the node it
finds through the problem pointer. For this purpose, it is
necessary for each node to have a parent pointer, in addition
to left and right child pointers.

The red-red conflicts result in blacking operations or red-
balancing operations. The latter are referred to as (rbl) and
(rb2) in Appendix A. Overweighted nodes result in push
operations or weight decreasing operations. The latter are
referred to as (wl) through (w7) in Appendix A.

A locking scheme is necessary here in order to prevent
inconsistencies which might otherwise occur because
asynchronous parallel processors share this common data
structure. We present one possible locking scheme in
Appendix B to show that this is possible.

3. COMPLEXITY

In [8], it was proven that if one begins with any red—
black tree with n leaves and then does i insertions, a number
of deletions, and some rebalancing operations, there will be
at most |_log,(n +7)_] rebalancing operations per insertion
and at most | log,(n+17)]—1 rebalancing operations per
deletion. Furthermore, the number of operations which
actually change the structure of the tree is at most one per
update.

In this section, we give new bounds on the worst case
number of rebalancing operations necessary in order to
restore balance after updates. Our main result is that, start-
ing with an empty chromatic tree, a very small constant
number of rebalancing operations per update are needed to
keep the structure balanced. We also define the weighted
height of an operation, which is closely related to the actual
height at which it is taking place in the structure, and show
that, in chromatic trees, the number of rebalancing opera-
tions of weighted height / is an exponentially decreasing
function of 4. In the last part of the section, we present
various extensions to these results. Results similar to the
ones presented in this section, but for (2, 4)-trees, which are
equivalent to standard red-black trees, can be found in
[11], which has given inspiration for the proofs presented
here.

In chromatic trees, all paths starting at the same node and
ending at a leaf will have the same weight. We define the
weighted height of a node to be the weight of any path from
that node to a leaf. The weighted height of an operation is
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most straightforwardly defined as the weighted height of the
top node of the operation. However, for technical reasons,
we need the following slightly different definition.

DerINITION 3.  The weighted height of an operation in a
chromatic tree is the weighted height, before the operation
occurs, of the children of the top node of the operation,
except for insertions, where it is the weighted height of the
single leaf present before the operation.

Thus, the weighted height of a weight decreasing or push
operation is at least two, and the rest of the operations have
weighted height at least one. Note that if the chromatic tree
is close to being red-black, the weighted height is closely
related to the actual height at which the operation takes
place, since in a red—black tree, the actual height of a node
is always between one and two times its weighted height.
Therefore, if the necessary rebalancing operations are
carried out concurrently with the updates, our definition is
a good measure of the actual height of the operation. We
can now state our main theorem.

THEOREM 4. If i>0 insertions and d deletions are per-
formed on an initially empty chromatic tree, then at most
3i+d — 2 rebalancing operations can occur. Furthermore, the
number of rebalancing operations of weighted height h that
can occur is bounded by 3i/2" = for h =2 and by i for h=1.

The theorem will follow from the lemmas below. These all
apply to the situation where i insertions, d deletions, and
some rebalancing operations have taken place on an
initially empty chromatic tree. This will not be repeated in
the statements of the lemmas. We letd,, b,,, r,,, wl,, .., w7,,
and p, denote the number of deletions, blacking operations,
red-balancing operations, weight decreasing operations
1,..,7, and push operations, respectively, of weighted
height £ that have occurred. To simplify the statements of
the lemmas, we also define b,, wl,, w2,, w7,, and p, (these
would otherwise be undefined) as by=1i and wl, =w2, =
w7, =p,=0.

Lemma 5. Forh>1,b,<i/2".

Proof. Let T denote a chromatic tree. Call the edges
above red nodes red edges. By the red connected components
in 7, we mean the connected components of the subgraph
induced by the red edges. All red nodes in such a component
have the same weighted height. By the height of a red
connected component, we mean the weighted height of any of
its red nodes. We let %,(T) denote the set of red connected
components of height / in T and define a sequence, @,(T),
he{l,2,3,..}, of potential functions on 7, by

D T)= Y

reeu(T)

(Irf=1).
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Here, |r| means the number of red nodes in r. An operation
of weighted height k can change @,(T) for some /’s. We
denote this change by 4®,(T) and state some facts concerning
this:

o For an insertion of any weighted height, 40 ,(T) <1
and 4®,(T)=0, for h # 1.

o For a blacking operation of weighted height k,
AD(T)< =2, AP, (T)< 1, and otherwise 4®,(T) =0,
for h¢ {k, k+1}.

e For any other operation of any weighted height,
AD,(T) <0, for all .

These facts can be verified by a tedious inspection of
the operations in Appendix A (for the first fact concerning
blacking operations, note that in order for a blacking opera-
tion to be applied, we require that at least one of the red
nodes must be the parent of another red node). For an
empty chromatic tree, 7y, @,(T,) =0 for all 4, so by the
facts above, @,(T)<i—2b, and @,(T)<b,_,—2b, for
h>=2. As @,(T) is never negative, this implies that b, <i/2
and b,<b,_,/2 for h=2, from which the lemma follows.

|
LEmMMA 6. Forh>=1,b,+r,<b,_,.

Proof. The two nodes in a red-red conflict have the
same weighted height, which we call the height of the
red—red conflict. Denote by %,(T) the number of red-red
conflicts of height 4 in T. The following facts can be verified
by inspection of the operations:

o For an insertion of any weighted height, A%,(T)<1
and A%,(T)=0, for h# 1.

o For a blacking operation of weighted height k, A%, (T)
<—1,4%. . (T)<1and A%,(T)=0, for h¢ {k, k+1}.

e For a red-balancing operation of weighted height k,
AR(T)= —1and AR,(T)=0, for h #k.

o For any other operation of any weighted height,
AR(T) <0, for all A.

For an empty chromatic tree, Ty, %,(T,) =0 for all &, so
by the facts above, Z,(T)<i—(r,+b,) and Z,(T)<
b,_1—(r,+by), for h=2. As #,(T) is never negative, the
lemma follows. ||

For the proofs of the next two lemmas, we need the
following definition. For any chromatic tree 7, we define an
expanded tree, T', containing only nodes of weight 0 and 1.
T' is constructed from T by replacing each overweighted
node by a path, the length of which is equal to the weight of
the original node minus one. All nodes on the path have
weight 1. We call all nodes on the path, except the one
closest to the leaves, heavy. Note that these heavy nodes are
unary. Red and black nodes in 7 are left unchanged in 77,
except for the root, which is replaced by a path extending
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infinitely upwards. The nodes on this path have weight 1.
The example given in Fig. 3 illustrates the construction of
T'. Heavy nodes are marked by an asterisk.

The expanded tree 7', for the empty tree T, is defined as
a path containing nodes of weight 1 extending infinitely
upwards—in other words, the expanded tree of an empty
tree is identical to the expanded tree of a tree with only one
node. As before, the weighted height of a node in 7' is
defined as the weight of any path from the node to a leaf.
One can think of 7’ as a way of assigning appropriate
weighted heights to the overweight in 7.

Lemma 7. Forh>=1,d,+wl,+w2,+w7,+ p,<b,_;.

Proof. For a chromatic tree, T, we define a sequence
,(T), he{l,2,3,..}, of potential functions on 7, letting
¥,(T) denote the number of nonred (black or heavy) nodes
of weighted height / in the expanded tree 7'. An operation
of weighted height k can change T and thereby 7", resulting
in a change in ¥,(T) for some /’s. We denote this change by
AY,(T) and state some facts concerning this:

e For an insertion of any weighted height, AV (T) <1
and AY,(T)=0 for h# 1.

o For a blacking operation of weighted height k,
AV, (T)=1and A¥,(T)=0, for h#k + 1.

e For any other operation of any weighted height,
AW, (T) <0 for all 4. In particular, for a deletion not result-
ing in an empty tree, a weight decreasing operation 1, 2, or
7 or a push operation of weighted height k, AV (T)= —1.

These facts can be verified by inspecting the operations on
T and drawing the expanded tree 7' before, as well as after,
the operation occurs. Note that deletion of one overweighted
node in 7 implies the removal of several nodes in 7". For
sequences of operations where there is always at least one
node in the tree, except initially, the lemma is proven as
follows. For an empty chromatic tree 7,,, ¥,(T,) =1 for all
h, so by the facts above, ¥ |(T)<1+i—d, and ¥,(T) <
1+b,_—(d,+wl,+w2,+w7,+p,) for h=2  As
¥,(T)>=1 for all & and T, the desired inequality is proven.
For more general sequences during which empty trees
are encountered, the inequality will hold between any
two consecutive empty trees. As no rebalancing occurs on
an empty structure, the inequality holds for the entire
sequence. ||

LemmaA 8. For h=2, z,<d,_,+wl,_1+ p,_., where
zn=d,+wl, + w2, +w3,+wd,+w5,+ w6, +2w7,+ p,.

Proof. In a chromatic tree, 7T, denote by #,/(T) the
number of heavy nodes of weighted height / in the expanded
tree 7'. Note that 2>2, as there are no heavy nodes of
weighted height 1 in 7'. The following facts can be verified
by inspection of the operations:
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o For a deletion of weighted height 1, 4(T) < 1. For a
deletion of weighted height k>1, 44, (T)<1 and
AH(T)= —1. For any deletion and any A45(T) not
mentioned above, 4.,(T) <O0.

e For a weight decreasing operation 1 to 6 of weighted
height k, A#(T)< —1 and 4#,(T)=0 for h#k.

e For a weight decreasing operation 7 of weighted
height k, A#(T)= —2, 44, . (T)<1,and 45¢,(T) <0 for
h{k, k+1}.

e For a push operation of weighted height k, A#(T) =
—1, 44, (T)<1,and 4#4,(T)=0for h¢ {k, k+1}.

e For any other operation of any weighted height,
AH(T) <0, for all A.

By the facts above, #4(T)<d,—z, and #(T)<d,_,+
w7, _1+ p,_1—z, for h = 3. The result follows. ||

We include the following lemma from [ 8] for complete-
ness.

LemMMA 9. The total number of red-balancing operations
cannot exceed i, and the total number of weight decreasing
operations cannot exceed d.

Proof. Red-red conflicts can only be introduced by
insertions, each of which increases the number of red-red
conflicts by at most one. Since each red-balancing operation
removes at least one red-red conflict, the total number of
red-balancing operations is bounded by i. Similarly, over-
weight can only be introduced by deletions, each of which
increases the total amount of overweight in the structure by
at most one. Since each weight decreasing operation removes
at least one unit of overweight, the number of weight
decreasing operations is bounded by d. ||

Proof of Theorem 4. The last part of Theorem 4 follows
by adding the results of Lemmas 6 and 8 and using the two
remaining lemmas (in the case # = 1, only Lemma 6 is needed,
as blacking and red-balancing operations are the only
rebalancing operations that can have weighted height one).
The first part of the theorem is proven as follows. Lemmas 5
and 6 imply that the total number of blacking and red-
balancing operations cannot exceed |3 _, (/2" "),
which is bounded by 2/ — 1 for all finite weighted heights 7.
In the same way, Lemmas 5 and 7 imply that the total number
of push operations cannot exceed i — 1 (remember that a
push operations has weighted height at least two). By
Lemma 9, the total number of weight-decreasing operations
cannot exceed d. Adding these three bounds gives the first
part of Theorem 4. |

In the rest of this section, we give various extensions to
Theorem 4. A version of Theorem 4 for the situation starting
with a chromatic tree which is nonempty and red-black
(hence, in balance) can also be proven, giving bounds on the
number of rebalancing operations that can occur before the
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FIG. 3. Construction of 7".

tree is again in balance. To do this, we need some bounds on
the values of the potential functions, occurring in the proofs
of Lemmas 5 to 8, for nonempty red—back trees.

Lemma 10. If T denotes a red-black tree containing
n>0 elements and ®,(T), #,(T), ¥,(T), and #,(T) denote
the potential functions from the proofs of Lemmas 5, 6, 7, and
8, respectively, then

(i) 0<PT)<(n2"")
(i) 0=2,(T
(iii) (n/4"—1)
iv) 0=(T).

)
< Wh

(T)<max{1, (n/2" 1)}

(iv

These bounds hold for any h for which these potential
functions are defined.

Proof. By the weighted height of an edge, we mean the
weighted height of its lower endpoint. By the connected
components of weighted height h in T, we mean the connected
components of the subgraph induced by the edges having
weighted height 4. When T is red-black, such a connected
component must be symmetric to one given in Fig. 4.

Note that the root of such a component of weighted
height / is a leaf of a component of weighted height 4 + 1.
Let 7" denote the expanded tree corresponding to 7. Recall
that ¥,(T) denotes the number of nonred nodes in 7' of

1
1
A010
1d V1
1dV1 1
A B

FIG. 4. Types of connected components of a given weighted height.

weighted height 2. When T is red—black, any nonred node is
black, and T’ is equal to 7, except for the infinite path
added above the root. Any black node, except the root and
nodes on the infinite path above it, must be a leaf node in
one of the components above. As all of the components have
at least two and at most four leaves, and as ¥,(7T) =n, the
third inequality follows (the expression max{1, (n/2" ')} is
needed because ¥,(T') = 1 for all i, due to the added infinite
path). The first inequality follows from the third by noting
that any red connected component r of height / (as defined
in the proof of Lemma 5) for which |r|>1 is part of a
component of type C containing 4 nonred nodes of weighted
height /. Thus, @,(T) < 1¥,(T) for all h. The second and
the last assertions are direct consequences of the definition
of a red—black tree. ||

We can now prove the following versions of Lemmas 5, 6,
7, and 8. They all apply to the situation where i insertions,
d deletions, and some rebalancing operations have taken
place on an initially red-black tree 7, of n elements,
resulting in a chromatic tree 7',. This will not be repeated in
the statements of the lemmas. Without loss of generality, we
may assume that 73, is also red-black, since, as noted in
Section 2, the rebalancing operations are defined so that if
no further updates occur, but rebalancing occurs as long as
any operation is applicable, the tree will eventually become
red-black. The notation used in the following lemmas is
defined before Lemma 5.

LemMma 11. For h=1, we have b, <(1/2")i+ (h/2"*?)n.

Proof. The proof is the same as the proof of Lemma 5,
except that in the equalities at the end of the proof, the value
of the potential function of the initial tree should be taken into
account. By the facts stated in the proof, @(T,) < @,(T,) +
i—2b, and ®,(T,)<D,(T))+b,_,—2b, for h=2. By
Lemma 10, b, <3(P,(T))—®,(T,) +b,_,) <5(n/(2"*")
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—0+b,,_,), which holds for h= 1, since by, is defined to be i.
Using this inequality recursively,

h—1 1

1 n 1 . h
bhg?bo"' Z 2j+12(h7j)+1=?l+2h+2n' |
=0

LemMA 12. Forh=1,b,+r,<b,_,.

Proof. 1In the proof of Lemma 6, the bounds %,(T,) =0
and %,(T,) =0 for all 1 were used. As noted in Lemma 10,
these bounds still hold when T, is nonempty, so the proof
goes through. ||

Lemma 13. For hz=1, d,+wl,+w2,+w7,+p,<
by +max{1, (n/2" ")} —(1/4" ") (n+i—d).

Proof. The proof is the same as the proof of Lemma 7,
except that we obtain the inequality d,+wl,+w2,+
wi,+p,<¥,(T,)—¥,T,)+b,_,, which holds for 1 >1,
since wl,, w2,, w7,, and p, are defined to be 0, and b, is
defined to be i. The number of elements in 7 is n + i —d, so
the inequality follows from Lemma 10. ||

LemMa 14. Forh=2,z,<d,_,+w7,_,+ p,_,, where
zp=d,+wl,+w2,+w3,+wd,+ w5, +wb, +2w7,+ p,.

Proof. The proof is the same as the proof of Lemma 8.

From these lemmas we obtain the following theorem.

THEOREM 15. If i>0 insertions and d deletions are
performed on an initially red-black tree, containing n>0
elements, then the number of rebalancing operations of weighted
height h that can occur is bounded by

3 3h—=5 {1 n

. 1 .
i l+72h+1 n + max ,th}—4h2(n+l—d)

for h=2 and by i for h=1.

Proof. This follows by adding the results of Lemmas 12
and 14, and then using Lemmas 11 and 13. For the case
h=1, only Lemma 12 is needed, as blacking and red-balan-
cing operations are the only rebalancing operations that can
have weighted height one. ||

For Theorem 4, results about the total number of rebalanc-
ing operations were proven by adding up the bounds for
each weighted height. Using the same technique in the case
where the initial tree is nonempty gives suboptimal results,
due to the extra term in the bound in Lemma 11, compared
to Lemma 5. We can improve on this by using a different
potential function.

THEOREM 16. If'i> 0 insertions and d deletions are made
on an initially red-black tree, containing n > 0 elements, then
at most 3i+3d+ 3(n—1) rebalancing operations can occur.

BOYAR, FAGERBERG, AND LARSEN

Proof. For a chromatic tree 7, denote by ¥ (T') the set of
red connected components (as defined in the proof of
Lemma 5) in T, and by A4"(T) the set of nodes in 7. Define
a potential function I'(7T) by

w(v),

F(T)=2< ¥

re®(T)

(n-D)+ ¥

ve N (T)

where w(v) is the weight of the node v. Operations on the
tree can change I'(7T) in the following way:

e For an insertion, AI'(T) <3

e For a deletion, AI'(T)< —1

e For a blacking operation, AI'(T) < —1
o For a push operation, AI'(T) < —1

o For any other operation, AI'(7T) <0.

These facts can be verified by inspection of the operations
(for the fact concerning blacking operations, recall that in
order for a blacking operation to be applied, we require that
at least one of the red nodes must be the parent is of another
red node). If 7', denotes the initial tree and T, is the final
tree, it follows from the above that I'(T,) < I'(T,)+ 3i—
d—b— p, where b and p denote the total number of black-
ing operations and push operations, respectively, that have
occurred. We claim that for any red—black tree 7 containing
m > 0elements, 3m — 3 < I'(T) <2m — 1. This claim is proven
below. Hence, I'(T,)<2n—1and 3(n+i—d)—3<I(T,),
as we may assume, without loss of generality, that 7', is red—
black too. Thus, by the inequality above, b+ p <3i+1d+
1(n—1). By Lemma 9, the number of red-balancing opera-
tions is bounded by i, and the number of weight decreasing
operations is bounded by d. Thus, the total number of
rebalancing operations that can occur is bounded by 3i +
3d+3i(n—1).

We now prove the claim made above. Let T denote a red—
black tree containing m > 0 elements. Define the connected
components of weighted height / as in the proof of Lemma 10.
If the root of T has weighted height k, we can consider T as
consisting of a root, which is the top node in the connected
component of weighted height k — 1, the leaves of which are
the top nodes of the connected components of weighted
height k — 2, and so forth. In the process of building 7 in this
way from a single node (the root), each component added
will increase I as well as the number of leaves / by amounts
AT and 41, depending on the type of the component. From
Fig. 4 in the proof of Lemma 10, we obtain the amounts
given in Fig. 5.

It appears that for each increase in /, I is increased by at
least 2 times as much. At the beginning of the process,
[=1T"=1, as there is just one black node. Since / is increased
from 1 to m, I'is increased by at least 3 (m — 1), so at the end
of the process, I'(T)=3(m—1)+1=3m—1.
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FIG. 5. [Increases for the different components types.

On the other hand, when adding a component of type A4,
B, or C during this process, I”is increased by at most twice
as much as L Thus, I'(T)<2(m—1)+1=2m—1, and the
claim is proven. ||

Basically, Theorems 15 and 16 can be paraphrased by
saying that when the number of updates is Q(n), there are
still only O(1) rebalancing operations per update and the
number of rebalancing operations is still an (essentially)
exponentially decreasing function of their weighted height,
even when the initial tree is nonempty. However, if the
number of updates is much smaller than #n, then the bound
in Theorem 16 is not tight, as the results from [ 8 ] show that
no more than | log,(n+1i)_| rebalancing operations per
update are ever needed.

The proof of Theorem 16 can also be applied when the
initial tree is empty and, hence, I'(7T,) =0. This gives the
following result.

THEOREM 17. If'i> 0 insertions and d deletions are made
on an initially empty chromatic tree, then at most 3i +3d + %
rebalancing operations can occur.

This is a better bound than that of Theorem 4, as d <i if
the initial tree is empty.

We close this section by noting that Theorems 16 and 17
can be tightened slightly. This is done as follows. We
consider a conceptual set of operations, which is slightly
changed compared to the actual operations used. On the
conceptual level, we introduce two more rebalancing opera-
tions, namely root blacking and root weight decreasing. The
first can be applied any time the root is red, and its effect is
to make the root black. The second can be applied any time
the root is overweighted, and its effect is also to make the
root black. On the conceptual level, the rest of the opera-
tions are as in the Appendix, without the addition of leaving
the root black all the time, as described in Section 2.
Thus, an actual blacking operation or insertion at the root
corresponds, on the conceptual level, to a blacking opera-
tion plus a root blacking operation; and an actual push
operation, w7 operation, or deletion at the root corresponds,
on the conceptual level, to the same operation plus a root
weight decreasing operation.

If we also add a (conceptual) unary red node above the
root of our trees, it can be verified that a root blacking
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operation or a root weight decreasing operation changes the
potential function /" in the same way as ordinary blacking
operations or weight decreasing operations, respectively.
Thus, the bounds obtained using these functions hold for any
sequence of operations on the conceptual level, in particular
for sequences of actual operations, where root blackings can
be considered to occur immediately after insertions and
(ordinary) blackings, and where the root weight decreasing
operations occur immediately after pushes, w7 operations,
and deletions. As the two new operations are actually part of
the other operations as defined in this paper, their number
can be subtracted from the bounds mentioned above when
counting how many operations actually occur.

On the conceptual level, the only operations that can
change the weighted height of the root are the two new
operations, plus insertions into an empty tree, and deletions
of the last element of the tree. If W,,,,, denotes the maximum
weighted height of the tree during the sequence of opera-
tions, and W, and W, denote the initial and the final
weighted height of the tree, respectively, then at least
W rax — max{ W, 1} root blackings must have occurred
and at least W,,,, —max{ Wy,., 1} root weight decreasing
operations must have occurred. Accordingly, the bounds
can be lowered by these amounts. For example, if the
initial tree is empty, then at most 3i+3d+3—2W, . +
max{ W, 1} +max{ Wy, 1} rebalancing operations
can occur.

Notice that if the tree remains reasonably close to a red—
black tree, then W, will be logarithmic in the maximum

number of elements in the tree.

4. PARALLEL PRIORITY QUEUES

The problems with using priority queues in a parallel
environment have been investigated extensively. Two different,
largely incomparable, models for parallelism are used. One
model deals with synchronous parallel processors, and the
other model, which we use here, deals with asynchronous
parallel processors which have access to a shared memory.
In designing pointer-based priority queues to be used in
such an environment, the problem of allowing processes to
lock nodes, in order to avoid inconsistencies from updates
and rebalancing operations, without decreasing the degree
of parallelism too much is even more serious than it is in the
design of search trees, since small values are accessed
frequently. Clearly, using a standard heap organization and
locking the root before all updates creates a congestion
problem at that node and forces sequentiality in the access
to the data structure.

Previous work on priority queues in an environment with
asynchronous parallel processes [5, 13, 23] all use some
form of a heap [27]. Thus, the root has to be locked at the
beginning of each deletemin operation, thereby preventing
other processes from accessing the data structure during
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that time. In fact, [ 5] also locks the last node at the begin-
ning of a deletemin. In [ 13, 23], the root is also locked at
the beginning of an insertion, and step-wise locking down
the update path is always used, thus further restricting the
possibilities for parallelism. Additionally, since they all
work on heap structures, insert as well as deletemin are
Q(log n) in the worst case and this many locks are necessary,
although not necessarily at the same time. In fact, even if
data is drawn from a uniform distribution, the expected
complexities for insert and deletemin are still @(log n).

As already stated, binary search trees can sometimes be
successfully used as priority queues. In this section, we
present a quite competitive priority queue for a parallel
asynchronous environment. It is based on chromatic search
trees, with some modifications. Using chromatic trees to
implement priority queues gives the advantage that the
updating is uncoupled from the rebalancing. The idea of
uncoupling updating and rebalancing in a priority queue
has also been considered in [ 5], but much more rebalancing
is necessary there than in our proposal.

Our priority queue is tailored to problems where serializa-
bility is not a requirement, i.e., where it is not necessary that
there always exists a way of sequencing all the operations
which have been performed on the parallel priority queue,
such that, if they were performed on a sequential priority
queue, all the deletemin operations would return the same
values as they did in the parallel version. This means that
when serializability is necessary for the correctness of an
algorithm using a priority queue, our structure cannot be
used. However, there are many applications (including the
large class of problems which can be solved using branch
and bound techniques), where fast access is the key issue
and where the correctness does not depend on serializability.

Our structure differs from previous work in that the
processes doing updates need not have an exclusive lock on
the root, so the number of processes which can work on the
structure at any one time is not limited by the height of the
tree; parallelism of the order the size of the tree is possible.
The congestion problem is further reduced by the fact that
our deletemin is constant time and the inserts (with the
exception of inserting a minimal element) proceed independ-
ently from deletemins.

Of course, the complexity results for chromatic trees carry
over, sometimes with minor changes. Improved results can,
however, be proven if a general delete operation is not wanted.
We obtain that if the initial tree is empty, i insertions and
any number of deletemins give rise to at most 2i — 1 rebalan-
cing operations. As for chromatic search trees, this means
that the necessary exclusive locks will be very localized in
space, as well as in time, allowing for a high degree of
parallelism. Additionally, we obtain that the number of
rebalancing operations which can occur at weighted height
his at most i/2" ~'. We also have results for the case in which
the structure is initially nonempty.
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4.1. Chromatic Priority Queues

Modifications of red-black and chromatic trees give us
red—black and chromatic priority queues. These structures
are also full binary search trees which are leaf-oriented, so
the minimum element will be the left-most leaf. We allow
overweight on the left-most path, to decrease the amount of
rebalancing necessary there and thus the probability of
contention there. The operations used are the same as those
described in Section 2 for chromatic trees, so the updating
is still uncoupled from the rebalancing.

DEerFINITION 18. A red-black priority queue is a red—black
tree with a pointer to the element with minimum key and all
of the leaves kept in a doubly linked list, except that conditions
B1 and B4 from Definition 1 are replaced with:

B1: The leaves of T are black, except that the left-most
leaf may be overweighted.

B4: T has only red and black nodes, except on the
left-most path.

DErFINITION 19. A chromatic priority queue is a chromatic
tree with a pointer to the element with minimum key and all
of the leaves kept in a doubly linked list.

The pointer to the element with minimum key is used
for the findmin and the deletemin operations. The doubly
linked list of leaves facilitates updating this pointer after a
deletemin, since the new minimum is in the next leaf. This
makes the deletemin operation constant time. The list of
leaves is doubly linked, rather than singly linked, so that
insertions can be done more efficiently. After the proper
location for an insertion is found by searching, as in a binary
search tree, the actual update is constant time. Clearly, the
findmin operation is also constant time, and so is the
creation of an empty queue.

Notice that allowing overweight on the left-most path
does not change the fact that the length of any path in a red—
black priority queue is O(log n), where #n is the number of
nodes in the structure, since the right subtree of the root is
still a red—black tree. It does, however, decrease the amount
of rebalancing necessary near the minimum element. If
the only deletions allowed are deletemins, then the weight
decreasing and push operations are unnecessary, as over-
weight can only move upwards and thus would remain on
the left-most path.

In some applications of priority queues, it is useful to
allow arbitrary deletions, in addition to the deletemin opera-
tion. Since chromatic priority queues are based on
chromatic trees, which have an arbitrary deletion operation
and the necessary rebalancing operations, we can also allow
these deletions in chromatic priority queues. Note that, as
opposed to most other implementations of priority queues,
searches for elements are supported and it is therefore not
necessary to have a pointer to the element to be deleted.
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The deletion operation is essentially the same as the
deletemin, except that, in order to locate the element to be
deleted, the updater performs a search in the tree, starting
at the root, rather than using the pointer to the minimum
element. Introducing this deletion operation, however,
introduces the possibility of overweight nodes off the left-
most path. The weight decreasing and push rebalancing
operations can be used here, although we still never use
them for the purpose of reducing overweight on the left-
most path if that overweight is solely due to a deletemin
operation. If, however, applying one of these rebalancing
operations to decrease the overweight off the left-most path
incidentally also decreases overweight on the left-most path,
that is fine. In addition, if any process doing a deletion
(other than a deletemin) or a rebalancing operation inciden-
tally introduces some overweight onto a node on the left-most
path, it will simply put a pointer to the overweight node into
the problem queue for the rebalancing processes, which will
be allowed to handle it. Through careful design of the
problem queue, it is possible to avoid removing overweight
created by deletemins. However, a simpler approach might
be to mark overweight created by deletemins. This can be
done using only one bit per node (see Section 4.3.1).

It is clear that the chromatic priority queue can be made
double-ended, simply by keeping a pointer to the maximum
element, also, and allowing overweight on the right-most
path. Results similar to those presented in the the next
section hold for double-ended priority queues.

4.2. Complexity

The complexity of chromatic priority queues is essentially
the same as the complexity of the chromatic trees on which
they are built, except that if deletemin operations are the
only deletions made, then we can improve on the constants
in the bounds, as we do not need to rebalance any over-
weight. In addition, some results change slightly because of
the overweight allowed on the left-most path of a red—black
priority queue.

The results from [8] also apply to chromatic priority
queues, although in a slightly modified version. This is
summarized in the theorem below. We give a brief explana-
tion of the necessary changes here. Since we now assume
that we are starting from a red—black priority queue, instead
of a red-black tree, Lemma 4.4 and Theorem 4.5 from [ 8]
only hold for edges not on the left-most path, and the M in
Theorem 4.5 should be | log,(N — 1) | because the left-most
path in the original red—black priority queue could have
consisted of only one edge, which had a considerable amount
of weight. Thus, we have:

THEOREM 20. If'i insertions and any number of deletemins
are performed on a chromatic priority queue which is initially
a red-black priority queue with n items (leaves), then at most
i(Llogy(n+i—1)_+ 1) rebalancing operations can occur. In
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addition, the number of rebalancing operations which actually
change the structure of the tree is at most i. If i insertions and
d arbitrary deletions (including any deletemins) are performed,
the result is (i+d)(Llogy(n+i—1)1+1)—d, with at most
i+d rebalancing operations changing the structure of the
tree. ||

In the proofs of Lemmas 5 through 8, there is no assump-
tion that the final tree is red-black. Thus, these lemmas still
apply to chromatic priority queues, and we get the following
results.

THEOREM 21. If i>0 insertions and any number of
deletemins are performed on an initially empty chromatic
priority queue, then at most 2i — 1 rebalancing operations can
occur. Furthermore, the number of rebalancing operations of
weighted height h that can occur is bounded by i/2" ~'. If i> 0
insertions and d deletions (including deletemins) are
performed on an initially empty chromatic priority queue with
arbitrary deletions, then at most 3i + d — 2 rebalancing opera-
tions can occur. Furthermore, the number of rebalancing
operations of weighted height h that can occur is bounded by
3i/2" =1 for h=2 and by i for h=1.

Proof. The last part is just a restatement of Theorem 4.
The first part follows the proof of the same theorem, except
that only Lemmas 5 and 6 are used, since blacking and
red-balancing are the only rebalancing operations used.

The theorems from Section 3, for the case where the initial
tree is nonempty, do not directly apply to chromatic priority
queues, as the bounds on the various potential functions are
affected by the presence of an overweighted left-most path.
We proceed to make the necessary changes. For chromatic
priority queues, Lemma 10 appears as follows.

LemMA 22. If T denotes a red—black priority queue
containing n>0 elements and ®,(T), #,(T), ¥,(T), and

H;(T) denote the potential functions from the proofs of Lem-
mas 5, 6,7, and 8, respectively, then
() 0<B(T)<(12" )n—1)+1
(i) 0= )
(i) (14" HYn<WP(T)<(AR2" Hn-1)+1
(iv) 0<A(T)<

These bounds hold for any h for which these potential
functions are defined.

Proof. The proof follows the proof of Lemma 10, except
that we now consider 7' instead of 7" and the possible
connected components are given in Fig. 6.

Components of type D can only occur on the left-most
path, and there is at most one for each weighted height / in
the tree. By the argument from the proof of Lemma 10, it
follows that ¥, (T)<3(P,(T)—1)+1=3¥,(T)+ 1 for
all /. As all leaves in 7" have weight 1, ¥,(T') = n. Using the
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FIG. 6. Types of connected components for 7.

inequality recursively, we obtain ¥,(T)<(1/2" " Y)n+

o0 (2)=(12""Yn+1-12"1)=(12""Hn-1)
+ 1. This gives the upper bound in the third inequality. The
lower bound is unchanged from Lemma 10. The first inequality
follows from the third, and the remaining two are trivial conse-

quences of the definition of chromatic priority queues. ||

Repeating the proofs of Lemmas 11 through 14 with the
above bounds gives us the following version of Theorem 15.
We omit the details of the proof.

THEOREM 23. If'i> 0 insertions and any number of delete-
mins are performed on an initially red—black priority queue
containing n>0 elements, then the number of rebalancing
operations of weighted height h that can occur is bounded by

1 . h—1 1 1
2/1—1 l+2h+l (n_1)+4<1_2h—1>

If i>0 insertions and d deletions (including deletemins)
are performed on an initially red—black priority queue with
arbitrary deletions, containing n>0 elements, then the
number of rebalancing operations of weighted height h that
can occur is bounded by

3 . 3(h+1) 1 : 3 5

_2I1+1+2

Jor h=2,and by i for h=1.

As in Section 3, the lemmas leading to this theorem are
not well suited to proving results about the total number
of rebalancing operations. Using potential functions
pertaining to the whole tree improves on this. In the case
where deletemins are the only deletions occurring, we have
the following.

THEOREM 24. If i>0 insertions and any number of

deletemin operations are performed on an initially red—black
priority queue containing n>0 elements, then at most
2i + 3(n— 1) rebalancing operations can occur.

Proof. For a chromatic priority queue 7, denote by
II(T) the total number of red nodes in 7. Operations on the
priority queue can change 71(T) in the following way:

e For an insertion, AII(T) < 1.

o For a blacking operation, AII(T) < —1.

BOYAR, FAGERBERG, AND LARSEN

o For a deletemin operation or a red-balancing operation,
AII(T) <0.

These facts can be verified by inspection of the operations.
No other operations are employed on a chromatic priority
queue without general deletions. If 7', denotes the initial
priority queue and 7, the final priority queue, it follows
from the above that I1(T,) < II(T,)+i— b, where b is the
total number of blacking operations that have occurred. To
bound I1(T,) and [I(T,), we note the following. In a red-
black priority queue, any red node must, by definition, have
two nonred children, so at most one third of the nodes (not
counting the root, as this is always black) can be red. As the
priority queue is a full binary tree, the total number of nodes
is twice the number of leaves minus one. This implies that
I(T)<i((2n—1)—1)=%(n—1). Trivially, II(T,)=>0.
Thus, b<%(n—1)+i By Lemma 9, the number of red-
balancing operations never exceeds i. As blacking opera-
tions and red-balancing operations are the only rebalancing
operations employed in a chromatic priority queue without
general deletions, the theorem is proven. |

For the case where general deletions are allowed, the
following version of Theorem 16 applies.

THEOREM 25. Ifi> 0 insertions and d deletions (including
deletemins) are made on an initially red—black priority queue
with arbitrary deletions, containing n> 1 elements, then at
most 3i+3d+i(n—1)+2log,(n—1) rebalancing opera-
tions can occur. If n=1, then at most i+ 3d rebalancing
operations can occur.

Proof. Following the proof of Theorem 16, we arrive at
the inequality I'(T,) <I(T,)+3i—d—b— p, where b and
p denote the total number of blacking operations and push
operations, respectively, that have occurred. We claim that
for any red-black priority queue 7, containing m > 1
elements and having a root which is not overweighted,
3m—1<I(T)<2m—1+log,(m—1). This claim is proven
below.If m=1orm=0,I(T)=1o0r I'(T)=0, respectively.
Hence, ifn> 1, I'(T,) <2n—1+1log,(n—1)and 2(n+i—d)
— 1< I(T,), as we may assume, without loss of generality,
that T, isred-black too. Thus, by theinequality above, b + p <
3i+id+i(n—1)+log,(n—1). If n=1, we obtain b +p <
3i+1d Lemma 9 can be directly applied to give that the
number of red-balancing operations never exceeds i, and its
proof can be applied to give that the number of weight
decreasing operations never exceeds d plus the amount of
overweight in 7, which we claim is bounded by log,(n — 1)
when n > 1. Thus, if n> 1, the total number of rebalancing
operations that have occurred is bounded by 3i+ 3d+
L(n—1)+2logs(n—1). If n=1, there is no overweight in
T,, and we obtain the bound 3i + 3d.

We now prove the claims made above. Let T denote a
red-black priority queue containing m > 1 elements and
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having a root which is not overweighted, and let 7’ denote
the expanded tree, as defined in Section 3, except that no
infinite path is added above the root. Then, obviously,
I'(T)=I'(T"). Define the connected components of weighted
height / as in the proof of Lemma 10. If the root of T has
weighted height k, we can consider 7" as consisting of a
root, which is the top node in the connected component of
weighted height & — 1, whose leaves are the top nodes of the
connected components of weighted height k£ —2, and so
forth. In the process of building 7" in this way from a single
node (the root), each component added will increase 1" as
well as the number of leaves / by amounts A" and A4l
depending on the type of the component. From Fig. 6 in the
proof of Lemma 22, we obtain the amounts given in Fig. 7:

It appears that for each increase in /, I'is increased by at
least 2 times as much. At the beginning of the process,
[=TI"=1, as there is just one black node. Since /is increased
from 1 to m, I'is increased by at least 3 (m — 1), so at the end
of the process, I'(T')=3(m—1)+1=3m—1.

On the other hand, when adding a component of type 4,
B, or C during this process, I is increased by at most twice
as much as /. Adding a component of type D increases I by
one, while leaving / unchanged. Thus, I'(T')<2(m—1)+
l1+a=2m—1+a, where a denotes the number of com-
ponents of type D. Components of type D are due to
overweight, so if T is red—black, they can only appear as
part of the left-most path of 7’. Also, by the way T’ is
constructed from 7, the top node of such a component cannot
be the root. Thus, if the root of 7" has weighted height £,
there can at most be kK —2 components of type D. Though
nodes on the left-most path are allowed to be overweighted,
the root will never be overweighted because the operations
which occur at the root always set the root’s weight to one.
Hence the right subtree of the root of 7"’ is a red-black tree
of weighted height k — 1, and thus contains at least 2* 2
leaves (in the building process above, no components of
type D appear, so each new weighted level at least doubles
[). As the left subtree of the root of 7' contains at least one
leaf, 2¥ =2 <m — 1. Therefore, a <k —2 <log,(m —1). Also,
for each unit of overweight in 7, there is a component of
type D in 7', so the amount of overweight in 7 is bounded
by log,(m — 1). Thus, the claims are proven. ||

Type |A|B|C | D
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FIG. 7. Increases for the different components types of 7".
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The same techniques discussed at the end of Section 3 for
tightening the results concerning the total number of
rebalancing operations on a chromatic search tree can also
be applied to the results for chromatic priority queues. For
example, it can be verified that a root blacking operation or
a root weight-decreasing operation changes the potential
function /7 in the same way as ordinary blacking operations
or weight-decreasing operations, respectively. Let W,
denote the maximum weighted height of the tree during the
sequence of operations, let W, denote the weighted height
of the initial tree, and let Wy, denote the weighted height
of the final tree. If i>0 insertions and any number of
deletemin operations are performed on an initially red—
black priority queue containing n elements, then at most
2i4+3(n—1)=2W o +max{ Wy, 1} +max{ Wy, 1}
rebalancing operations can occur.

4.3. Possible Improvements and Heuristics

The results proven in Subsection 4.2 show that conges-
tion is unlikely to be a problem with a chromatic priority
queue. If one wishes to even further reduce the probability
of any problem due to congestion, there are some small
improvements and heuristics which could be used.

One obvious change to make, to decrease the probability
of congestion near the left-most leaf, is to modify the mean-
ing of a router, so that searching proceeds to the right,
instead of the left in case of equality. Thus, the router stored
in a node v is greater than any key in the left subtree and less
than or equal to any key in the right subtree, and for an
insertion, the router in the new internal node is given the
value of the key in its right child, instead of its left.

Since deletemin is one of the basic operations on a
priority queue, it seems likely that the most “active” part of
the priority queue will be around the smallest element.
Depending on the application, it may be important that
insertions of small elements are not delayed significantly;
one may be concerned about the possibility that the
deletemin operations will be deleting elements while many
smaller elements are waiting to be inserted. In this section,
we discuss some possible improvements to the data
structure and heuristics for dealing with these concerns.

Of course, if any of the heuristics are implemented, the
locking scheme of Appendix B should be elaborated on, in
order to take the actions of the heuristics into consideration.

4.3.1. Eliminating rebalancing due to deletemins. In
Theorems 21, 23, and 25, d is the number of deletions,
including deletemins. It is easy to change including to exclud-
ing by adding just one bit of information at each node of a
chromatic priority queue. Nodes should be marked by the
deletemin operations that create overweight on them, and
also by the push and w7 operations that move overweight
onto them from other marked nodes. In this way, marked



516

nodes can only appear on the left-most path, so the over-
weight on marked nodes does not have to be rebalanced.
Also, any overweight originating from a deletemin opera-
tion will reside on marked nodes, so no such overweight
needs to be considered in the proof of the theorem.

4.3.2. Completely eliminating rebalancing on the left-most
path. One possible heuristic for decreasing the probability
of congestion is to avoid any rebalancing at all on the left-
most path of the priority queue, at least if the rebalancing
would actually change the structure of the tree, rather than
just moving weights around. This would eliminate the
need for exclusive locks on this path, which could prevent
processes from inserting new elements. It should include
cases in which the red nodes or overweighted nodes
involved are not actually on the left-most path, if the
rebalancing would involve locking nodes on the left-most
path. This could, however, theoretically, create a problem
with a long string of red nodes off the left-most path, with
no possible operation which could be applied, due to the
requirement that the top node in the red—red conflict being
handled must not be red. That rule would have to be
changed so that either the top node should not be red or its
parent should be on the left-most path. The effect of this
would essentially be to consider each right subtree of a node
on the left-most path as a distinct chromatic tree which
should be made red—black. It is possible that this decision to
avoid rebalancing on the left-most path would lead to an
extremely long left-most path—heuristics which address
this problem are discussed later in this section.

Another concern with this heuristic is how to implement
it: how does one determine if a rebalancing operation should
not be applied because it involves the left-most path? One
obvious possibility here is to keep track of which nodes are
on the left-most path, keeping an extra flag with each node
to indicate this. These flags could then be updated as part of
the deletemin and insertion operations. The problem with
this (other than the additional space required) is that this
could occasionally take a lot of time. When a deletemin
occurs, the left-most path, of the right subtree involved in
the deletion, becomes part of the left-most path of the
priority queue. Then, all of the nodes on that path would
have to be marked, as part of the deletemin operation. Since
one of our main concerns is that this operation be fast, this
is definitely a drawback. Although this would occasionally
lead to considerable extra work, the total amount of this
work for each operation is amortized constant time, so this
could be a viable possibility.

Another possibility is for the processor which is about to
do a rebalancing operation to check the priority queue to
make sure that none of the nodes it is working on are on the
left-most path. Clearly, this would only involve checking
one of the nodes involved. To determine this, the process
could follow parent pointers until it discovers that the node
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it just came from was a right child (indicating that the
original node was not on the left-most path) or it discovers
the root (indicating that it was on the left-most path).

Assuming a uniform distribution on the operations,
from a random location in the tree, the expected number of
parent pointers followed, before finding that the node one
just came from was a right child, is two. Thus, under the
proper distribution of operations, this could be expected to
take average constant time, and it would not entail keeping
extra flags. More importantly, it would not slow down the
processes doing the actual insertions and deletemins. Of
course, under the wrong distribution, this could take time
proportional to the longest path in the tree.

4.3.3. Partially eliminating rebalancing on the left-most
path. Instead of avoiding rebalancing on the entire left-
most path, one might decide to avoid it on the last k nodes
on that path, for some relatively small value k. This would
generally be sufficient: it would avoid interference between
the processes doing the deletemins and those doing the
rebalancing, and rebalancing operations become less and
less frequent, closer to the root. The advantage is that one
could limit how much extra time is needed. Either of the
above-mentioned possibilities, for determining which nodes
are on the left-most path, can be chosen, and the worst case
extra time per operation will be O(k). (In the case of mark-
ing, it would only be necessary to follow k—1 parent
pointers from the minimum. In the case of checking if one of
the nodes is among the last & nodes on the left-most path,
one only needs to follow k& — 1 left child pointers to see if one
reaches the minimum element.) The amortized amount of
time in the case of markers is still constant. The expected
amount of time would still be constant in the case where
there are no markers, if one assumes that the algorithm is
simultaneously looking for the minimum element and
following parent pointers to see if the one it just came from
was a right child.

One could also decide to only avoid rebalancing if any of
the nodes involved is actually known to be on the left-most
path. Again, there could be a flag for each node, and
processes which use that node and know it is on the left-
most path could set the flag. For example, when a deletemin
occurs, the processor performing it knows that the new
minimum and its parent are on the leftmost path. A process
searching for the location for an insertion knows that it is on
the left-most path as long as it only follows left child pointers.
In addition, when a rebalancing process discovers that a
node it uses is marked as being on the left-most path, it
knows that that node’s parent and left child are on the left-
most path, and it can mark these if it has locked them for the
rebalancing operation. There is some overhead involved,
but it would only amount to a small constant factor.

4.3.4. What if the left-most path is likely to become extremely
long? Now, we return to the possible problem of an
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extremely long left-most path. If this is likely to be a
problem in the desired application, it would lead to slow
insertion times for small elements. A heuristic for getting
around this problem would be to keep track of the k& smallest
elements and always check if an element to be inserted was
one of them or not. Since the leaves are kept in a doubly
linked list, one can keep track of the k smallest by keeping
a pointer to the kth smallest. This pointer can easily be
updated when an insertion or deletemin occurs, in constant
time. If an insertion process discovers that an element to be
inserted will be one of the k smallest, that process can search
for the proper location for insertion by starting with the
smallest element and following the pointers linking the
leaves. If the element is equal to the kth smallest, it can be
inserted immediately after the kth smallest. In all other
cases, a standard search from the root will locate the
appropriate location for the insertion. The value k should
probably be close to the logarithm of the expected number
of elements in the priority queue to balance the amount of
time it takes when the search is from the root with the
amount of time it takes when it is from the smallest element.

APPENDIX A: OPERATIONS

The update and rebalancing operations used in this paper
are shown below. Note that the blacking operation has one
more restriction, which is not shown: it can only be applied if
at least one of the two lower nodes has a child of weight zero.

Update operations

(insert) qwy > 1 —

’LU1—1
1/\31

owy + ws

(deletemin/delete) [Au:l —
wy W3

Rebalancing operations

(blacking) vzl /\@fl -1
0 0 1 1
wy > 1 wy
(rb1) 0 wy > 1 - 0 N
0 wy
wy > 1
(rb2) 0
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wy w; +1
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wz >0 wy >0 w3 Wy

Wo Wy
(wl) w > 1 /> o /<
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1 wy — 0
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1
wy — 1 wWa 1
Wy 0
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0 w3 >0 wy — 1 w3
(w7)
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APPENDIX B: A LOCKING SCHEME

Clearly, a locking scheme is necessary in order to prevent
inconsistencies in chromatic trees and priority queues.
We present one possible scheme here to show that such a
scheme can be designed. In designing the following locking
system, we attempted to allow as many processes as possible
to access the same node at the same time, to maximize the
amount of parallelism. There are, however, still possibilities
for improvement, by making the scheme slightly more
complicated. This scheme can also be simplified somewhat
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if it is applied to chromatic search trees, rather than
chromatic priority queues, since the leaves of a chromatic
search tree are not kept in a doubly linked list. Our system
has some similarities to the system described in [21], but
also major differences.

Each node may be locked separately from all others. A
test-and-set variable, a semaphore, or whatever the system
offers, exists for each node to protect the locking mechanism
associated with that node. This locking mechanism consists
of four types of locks, r-locks, w-locks, p-locks, and x-locks,
plus two additional variables, TimeStamp and FailTime.
The r-locks are used for reading. Any number of processes
may r-lock a node simultaneously. The variable Readers is
a count of how many readers currently hold an r-lock on the
node. The w-locks are used for changing weights, and the
p-locks are used prior to holding an x-lock. Only one
process at a time may w-lock or p-lock a node, but w-locking
or p-locking a node does not exclude readers. However,
when a node is p-locked, no new process will be granted an
r-lock. The x-lock is used for making changes to a node.
Only one process at a time may x-lock a node, and if a node
is x-locked, it cannot simultaneously be r-locked, w-locked,
or p-locked. A process attempting to obtain an x-lock must
already hold a p-lock, and a process attempting to obtain a
w-lock or a p-lock must already hold an r-lock. There are
boolean variables W, P, and X, to indicate if there is a w-lock,
p-lock, or x-lock on a node.

Figure 8 shows how locks are obtained and released, and
Fig. 9 contains two variants of the well-known macros for
await instructions. Note that when a process is attempting
to obtain a w-lock or a p-lock, it is unnecessary to check if
the node is already x-locked, since the process must already
have an r-lock on the node and x-locks exclude r-locks.
Similarly, when a process is attempting to obtain an x-lock,
it is unnecessary to check if the node is already w-locked,
p-locked, or x-locked, since the process must already have
a p-lock on the node, and this excludes other w-locks, p-locks,
and x-locks. The existence of the p-lock allows one of the
processes interested in obtaining an x-lock on a node to get
a semi-exclusive access. Any other readers then trying to get
an x-lock will be unable to obtain a p-lock; they will fail and
release any r-locks they have which could interfere with the
process which was successful in obtaining the p-lock. Because
of the order in which p-locks must be obtained (described
below), the locks released will be r-locks on the node in
question, on nodes further down, and on nodes to the right
but on the same level. (Processes which attempt to obtain a
w-lock and discover that a node is currently p-locked, also
fail in this manner.) This intermediate type of lock is
necessary to prevent deadlocks. In order to ensure that
processes attempting to obtain an x-lock eventually obtain
it, readers, attempting to obtain r-locks, must wait if the
node is p-locked or x-locked. (They need not wait if the
node is w-locked.) Notice that the p-lock described here
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corresponds somewhat to the w-lock in [21]. Our w-lock
does not exist in their system. The most significant difference
between their system and ours is that updaters use r-locks
while searching; exclusive locks are only used at the actual
location of an update or rebalancing operation. When
possible, locking always proceeds in a top-to-bottom, left-
to-right order, since this is an easy way to prevent deadlocks.

The top-to-bottom ordering is defined independently of
the weights on the nodes, so the root is at the top-most level,
its children are on the next level, etc. The only exception to
this is that all of the leaves are defined to be on the same
level, the lowest level. When an updater is searching for the
correct location for an insertion or deletion, it will r-lock
nodes in a top-to-bottom order, in a step-wise fashion. If the
updater is attempting to insert, when it has r-locks on a
parent node and its child, if the child is not a leaf, it can give
up the r-lock on the parent node before making the next
r-lock. If the updater is attempting to delete, it should hold
r-locks on a parent, a child, and a grandchild, before giving
up the r-lock on the top-most of these. After finding the
appropriate leaf, the updater should first r-lock all necessary
nodes, then convert all the r-locks to p-locks, and finally
convert all p-locks to x-locks. The conversion from one set
of locks to the next should occur in top-to-bottom, left-to-
right order. Thus, the locks on one level are all obtained
before the locks on the next lower level, and within a level,
the locks are obtained in a left-to-right order. The r-locks
cannot all be obtained in this order since the predecessor
leaf to the leaf in question must be r-locked. If the updater
is unable to obtain this lock because it is currently p-locked
or x-locked, it must give up all r-locks it has to the right
of this node. A similar problem occurs with the deletemin
operation. The updater first r-locks the pointer to the mini-
mum element, then p-locks it, and finally x-locks it. Then, it
r-locks the minimum element, then the parent of the mini-
mum element, and then the grandparent of the minimum
element. If any of these attempts are blocked by a p-lock or
x-lock, the updater must give up all previous locks it has
obtained. After obtaining these r-locks, the updater gets
locks on the parent’s right child and the minimum element’s
successor leaf (if that is not the parent’s right child). These
locks can then be converted to p-locks and finally to x-locks
in a top-to-bottom, right-to left order.

A process doing a rebalancing operation gets a pointer to
one of the nodes involved. It should first r-lock all of the
nodes involved, and the first of these locks (and in the case
of an operation dealing with a red-red conflict, also the
second) must be obtained while coming from below. If the
operation just involves moving weights around, the process
should then w-lock all of the nodes, check that the opera-
tion is still appropriate and perform it if it is. If the operation
involves changing the structure of the tree, the r-locks should
be converted to p-locks, and the process should check that
the operation is still appropriate. If so, the p-locks should be
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I LOCK RELEASE
r-lock enter enter
inc TimeStamp; time := TimeStamp dec Readers
if coming from below or from the left then exit
if PV X V (time < FailTime) then
status := fail
else
status := success; inc Readers
else
await (-P A -X) V (time < FailTime)
if time < FailTime then
status := fail
else
status := success; inc Readers
exit
w-lock enter enter
await —W fail on P unset W
set W; dec Readers exit
status := success
exit
p-lock enter enter
await =W fail on P unset P
set P; dec Readers exit
status := success
exit
x-lock enter enter
await Readers = 0 if appropriate then
set X; unset P FailTime := TimeStamp
exit unset X
exit

FIG. 8. Obtaining and releasing locks.

converted to x-locks and the operation should be performed.
Other than the first one or two r-locks which must be
obtained, there are only two possible exceptions to the
rebalancing processors being able to obtain the necessary
locksin a top-to-bottom, left-to-right order. The first exception
involves r-locking leaves. If a process attempting to perform
a rebalancing operation discovers that it has r-locked a leaf,
it should consider itself as coming from below if it must r-lock
more nodes. If it fails to r-lock one of these later nodes, it
must give up all r-locks it has on leaves. The second exception
is with the blacking operation. After performing a blacking
operation, a rebalancing process must check to see if it has
created a new red-red conflict. Thus, while obtaining the
r-locks for the blacking operation, it must also lock the
parent of the top node involved in the operation; this r-lock
must be obtained by coming from below that node. After all
of the necessary r-locks are obtained, this parent of the top-
node must be w-locked so that its weight can be read, and
the nodes actually involved in the operation must be
p-locked and then x-locked, as with all other operations.
After a process has finished changing a node, if it has
deleted the node or changed pointers to it, any processors

waiting for the node should give up any locks they have and
begin again. Otherwise, inconsistencies could occur in the
data structure. If a process makes such changes, it will
also change the variable FailTime in the node, to tell all
processes which found the node before the change was
completed to start over. This works as follows: There is a
variable TimeStamp associated with the locking mechanism
for each node. Initially this variable is zero. When a reader
enters the critical region for that node for the first time, it
increments 7TimeStamp and sets its local variable time to
TimeStamp. When a process needs to set FailTime, it sets it
to the current value of TimeStamp. All processes waiting for
an r-lock on the node check if their value for time is less than
or equal to FuailTime, and, if it is, they release all locks and
begin again. When a process which is rebalancing must
release all locks and begin again, it also checks to see if there
are other problems it could be working on instead.

In discussing deadlocks, we first argue, under the assump-
tion that locks currently held will at some point be released,
that deadlocks cannot occur at any one node. Afterwards,
we return to the question of deadlocks involving processes
waiting for conditions to be met at different nodes. Of
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Implementation of await constructs
await cond await condl fail on cond?2

done := false done := false
repeat enter
exit repeat
repeat until cond exit
enter repeat until cond1 V cond2
if cond then done := true enter
until done if cond2 then

status := fail

done := true
else if condl then

status := success

done := true
until done
if status = fail then
exit
return

FIG. 9. Macros used in the procedures for obtaining and releasing locks.

course, we assume that the protocol for obtaining and
converting locks is followed.

There are four types of locks, each of which has one await
statement. The rest of the code does not involve loops, so
deadlocks, if any, must be due to await statements.

First, consider “await Readers = 0.” Since a process which
is trying to obtain an x-lock must already have a p-lock,
processes trying to obtain an r-lock, after this p-lock has
been obtained, have to wait. This means that the variable
Readers cannot be increased. As we are assuming that locks
are eventually released, Readers will eventually be decreased
to zero. This means that no deadlock can involve the
statement under consideration here.

Now, consider “await T1W fail on P” (this statement
appears both in the code for w-lock and for p-lock). If a
process is waiting due to —1 W currently being false, then a
w-lock is currently held by another process. This lock will
eventually be released, so this statement cannot be involved
in a deadlock.

The only deadlock situation not yet considered is the
situation where two or more processes are trying to obtain
an r-lock; ie., they are waiting in “await (7P A 1X) v
(time < FailTime).” However, such processes cannot mutually
prevent each other from continuing since the locking
variables appearing in the statement (P, X, and FailTime)
are never set in the r-lock code. So, such processes cannot
affect each other.

Defining a total order on the nodes in the data structure
and requiring that locks are obtained successively according
to this order is an effective method for avoiding deadlocks.
The total order is defined implicitly since we require that all
locks at one level must be obtained before locks at another
level are requested. Similarly, locks at the same level must
be requested and obtained from left to right. It is well known
that such a scheme is deadlock-free (provided, of course,
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that deadlocks cannot occur at the individual nodes). It is
possible that one process is waiting for another to release its
locks, and that this process is waiting for a third process to
release its locks, etc. However, since there are a finite
number of processes working on the total order, the last
process in this sequence must be able to proceed, and the
eventual release of its locks will enable the process waiting
for it to proceed, etc.

When some processes are allowed to obtain locks going
against the ordering, deadlocks can easily occur. Therefore,
we are restrictive in such cases. First, only r-locks can be
requested in the “wrong” order. Second, if a process which
requests r-locks in the wrong order discovers a node which
is p-locked or x-locked, it gives up all locks which might
interfere with the process having the p-lock or x-lock.

Since w-locks, p-locks, and x-locks are mutually exclusive,
and since only x-locks require that no one reads, the only
potential deadlock situation is the following: Assume that
the processes 4 and B both have r-locks on nodes u and v.
Now, 4 p-locks u and B p-locks v. At this point, they are
both waiting for each other to give up the r-lock on the node
they have p-locked such that the p-lock can be converted
into an x-lock.

This scenario is not possible due to the protocol. Assume
that u precedes v in the total ordering. Since both processes
have a p-lock, they both want to make a change which requires
exclusive access, so they have to convert all their r-locks to
x-locks (via p-locks). This has to be done according to the
total order, which means that process B is not working
according to the protocol.
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