
Fast Algorithms for Computing the Smallestk-Enlosing DisSariel Har-Peled� Soham MazumdaryNovember 10, 2003AbstratWe onsider the problem of �nding, for a given n point set P in the plane andan integer k � n, the smallest irle enlosing at least k points of P . We present arandomized algorithm that omputes in O(nk) expeted time suh a irle, improvingover previously known algorithms.Sine this problem is believed to require 
(nk) time, we present a linear time Æ-approximation algorithm that outputs a irle that ontains at least k points of P , andof radius less than (1 + Æ)ropt(P; k), where ropt(P; k) is the radius of the minimal diskontaining at least k points of P . The expeted running time of this approximationalgorithm is O�n+ n �min� 1kÆ3 log2 1Æ ; k��.1 IntrodutionShape �tting, a fundamental problem in omputational geometry, omputer vision, mahinelearning, data mining, and many other areas, is onerned with �nding the best shape whih\�ts" a given input. This problem has attrated a lot of researh both for the exat andapproximation versions, see [BE97, HV01℄ and referenes therein.Furthermore, solving suh problems in the real world is quite hallenging, as noise in theinput is omnipresent and one has to assume that some of the input points are noise, and assuh should be ignored. See [Cha02, EE94, Mat95b℄ for some reent relevant results. Unfor-tunately, under suh noisy onditions, the shape �tting problem beomes notably harder.An important lass of shape �tting problems involve �nding an optimal k point subsetsfrom a set of n points based on some optimizing riteria. The optimizing riteria ould bethe smallest onvex hull volume, the smallest enlosing ball, the smallest enlosing box, thesmallest diameter amongst others [EE94, AST94℄.An interesting problem of this lass is that of omputing the smallest dis whih ontainsk points from a given set of n points in a plane. The initial approahes to solving this problem�Department of Computer Siene, DCL 2111; University of Illinois; 1304 West Spring�eld Ave.; Urbana,IL 61801; USA; http://www.uiu.edu/~sariel/; sariel�uiu.edu. Work on this paper was partiallysupported by a NSF CAREER award CCR-0132901.yDepartment of Computer Siene; University of Illinois; 1304 West Spring�eld Ave.; Urbana, IL 61801;USA; smazumda�uiu.edu. 1



involved �rst onstruting the order-k Voronoi diagram, followed by a searh in all or someof the Voronoi ells. The best known algorithm to ompute the order-k Voronoi diagram hastime omplexity O(nk + n log3 n), see [AdBMS98℄. Eppstein and Erikson [EE94℄ observedthat instead of Voronoi ells, one an work with some O(k) nearest neighbors to eah point.The resulting algorithm had a running time of O(nk logn+ nk log2 k) and spae omplexityO(nk + k2 log k). Using the tehnique of parametri searh, Efrat et al. [ESZ94℄ solvedthe problem in time O(nk log2 n) and spae O(nk). Finally, Matou�sek [Mat95a℄ by using asuitable randomized searh gave a very simple algorithm whih used O(nk) spae and hadO(n logn+ nk) expeted running time.We revisit this lassial problem, and present an algorithm with O(nk) expeted runningtime, that uses O(n + k2) spae. The main reason why this result is interesting is beauseit beats the lower bound of 
(n logn) on the running time for small k, whih follows fromelement uniqueness in the omparison model. We ahieve this by using randomization andthe oor funtion (interestingly enough, this is also the omputation model used by Matou�sek[Mat95a℄). Despite this somewhat small gain, removing the extra logn fator from therunning time was a non-trivial undertaking, requiring some new ideas.The key ingredient in our algorithm is a new linear time 2-approximation algorithm,desribed in Setion 3. This signi�antly improves over the previous best result of Matou�sek[Mat95a℄ that runs inO(n logn) time. Using our algorithm and the later half of the algorithmof Matou�sek (with some minor modi�ations), we get the new improved exat algorithm.Finally, in Setion 5, we observe that from the 2-approximation algorithm one an get aÆ-approximation algorithm with running time linear in n and polynomial dependeny on1=Æ.2 PreliminariesFor a point p = (x; y) in R2 , de�ne Gr(p) to be the point (bx=r r; by=r r). We all r thewidth of the grid Gr. Observe that Gr partitions the whole spae into square regions, whihwe all grid ells. Formally, for any i; j 2 Z, the intersetion of the half-planes x � ri,x < r(i + 1), y � rj and y < r(j + 1) is said to be a grid ell. Further, we all a blok of3� 3 ontiguous grid ells as a grid luster.For a point set P , and parameter r, the partition of P into subsets by the grid Gr, isdenoted by Gr(P ). More formally, two points p; q 2 P belong to the same set in the partitionGr(P ), if both points are being mapped to the same grid point or equivalently belong to thesame grid ell.Let gdP (r) denote the maximum number of points of P mapped to a single point by themapping Gr. De�ne depth(P; r) to be the maximum number of points of P that a dis ofradius r an ontain. Let Dopt(P; k) be a dis of minimal radius whih ontains k points ofP . Let ropt(P; k) denote the radius of Dopt(P; k).The above notation is originally from Matou�sek [Mat95a℄. Using simple paking argu-ments one an prove the following results [Mat95a℄:Lemma 2.1 (i) depth(P;Ar) � (A+ 1)2 depth(P; r),(ii) gdP (r) � depth(P; r) = O(gdP (r)). 2



(iii) If ropt(P; k) � r � 2ropt(P; k) then gdP (r) � 5k.Lemma 2.2 Any disk of radius r an be overed by some grid luster in Gr.De�nition 2.3 (Gradation) Given a set P of n points, a sampling sequene (S1; : : : ; Sm)of P is a sequene of sets, suh that (i) S1 = P , (ii) Si is formed by piking eah point of Si�1into Si with probability half, and (iii) jSmj � n= logn, and jSm�1j > n= logn. The sequene(Sm; Sm�1; : : : ; S1) is a gradation of P .Lemma 2.4 Given P , a sampling sequene an be omputed in expeted linear time.Proof: Observe that the sampling time is O(Pmi=1 jSij), wherem is the length of the sequene.Note, that E[jSij℄ = EhEhjSij ��� jSi�1jii = E� jSi�1j2 � = n2i�1 :Thus, O(E[Pmi=1 jSij℄) = O(n).3 A Slow 2-Approximation AlgorithmIn this setion, we develop a slow approximation algorithm that would be used in our fasteralgorithm, presented in Setion 4. Surprisingly, any 2-approximation algorithm would do forour purposes, as long as its running time is O(n � (n=k)), where  is a onstant.3.1 A Deterministi AlgorithmFor " = k=n, we ompute an optimal sized "-net for the set system (P;R), where R is theset of diss in the plane and the VC dimension of this set system is d = 4. We ompute,in O(n(n=k)2d log(n=k)d) = O(n(n=k)9) time, an "-net S for (P;R) using a deterministionstrution [Cha00, Setion 4.3℄, where jSj = O((n=k) log(n=k)).From the de�nition of "-nets, it follows that 9z 2 S, suh that z 2 Dopt(P; k). Observe,that if s0 is the (k � 1)th losest point to z from P then then dist(z; s0) � 2ropt(P; k).This holds as (k � 1) points in P n fzg are in Dopt(P; k) and hene they are at a distane� 2ropt(P; k) from z, by the triangle inequality. For eah point in S, we ompute its distanefrom the (k � 1)th losest point to it in P . Let r be the smallest of these jSj distanes.From the above argument, it follows that ropt(P; k) � r � 2ropt(P; k). The seletion of the(k � 1)th losest point an be done deterministially in linear time, by using deterministimedian seletion [CLRS01℄. Overall, this stage takes O(njSj) time.Lemma 3.1 Given a set P of n points in the plane, and parameter k, one an omputein O(n(n=k)9) deterministi time, a dis D that ontains k points of P , and radius(D) �2ropt(P; k).Corollary 3.2 Given a set of P of n points and a parameter k = 
(n), one an omputein expeted linear time, a dis D that ontains k points of P and radius(D) � 2ropt(P; k).3



3.2 A Randomized AlgorithmLet R be a random sample from P , generated by hoosing every point of P with probability1=k. Next, ompute for every p 2 R, the smallest dis entered at p ontaining k points of P .Overall, this takes O(n(n=k)) expeted time, as E[jRj℄ = n=k and omputing the smallestdis for every point takes linear time using median seletion. Let r be the minimum radiusomputed.Let X be the k points of P overed by Dopt(P; k). We havePr[X \ R 6= ;℄ = 1��1� 1k�k � 1� 1e :If R ontains a point overed by Dopt(P; k), then r is a 2-approximation to ropt(P; k). Weneed to verify that this indeed ourred. To do so, ompute the grid Gr, and snap the pointsof P into it. If any luster of Gr ontains more than, say, 36k points, then r is learly toolarge, and the algorithm failed. As suh, we run it again.Otherwise, we run on eah luster of Gr that ontains at least k points, the algorithm ofCorollary 3.2. Let D be the smallest disk omputed that ontains k points of P . Clearly, D isa 2-approximation to Dopt(P; k). The overall running time of this stage is O((n=k)k) = O(n).Sine the algorithm has onstant probability to sueed, and it repeat till suess, itfollows that the expeted running time of our algorithm is O(n(n=k)).Lemma 3.3 Given a set P of n points in the plane, and parameter k, one an ompute inexpeted O(n(n=k)) time, a dis D that ontains k points of P , and radius(D) � 2ropt(P; k).We refer to the algorithm of Lemma 3.3 as ApproxHeavy(P; k).Remark 3.4 For a point set P of n points, the radius r returned by the algorithm ofLemma 3.3 is the distane between a pair of points of P . As suh, a grid Gr omputed usingthis distane is one of O(n2) possible grids.3.3 A Faster AlgorithmIn an earlier version of this paper [HM03℄, we had a onsiderably more involved algorithmthat performed the 2-approximation in O(n log(n=k)) time. However, for our purposes, theslow algorithms of Lemma 3.1 and Lemma 3.3 are both suÆient. The algorithm was basedon the idea of using Corollary 3.2 to �nd a grid size, suh that eah ell of the grid ontainsonly a fration of the n points (i.e. running ApproxHeavy(P; jP j=) where  is a onstant).Next, the algorithm reursed on ells in the grid that ontained onsiderably more than kpoints. In the end of this proess, the plane was partition into squares suh that the smallestof them that ontained at least k points, provided a good approximation to the value ofropt(P; k). See [HM03℄ for details.
4



Grow(Pi,ri�1,k)Output: ribeginGi�1  Gri�1(Pi)for every grid luster  2 Gi�1 with j \ Pij � k doP   \ Pir  ApproxHeavy(P; k)// ApproxHeavy is the algorithm of Lemma 3.3We have ropt(P; k) � r � 2ropt(P; k),return minimum r omputed.end Figure 1: Algorithm for the ith round4 A 2-Approximation in Linear Time4.1 DesriptionAs done in the previous setion, we onstrut a grid whih partitions the points into small(O(k) sized) groups. The key idea behind speeding up the grid omputation is to onstrutthe appropriate grid over several rounds. Spei�ally, we start with a small set of pointsas seed and onstrut a suitable grid for this subset. Next, we inrementally insert theremaining points, while adjusting the grid width appropriately at eah step.Let P = (P1; : : : ; Pm) be a gradation of P (see De�nition 2.3), where jP1j � max(k; n=logn) (i.e. if k � n= logn we start from the �rst set in P that has more than k elements).The sequene P an be omputed in expeted linear time as shown in Lemma 2.4. Now usingthe algorithm of [Mat95a℄, we obtain a length r1 suh that ropt(P1; k) � r1 � 2ropt(P1; k)and gdr1(P1) � 5k. The set P1 is the seed subset mentioned earlier. Observe that it takesO(jP1j log jP1j) = O(n) time to perform this step. The remaining algorithm works in mrounds, where m is the length of the sequene P. At the end of the ith round, we have adistane ri suh that gdri(Pi) � 5k, and there exists a grid luster in Gri ontaining morethan k points of Pi and ropt(Pi) � ri.At the ith round, we �rst onstrut a grid Gi�1 for points in Pi using ri�1 as gridwidth. We know that there is no grid ell ontaining more than 5k points of Pi�1. As suh,intuitively, we expet every ell of Gi�1 to ontain at most 10k points of Pi. (This is ofourse too good to be true, but something slightly weaker does hold.) Thus allowing us touse the slow algorithm of Lemma 3.3 on those grid lusters. Note that, for k = 
(n), thealgorithm of Lemma 3.3 runs in expeted linear time, and thus the overall running time islinear.The algorithm used in the ith round is more onisely stated in Figure 1. At the endof the m rounds we have rm, whih is a 2-approximation to the radius of the optimal kenlosing dis of Pm = P . The overall algorithm is summarized in Figure 2.
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LinearApprox(P,k)Output: r - a 2-approximation to ropt(P; k)beginCompute a gradation fP1; : : : ; Pmg of P as in Lemma 2.4r1  ApproxHeavy(P1; k)// ApproxHeavy is the algorithm of Lemma 3.3for j  2 to m dorj  Grow(Pj; rj�1; k)for every grid luster  2 Grm with j \ P j � k dor  ApproxHeavy( \ P; k)return minimum r omputed over all lustersend Figure 2: 2-Approximation Algorithm4.2 AnalysisLemma 4.1 For i = 1; : : : ; m, we have ropt(Pi; k) � ri � 2ropt(Pi; k), and the heaviest ellin Gri(Pi) ontains at most 5k points of Pi.Proof: Consider the optimal disk Di that realizes ropt(Pi; k). Observe that there is a luster of Gri�1 that ontains Di, as ri�1 � ri. Thus, when Grow handles the luster , we haveDi \ Pi � . The �rst part of the lemma then follows from the orretness of the algorithmin Lemma 3.3.As for the seond part, observe that any grid ell of width ri an be overed with 5 disksof radius ri=2. It follows that the grid ell of ropt(Pi; k) ontains at most 5k points.De�nition 4.2 For a point set P , and a parameters k and r, the exess of Gr(P ) isE(P; k;Gr) = X2Cells(Gr)� j \ P j50k � ;where Cells(Gr) is the set of ells of the grid Gr.Remark 4.3 The quantity 100k � E(P; k;Gr) is an upper bound on the number of pointsof P in an heavy ell of Gr(P ), where a ell of Gr(P ) is heavy if it ontains more than 50kpoints.Lemma 4.4 For any positive real t, the probability that Gri�1(Pi) has exess E(Pi; k;Gri�1) �t+ 2 dlog(n)e, is at most 2�t.Proof: Let G be the set of O(n2) possible grids that might be onsidered by the algorithm(see Remark 3.4), and �x a grid G 2 G with exess M = E(Pi; k;Gri�1).6



Let U = nPi \  ���  2 G; jPi \ j > 50ko be all the heavy ells in G(Pi). Furthermore, letV = SX2U  (X; 50k), where  (X; �) denotes an arbitrary partition of the set X into disjointsubsets suh at eah one of them ontains � points, exept maybe the last subset that mightontain between � and 2� � 1 points.It is lear that jV j = E(Pi; k;G). From the Cherno� inequality, for any S 2 V ,Pr[jS \ Pi�1j � 5k℄ < exp��25k(1� 1=5)22 � < 12Furthermore, G = Gri�1 only if eah ell of G(Pi�1) ontains at most 5k points. Thus wehave Pr�(Gri�1 = G) \ (E(Pi; k;G) =M)� � PrhGri�1 = G ��� E(Pi; k;G) =M i� YS2V Pr[jS \ Pi�1j � k℄� 12jV j = 12M :Sine there are �n2� di�erent grids in G, we havePr�E(Pi; k;Gri�1) =M� = Pr"[G2G(G = Gri�1) \ E(Pi; k;G) =M# � �n2� 12M � 12t :Thus, by Lemma 4.4, for k < 4 logn, we have that if the exess is smaller than  =2 dlogne + 1, then we have at most  heavy ells, and every heavy ell ontains at mostO(k) points. It follows, that the total running time of Lemma 3.3 on those heavy ells, isat most O( � k(k=k)) = O(k log3 n). Thus, we have that the expeted running time ofthe ith step is at mostO0�jPij+ X2Gri�1 j \ Pij j \ Pijk 1A = O0�jPij+ k log3 n + 1Xt=1+2dlog ne t � (tk)2k � 12t1A= O�jPij+ k log3 n� = O(jPij) ;sine if the exess is t, then there are t ells with more than 
(k) points, and eah suh ellontains at most O(tk) points.We next handle the ase where k � 4 logn.Lemma 4.5 The probability that Gri�1(Pi) has exess larger than t, is at most 2�t, fork � 4 logn.Proof: We use the same tehnique as in Lemma 4.4. By the Cherno� inequality, the proba-bility that any 50k size subset of Pi would ontain at most 5k points of Pi�1, is less than� exp��25k � 1625 � 12� � exp(�5k) � 1n4 :7



In partiular, arguing as in Lemma 4.4, it follows that the probability that E(Pi; k; ri�1)exeeds t, is smaller than �n2�=n4t � 2�t.Thus, if k � 4 logn, the expeted running time of the ith step is at mostO0� X2Gri�1 j \ Pij log j \ Pijk 1A = O jPij+ 1Xt=1 t � (tk)2k 12t! = O(jPij+ k) = O(jPij) ;by Lemma 4.5.Thus, the total expeted running time isO(Pi jPij) = O(n), by the analysis of Lemma 2.4.To ompute a 2-approximation, onsider the grid Grm(P ). Eah grid ell ontains at most5k points, and hene eah grid luster ontains at most 45k points. Also the smallest kenlosing dis is ontained in a ertain grid luster. In eah luster that ontain more than kpoints, we use the algorithm of Corollary 3.2 and then �nally output the minimum over allthe lusters. The overall running time is O((n=k)k) = O(n) for this step, sine eah pointbelongs to at most 9 lusters.Theorem 4.6 Given a set P of n points in the plane, and a parameter k, one an ompute,in expeted linear time, a radius r, suh that ropt(P; k) � r � 2ropt(P; k).One we ompute r suh that ropt(P; k) � r � 2ropt(P; k), using the algorithm of The-orem 4.6, we apply the exat algorithm of Matou�sek [Mat95a℄ to eah luster of the gridGr(P ) whih ontains more than k points.Matou�sek's algorithm has running time of O(n logn+ nk) and spae omplexity O(nk).Sine r is a 2 approximation to ropt(P; k), eah luster has O(k) points. Thus the runningtime of the exat algorithm in eah luster is O(k2) and requires O(k2) spae. The numberof lusters whih ontain more than k points is O(n=k). Hene the overall running time ofour algorithm is O(nk), and the spae used is O(n+ k2).Theorem 4.7 Given a set P of n points in the plane and a parameter k, one an ompute,in expeted O(nk) time, using O(n + k2) spae, the radius ropt(P; k), and a disk Dopt(P; k)that overs k points of P .5 From onstant approximation to (1+Æ)-approximationSuppose r is a 2-approximation to ropt(P; k). Now if we onstrut Gr(P ) eah grid ellontains less than 5k points of P (eah grid ell an be overed fully by 5 irles of radiusropt(P; k)). Furthermore, the smallest k-enlosing irle is overed by a ertain grid luster.We ompute a (1 + Æ)-approximation to the radius of the minimal k enlosing irle in eahgrid luster and output the smallest amongst them. The tehnique to ompute (1 + Æ)-approximation when all the points belong to a partiular grid luster is as follows.Let P be the set of points in a partiular grid luster with k < jPj = O(k). Let Rbe a bounding square of the points of P. We partition R into a uniform grid G of size10rÆ. Next, snap every point of P into the losest grid point of G, and let P 0 denote theresulting point set. Clearly, jP 0j = O(1=Æ2). Assume that we guess the radius ropt(P; k)up to a fator of 1 + Æ (there are only O(log1+Æ 2) = O(1=Æ) possible guesses), and let r0 be8



the urrent guess. We need to ompute for eah point p of P 0, how many points of P 0 areontained in D(p; r0). This an be done in O((1=Æ) log(1=Æ)) time per point, by onstrutinga quadtree over the points of P 0. Thus, omputing a Æ=4-approximation to the ropt(P 0; k)takes O((1=Æ3) log2(1=Æ)) time.We repeat the above algorithm for all the lusters that have more than k points insidethem. Clearly, the smallest disk omputed is the required approximation. The running timeis O(n + n=(kÆ3) log2(1=Æ)). Putting this together with the algorithm of Theorem 4.6, wehave:Theorem 5.1 Given a set P of n points in the plane, and parameters k and Æ > 0, one anompute, in expeted O�n+ n �min� 1kÆ3 log2 1Æ ; k��time, a radius r, suh that ropt(P; k) � r � (1 + Æ)ropt(P; k).6 ConlusionsWe presented a linear time 2-approximation algorithm for the smallest enlosing disk thatontains at least k points in the plane. Note that our algorithm an be easily extended tohigh dimensions. This algorithm improves over previous results, and it an in some sense beinterpreted as an extension of Golin et al. [GRSS95℄ losest pair algorithm to the lusteringproblem (see also the algorithm by Rabin [Rab76℄ and the survey of Smid on suh algorithms[Smi00℄).Getting similar results for other shape �tting problems, like the minimum radius ylinderin three dimensions, remains elusive. Current approahes for approximating it, in the pres-ene of outliers, essentially redues to the omputation of the shortest vertial segment thatstabs at least k hyperplanes. See [HW02℄ for the details. However, the results of Eriksonand Seidel [ES95, Eri99℄ imply that approximating the shortest vertial segment that stabsd + 1 hyperplanes takes 
(nd) time, under a reasonable omputation model, thus imply-ing that this approah is probably bound to fail if we are interested in a near linear timealgorithm.It would be interesting to �gure out whih of the shape �tting problems an be approxi-mated in near linear time, in the presene of outliers, and whih ones an not. We leave thisas an open problem for further researh.AknowledgmentsThe authors thank Alon Efrat and Edgar Ramos for helpful disussions on the problemsstudied in this paper.
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