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tWe 
onsider the problem of �nding, for a given n point set P in the plane andan integer k � n, the smallest 
ir
le en
losing at least k points of P . We present arandomized algorithm that 
omputes in O(nk) expe
ted time su
h a 
ir
le, improvingover previously known algorithms.Sin
e this problem is believed to require 
(nk) time, we present a linear time Æ-approximation algorithm that outputs a 
ir
le that 
ontains at least k points of P , andof radius less than (1 + Æ)ropt(P; k), where ropt(P; k) is the radius of the minimal disk
ontaining at least k points of P . The expe
ted running time of this approximationalgorithm is O�n+ n �min� 1kÆ3 log2 1Æ ; k��.1 Introdu
tionShape �tting, a fundamental problem in 
omputational geometry, 
omputer vision, ma
hinelearning, data mining, and many other areas, is 
on
erned with �nding the best shape whi
h\�ts" a given input. This problem has attra
ted a lot of resear
h both for the exa
t andapproximation versions, see [BE97, HV01℄ and referen
es therein.Furthermore, solving su
h problems in the real world is quite 
hallenging, as noise in theinput is omnipresent and one has to assume that some of the input points are noise, and assu
h should be ignored. See [Cha02, EE94, Mat95b℄ for some re
ent relevant results. Unfor-tunately, under su
h noisy 
onditions, the shape �tting problem be
omes notably harder.An important 
lass of shape �tting problems involve �nding an optimal k point subsetsfrom a set of n points based on some optimizing 
riteria. The optimizing 
riteria 
ould bethe smallest 
onvex hull volume, the smallest en
losing ball, the smallest en
losing box, thesmallest diameter amongst others [EE94, AST94℄.An interesting problem of this 
lass is that of 
omputing the smallest dis
 whi
h 
ontainsk points from a given set of n points in a plane. The initial approa
hes to solving this problem�Department of Computer S
ien
e, DCL 2111; University of Illinois; 1304 West Spring�eld Ave.; Urbana,IL 61801; USA; http://www.uiu
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involved �rst 
onstru
ting the order-k Voronoi diagram, followed by a sear
h in all or someof the Voronoi 
ells. The best known algorithm to 
ompute the order-k Voronoi diagram hastime 
omplexity O(nk + n log3 n), see [AdBMS98℄. Eppstein and Eri
kson [EE94℄ observedthat instead of Voronoi 
ells, one 
an work with some O(k) nearest neighbors to ea
h point.The resulting algorithm had a running time of O(nk logn+ nk log2 k) and spa
e 
omplexityO(nk + k2 log k). Using the te
hnique of parametri
 sear
h, Efrat et al. [ESZ94℄ solvedthe problem in time O(nk log2 n) and spa
e O(nk). Finally, Matou�sek [Mat95a℄ by using asuitable randomized sear
h gave a very simple algorithm whi
h used O(nk) spa
e and hadO(n logn+ nk) expe
ted running time.We revisit this 
lassi
al problem, and present an algorithm with O(nk) expe
ted runningtime, that uses O(n + k2) spa
e. The main reason why this result is interesting is be
auseit beats the lower bound of 
(n logn) on the running time for small k, whi
h follows fromelement uniqueness in the 
omparison model. We a
hieve this by using randomization andthe 
oor fun
tion (interestingly enough, this is also the 
omputation model used by Matou�sek[Mat95a℄). Despite this somewhat small gain, removing the extra logn fa
tor from therunning time was a non-trivial undertaking, requiring some new ideas.The key ingredient in our algorithm is a new linear time 2-approximation algorithm,des
ribed in Se
tion 3. This signi�
antly improves over the previous best result of Matou�sek[Mat95a℄ that runs inO(n logn) time. Using our algorithm and the later half of the algorithmof Matou�sek (with some minor modi�
ations), we get the new improved exa
t algorithm.Finally, in Se
tion 5, we observe that from the 2-approximation algorithm one 
an get aÆ-approximation algorithm with running time linear in n and polynomial dependen
y on1=Æ.2 PreliminariesFor a point p = (x; y) in R2 , de�ne Gr(p) to be the point (bx=r
 r; by=r
 r). We 
all r thewidth of the grid Gr. Observe that Gr partitions the whole spa
e into square regions, whi
hwe 
all grid 
ells. Formally, for any i; j 2 Z, the interse
tion of the half-planes x � ri,x < r(i + 1), y � rj and y < r(j + 1) is said to be a grid 
ell. Further, we 
all a blo
k of3� 3 
ontiguous grid 
ells as a grid 
luster.For a point set P , and parameter r, the partition of P into subsets by the grid Gr, isdenoted by Gr(P ). More formally, two points p; q 2 P belong to the same set in the partitionGr(P ), if both points are being mapped to the same grid point or equivalently belong to thesame grid 
ell.Let gdP (r) denote the maximum number of points of P mapped to a single point by themapping Gr. De�ne depth(P; r) to be the maximum number of points of P that a dis
 ofradius r 
an 
ontain. Let Dopt(P; k) be a dis
 of minimal radius whi
h 
ontains k points ofP . Let ropt(P; k) denote the radius of Dopt(P; k).The above notation is originally from Matou�sek [Mat95a℄. Using simple pa
king argu-ments one 
an prove the following results [Mat95a℄:Lemma 2.1 (i) depth(P;Ar) � (A+ 1)2 depth(P; r),(ii) gdP (r) � depth(P; r) = O(gdP (r)). 2



(iii) If ropt(P; k) � r � 2ropt(P; k) then gdP (r) � 5k.Lemma 2.2 Any disk of radius r 
an be 
overed by some grid 
luster in Gr.De�nition 2.3 (Gradation) Given a set P of n points, a sampling sequen
e (S1; : : : ; Sm)of P is a sequen
e of sets, su
h that (i) S1 = P , (ii) Si is formed by pi
king ea
h point of Si�1into Si with probability half, and (iii) jSmj � n= logn, and jSm�1j > n= logn. The sequen
e(Sm; Sm�1; : : : ; S1) is a gradation of P .Lemma 2.4 Given P , a sampling sequen
e 
an be 
omputed in expe
ted linear time.Proof: Observe that the sampling time is O(Pmi=1 jSij), wherem is the length of the sequen
e.Note, that E[jSij℄ = EhEhjSij ��� jSi�1jii = E� jSi�1j2 � = n2i�1 :Thus, O(E[Pmi=1 jSij℄) = O(n).3 A Slow 2-Approximation AlgorithmIn this se
tion, we develop a slow approximation algorithm that would be used in our fasteralgorithm, presented in Se
tion 4. Surprisingly, any 2-approximation algorithm would do forour purposes, as long as its running time is O(n � (n=k)
), where 
 is a 
onstant.3.1 A Deterministi
 AlgorithmFor " = k=n, we 
ompute an optimal sized "-net for the set system (P;R), where R is theset of dis
s in the plane and the VC dimension of this set system is d = 4. We 
ompute,in O(n(n=k)2d log(n=k)d) = O(n(n=k)9) time, an "-net S for (P;R) using a deterministi

onstru
tion [Cha00, Se
tion 4.3℄, where jSj = O((n=k) log(n=k)).From the de�nition of "-nets, it follows that 9z 2 S, su
h that z 2 Dopt(P; k). Observe,that if s0 is the (k � 1)th 
losest point to z from P then then dist(z; s0) � 2ropt(P; k).This holds as (k � 1) points in P n fzg are in Dopt(P; k) and hen
e they are at a distan
e� 2ropt(P; k) from z, by the triangle inequality. For ea
h point in S, we 
ompute its distan
efrom the (k � 1)th 
losest point to it in P . Let r be the smallest of these jSj distan
es.From the above argument, it follows that ropt(P; k) � r � 2ropt(P; k). The sele
tion of the(k � 1)th 
losest point 
an be done deterministi
ally in linear time, by using deterministi
median sele
tion [CLRS01℄. Overall, this stage takes O(njSj) time.Lemma 3.1 Given a set P of n points in the plane, and parameter k, one 
an 
omputein O(n(n=k)9) deterministi
 time, a dis
 D that 
ontains k points of P , and radius(D) �2ropt(P; k).Corollary 3.2 Given a set of P of n points and a parameter k = 
(n), one 
an 
omputein expe
ted linear time, a dis
 D that 
ontains k points of P and radius(D) � 2ropt(P; k).3



3.2 A Randomized AlgorithmLet R be a random sample from P , generated by 
hoosing every point of P with probability1=k. Next, 
ompute for every p 2 R, the smallest dis
 
entered at p 
ontaining k points of P .Overall, this takes O(n(n=k)) expe
ted time, as E[jRj℄ = n=k and 
omputing the smallestdis
 for every point takes linear time using median sele
tion. Let r be the minimum radius
omputed.Let X be the k points of P 
overed by Dopt(P; k). We havePr[X \ R 6= ;℄ = 1��1� 1k�k � 1� 1e :If R 
ontains a point 
overed by Dopt(P; k), then r is a 2-approximation to ropt(P; k). Weneed to verify that this indeed o

urred. To do so, 
ompute the grid Gr, and snap the pointsof P into it. If any 
luster of Gr 
ontains more than, say, 36k points, then r is 
learly toolarge, and the algorithm failed. As su
h, we run it again.Otherwise, we run on ea
h 
luster of Gr that 
ontains at least k points, the algorithm ofCorollary 3.2. Let D be the smallest disk 
omputed that 
ontains k points of P . Clearly, D isa 2-approximation to Dopt(P; k). The overall running time of this stage is O((n=k)k) = O(n).Sin
e the algorithm has 
onstant probability to su

eed, and it repeat till su

ess, itfollows that the expe
ted running time of our algorithm is O(n(n=k)).Lemma 3.3 Given a set P of n points in the plane, and parameter k, one 
an 
ompute inexpe
ted O(n(n=k)) time, a dis
 D that 
ontains k points of P , and radius(D) � 2ropt(P; k).We refer to the algorithm of Lemma 3.3 as ApproxHeavy(P; k).Remark 3.4 For a point set P of n points, the radius r returned by the algorithm ofLemma 3.3 is the distan
e between a pair of points of P . As su
h, a grid Gr 
omputed usingthis distan
e is one of O(n2) possible grids.3.3 A Faster AlgorithmIn an earlier version of this paper [HM03℄, we had a 
onsiderably more involved algorithmthat performed the 2-approximation in O(n log(n=k)) time. However, for our purposes, theslow algorithms of Lemma 3.1 and Lemma 3.3 are both suÆ
ient. The algorithm was basedon the idea of using Corollary 3.2 to �nd a grid size, su
h that ea
h 
ell of the grid 
ontainsonly a fra
tion of the n points (i.e. running ApproxHeavy(P; jP j=
) where 
 is a 
onstant).Next, the algorithm re
ursed on 
ells in the grid that 
ontained 
onsiderably more than kpoints. In the end of this pro
ess, the plane was partition into squares su
h that the smallestof them that 
ontained at least k points, provided a good approximation to the value ofropt(P; k). See [HM03℄ for details.
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Grow(Pi,ri�1,k)Output: ribeginGi�1  Gri�1(Pi)for every grid 
luster 
 2 Gi�1 with j
 \ Pij � k doP
  
 \ Pir
  ApproxHeavy(P
; k)// ApproxHeavy is the algorithm of Lemma 3.3We have ropt(P
; k) � r
 � 2ropt(P
; k),return minimum r
 
omputed.end Figure 1: Algorithm for the ith round4 A 2-Approximation in Linear Time4.1 Des
riptionAs done in the previous se
tion, we 
onstru
t a grid whi
h partitions the points into small(O(k) sized) groups. The key idea behind speeding up the grid 
omputation is to 
onstru
tthe appropriate grid over several rounds. Spe
i�
ally, we start with a small set of pointsas seed and 
onstru
t a suitable grid for this subset. Next, we in
rementally insert theremaining points, while adjusting the grid width appropriately at ea
h step.Let P = (P1; : : : ; Pm) be a gradation of P (see De�nition 2.3), where jP1j � max(k; n=logn) (i.e. if k � n= logn we start from the �rst set in P that has more than k elements).The sequen
e P 
an be 
omputed in expe
ted linear time as shown in Lemma 2.4. Now usingthe algorithm of [Mat95a℄, we obtain a length r1 su
h that ropt(P1; k) � r1 � 2ropt(P1; k)and gdr1(P1) � 5k. The set P1 is the seed subset mentioned earlier. Observe that it takesO(jP1j log jP1j) = O(n) time to perform this step. The remaining algorithm works in mrounds, where m is the length of the sequen
e P. At the end of the ith round, we have adistan
e ri su
h that gdri(Pi) � 5k, and there exists a grid 
luster in Gri 
ontaining morethan k points of Pi and ropt(Pi) � ri.At the ith round, we �rst 
onstru
t a grid Gi�1 for points in Pi using ri�1 as gridwidth. We know that there is no grid 
ell 
ontaining more than 5k points of Pi�1. As su
h,intuitively, we expe
t every 
ell of Gi�1 to 
ontain at most 10k points of Pi. (This is of
ourse too good to be true, but something slightly weaker does hold.) Thus allowing us touse the slow algorithm of Lemma 3.3 on those grid 
lusters. Note that, for k = 
(n), thealgorithm of Lemma 3.3 runs in expe
ted linear time, and thus the overall running time islinear.The algorithm used in the ith round is more 
on
isely stated in Figure 1. At the endof the m rounds we have rm, whi
h is a 2-approximation to the radius of the optimal ken
losing dis
 of Pm = P . The overall algorithm is summarized in Figure 2.
5



LinearApprox(P,k)Output: r - a 2-approximation to ropt(P; k)beginCompute a gradation fP1; : : : ; Pmg of P as in Lemma 2.4r1  ApproxHeavy(P1; k)// ApproxHeavy is the algorithm of Lemma 3.3for j  2 to m dorj  Grow(Pj; rj�1; k)for every grid 
luster 
 2 Grm with j
 \ P j � k dor
  ApproxHeavy(
 \ P; k)return minimum r
 
omputed over all 
lustersend Figure 2: 2-Approximation Algorithm4.2 AnalysisLemma 4.1 For i = 1; : : : ; m, we have ropt(Pi; k) � ri � 2ropt(Pi; k), and the heaviest 
ellin Gri(Pi) 
ontains at most 5k points of Pi.Proof: Consider the optimal disk Di that realizes ropt(Pi; k). Observe that there is a 
luster
 of Gri�1 that 
ontains Di, as ri�1 � ri. Thus, when Grow handles the 
luster 
, we haveDi \ Pi � 
. The �rst part of the lemma then follows from the 
orre
tness of the algorithmin Lemma 3.3.As for the se
ond part, observe that any grid 
ell of width ri 
an be 
overed with 5 disksof radius ri=2. It follows that the grid 
ell of ropt(Pi; k) 
ontains at most 5k points.De�nition 4.2 For a point set P , and a parameters k and r, the ex
ess of Gr(P ) isE(P; k;Gr) = X
2Cells(Gr)� j
 \ P j50k � ;where Cells(Gr) is the set of 
ells of the grid Gr.Remark 4.3 The quantity 100k � E(P; k;Gr) is an upper bound on the number of pointsof P in an heavy 
ell of Gr(P ), where a 
ell of Gr(P ) is heavy if it 
ontains more than 50kpoints.Lemma 4.4 For any positive real t, the probability that Gri�1(Pi) has ex
ess E(Pi; k;Gri�1) �t+ 2 dlog(n)e, is at most 2�t.Proof: Let G be the set of O(n2) possible grids that might be 
onsidered by the algorithm(see Remark 3.4), and �x a grid G 2 G with ex
ess M = E(Pi; k;Gri�1).6



Let U = nPi \ 
 ��� 
 2 G; jPi \ 
j > 50ko be all the heavy 
ells in G(Pi). Furthermore, letV = SX2U  (X; 50k), where  (X; �) denotes an arbitrary partition of the set X into disjointsubsets su
h at ea
h one of them 
ontains � points, ex
ept maybe the last subset that might
ontain between � and 2� � 1 points.It is 
lear that jV j = E(Pi; k;G). From the Cherno� inequality, for any S 2 V ,Pr[jS \ Pi�1j � 5k℄ < exp��25k(1� 1=5)22 � < 12Furthermore, G = Gri�1 only if ea
h 
ell of G(Pi�1) 
ontains at most 5k points. Thus wehave Pr�(Gri�1 = G) \ (E(Pi; k;G) =M)� � PrhGri�1 = G ��� E(Pi; k;G) =M i� YS2V Pr[jS \ Pi�1j � k℄� 12jV j = 12M :Sin
e there are �n2� di�erent grids in G, we havePr�E(Pi; k;Gri�1) =M� = Pr"[G2G(G = Gri�1) \ E(Pi; k;G) =M# � �n2� 12M � 12t :Thus, by Lemma 4.4, for k < 4 logn, we have that if the ex
ess is smaller than 
 =2 dlogne + 1, then we have at most 
 heavy 
ells, and every heavy 
ell 
ontains at mostO(
k) points. It follows, that the total running time of Lemma 3.3 on those heavy 
ells, isat most O(
 � 
k(
k=k)) = O(k log3 n). Thus, we have that the expe
ted running time ofthe ith step is at mostO0�jPij+ X
2Gri�1 j
 \ Pij j
 \ Pijk 1A = O0�jPij+ k log3 n + 1Xt=1+2dlog ne t � (tk)2k � 12t1A= O�jPij+ k log3 n� = O(jPij) ;sin
e if the ex
ess is t, then there are t 
ells with more than 
(k) points, and ea
h su
h 
ell
ontains at most O(tk) points.We next handle the 
ase where k � 4 logn.Lemma 4.5 The probability that Gri�1(Pi) has ex
ess larger than t, is at most 2�t, fork � 4 logn.Proof: We use the same te
hnique as in Lemma 4.4. By the Cherno� inequality, the proba-bility that any 50k size subset of Pi would 
ontain at most 5k points of Pi�1, is less than� exp��25k � 1625 � 12� � exp(�5k) � 1n4 :7



In parti
ular, arguing as in Lemma 4.4, it follows that the probability that E(Pi; k; ri�1)ex
eeds t, is smaller than �n2�=n4t � 2�t.Thus, if k � 4 logn, the expe
ted running time of the ith step is at mostO0� X
2Gri�1 j
 \ Pij log j
 \ Pijk 1A = O jPij+ 1Xt=1 t � (tk)2k 12t! = O(jPij+ k) = O(jPij) ;by Lemma 4.5.Thus, the total expe
ted running time isO(Pi jPij) = O(n), by the analysis of Lemma 2.4.To 
ompute a 2-approximation, 
onsider the grid Grm(P ). Ea
h grid 
ell 
ontains at most5k points, and hen
e ea
h grid 
luster 
ontains at most 45k points. Also the smallest ken
losing dis
 is 
ontained in a 
ertain grid 
luster. In ea
h 
luster that 
ontain more than kpoints, we use the algorithm of Corollary 3.2 and then �nally output the minimum over allthe 
lusters. The overall running time is O((n=k)k) = O(n) for this step, sin
e ea
h pointbelongs to at most 9 
lusters.Theorem 4.6 Given a set P of n points in the plane, and a parameter k, one 
an 
ompute,in expe
ted linear time, a radius r, su
h that ropt(P; k) � r � 2ropt(P; k).On
e we 
ompute r su
h that ropt(P; k) � r � 2ropt(P; k), using the algorithm of The-orem 4.6, we apply the exa
t algorithm of Matou�sek [Mat95a℄ to ea
h 
luster of the gridGr(P ) whi
h 
ontains more than k points.Matou�sek's algorithm has running time of O(n logn+ nk) and spa
e 
omplexity O(nk).Sin
e r is a 2 approximation to ropt(P; k), ea
h 
luster has O(k) points. Thus the runningtime of the exa
t algorithm in ea
h 
luster is O(k2) and requires O(k2) spa
e. The numberof 
lusters whi
h 
ontain more than k points is O(n=k). Hen
e the overall running time ofour algorithm is O(nk), and the spa
e used is O(n+ k2).Theorem 4.7 Given a set P of n points in the plane and a parameter k, one 
an 
ompute,in expe
ted O(nk) time, using O(n + k2) spa
e, the radius ropt(P; k), and a disk Dopt(P; k)that 
overs k points of P .5 From 
onstant approximation to (1+Æ)-approximationSuppose r is a 2-approximation to ropt(P; k). Now if we 
onstru
t Gr(P ) ea
h grid 
ell
ontains less than 5k points of P (ea
h grid 
ell 
an be 
overed fully by 5 
ir
les of radiusropt(P; k)). Furthermore, the smallest k-en
losing 
ir
le is 
overed by a 
ertain grid 
luster.We 
ompute a (1 + Æ)-approximation to the radius of the minimal k en
losing 
ir
le in ea
hgrid 
luster and output the smallest amongst them. The te
hnique to 
ompute (1 + Æ)-approximation when all the points belong to a parti
ular grid 
luster is as follows.Let P
 be the set of points in a parti
ular grid 
luster with k < jP
j = O(k). Let Rbe a bounding square of the points of P
. We partition R into a uniform grid G of size10rÆ. Next, snap every point of P
 into the 
losest grid point of G, and let P 0
 denote theresulting point set. Clearly, jP 0
j = O(1=Æ2). Assume that we guess the radius ropt(P
; k)up to a fa
tor of 1 + Æ (there are only O(log1+Æ 2) = O(1=Æ) possible guesses), and let r0 be8



the 
urrent guess. We need to 
ompute for ea
h point p of P 0
, how many points of P 0
 are
ontained in D(p; r0). This 
an be done in O((1=Æ) log(1=Æ)) time per point, by 
onstru
tinga quadtree over the points of P 0
. Thus, 
omputing a Æ=4-approximation to the ropt(P 0
; k)takes O((1=Æ3) log2(1=Æ)) time.We repeat the above algorithm for all the 
lusters that have more than k points insidethem. Clearly, the smallest disk 
omputed is the required approximation. The running timeis O(n + n=(kÆ3) log2(1=Æ)). Putting this together with the algorithm of Theorem 4.6, wehave:Theorem 5.1 Given a set P of n points in the plane, and parameters k and Æ > 0, one 
an
ompute, in expe
ted O�n+ n �min� 1kÆ3 log2 1Æ ; k��time, a radius r, su
h that ropt(P; k) � r � (1 + Æ)ropt(P; k).6 Con
lusionsWe presented a linear time 2-approximation algorithm for the smallest en
losing disk that
ontains at least k points in the plane. Note that our algorithm 
an be easily extended tohigh dimensions. This algorithm improves over previous results, and it 
an in some sense beinterpreted as an extension of Golin et al. [GRSS95℄ 
losest pair algorithm to the 
lusteringproblem (see also the algorithm by Rabin [Rab76℄ and the survey of Smid on su
h algorithms[Smi00℄).Getting similar results for other shape �tting problems, like the minimum radius 
ylinderin three dimensions, remains elusive. Current approa
hes for approximating it, in the pres-en
e of outliers, essentially redu
es to the 
omputation of the shortest verti
al segment thatstabs at least k hyperplanes. See [HW02℄ for the details. However, the results of Eri
ksonand Seidel [ES95, Eri99℄ imply that approximating the shortest verti
al segment that stabsd + 1 hyperplanes takes 
(nd) time, under a reasonable 
omputation model, thus imply-ing that this approa
h is probably bound to fail if we are interested in a near linear timealgorithm.It would be interesting to �gure out whi
h of the shape �tting problems 
an be approxi-mated in near linear time, in the presen
e of outliers, and whi
h ones 
an not. We leave thisas an open problem for further resear
h.A
knowledgmentsThe authors thank Alon Efrat and Edgar Ramos for helpful dis
ussions on the problemsstudied in this paper.
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