Fast Algorithms for Computing the Smallest
k-Enclosing Disc

Sariel Har-Peled* Soham Mazumdar’

November 10, 2003

Abstract

We consider the problem of finding, for a given n point set P in the plane and
an integer k < n, the smallest circle enclosing at least k& points of P. We present a
randomized algorithm that computes in O(nk) expected time such a circle, improving
over previously known algorithms.

Since this problem is believed to require Q(nk) time, we present a linear time 6-
approximation algorithm that outputs a circle that contains at least k& points of P, and
of radius less than (1 4 0)7opt (P, k), where rop (P, k) is the radius of the minimal disk
containing at least k points of P. The expected running time of this approximation
algorithm is O(n +n- min(# log? %, k))

1 Introduction

Shape fitting, a fundamental problem in computational geometry, computer vision, machine
learning, data mining, and many other areas, is concerned with finding the best shape which
“fits” a given input. This problem has attracted a lot of research both for the exact and
approximation versions, see [BE97, HV01] and references therein.

Furthermore, solving such problems in the real world is quite challenging, as noise in the
input is omnipresent and one has to assume that some of the input points are noise, and as
such should be ignored. See [Cha02, EE94, Mat95b| for some recent relevant results. Unfor-
tunately, under such noisy conditions, the shape fitting problem becomes notably harder.

An important class of shape fitting problems involve finding an optimal £ point subsets
from a set of n points based on some optimizing criteria. The optimizing criteria could be
the smallest convex hull volume, the smallest enclosing ball, the smallest enclosing box, the
smallest diameter amongst others [EE94, AST94].

An interesting problem of this class is that of computing the smallest disc which contains
k points from a given set of n points in a plane. The initial approaches to solving this problem

*Department of Computer Science, DCL 2111; University of Illinois; 1304 West Springfield Ave.; Urbana,
IL 61801; USA; http://www.uiuc.edu/~sariel/; sariel@uiuc.edu. Work on this paper was partially
supported by a NSF CAREER award CCR-0132901.

tDepartment of Computer Science; University of Illinois; 1304 West Springfield Ave.; Urbana, IL 61801;
USA; smazumda@uiuc.edu.



involved first constructing the order-k Voronoi diagram, followed by a search in all or some
of the Voronoi cells. The best known algorithm to compute the order-k Voronoi diagram has
time complexity O(nk + nlog®n), see [AdBMS98]. Eppstein and Erickson [EE94] observed
that instead of Voronoi cells, one can work with some O(k) nearest neighbors to each point.
The resulting algorithm had a running time of O(nklogn 4 nklog® k) and space complexity
O(nk + k*logk). Using the technique of parametric search, Efrat et al. [ESZ94] solved
the problem in time O(nklog®n) and space O(nk). Finally, Matousek [Mat95a] by using a
suitable randomized search gave a very simple algorithm which used O(nk) space and had
O(nlogn + nk) expected running time.

We revisit this classical problem, and present an algorithm with O(nk) expected running
time, that uses O(n + k?) space. The main reason why this result is interesting is because
it beats the lower bound of Q(nlogn) on the running time for small k, which follows from
element uniqueness in the comparison model. We achieve this by using randomization and
the floor function (interestingly enough, this is also the computation model used by Matousek
[Mat95al]). Despite this somewhat small gain, removing the extra logn factor from the
running time was a non-trivial undertaking, requiring some new ideas.

The key ingredient in our algorithm is a new linear time 2-approximation algorithm,
described in Section 3. This significantly improves over the previous best result of Matousek
[Mat95a] that runs in O(nlogn) time. Using our algorithm and the later half of the algorithm
of Matousek (with some minor modifications), we get the new improved exact algorithm.
Finally, in Section 5, we observe that from the 2-approximation algorithm one can get a
d-approximation algorithm with running time linear in n and polynomial dependency on

1/5.

2 Preliminaries

For a point p = (z,y) in R?, define G,(p) to be the point (|z/r]r, [y/r] ). We call r the
width of the grid G,. Observe that G, partitions the whole space into square regions, which
we call grid cells. Formally, for any ¢,7 € 7Z, the intersection of the half-planes z > r1,
r<r(i+1),y>rjand y < r(j+1) is said to be a grid cell. Further, we call a block of
3 x 3 contiguous grid cells as a grid cluster.

For a point set P, and parameter r, the partition of P into subsets by the grid G,, is
denoted by G,(P). More formally, two points p, ¢ € P belong to the same set in the partition
G, (P), if both points are being mapped to the same grid point or equivalently belong to the
same grid cell.

Let gdp(r) denote the maximum number of points of P mapped to a single point by the
mapping G,. Define depth(P,r) to be the maximum number of points of P that a disc of
radius 7 can contain. Let D, (P, k) be a disc of minimal radius which contains k& points of
P. Let 74, (P, k) denote the radius of Dy (P, k).

The above notation is originally from Matousek [Mat95a]. Using simple packing argu-
ments one can prove the following results [Mat95a]:

Lemma 2.1 (i) depth(P, Ar) < (A+ 1)?depth(P, ),
(i) gdp(r) < depth(P,r) = O(gdp(r)).



(111) If rop( P, k) < 1 < 274y (P, k) then gdp(r) < 5k.
Lemma 2.2 Any disk of radius r can be covered by some grid cluster in G,.
Definition 2.3 (Gradation) Given a set P of n points, a sampling sequence (S1,...,Sn)
of P is a sequence of sets, such that (i) S; = P, (ii) S; is formed by picking each point of S; ;
into S; with probability half, and (iii) |S,| < n/logn, and |S,, 1| > n/logn. The sequence
(Sm,Sm-_1,.-.,S51) is a gradation of P.

Lemma 2.4 Given P, a sampling sequence can be computed in expected linear time.

Proof: Observe that the sampling time is O(> ", |S;|), where m is the length of the sequence.

Note, that
. ‘Sifl‘ . n
5] = w252 = o

Thus, O(E[1, [Si)) = O(n). .

EllSi] - B[E[/S:

3 A Slow 2-Approximation Algorithm

In this section, we develop a slow approximation algorithm that would be used in our faster
algorithm, presented in Section 4. Surprisingly, any 2-approximation algorithm would do for
our purposes, as long as its running time is O(n - (n/k)¢), where ¢ is a constant.

3.1 A Deterministic Algorithm

For ¢ = k/n, we compute an optimal sized e-net for the set system (P, R), where R is the
set of discs in the plane and the VC dimension of this set system is d = 4. We compute,
in O(n(n/k)**log(n/k)*) = O(n(n/k)?) time, an e-net S for (P,R) using a deterministic
construction [Cha00, Section 4.3], where |S| = O((n/k)log(n/k)).

From the definition of e-nets, it follows that 3z € .S, such that z € D,,(P, k). Observe,
that if s’ is the (k — 1)th closest point to z from P then then dist(z,s') < 2r.,(P, k).
This holds as (k — 1) points in P \ {z} are in D, (P, k) and hence they are at a distance
< 2rop( P, k) from z, by the triangle inequality. For each point in S, we compute its distance
from the (k — 1)th closest point to it in P. Let r be the smallest of these |S| distances.
From the above argument, it follows that 7o, (P, k) < r < 2r,,(P, k). The selection of the
(k — 1)th closest point can be done deterministically in linear time, by using deterministic
median selection [CLRSO01]. Overall, this stage takes O(n|S|) time.

Lemma 3.1 Given a set P of n points in the plane, and parameter k, one can compute
in O(n(n/k)°) deterministic time, a disc D that contains k points of P, and radius(D) <
2Topt(P; k)

Corollary 3.2 Given a set of P of n points and a parameter k = Q(n), one can compute
in expected linear time, a disc D that contains k points of P and radius(D) < 27r,,(P, k).



3.2 A Randomized Algorithm

Let R be a random sample from P, generated by choosing every point of P with probability
1/k. Next, compute for every p € R, the smallest disc centered at p containing k points of P.
Overall, this takes O(n(n/k)) expected time, as E[|R|] = n/k and computing the smallest
disc for every point takes linear time using median selection. Let r» be the minimum radius

computed.
Let X be the k points of P covered by D, (P, k). We have

1\* 1
Pr[XﬂR#@]:1<1E> >1o L

e

If R contains a point covered by D, (P, k), then r is a 2-approximation to 7y, (P, k). We
need to verify that this indeed occurred. To do so, compute the grid G,, and snap the points
of P into it. If any cluster of G, contains more than, say, 36k points, then r is clearly too
large, and the algorithm failed. As such, we run it again.

Otherwise, we run on each cluster of G, that contains at least k points, the algorithm of
Corollary 3.2. Let D be the smallest disk computed that contains & points of P. Clearly, D is
a 2-approximation to D, (P, k). The overall running time of this stage is O((n/k)k) = O(n).

Since the algorithm has constant probability to succeed, and it repeat till success, it
follows that the expected running time of our algorithm is O(n(n/k)).

Lemma 3.3 Given a set P of n points in the plane, and parameter k, one can compute in
expected O(n(n/k)) time, a disc D that contains k points of P, and radius(D) < 27, (P, k).

We refer to the algorithm of Lemma 3.3 as APPROXHEAVY(P, k).

Remark 3.4 For a point set P of n points, the radius r returned by the algorithm of
Lemma 3.3 is the distance between a pair of points of P. As such, a grid G, computed using
this distance is one of O(n?) possible grids.

3.3 A Faster Algorithm

In an earlier version of this paper [HMO03], we had a considerably more involved algorithm
that performed the 2-approximation in O(nlog(n/k)) time. However, for our purposes, the
slow algorithms of Lemma 3.1 and Lemma 3.3 are both sufficient. The algorithm was based
on the idea of using Corollary 3.2 to find a grid size, such that each cell of the grid contains
only a fraction of the n points (i.e. running APPROXHEAVY(P, |P|/c) where c is a constant).
Next, the algorithm recursed on cells in the grid that contained considerably more than k
points. In the end of this process, the plane was partition into squares such that the smallest
of them that contained at least £ points, provided a good approximation to the value of
Topt( P, k). See [HMO3] for details.



GROW(Pi,T'Z',l,k)
Output: r;
begin

Gi1 4 G, (B)

for every grid cluster ¢ € G; ; with [cN P;| > k do
P.+cNP
r. < APPROXHEAVY(P,, k)

// APPROXHEAVY is the algorithm of Lemma 3.3

We have rop(Pe, k) < 7c < 2ropt(Pey k),

return minimum 7. computed.

end

Figure 1: Algorithm for the ith round

4 A 2-Approximation in Linear Time

4.1 Description

As done in the previous section, we construct a grid which partitions the points into small
(O(k) sized) groups. The key idea behind speeding up the grid computation is to construct
the appropriate grid over several rounds. Specifically, we start with a small set of points
as seed and construct a suitable grid for this subset. Next, we incrementally insert the
remaining points, while adjusting the grid width appropriately at each step.

Let P = (Py,..., Py) be a gradation of P (see Definition 2.3), where |P;| > max(k,n/
logn) (i.e. if & > n/logn we start from the first set in P that has more than k elements).
The sequence P can be computed in expected linear time as shown in Lemma 2.4. Now using
the algorithm of [Mat95a|, we obtain a length ry such that r,, (P, k) < r1 < 2ryp (P, k)
and gd, (P) < 5k. The set P is the seed subset mentioned earlier. Observe that it takes
O(|P1|1log|Pi|) = O(n) time to perform this step. The remaining algorithm works in m
rounds, where m is the length of the sequence P. At the end of the ith round, we have a
distance r; such that gd, (P;) < 5k, and there exists a grid cluster in G,, containing more
than & points of P; and 7, (P;) < 7.

At the ith round, we first construct a grid G; ; for points in P; using r; ; as grid
width. We know that there is no grid cell containing more than 5k points of P; ;. As such,
intuitively, we expect every cell of G; ; to contain at most 10k points of P;. (This is of
course too good to be true, but something slightly weaker does hold.) Thus allowing us to
use the slow algorithm of Lemma 3.3 on those grid clusters. Note that, for & = Q(n), the
algorithm of Lemma 3.3 runs in expected linear time, and thus the overall running time is
linear.

The algorithm used in the ¢th round is more concisely stated in Figure 1. At the end
of the m rounds we have r,,, which is a 2-approximation to the radius of the optimal &
enclosing disc of P,, = P. The overall algorithm is summarized in Figure 2.



LINEARAPPROX(P,k)
Output: r - a 2-approximation to 7. (P, k)
begin
Compute a gradation {P;,..., Py} of P as in Lemma 2.4
r1 <~ APPROXHEAVY (P, k)
// APPROXHEAVY is the algorithm of Lemma 3.3

for 7 <+ 2 to m do
rj < GROW(Pj, i1, k)

for every grid cluster ¢ € G,,, with [cN P| > k do
r. < APPROXHEAVY(c N P, k)

return minimum 7. computed over all clusters

end

Figure 2: 2-Approximation Algorithm

4.2 Analysis

Lemma 4.1 Fori=1,...,m, we have rou(P;, k) < r; < 2ryu(P;, k), and the heaviest cell
in G,.(P;) contains at most 5k points of P;.

Proof: Consider the optimal disk D; that realizes r,p(F;, k). Observe that there is a cluster
c of G,,_, that contains D;, as r;_; > 7;. Thus, when GROW handles the cluster ¢, we have
D; N P; C c. The first part of the lemma then follows from the correctness of the algorithm
in Lemma 3.3.

As for the second part, observe that any grid cell of width r; can be covered with 5 disks
of radius r;/2. It follows that the grid cell of 7.,:(P;, k) contains at most 5k points. ]

Definition 4.2 For a point set P, and a parameters k and r, the ezcess of G,(P) is

eprcy = Y |5l

c€Cells(Gy)

where Cells(G,) is the set of cells of the grid G,.

Remark 4.3 The quantity 100k - £(P, k, G,) is an upper bound on the number of points
of P in an heavy cell of G,(P), where a cell of G,(P) is heavy if it contains more than 50k
points.

Lemma 4.4 For any positive real t, the probability that G,,_,(P;) has excess E(P;, k, Gy, ) >
t + 2 [log(n)], is at most 2.

Proof: Let & be the set of O(n?) possible grids that might be considered by the algorithm
(see Remark 3.4), and fix a grid G € & with excess M = E(P,, k, G, ,).



Let U = {Pz- Nc ceG,|PiN¢ > 50k} be all the heavy cells in G(P;). Furthermore, let

V = Uxep ¥(X, 50k), where (X, v) denotes an arbitrary partition of the set X into disjoint
subsets such at each one of them contains v points, except maybe the last subset that might
contain between v and 2v — 1 points.

It is clear that |V| = £(P;, k, G). From the Chernoff inequality, for any S € V,

25k(1 — 1/5)2 1
Pr[|Sﬂ Pz'71| S 5k] < €$p<—%> < 5

Furthermore, G = G,, , only if each cell of G(P; ;) contains at most 5k points. Thus we
have

IN

= G)N(E(P,k,G) = M)] < Pr[G, , =G| &P,k G) =M
< []PrllSn Pyl <k
Sev
1 1

< — = —.
- 2Vl oM

Since there are (’2‘) different grids in &, we have

Pr(£(P,k,G,, ,)=M] =Pr|| J(G=G,, ,)NEP,kG) =M

Geo

< ny\ 1 < 1
—\2/2M — 2" m
Thus, by Lemma 4.4, for £ < 4logn, we have that if the excess is smaller than v =
2 [logn]| + 1, then we have at most  heavy cells, and every heavy cell contains at most
O(7k) points. It follows, that the total running time of Lemma 3.3 on those heavy cells, is

at most O(y - Yk(vk/k)) = O(klog®n). Thus, we have that the expected running time of
the ith step is at most

N P, > tk)? 1
ofIp|+ > |mpi|ck 1 - o 1P|+ klog®n+ ) g R L

c€Gr; 4 t=1+2[log n]

= O(|P] +klog’n) = O(|P)]),

since if the excess is ¢, then there are ¢ cells with more than (k) points, and each such cell
contains at most O(tk) points.
We next handle the case where k£ > 4logn.

Lemma 4.5 The probability that G, ,(P;) has excess larger than t, is at most 27, for
k > 4logn.

Proof: We use the same technique as in Lemma 4.4. By the Chernoff inequality, the proba-
bility that any 50k size subset of P; would contain at most 5k points of P; 1, is less than

16 1 1
< exp (—25k 55 5) < exp(—5k) < prt

7



In particular, arguing as in Lemma 4.4, it follows that the probability that (P, k,r; 1)
exceeds ¢, is smaller than (})/n* <277, n
Thus, if k£ > 4logn, the expected running time of the sth step is at most

cn Py =, (th)? 1
O Y lenPllog——| = O |R|+} t = | =0(P|+k) = O(R]),
c€Gr,_, t=1
by Lemma 4.5.

Thus, the total expected running time is O (), | P;|) = O(n), by the analysis of Lemma 2.4.
To compute a 2-approximation, consider the grid G, (P). Each grid cell contains at most
bk points, and hence each grid cluster contains at most 45k points. Also the smallest k
enclosing disc is contained in a certain grid cluster. In each cluster that contain more than k
points, we use the algorithm of Corollary 3.2 and then finally output the minimum over all
the clusters. The overall running time is O((n/k)k) = O(n) for this step, since each point
belongs to at most 9 clusters.

Theorem 4.6 Given a set P of n points in the plane, and a parameter k, one can compute,
in expected linear time, a radius r, such that rop(P, k) <1 < 27 (P, k).

Once we compute r such that 7o (P, k) < 7 < 27, (P, k), using the algorithm of The-
orem 4.6, we apply the exact algorithm of Matousek [Mat95a| to each cluster of the grid
G, (P) which contains more than k& points.

Matousek’s algorithm has running time of O(nlogn + nk) and space complexity O(nk).
Since 7 is a 2 approximation to .. (P, k), each cluster has O(k) points. Thus the running
time of the exact algorithm in each cluster is O(k?) and requires O(k?) space. The number
of clusters which contain more than k points is O(n/k). Hence the overall running time of
our algorithm is O(nk), and the space used is O(n + k?).

Theorem 4.7 Given a set P of n points in the plane and a parameter k, one can compute,
in expected O(nk) time, using O(n + k) space, the radius 1o (P, k), and a disk Doy (P, k)
that covers k points of P.

5 From constant approximation to (1+§)-approximation

Suppose r is a 2-approximation to (P, k). Now if we construct G,(P) each grid cell
contains less than 5k points of P (each grid cell can be covered fully by 5 circles of radius
Topt(P, k)). Furthermore, the smallest k-enclosing circle is covered by a certain grid cluster.
We compute a (1 + §)-approximation to the radius of the minimal & enclosing circle in each
grid cluster and output the smallest amongst them. The technique to compute (1 + §)-
approximation when all the points belong to a particular grid cluster is as follows.

Let P, be the set of points in a particular grid cluster with £ < |P.| = O(k). Let R
be a bounding square of the points of P,. We partition R into a uniform grid G of size
1074. Next, snap every point of P, into the closest grid point of G, and let P! denote the
resulting point set. Clearly, |P!| = O(1/6%). Assume that we guess the radius rop (P, k)
up to a factor of 1+ 6 (there are only O(log,,s2) = O(1/0) possible guesses), and let r’ be

8



the current guess. We need to compute for each point p of P!, how many points of P! are
contained in D(p,r"). This can be done in O((1/9) log(1/6)) time per point, by constructing
a quadtree over the points of P.. Thus, computing a §/4-approximation to the 7,y (P., k)
takes O((1/6%)log®(1/8)) time.

We repeat the above algorithm for all the clusters that have more than k points inside
them. Clearly, the smallest disk computed is the required approximation. The running time
is O(n + n/(ké®)log®(1/6)). Putting this together with the algorithm of Theorem 4.6, we

have:

Theorem 5.1 Given a set P of n points in the plane, and parameters k and § > 0, one can

compute, in expected
1 1
O(n +n- rnin(Wlog2 S’k>>

time, a radius r, such that rop (P, k) <1 < (14 0)rep(P, k).

6 Conclusions

We presented a linear time 2-approximation algorithm for the smallest enclosing disk that
contains at least k points in the plane. Note that our algorithm can be easily extended to
high dimensions. This algorithm improves over previous results, and it can in some sense be
interpreted as an extension of Golin et al. [GRSS95] closest pair algorithm to the clustering
problem (see also the algorithm by Rabin [Rab76] and the survey of Smid on such algorithms
[Smi00]).

Getting similar results for other shape fitting problems, like the minimum radius cylinder
in three dimensions, remains elusive. Current approaches for approximating it, in the pres-
ence of outliers, essentially reduces to the computation of the shortest vertical segment that
stabs at least k hyperplanes. See [HW02| for the details. However, the results of Erickson
and Seidel [ES95, Eri99] imply that approximating the shortest vertical segment that stabs
d + 1 hyperplanes takes Q(n) time, under a reasonable computation model, thus imply-
ing that this approach is probably bound to fail if we are interested in a near linear time
algorithm.

It would be interesting to figure out which of the shape fitting problems can be approxi-
mated in near linear time, in the presence of outliers, and which ones can not. We leave this
as an open problem for further research.

Acknowledgments

The authors thank Alon Efrat and Edgar Ramos for helpful discussions on the problems
studied in this paper.



References

[AdBMS98] P. K. Agarwal, M. de Berg, J. Matousek, and O. Schwarzkopf. Constructing

[ASTO4]

[BE97]

[Cha00]

[Cha02]

[CLRSO1]

[EE94]

[Eri99]

[ES95]

[ESZ94]

[GRSS95]

[HMO3]

[HVO1]

[HW02]

[Mat95a]

levels in arrangements and higher order Voronoi diagrams. SIAM J. Comput.,
27:654-667, 1998.

P. K. Agarwal, M. Sharir, and S. Toledo. Applications of parametric searching
in geometric optimization. J. Algorithms, 17:292-318, 1994.

M. Bern and D. Eppstein. Approximation algorithms for geometric problems.
In D. S. Hochbaum, editor, Approximationg algorithms for NP-Hard problems,
pages 296—-345. PWS Publishing Company, 1997.

B. Chazelle. The Discrepancy Method. Cambridge University Press, 2000.

T. M. Chan. Low-dimensional linear programming with violations. In Proc.
43th Annu. IEEE Sympos. Found. Comput. Sci., pages 570-579, 2002.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press / McGraw-Hill, Cambridge, Mass., 2001.

D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal
polytopes. Discrete Comput. Geom., 11:321-350, 1994.

J. Erickson. New lower bounds for convex hull problems in odd dimensions.
SIAM J. Comput., 28:1198-1214, 1999.

J. Erickson and R. Seidel. Better lower bounds on detecting affine and spherical
degeneracies. Discrete Comput. Geom., 13:41-57, 1995.

A. Efrat, M. Sharir, and A. Ziv. Computing the smallest k-enclosing circle and
related problems. Comput. Geom. Theory Appl., 4:119-136, 1994.

M. Golin, R. Raman, C. Schwarz, and M. Smid. Simple randomized algorithms
for closest pair problems. Nordic J. Comput., 2:3-27, 1995.

S. Har-Peled and S. Mazumdar. Fast algorithms for computing the smallest
k-enclosing disc. In Proc. 11th Annu. European Sympos. Algorithms, volume
2832 of Lect. Notes in Comp. Sci., pages 278-288, 2003.

S. Har-Peled and K. R. Varadarajan. Approximate shape fitting via lineariza-
tion. In Proc. 42nd Annu. IEEE Sympos. Found. Comput. Sci., pages 66—73,
2001.

S. Har-Peled and Y. Wang. Shape fitting with outliers. In Proc. 19th Annu.
ACM Sympos. Comput. Geom., pages 29-38, 2002.

J. Matousek. On enclosing k points by a circle. Inform. Process. Lett., 53:217—
221, 1995.

10



[Mat95b]  J. Matousek. On geometric optimization with few violated constraints. Discrete
Comput. Geom., 14:365-384, 1995.

[Rab76] M. O. Rabin. Probabilistic algorithms. In J. F. Traub, editor, Algorithms and
Complexity: New Directions and Recent Results, pages 21-39. Academic Press,
New York, NY, 1976.

[Smi00] M. Smid. Closest-point problems in computational geometry. In J.-R. Sack
and J. Urrutia, editors, Handbook of Computational Geometry, pages 877-935.
Elsevier Science Publishers B.V. North-Holland, Amsterdam, 2000.

11



