
Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

COPRODUCTS OF IDEAL MONADS

Neil Ghani1 and Tarmo Uustalu2

Abstract. The question of how to combine monads arises naturally
in many areas with much recent interest focusing on the coproduct
of two monads. In general, the coproduct of arbitrary monads does
not always exist. Although a rather general construction was given
by Kelly [15], its generality is reflected in its complexity which limits
the applicability of this construction. Following our own research [19],
and that of Hyland, Plotkin and Power [12], we are looking for specific
situations when simpler constructions are available. This paper uses
fixed points to give a simple construction of the coproduct of two ideal

monads.

1991 Mathematics Subject Classification. 08B20,18C15,18C50,68Q55.

1. Introduction

Monads are a fundamental concept in category theory. One of their first appli-
cations was to give a categorical account of universal algebra [17] and they have
since remained central to the development of category theory. More recently they
have found further significant applications in computer science as they provide
i) an abstract model of syntax covering algebraic theories [21], higher-order ab-
stract syntax [7] and non-wellfounded syntax [1,8,26] etc. where the term algebra
construction, substitution and variables are taken as primitive, ii) a useful abstrac-
tion of computational effects permitting a uniform treatment of diverse features
of impure programming languages such as stateful computations, exceptions and
I/O [24], and iii) a semantic framework for modularity where the interaction of
different components of a complex system is modelled by the interleaving of the
representing monads [20].

In each of the three applications above, we want to combine monads. In the
case of monads as abstract models of syntax we are often interested in combining

1 Dept. of Math. and Comp. Sci., University of Leicester, University Road, Leicester LE1
7RH, UK, e-mail: ng13@mcs.le.ac.uk.
2 Inst. of Cybernetics, Tallinn Technical University, Akadeemia tee 21, EE-12618 Tallinn,
Estonia, e-mail: tarmo@cs.ioc.ee.

c© EDP Sciences 1999

2 TITLE WILL BE SET BY THE PUBLISHER

different theories as is often practiced in the area of algebraic specification [11]. In
functional programming, how can we combine the state monad and the exceptions
monad to model a program which has both stateful computations and which may
raise exceptions [14]? Finally, in the semantics of modularity, if two systems (e.g.,
term rewriting systems) R and S are modelled by monads TR and TS, how can
we reason about the combined system R + S via its representing monad TR+S?
That is, how can we express TR+S in terms of TR and TS [20]? A variety of
different methods to combine monads have been proposed, most notably in the
use of distributive laws [5, 6] and monad transformers [14]. While being useful in
specific situations, these theories do not cover all situations, and furthermore, as
we comment later, can sometimes seem rather ad hoc.

These approaches observe that monads are functors carrying extra structure.
Thus the obvious way to compose a monad R and a monad S is to use the func-
torial composition SR. However, SR is not a monad in general and one can see
both distributive laws and monad transformers as an attempt to coax SR into a
monad. An alternative point of view is that, just as functors are the objects of the
functor category, so monads are the objects of the category of monads and monad
morphisms. Then the canonical way of putting two objects together is take their
coproduct. While it is not the case that the coproduct of arbitrary monads always
exists, they do so under mild conditions as given in the rather general construc-
tion of coproducts (even colimits) of monads given by Kelly [15]. However, the
generality of the construction is reflected in its complexity which can be deterring
even for experienced category theorists and which certainly limits its applicability.
Consequently, recent research has focussed on providing alternative constructions
which, by restricting to special cases, are significantly simpler and hence easier to
apply in practice. In particular, we would like to reduce the coproduct of monads
to formulae involving fixed point constructions and functorial operations such as
composition and coproduct. As we remark in Section 2, this can be done for the
coproduct of free monads and, as proven by Hyland, Plotkin and Power [12], the
coproduct of a free monad with any other monad. We make further comments
relating our work to that of Hyland, Plotkin and Power in Section 5 concerning
further work.

Most monads, including many important examples, are not free and this limits
the applicability of the results above. In particular, this paper arose out of research
into modularity in i) non-wellfounded syntax and ii) higher-order syntax. In the
former we want to study coproducts of free completely iterative monads as these
model non-wellfounded terms [2, 26] while in the latter we study monads which
model calculi with variable binding such as the λ-calculus [7] and which typically
arise as least fixed points of higher-order functors. The results above do not apply
to coproducts of such monads since these monads are not free. To understand
the coproduct of such monads, we return to the central intuition of layers that we
used in our semantic proofs [20] of modularity in term rewriting. The coproduct
construction attempts to interleave these layers but, in general, layers can collapse,
which causes mathematical difficulties necessitating the complexities of Kelly’s
constructions. However, in most examples of interest, including those above, layers

TITLE WILL BE SET BY THE PUBLISHER 3

do not collapse. Intriguingly, the ideal monads, introduced by Adámek et al. [1]
to study guarded recursion, provide exactly the right mathematical structure to
capture this idea of layers not collapsing and hence our abstract result is the
reduction of the coproduct of ideal monads to fixed point formulae. Accordingly,
the general thrust in this paper is to avoid commitment to a specific semantic
structure, e.g., finitary monads over lfp categories, but rather to use the existence
of various initial algebras as the preconditions of our constructions.

To summarise, the field of modularity in both syntax and computational phe-
nomena is highly promising but has been held back by the lack of simple mecha-
nisms for computing coproducts of naturally arising monads. This paper provides
just the right kind of result to spur research in this area. The paper is structured
as follows. In Section 2, we recall the basic results about monads which we use
in the rest of the paper. Section 3 then introduces ideal monads and contains our
main results while Section 4 applies them to the question of modularity of non-
wellfounded syntax and higher-order syntax. We finish in Section 5 with some
concluding remarks and directions for future research.

2. Monads, Coproducts and Layers

Monads originally arose within category theory as models of term algebras and
algebraic theories. Such monads provide good intuitions as to how to construct
the coproduct of two monads and so we begin with them. Since this is standard
material, we refer the reader to general texts [5, 21] for more details.

2.1. Monads and Term Algebras

Term algebras are built from signatures which are defined as follows:

Definition 2.1. A (single-sorted) signature consists of a function Σ : N → Set.
The set of n-ary operators of Σ is defined Σn = Σ(n).

Definition 2.2. Given a signature Σ and a set of variables X , the term algebra
TΣ(X) is the set defined inductively by the following rules:

x ∈ X

’x ∈ TΣ(X)

f ∈ Σn t1, . . . , tn ∈ TΣ(X)

f(t1, . . . , tn) ∈ TΣ(X)

We use quotes to distinguish a variable x ∈ X from the term ’x ∈ TΣ(X) and
this can be seen as introducing layer information into terms. As we shall see later,
when constructing the coproduct of two monads, this layer structure is the central
concept.

Categorically, TΣ is an endofunctor on Set that can be constructed in one of two
ways. Start by defining the associated polynomial endofunctor FΣ : Set → Set

by FΣ(X) =
∐

n∈N,f∈Σn
Xn. Then:

• either, for each set X , TΣX is defined to be the carrier µ(X + FΣ()) of
the initial algebra (least fixed point) of the endofunctor X +FΣ() on Set,

4 TITLE WILL BE SET BY THE PUBLISHER

• or, TΣ is equivalently defined in a non-pointwise fashion as the carrier
µ(Id + FΣ ◦) of the initial algebra of the endofunctor Id + FΣ ◦ on
[Set,Set].

Either way, for every set of variables X , there is a function X → TΣ(X) sending
each variable x to the associated term ’x. Lastly, substitution takes terms built
over terms and flattens them, as described by a function TΣTΣ(X) → TΣ(X).
Both two operations are natural in X . These three pieces of data, namely the
construction of a term algebra from a set of variables, the embedding of variables
as terms and the operation of substitution are axiomatised in the concept of a
monad.

Definition 2.3 (Monads). A monad on a category C is an endofunctor T : C → C

together with two natural transformations, η : Id → T , called the unit, and m :
TT → T , called the multiplication of the monad, such that the following diagrams,
known as the post-unit, pre-unit and associativity of multiplication laws, commute.

T
ηT //

BB
BB

BB
BB

BB
BB

BB
BB

TT

m

��
T

T

BB
BB

BB
BB

BB
BB

BB
BB

Tη

��
TT m

// T

TTT
mT //

Tm

��

TT

m

��
TT m

// T

�

We write m for the multiplication rather than the usual µ, since we reserve µ

for least fixed points. Although a monad is fully specified only by all of the data
(T, η, m), it is customary to refer it to by simply T , when it is clear that the monad
and not just the functor is meant and the data η, m are clear from the context—a
convention which we follow here. As suggested above, the term algebra functor TΣ

underlies a monad for any signature Σ. In fact, we can even make a slightly more
general statement, abstracting from Set to any category C and from a polynomial
endofunctor FΣ on Set determined by a signature Σ to any endofunctor F on C.

Proposition 2.4. Let C have coproducts. If the free algebra functor TF = µ(Id +
F ◦) of an endofunctor F on a category C is defined (the initial algebra exists),
then TF is the underlying functor of a monad.

Lemma 2.4 is typical of the reasoning in this paper in that it is based on
properties of initial algebras. Thus, in general, we shall assume the existence of
such fixed points whenever we speak of them and thereby avoid commitment to a
specific semantic structure which guarantees the existence of these fixed points. Of
course, in many cases, restricting to ω-cocontinuous endofunctors over categories
with ω-colimits suffices to guarantee the existence of the fixed points we require.

Monads also model a number of other important structures in computer science,
such as (many-sorted) algebraic theories, non-wellfounded syntax [1, 8, 26], term
graphs [9], calculi with variable binders [7], term rewriting systems [18], and, via
computational monads [24], state-based computations, exceptions, continuations

TITLE WILL BE SET BY THE PUBLISHER 5

etc. These applications involve base categories other than Set and the desire for
a uniform treatment underpins their monadic axiomatisation.

In order to talk about coproducts of monads, we must of course define the
category of monads.

Definition 2.5 (Monad morphisms). Given two monads (T, η, m) and (H, ηH , mH)
on C a monad morphism is a natural transformation h : T → H preserving the
unit and multiplication in the sense of commutation of the diagrams

Id
η //

ηH

 @
@

@@
@@

@ T

h

��
H

TT
m //

hh

��

T

h

��
HH

mH

// H

�

The monads on a category C and monad morphisms between them form a
category Mon(C).

The observation that TΣ is a monad for a signature Σ does not capture the
inductive nature of the term algebra construction. We now proceed to addressing
this point by giving a proper characterization of the term algebra construction as
a free monad. In general, free monads do not exist over all endofunctors (e.g.,
the powerset functor on Set) and so we define the free monad over a functor via
universal arrows.

Definition 2.6 (Free monads). A free monad over an endofunctor F on C is
an universal arrow from F to the forgetful functor U : Mon(C) → [C, C], i.e., a
monad (T, η, m) together with a natural transformation ι : F → T such that for
any monad (H, ηH , mH) on C and a natural transformation f : F → H , there is a
unique monad morphism h : (T, η, m) → (H, ηH , mH) such that the diagram

F
ι //

f @
@@

@@
@

@ T

h

��
H

commutes. �

The following observation is standard knowledge since [4].

Proposition 2.7. If, for an endofunctor F on a category C, the functor TF =
µ(Id+F ◦) is defined (the initial algebra exists), then the monad structure on TF

is the free monad over F .

The classic special case is that of term algebras for a signature. The Σ-term
algebra functor TΣ is not just a monad, it is the free monad: It is not just some
Σ-algebra functor containing the variables (the identity functor) and closed under
substitution, it is the least such.

6 TITLE WILL BE SET BY THE PUBLISHER

2.2. Coproducts of monads

We now turn to coproducts of monads. By the coproduct of two monads R,
S, we mean of course the coproduct of R and S as objects in the category of
monads, which, intuitively, must be the least monad containing both in a disjoint
manner. We write ⊕ for the coproduct of monads and reserve + for the functorial
coproduct. The first result on coproducts of monads concerns free monads.

Proposition 2.8 (Coproduct of free monads). Let TF and TG be free monads.
Then, if the free monad TF+G exists, it is the coproduct of TF and TG.

Proof. The universal property of the coproduct follows directly from the universal
properties of TF and TG. �

Hyland, Plotkin and Power [12] have given the following construction for the
coproduct of a free monad with an arbitrary monad.

Proposition 2.9 (Coproduct of a free monad with a monad). Let TF be a free
monad and S a monad. If the free monad TFS exists, then STFS is the underlying
functor of the coproduct of TF and S.

The above functorial expression can be rewritten into an equivalent form where
S appears only once: we have STFS = Sµ(Id + FS ◦) by the least fixed point
construction of the free monad and Sµ(Id + FS ◦) ∼= µ(S(Id + F ◦)) by the
folklore rolling lemma. Again, all that is needed for these equations to hold is the
existence of the various initial algebras.

The coproduct of free monads over signatures gives good intuitions as to how
to construct coproducts of arbitrary monads. Given two signatures Σ and Ω with
corresponding term algebra monads TΣ and TΩ, we have seen that TΣ⊕TΩ = TΣ+Ω,
that is the coproduct TΣ ⊕ TΩ should calculate the terms built over the disjoint
union of the signatures. Terms in TΣ+Ω(X) have an inherent notion of layer, as
a term in TΣ+Ω(X) either is a variable or decomposes into a term from TΣ (or
TΩ), and strictly smaller subterms with head symbols from Ω (or Σ respectively).
This suggests that we can build the underlying functor of the coproduct TΣ+Ω(X)
by successively applying the underlying functors TΣ and TΩ (but see also the
discussion below, there is a correction to be made to the formula we give here):

(TΣ ⊕ TΩ)(X) = X

+ TΣ(X) + TΩ(X)

+ TΣTΩ(X) + TΩTΣ(X)

+ TΣTΩTΣ(X) + . . .

In the above summation, an element of TΣTΩTΣ(X) can be thought of as having
a top TΣ-layer followed by a TΩ-layer followed by another TΣ-layer. Indeed, from
now on, we abstract from the set of variables and work at the functorial/monadic
level so as to talk about these layers. In general, for any monad T , we often regard
T (X) abstractly as a layer; in the examples above, layers were terms, rewrites, or

TITLE WILL BE SET BY THE PUBLISHER 7

computations. Monads can then be seen as abstracting from the nature of a layer
and thereby provide a calculus for manipulating layers where the types of layers,
the trivial layer of each type, and the collapsing of two layers of the same type are
are taken as primitive concepts. As shown in the equation above, the coproduct
intuitively consists of all finite interleavings of layers from the summands.

Now, note that there is a natural transformation

TΣηΩTΣ : TΣTΣ → TΣTΩTΣ

which essentially puts a trivial layer between two adjacent TΣ-layers. Of course
terms in the image of TΣηΩTΣ really should be counted as only having one TΣ-
layer, since they contain no Ω-constructors. Thus, in the right-hand side of our
coproduct formula above we should really have used FΣTΣ and FΩTΩ instead of
TΣ, TΩ. And, more generally, we really want to be able to talk about non-trivial
layers, or that part of a monad which is not in the image of the unit. This is
exactly our motivation to focus on ideal monads, which we will do next.

3. Ideal Monads and Their Coproducts

This section is devoted to ideal monads [1]—a large variety of monads that
covers many familiar types of monads capturing notions of syntax and notions of
computation—and a fixed point construction for calculating the coproduct of two
ideal monads. Although ideal monads were introduced for exactly the reason we
use them, namely to separate the variable and non-variable parts, the application
in mind was to guarded recursion. The fact that we have a separate use for them
makes us think they may be applicable in many situations.

3.1. Ideal Monads

Ideal monads are monads in which the image of the unit is separated from the
rest of the monad.

Definition 3.1 (Ideal monads). An ideal monad on a category C is a monad
(T, η, m) on C together with an endofunctor T0 on C and a natural transformation
m0 : T0T → T0 such that T is the coproduct Id+T0, the unit η is the left injection
inlId,T0 and the square

T0T

m0

��

inrId,T0
T
// TT

m

��
T0

inrId,T0

// T

commutes (which is equivalent to requiring that m = [T, inrId,T0 · m0]). �

We can see that an ideal monad (T, η, m, T0, m0) is fully specified by its data
(T0, m0) and that any endofunctor T0 together with a natural transformation m0 :

8 TITLE WILL BE SET BY THE PUBLISHER

T0T → T0 yields an ideal monad provided that T0 = m0 · T0η and m0 · m0T =
m0 · T0m. These two conditions ensure η being a pre-unit of m and m being
associative; that η is a post-unit of m is automatic. Just as we frequently refer
to a monad (T, η, m) by simply T , we agree to refer to the ideal monad given by
(T0, m0) by Id + T0 and leave the restricted form of multiplication m0 implicit
whenever possible.

A monad morphism h : T → H whose source is an ideal monad T = Id+T0 has
its action on Id forced by the preservation of the unit requirement and is hence
of the form [ηH , h0] where h0 : T0 → H . Given any h0 : T0 → H , the natural
transformation h = [ηH , h0] is a monad morphism iff h0 · mT

0 = mH · h0h (this
condition guarantees that h preserves the multiplication).

Syntax-motivated examples of ideal monads include free monads, free com-
pletely iterative monads, monads arising as fixed points of higher order endofunc-
tors etc.

Example 3.2 (Free monads). Recall that the free monad TF over an endofunctor
F on a category C is given by TF = µ(Id + F ◦) ∼= Id + FTF , if this least fixed
point exists, and that this covers the term algebra generated by a signature. It is
straightforward to check that this monad is ideal—we already have the decompo-
sition of the monad as a sum and it is straightforward to check the multiplication
restricts appropriately. Informally, we know that every term is either a variable
or a non-variable/operator application. �

Example 3.3 (Free completely iterative monads). An ideal monad T = Id+T0 on
a category C is completely iterative iff, for any morphism e : X → Y + T0(X + Y)
in C, there exists a unique morphism e† : X → T (Y) in C such that the diagram

Y + T0(X + Y)

Y +T0[e
†,ηY]

��

X
eoo

e†

��
Y + T0T (Y)

[ηY ,inrId,T0
·m0Y

]
// T (Y)

commutes. This concept was introduced by [1] to study the situation where every
guarded system of recursive equations has a unique solution. The free (among
the ideal monads) completely iterative monad T∞

F over an endofunctor F on C is
T∞

F = ν(Id + F ◦) ∼= Id + FT∞
F , if this greatest fixed point exists (e.g., if C is

ω-complete and F is ω-continuous). If C = Set and F = FΣ for some first-order
signature Σ, then T∞

F collects all non-wellfounded (i.e., possibly infinite) Σ-terms
(leaf-labelled Σ-trees).

Switching from arbitrary guarded equation systems to those that are finitary
(finitely many equations, all right-hand sides finite), one gets a wider subclass
of ideal monads—iterative monads. The free iterative monad induced by a first-
order signature Σ is the algebra of rational Σ-terms and is again ideal. Rational
Σ-terms are those non-wellfounded Σ-terms which have a finite number of distinct
subterms. �

TITLE WILL BE SET BY THE PUBLISHER 9

Example 3.4 (λ-calculus). The language of untyped λ-calculus (à la de Bruijn,
with free variables identified by their positions in the context, not their names)
is described by the endofunctor L = µ(Id + ∆ ◦ + ◦ δ) on C where the higher-
order functors ∆, δ : [C, C] → [C, C] are given by ∆ = Id × Id and δ = K1 + Id (1
denoting the terminal object of C, KA denoting the constant functor returning A).
L is certainly well defined and a monad in the critical test case of C = Set, while
conditions to generalise these results to other categories are not very prohibitive. In
the isomorphism L ∼= Id+∆L+Lδ, the second summand ∆L = L×L corresponds
to application terms and the third summand Lδ = L(K1 + Id) to λ-abstraction
terms: for a raw λ-abstraction to be well formed wrt. a context, its body has to
be well formed wrt. its extension with one extra variable that corresponds to the
bound variable of the λ-abstraction. The monad L is not free, but it is ideal. �

Example 3.5 (Explicit substitutions). Much the same way as we defined the
language of the λ-calculus as a least fixed point in a functor category, we can define
the language of applications and explicit substitutions. Under identification of
expressions equal up to a certain notion of α-equivalence for explicit substitutions,
this is the endofunctor E = µ(Id + ∆ ◦ + ◦) on C. This is apparent from

the fact that EE(Y) ∼= (LanIdE)E(Y) ∼=
∫ X

C(X, E(Y)) ⊗ E(X), i.e., we have a
term in bound variables X and a map sending the bound variables to other terms.
Under mild conditions, the functor E is a monad, as follows from a result in [22].
For a detailed discussion of this analysis of languages with explicit substitutions,
see [10]. �

There are also nice examples of ideal monads among computational monads.
Some of these are free monads (e.g., exceptions, interactive output, interactive
input monads), but others are not. In the following examples, to think of pro-
gramming language semantics, assume that C is Set or CPO.

Example 3.6 (Exceptions). Computations that raise exceptions of type E are
modelled by the monad with underlying functor Id + KE , unit inlId,KE

and multi-
plication [Id + KE, inrId,KE

]: a computation is either a value or an exception. This
monad is ideal as it is also the free monad over the functor KE as Id + KE

∼=
µ(Id + KE ◦). �

Example 3.7 (Interactive output). Computations that output tokens of type
O are modelled by the monad whose underlying functor is Id × KList(O) where
List = µ(K1 + Id ×). Computations are pairs of a value and an O-list, the unit
pairs a value with an empty O-list and the multiplication takes a value paired with
a list and then another list and returns it paired with the concatenation of the
two lists. This monad is ideal as, again, it is free over the functor KO × since
Id × KList(O)

∼= µ(Id + KO ×). �

Example 3.8 (Non-deadlocking non-determinism). Non-deterministic computa-
tions that are guaranteed to not deadlock are modelled by non-empty lists of values.
The corresponding functor NEList = Id×List = Id×µ(K1+Id×) ∼= µ(Id×(K1+))
carries a monad structure with singleton formation and flattening a non-empty list
of non-empty lists into a non-empty list as the unit and the multiplication. This

10 TITLE WILL BE SET BY THE PUBLISHER

monad is ideal, with singleton lists playing the role of variables and length-at-least-
2 lists playing the role of non-variable terms—the multiplication restricts properly
as flattening a length-at-least-2 list of non-empty lists gives a length-at-least-2
list—, but it is not free.

Note that lists, defined by List = µ(K1+Id×) ∼= K1+NEList give a very similar
monad. This monad, which models non-determinism with possible deadlocks,
however, is not ideal, despite the clear separation between the variables, i.e., the
singleton lists, and the non-variable terms, i.e., the empty list and the length-at-
least-2 lists. The reason is that here the multiplication does not restrict as required
for an ideal monad: the flattening of a length-2 list consisting of a singleton and
the empty list is a singleton. �

Example 3.9 (Probabilistic choice). Computations with probabilistic choice can
be modelled by non-empty lists of values paired with rational numbers from (0, 1]
that must add up to 1 over the list (these are obviously obtainable from non-
empty lists of values paired with positive integers by identifying those equal under
norming). Again there is a monad structure on the corresponding functor and the
monad is ideal, but not free. �

In the last two examples, we could of course also have used non-empty finite
multisets instead of non-empty lists, but we preferred non-empty lists here as they
a definable as least fixed points and moreover they actually also provide more
informative notions of computation than non-empty finite multisets.

3.2. Coproducts of Ideal Monads by a Fixed Point Construction

The fundamental observation behind the construction of the coproduct T of
two ideal monads R = Id+ R0 and S = Id + S0 on a category C is that i) T should
contain as submonads R and S, and ii) T should be closed under the application
of R0 and S0. Hence T should consist of alternating sequences beginning from R0

or S0. Thus we ask for the least solution to the equation system

T1
∼= R0(Id + T2) T2

∼= S0(Id + T1)

i.e., we define

(T1, T2)X = µ(R0(X + 2), S0(X + 1))

or, equivalently, point-freely,

(T1, T2) = µ(R0(Id + 2), S0(Id + 1))

and write t1 : R0(Id + T2) → T1, t2 : S0(Id + T1) → T2 for the structure maps
associated to T1, T2. Our idea is now that T = Id + (T1 + T2). Intuitively, T1

consists of elements in T whose top layer is a non-variable R-layer (captured by
the use of R0) and whose next layers are either variables or a non-variable S layer
etc. We henceforth assume T1 and T2 exist, for example, we may require C to have
ω-colimits and for R0 and S0 to preserve them.

TITLE WILL BE SET BY THE PUBLISHER 11

Theorem 3.10 (Coproduct of two ideal monads). Let R = Id+R0 and S = Id+S0

be two ideal monads. If the functors T1, T2 given by the construction above are
defined, then the coproduct of the ideal monads R = Id+R0 and S = Id+S0 exists
and its underlying functor is T = Id + (T1 + T2).

Proof. We first construct a candidate coproduct ((T, η, m), i, j) (a cospan in the
category of monads on C) and then we prove that it is indeed the coproduct (the
initial cospan).

Construction of the candidate coproduct ((T, η, m), i, j): We begin by
constructing the candidate coproduct carrier (T, η, m) and verifying that it is a
monad. Then we proceed to constructing the candidate injections i, j and checking
that they are monad morphisms.

Construction of the candidate coproduct carrier (T, η, m): We have already
defined T . Our candidate unit η is the injection

Id
inl // Id + (T1 + T2) = T

Our candidate multiplication m is

TT = (Id + (T1 + T2))T
[T,inr·(m1+m2)]

// Id + (T1 + T2) = T

where (m1 : T1T → T1, m2 : T2T → T2) is the unique (by mutual iteration) pair
of natural transformations such that the diagram

R0(Id + T2)T

R0(T+m2)

��

t1T // T1T

m1

��
R0(T + T2) p1

// R0(Id + T2)
t1

// T1

and

S0(Id + T1)T

S0(T+m1)

��

t2T // T2T

m2

��
S0(T + T1) p2

// S0(Id + T1)
t2

// T2

commute. Above, p1, p2 denote the composites

R0(T + T2) // R0((Id + T2) + T1)
R0((Id+T2)+t

−1
1)

// R0R(Id + T2)
mR

0 (Id+T2)
// R0(Id + T2)

S0(T + T1) // S0((Id + T1) + T2)
S0((Id+T1)+t

−1
2)
// S0S(Id + T1)

mS
0 (Id+T1)

// S0(Id + T1)

where the unlabelled arrows are trivial coproduct rearrangements under R0 resp.
S0.

12 TITLE WILL BE SET BY THE PUBLISHER

Proof that (T, η, m) is a monad: The post-unit law is obeyed trivially by the
candidate monad (T, η, m): m · ηT = [T, inrId,T1+T2 · (m1 + m2)] · inlId,T1+T2T =
[T, inrId,T1+T2 · (m1 + m2)] · inlT,(T1+T2)T = T .

To see that the pre-unit law is met, let (m
(1)
1 : T1 → T1, m

(1)
2 : T2 → T2) be

the unique (by mutual iteration) pair of natural transformations such that the
diagrams

R0(Id + T2)

R0(Id+m
(1)
2)

��

t1 // T1

m
(1)
1

��
R0(Id + T2)

R0(η+T2)
// R0(T + T2) p1

// R0(Id + T2)
t1

// T1

and

S0(Id + T1)

S0(Id+m
(1)
1)

��

t2 // T2

m
(1)
2

��
S0(Id + T1)

S0(η+T1)
// S0(T + T1) p2

// S0(Id + T1)
t2

// T2

commute.
Now it must be that (m

(1)
1 , m

(1)
2) = (T1, T2) as witnessed by the commuting

diagram

R0(Id + T2)

R0(Id+T2)

��

t1 // T1

T1

��
R0(Id + T2)

R0(η+T2)
//

R0inl

,,

R0ηR(Id+T2)

((
R0(T + T2) //

p1

33R0((Id + T2) + T1) // R0R(Id + T2)
mR

0 (Id+T2)
// R0(Id + T2)

t1

// T1

(in which the crucial triangle commutes by ηR being the pre-unit of mR) and by
the symmetric commuting diagram.

TITLE WILL BE SET BY THE PUBLISHER 13

But it is also the case that (m
(1)
1 , m

(1)
2) = (m1 · T1η, m2 · T2η) as witnessed by

the commuting diagram

R0(Id + T2)

R0(Id+T2η)

��

R0(Id + T2)
t1 //

R0(Id+T2)η

��

T1

T1η

��
R0(Id + T2T)

R0(η+T2T)//

R0(Id+m2)

��

R0(Id + T2)T
t1T //

R0(T+m2)

��

T1T

m1

��
R0(Id + T2)

R0(η+T2)
// R0(T + T2) p1

// R0(Id + T2)
t1

// T1

(in which the bottom right square commutes by construction of m1) and by the
symmetric commuting diagram.

Combining the observations made, we get that (T1, T2) = (m1 · T1η, m2 · T2η)
and therefore T = Id + (T1 + T2) = [inlId,T1+T2 , inrId,T1+T2 · (m1 · T1η + m2 ·T2η)] =
[T, inrId,T1+T2 · (m1 + m2)] · (Id + (T1 + T2))η = m · Tη.

To verify associativity of multiplication, let (m
(3)
1 : T1TT → T1, m

(3)
2 : T2TT →

T2) be the unique (by mutual iteration) pair of natural transformations such that
diagrams

R0(Id + T2)TT

R0(TT+m
(3)
2)

��

t1TT // T1TT

m
(3)
1

��
R0(TT + T2)

R0(m+T2)
// R0(T + T2) p1

// R0(Id + T2)
t1

// T1

and

S0(Id + T1)TT

S0(TT+m
(3)
1)

��

t2TT // T2TT

m
(3)
2

��
S0(TT + T1)

S0(m+T1)
// S0(T + T1) p2

// S0(Id + T1)
t2

// T2

commute.

14 TITLE WILL BE SET BY THE PUBLISHER

We get (m
(3)
1 , m

(3)
2) = (m1 · m1T, m2 · m2T) from the commuting diagram

R0(Id + T2)TT
t1TT //

R0(T+m2)T

��

T1TT

m1T

��
R0(T + T2)T

R0(TT+m2)

��

R0(T + T2)T //

R0(m+m2)

��

R0((Id + T2) + T1)T
R0((Id+T2)+t

−1
1)T

// R0R(Id + T2)T
mR

0 (Id+T2)T
//

R0R(T+m2)

��

R0(Id + T2)T
t1T

//

R0(T+m2)

��

T1T

m1

��

R0R(T + T2)
mR

0 (T+T2)
//

��

R0(T + T2)

��
R0RR(Id + T2)

mR
0 R(Id+T2)

//

R0mR(Id+T2)

��

R0R(Id + T2)

mR
0 (Id+T2)

��
R0(TT + T2)

R0(m+T2)
// R0(T + T2) //

p1

33R0((Id + T2) + T1)
R0((Id+T2)+t

−1
1)

// R0R(Id + T2)
mR

0 (Id+T2)
// R0(Id + T2)

t1

// T1

and the symmetric diagram. In the diagram shown, the upper half and the 2nd
and 4th quarters in the lower half commute by construction of m1, and the closest
to the bottom small square in the lower half commutes by associativity of mR.

And we also get (m
(3)
1 , m

(3)
2) = (m1·T1m, m2·T2m) from the commuting diagram

R0(Id + T2)TT

R0(TT+T2m)

��

R0(Id + T2)TT
t1TT //

R0(Id+T2)m

��

T1TT

T1m

��
R0(T + T2)T

R0(m+T2T)//

R0(TT+m2)

��

R0(Id + T2)T
t1T //

R0(T+m2)

��

T1T

m1

��
R0(TT + T2)

R0(m+T2)
// R0(T + T2) p1

// R0(Id + T2)
t1

// T1

and the symmetric diagram. In the diagram given, the bottom right square com-
mutes by construction of m1.

Putting these pieces of knowledge together, we get that (m1 ·m1T, m2 ·m2T) =
(m1 ·T1m, m2 ·T2m) and hence m ·mT = [T, inr ·(m1 +m2)] · [T, inr ·(m1 +m2)]T =
[m, inr · (m1 +m2) · (m1 +m2)T] = [m, inr · (m1 +m2) · (T1 +T2)m] = [T, inr · (m1 +
m2)] · (Id + (T1 + T2))m = m · Tm.

We realize that in addition to (T, η, m) being a monad the data (T, η, m, T1 +
T2, m1 + m2) form an ideal monad.

Construction of the candidate injections i, j: Next, we need monad morphisms
i : R → T , j : S → T to play the role of injections. We propose to choose

TITLE WILL BE SET BY THE PUBLISHER 15

i = Id + (inlT1,T2 · i0), j = Id + (inrT1,T2 · j0) where i0, j0 are the composites

R0
R0 inl // R0(Id + T2)

t1 // T1 S0
S0inl // S0(Id + T1)

t2 // T2

Proof that i, j are monad morphisms: Preservation of the unit by i is obvious:
i · ηR = (Id + (inlT1,T2 · i0)) · inlId,R0 = inlId,T1+T2 = η.

To prove that i preserves the multiplication, we first check that i0 · mR
0 =

m1 · i0T · R0i from the commuting diagram

R0R
mR

0 //

R0Rinl

��

R0(Id+R0inl)

ttjjjjjjjjjjjjjjjjj R0

R0inl

��
R0(Id + R0(Id + T2))

R0(inl+R0(Id+T2))
//

R0(Id+t1)

��

R0R(Id + T2)
mR

0 (Id+T2) //

R0((Id+T2)+t1)

��

R0(Id + T2)

t1

��

R0(Id + T1)
R0(inl+T1) //

R0(Id+inl)

��

R0((Id + T2) + T1)

R0((Id+T2)+t
−1
1)

UU

R0T
R0 inl //

R0inlT
))TTTTTTTTTTTTTTTTT R0(T + T2)

OO p1

99ssssssssssssssssssssssss

R0(Id + T2)T

t1T

��

R0(T+m2)

OO

T1T m1

// T1

where the bottom right square commutes by construction of m1. From this basis
we obtain that i ·mR = (Id+(inlT1,T2 · i0)) · [R, inr ·mR

0] = [i, inr · inlT1,T2 · i0 ·m
R
0] =

[i, inr · inlT1,T2 ·m1 · i0T ·R0i] = [T, inr · (m1 +m2)] · (Id+(inlT1,T2 · i0))T · (Id+R0)i =
m · iT · Ri.

That j also preserves the unit and the multiplication is proved symmetrically.
Proof that ((T, η, m), i, j) is the coproduct: We now turn to the proof that

that ((T, η, m), i, j) really is a coproduct, i.e., to the construction of copairing.
Construction of the candidate mediating morphism h to given (H, f, g): Given a

monad H and two monad morphisms f = [ηH , f0] : R → H , g = [ηH , g0] : S → H

induced by f0, g0 : R0, S0 → H , let (h1 : T1 → H, h2 : T2 → H) be the unique (by

16 TITLE WILL BE SET BY THE PUBLISHER

mutual iteration) pair of natural transformations such that the diagrams

R0(Id + T2)

R0(Id+h2)

��

t1 // T1

h1

��
R0(Id + H)

f0[ηH ,H]

// HH
mH

// H

and S0(Id + T1)

S0(Id+h1)

��

t1 // T2

h1

��
S0(Id + H)

g0[ηH ,H]

// HH
mH

// H

commute. Our claim is that h = [ηH , [h1, h2]] : T → H is the copair of f , g. We
have to show that h is a monad morphism, a mediating morphism and the unique
such.

Proof that h is a monad morphism: Preservation of the unit by h is trivial:
h · η = [ηH , [h1, h2]] · inlId,T1+T2 = ηH .

To show that h preserves the multiplication, let (k1 : T1T → H, k2 : T2T → H)
be the unique (by mutual iteration) pair of natural transformations such that the
diagrams

R0(Id + T2)T
t1T //

R0(T+k2)

��

T1T

k1

��
R0(T + H)

f0[h,H]
// HH

mH

// H

and S0(Id + T1)T
t2T //

S0(T+k1)

��

T2T

k2

��
S0(T + H)

g0[h,H]
// HH

mH

// H

commute.
Now (k1, k2) = (h1 · m1, h2 · m2) as the commuting diagram

R0(Id + T2)T
t1T //

R0(T+m2)

��

T1T

m1

��
R0(T + T2) //

R0(T+h2)

��

R0((Id + T2) + T1)
R0((Id+T2)+t

−1
1)

//

R0[[η
H ,h2],h1]

��

R0R(Id + T2)
mR

0 (Id+T2)
//

R0R[ηH ,h2]

��

R0(Id + T2)
t1
//

R0[η
H ,h2]

��

T1

h1

��

R0RH
mR

0 H //

R0[ηH ,f0]H

��

R0H

f0H

��
R0HH

f0HH //

R0mH

��

HHH
mHH //

HmH

��

HH

mH

��
R0(T + H)

R0[h,H]
// R0H R0H

f0H
// HH

mH

// H H

and the symmetric diagram demonstrate. In the diagram given, the upper half
commutes by construction of m1. In the lower half, the 2nd and 4th quarters
commute by construction of h1, the middle third of the 3rd quarter commutes

TITLE WILL BE SET BY THE PUBLISHER 17

by preservation of the multiplication by f = [ηH , f0] and the rightmost smallest
square by associativity of mH .

But we can also get (k1, k2) = (mH · h1H · T1h, mH · h2H · T2h) as is evident
from the commuting diagram

R0(Id + T2)T
t1T //

R0(T+T2h)

��

T1T

T1h

��
R0(T + T2H)

R0(h+T2H)
//

R0(T+h2H)

��

R0(Id + T2)H
t1H

//

R0(Id+h2)H

��

T1H

h1H

��
R0(T + HH)

R0(h+HH)
//

R0(T+mH)

��

R0(Id + H)H
R0[η

H ,H]H
//

R0[H,mH]

��

R0HH
f0HH

//

R0mH

��

HHH
mHH

//

HmH

��

HH

mH

��
R0(T + H)

R0(h+H)
// R0H R0H

f0H
// HH

mH

// H

and the symmetric diagram. In the diagram shown, the 2nd half of the middle
third commutes by construction of h1 and the 2nd and 4th quarters of the lower
third commute by ηH being the pre-unit of mH resp. by associativity of mH .

As a consequence (h1 · m1, h2 · m2) = (mH · h1H · T1h, mH · h2H · T2h) and
therefore h ·m = [ηH , [h1, h2]] · [T, inrId,T1+T2 · (m1 + m2)] = [h, [h1 ·m1, h2 ·m2]] =
[mH · ηHH ·h, [mH ·h1H ·T1h, mH ·h2H ·T2h]] = mH · [ηH , [h1, h2]]H · (Id + (T1 +
T2))h = mH · hH · Th.

Proof that h is a mediating morphism: To prove that h · i = f , we first record
that h1 · i0 = f0 from the commuting diagram

R0

R0inl

//

i0

''

R0inl

%%JJJJJJJJJJ
R0(Id + T2)

t1
//

R0(Id+h2)

��

T1

h1

��
R0(Id + H)

R0[η
H ,H]

// R0H
f0H

// HH
mH

// H

R
f0

//

R0ηH

OO

H

HηH

OO {{{{{{{{

{{{{{{{{

which uses the construction of h1 and the fact that ηH is a pre-unit of mH . Further
we get that h · i = [ηH , [h1, h2]] · (Id + (inlT1,T2 · i0)) = [ηH , h1 · i0] = [ηH , f0] = f .

The proof that h · j = g is symmetric.
Proof that h is the only mediating morphism Uniqueness of h in the capacity of

a morphism mediating between (T, i, j) and (H, f, g) is proved by the following
commuting diagram and the symmetric diagram, which show that from h′ =

18 TITLE WILL BE SET BY THE PUBLISHER

[ηH , [h′
1, h

′
2]] being a mediator it follows by construction of (h1, h2) that (h′

1, h
′
2) =

(h1, h2). From this, the desired result h′ = h is immediate.

R0R(Id + T2)
mR

0 (Id+T2)

// R0(Id + T2)

t1

��

R0((Id + T2) + T1)

OO

R0(T + T2)

OO

R0(Id + T2)
R0(Id+inr) //

R0inl

66nnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn

R0ηR(Id+T2)

::uuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

f0(Id+T2)

��?
??

?
?

??
?

??
?

?
??

?
?

??
R0T

R0 inlT //

R0inl

66mmmmmmmmmmmmmm

i0

((RRRRRRRRRRRRRRRR

f0T

""D
DD

DD
DD

DD
DD

DD
DD

DD
DD

DD
R0(Id + T2)T

R0(T+m2)

OO

t1T

��
T1T

m1 //

h′
1T

��

T1

h′
1

��

H(Id + T2)
H(Id+inr) //

H[ηH ,h′
2] ((RRRRRRRRRRRRRR

HT

H[ηH ,[h′
1,h′

2]]

��
HH

mH

// H

The top right square of the diagram commutes by construction of t1, the bottom
right square by h′ preserving the multiplication, the top triangle by ηR being a
pre-unit of mR. One of the triangles in the middle reflects the assumption that
f · i = h′.

Intuitively, uniqueness should not be surprising since any mediating monad
morphism h′ : T → H must equal h = [ηH , [h1, h2]] i) on variables because monad
morphisms preserve the unit; ii) on R0 and S0 because on them it is determined by
f0, g0; and iii) on all other elements of T since they are essentially multiplications
of R0 and S0 which are preserved by monad morphisms. �

Using Bekić lemma, the definition of T from the theorem can be rewritten
without the use of a simultaneous fixed point: by the lemma,

T1
∼= µ(R0(Id + S0(Id +)))

T2
∼= S0(Id + T1)

TITLE WILL BE SET BY THE PUBLISHER 19

and hence (by the rolling lemma in the last step)

T = Id + (T1 + T2)
∼= (Id + T1) + T2

∼= (Id + T1) + S0(Id + T1)

= S(Id + T1)
∼= S(Id + µ(R0(Id + S0(Id +))))
∼= S(µ(Id + R0(Id + S0 ◦)))

4. Applications

Having at our disposal a general construction for the coproduct of two ideal
monads (Theorem 3.10), we can apply it to our example ideal monads, especially
to those that are not free and thus out of the reach of the more specific result on
the coproduct of a free monad with any monad (Proposition 2.9). We now turn
to presenting some such applications.

Example 4.1 (Coproduct of two free completely iterative monads). We know
that the coproduct of two free monads TF = µ(Id+F ◦) and TG = µ(Id+G◦) is
TF+G = µ(Id+(F +G)◦). This might provoke us to conjecture that the coproduct
of two free completely iterative monads T∞

F = ν(Id+F ◦) and T∞
G = ν(Id+G◦)

is T∞
(F+G) = ν(Id + (F + G) ◦). Theorem 3.10 tells us however, that this cannot

be: we get finite interleavings of FT∞
F and GT∞

G which means that, e.g., infinite
alternations of F and G are not in the coproduct.

Intuitively, T∞
F+G fails to be the coproduct because it is too large. The coproduct

must be the least functor containing T∞
F and T∞

G and closed under variables and
substitution. To produce such a functor “from below”, one need not start with
T∞

F and T∞
G and then allow infinite combinations of these with substitution: it is

clearly enough to allow substitution to be used only a finite number of times. �

Example 4.2 (Binding operators cannot be added with a coproduct). Our central
theorem allows us to consider questions such as the modularity of higher order
syntax. For example, one would expect the language of the lambda-calculus L =
µ(Id + ∆ ◦ + ◦ δ) to be the coproduct of Lapp = µ(Id + ∆ ◦) ∼= Id + ∆Lapp

and Labs = µ(Id + ◦ δ) ∼= Id + Labsδ since this kind of modularity holds for
first order terms. However, this is not the case as can be deduced from Theorem
3.10: the coproduct consists of all finite interleavings of ∆Lapp and Labsδ and
that, sadly enough, excludes even the term λy.xy: the body of λ-abstraction can
only be an application if the application merely uses the context from outside the
λ-abstraction: terms λy.st where y is in the context of s or t are forbidden. The
reason is that terms such as λy.xy are not constructible from applications and λ-
abstractions using variables and (the proper, capture-avoiding) substitution only,
one needs the naive substitution to manufacture λy.xy. A closer account of this
phenomenon is given in [10]. �

20 TITLE WILL BE SET BY THE PUBLISHER

Example 4.3 (Combining non-deadlocking non-determinism with probabilistic
choice). What the right way is to combine non-determinism with probabilistic
choice has been a long-standing question in programming language semantics, cf.
[13,23,27,28]. Notably, for example, there is no distributive law in Set of the non-
determinism monad over the probabilistic choice monad and none in the opposite
direction either1. Theorem 3.10 tells us that the coproduct consists of all finite
interleavings of non-trivial non-determinism and non-trivial probabilistic choice:
one can think of its elements as wellfounded trees whose leaves are labelled by
values and whose branching nodes have branching factor at least two and have their
outgoing nodes alternately either unlabelled (corresponding to non-determinism)
or labelled with rational numbers from (0, 1] adding up to 1 (corresponding to
probabilistic choice). This datatype is very close to the form of synchronization
trees used by Varacca [28], except that he allows trivial branchings. �

We feel that these example applications we have shown are very encouraging
and there is much that can be concluded about combinability of monads using
Theorem 3.10 especially in relation to non-free monads relevant for notions of
syntax or computation.

5. Conclusions and Future Work

The central thesis of this paper is that i) monads model a number of important
and interesting syntactic and computational phenomena; ii) understanding how
to combine monads can give us information about how these phenomena interact;
and iii) coproducts of monads are the canonical mechanism for combining monads.
Current techniques for calculating the coproduct of monads tend to be either gen-
eral and suffer from resulting complexity or specialised in which case they suffer
from non-applicability to a number of important situations. We have addressed
this problem by showing how the coproduct of a large number of monads, includ-
ing many where research is currently very active, can be reduced to fixed point
formulae involving only functorial operations. The applicability of these results is
demonstrated by Section 4.

More generally, we feel that the results contained in this paper are just what is
required to spur research in the area of modular syntax and computation. We are
currently working on two such. Firstly, we have seen in Section 4 a manifestation
of a form of non-modularity of higher-order syntax. But from general principles
there must be modularity! Surely what this result highlights is that one simply
needs to take the coproduct of monads in a different category. Our second idea
concerns modular proof theory. Clearly theorems like cut-elimination for various
simply typed λ-calculi are modular and yet there is no mathematical mechanism
for formally expressing this fact. By viewing a simply typed λ-calculus as a monad
over the category of graphs, cut-elimination becomes the existence of a distributive
law over the path functor. We can then give a modular, and semantic, proof of

1Varacca [28] claims this referring to Plotkin, private communication.

TITLE WILL BE SET BY THE PUBLISHER 21

cut-elimination by proving the coproduct of monads with such distributive laws
also has a distributive law, i.e., also has a cut-elimination theorem.

It is also worth finishing this paper by contrasting our approach with that
of Hyland, Plotkin and Power [12] where the object of study is not monads but
rather other abstractions, e.g., (enriched) Lawvere theories, and other combinators
are also considered, e.g., the tensor product and a distributive combination. We
certainly are very interested in these other combinators and plan to investigate
their application in due course. As for whether monads really provide the right
level of abstraction or whether there is finer structure at play, this is a question of
active research and it is too early for a definitive answer. While there is certainly
merit in the argument that the use of many monads is really dependent on the
operations and equations defining them, in our work on modular rewriting [20]
we found that the key properties such as confluence and layer structure were
much easier to state at the level of monads than at, say, the level of presentations
or classifying categories. Our overall view is thus pragmatic—the results and
approach of this paper seem appropriate, for our needs, but deeper and more
fundamental results may well change this view.

The authors thank the referees and John Power for their insightful comments. N. Ghani’s
research was supported by EPSRC under grant No. GR/M96230/01 and by the Royal
Society of London under the grant Coalgebra and Recursion. T. Uustalu’s research was
supported by the Estonian Science Foundation under grant No. 5567 and his participation
at ETAPS 2003 was made possible by a travel grant from the Estonian Information
Technology Foundation.

References

[1] P. Aczel, J. Adámek, S. Milius, and J. Velebil, Infinite trees and completely iterative theories:
a coalgebraic view, Theor. Comp. Sci. 300(1–3) (2003) 1–45.

[2] J. Adámek, S. Milius, and J. Velebil, Free iterative theories: a coalgebraic view, Math.
Struct. in Comp. Sci. 13(2) (2003) 259–320.

[3] J. Adámek and J. Rosický, Locally Presentable and Accessible Categories, London Math.
Soc. Lect. Note Series 189, Cambridge University Press, Cambridge (1994).

[4] M. Barr, Coequalizers and free triples, Math. Z. 116 (1970) 307–322.
[5] M. Barr and C. Wells, Toposes, Triples and Theories, Grundlehren der mathematischen

Wissenschaften 275, Springer-Verlag, Berlin (1985).
[6] J. Beck, Distributive laws, in Seminar on Triples and Categorical Homology Theory (ETH,

1966/67), edited by B. Eckmann, Lect. Notes in Math. 80, Springer-Verlag, Berlin (1969)
119–140.

[7] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding, in Proc. of 14th
Ann. IEEE Symp. on Logic in Computer Science, LICS’99 (Trento, July 1999), IEEE CS
Press, Los Alamitos, CA (1999) 193–202.

[8] N. Ghani, C. Lüth, F. de Marchi, and J. Power, Dualising initial algebras, Math. Struct. in
Comp. Sci. 13(2) (2003) 349–370.

[9] N. Ghani, C. Lüth, and F. De Marchi, Coalgebraic monads, in Proc. of 5th Wksh. on
Coalgebraic Methods in Computer Science, CMCS’02 (Grenoble, Apr. 2002), edited by
L. S. Moss, Electr. Notes in Theor. Comp. Sci. 65(1), Elsevier, Amsterdam (2002).

22 TITLE WILL BE SET BY THE PUBLISHER

[10] N. Ghani and T. Uustalu, Explicit substitutions and higher-order syntax, in Proc. of 2nd
ACM SIGPLAN Wksh. on Mechanized Reasoning about Languages with Variable Binding,
MERLIN’03 (Uppsala, Aug. 2003), edited by F. Honsell, M. Miculan, A. Momigliano, ACM
Press, New York (2003).

[11] J. A. Goguen, A categorical manifesto, in Math. Struct. in Comp. Sci. 1(1) (1991) 49–67.
[12] M. Hyland, G. Plotkin, and J. Power, Combining computational effects: commutativity and

sum, in Proc. of IFIP 17th World Computer Congress, TC1 Stream / 2nd IFIP Int. Conf.
on Theoretical Computer Science, TCS 2002 (Montreal, Aug. 2002), edited by A. Baeza-
Yates, U. Montanari, and N. Santoro, IFIP Conf. Proc. 223, Kluwer Academic Publishers,
Dordrecht (2002) 474–484.

[13] C. Jones and G. D. Plotkin, A probabilistic powerdomain of evaluations, in Proc. of 4th
Ann. IEEE Symp. Logic in Computer Science, LICS’89 (Pacific Grove, CA, June 1989),
IEEE CS Press, Washington, DC (1989) 186–195.

[14] M. Jones and L. Duponcheel, Composing monads, Techn. report RR-1004, Dept. of Comp.
Sci, Yale Univ. (1993).

[15] G. M. Kelly, A unified treatment of transfinite constructions for free algebras, free monoids,
colimits, associated sheaves and so on, Bull. of Australian Mathematical Society 22 (1980)
1–83.

[16] G. M. Kelly and J. Power, Adjunctions whose counits are equalizers, and presentations of
finitary monads, J. of Pure and Applied Algebra 89 (1993) 163–179.

[17] F. E. J. Linton, Some aspects of equational categories, in Proc. of Conf. on Categorical
Algebra (La Jolla, CA, June 1965), edited by S. Eilenberg, D. K. Harrison, S. Mac Lane,
H. Röhrl, Springer-Verlag, Berlin (1966) 84–94.

[18] C. Lüth, Categorical Term Rewriting: Monads and Modularity, PhD thesis, Lab. for Foun-
dations of Comp. Sci., Univ. of Edinburgh (1998).

[19] C. Lüth and N. Ghani, Monads and modularity, in Proc. of 4th Int. Wksh. on Frontiers
of Combining Systems, FroCoS 2002 (Santa Margherita Ligure, Apr. 2002), edited by
A. Armando, Lect. Notes in Artif. Intell. 2309, Springer-Verlag, Berlin (2002) 18–32.

[20] C. Lüth and N. Ghani, Monads and modular term rewriting, in Proc. of 7th Int. Conf. on
Category Theory in Computer Science, CTCS’97 (Santa Margherita Ligure, Sept. 2002),
edited by E. Moggi and G. Rosolini, Lect. Notes in Comp. Sci. 1290, Springer-Verlag, Berlin
(1997) 69–86.

[21] E. G. Manes, Algebraic Theories, Graduate Texts in Mathematics 26, Springer-Verlag,
Berlin, 1976.

[22] R. Matthes and T. Uustalu, Substitution in non-wellfounded syntax with variable binding,
in Proc. of 6th Wksh. on Coalgebraic Methods in Computer Science, CMCS’03 (Warsaw,
Apr. 2003), edited by H. P. Gumm, Electr. Notes in Theor. Comp. Sci. 82(1), Elsevier,
Amsterdam (2003).

[23] M. Mislove, Nondeterminism and probabilistic choice: obeying the laws, in Proc. 11 Int.
Conf. on Concurrency Theory, CONCUR 2000 (University Park, PA, Aug. 2000), edited by
C. Palamidessi, Lecture Notes in Comp. Sci. 1877, Springer-Verlag, Berlin (2000) 350–364.

[24] E. Moggi, Computational lambda-calculus and monads, in Proc. of 4th Ann. IEEE Symp.
on Logic in Computer Science, LICS’89 (Pacific Grove, CA, June 1989), IEEE CS Press,
Washington, DC (1989) 14–23.

[25] E. Moggi, An abstract view of programming languages, Techn. report ECS-LFCS-90-113,
Lab. for Foundations of Comp. Sci., Univ. of Edinburgh (1990).

[26] L. Moss, Parametric corecursion, Theor. Comp. Sci. 260(1–2) (2001) 139–163.
[27] R. Tix, Continuous D-cones: convexity and powerdomain constructions, PhD thesis, Techn.

Univ. Darmstadt (1999).
[28] D. Varacca, The powerdomain of indexed valuations, in Proc. of 17th Ann. IEEE Symp.

on Logic in Computer Science, LICS’02 (Copenhagen, July 2002), IEEE CS Press, Los
Alamitos, CA (2002) 299–308.

TITLE WILL BE SET BY THE PUBLISHER 23

Communicated by (The editor will be set by the publisher).
Received 20 October 2003, accepted 18 February 2004, final version 4 May 2004.

