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1 cyn-1 1 n-1
Pr(Al, lac) = 1 - 5(1 + wl)(l - 5) *+ 3 wl(l-c) |
1 cyn=-1 1 n-1
Pr(Ag,n|bc) =1 - §(l + WE)(l - 5) * 3 Wg(l-c)
Nc 1\]c
where LA and LN s Further,
a d b
= L 1
e ="n'§l {5[1-P1~_(A1’.n[g§)] + ~2-[1-Pr(A2,n|bc)]}
1. 1=
iy (1 + 5 W)
where_ W = 5 (Wl + WE)' The parsmeter v is an index of gimilarity be-
tween the stimuli ac and be; as W approaches its maximum value of

1, the number of total errors increases. Further the proportion of
correct responses over- the presolution trial sequence should fall in

either the interval

ol
A
ae

IA

ol
+

=

e
I,......I
1
=
l_l
p—g

cr the interval
1 1 1 .
2 = Pps < R (l-WQ) ?

depending on whether ac or be 1is conditioned first.

6.3 Component Models
So long as the number of stimulus patterns involved in a discrim-
ination experiment is relatively small, an analysis in terms of an

appropriate case of the mixed model can be effected along the lines
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indicated in Sec. 6.2. But the number of cues need become only moder-
ately large in order to generate a number of patterns so grest as to be
unmanageable by these methods. However, if the number of patterns is

large enough so that any particular pattern is unlikely to be sampled
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more than once during an experiment, the emendations of the response
rule presented in Sec. 6.2 can be neglected and the process treated as
a simple extension of the component model of Sec. 5.1 .

Suppose, f'or example, that a classical discrimination involved a
set 5. of cues available oniy on trials when A

1

set 82 of cues available only on trials when A2 1s reinforced, and

1 is relnforced, a

a set .Sc of cues common to Sl and 82 3 further, assume that a constant
fraction of each set presented is sampled by the subject on any trial.

If the two types of trials occur with egual probabilities, and if the
numbers of cues in the various sets are large enough so .that the number

of possible trial samples is larger than the number 5f trials in the
experiment, then we may apply Eq. 53 of Sec. 4.3 to cbtain approximate

expressions for response probabilities. For example, asymptotically

all of the N

1 elements of Sl and half of the Nc elements of Sc

on the average) would be conditioned to response A and therefore
- 1 ?

probability of Al on a trisl when 8, was presented would be predicted

1
by the component model to be

1 2 7e

Pr(Allsl) =

which will, in general, have a value intermediate between and unity.

1
2
Functions for learning curves and other aspects of the data can be de-
rived for various types of discrimination experiments from the assump-

tions of the component model. Numerocus results of this sort have been
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published (Burke and Estes, 1957; Bush and Mosteller, 1951b; Estes,
1958, 196la} Estes, Burke, Atkinson, and Frankmann,1957; Popper, 1959;

Popper and Atkinson, 1958).

6.4 Analysis of a Signal.Déteétion.Experiment

Although thué far we have developea stimulus.sampling ﬁodels only
in connection with simple aésoeiative leérning and discrimination iearn—
ing, it shduld be noted tﬁat such models may have much brba&er areas of
'appliéationp .On cceasilon oné may even see péséibiiities of using the
cbncepts of Stiﬁulus sampling and association to intefpret experimeﬂts
that; by coﬁventional classificafions;.do not.fall within the area of
7 leérning. :Inrthis section Wé examine.such.a case.

” The experiment to be considered fité.one 6f the standéfd pafadigms
aséociatedlwith gtudies of signal detection (See; e;go, Tanner and
Swebs, l95h5 ;Swets, Tanner and:Birdsali, 1661). The subject's task
in ﬁhié experiment, like.that of an obsérver menitoring a.rédar scfeen,

'ié‘to detect the presencé 6f a visual sigﬁal which.may oécufrfrom time
fo.time'in one.of”sevefal poésible loéationé. Problems of interegt in
conﬁection with theories.of signal detection arise when the éigﬁals are
faint enough so that the observer is unable to repoft them with compiete
accuracy on ail océasionsa One empirical.relation fhéf we Woﬁld want
to éccounﬁ fbf, in quantitative defail, is thét betweén,&étection proba-
bilities and the relative frequencies with wﬁich signals oécur in differ-

ent locationgﬁ Another is the iﬁprovement in'detection rate that may
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occur over & series of trials even when the cbserver receives no
knowledge of weswkts: .

A possible way ef accounting for the "practice effect! is suggested
by some rather obvious anelogies between the detection experiment and
the probability learning exﬁeriment considered earlier: We Would ex-

pect that; when the subject ectually deteote a signal (in terme.of
etimhlus sampling theory, samples the corresponding stimulue'element),
he will make the appropriete verbal reportn Further, in the absense of
-anr other information, this detection of the signal may act as a rein-
f0r01ng event, leading to condltlonlng of the verbal report to other
cues in the situation which may have been available for sampllng prior
to the occurrence of the 51gnalq If soj gnd if 51gnals ceeur in -scme
locations more.often_than ln others, then on the basis of the theory
developed ln earlier Sections we should tredict that the subject will
-eome to report the signal in the preferred locatlon more frequently
:than in others on trials when he fails to detect & Slgnal and is forced
to respond to beekground cues. These notions will be made more explicit
ih connecticn with the following analysis of a visual recocgnition exper-
1ment reported by Kinchla (1962). | |

K:anhla employed a forced- ch01ce vieual detection situation
1nvolving a series of over 900 dlscrete trlals for each subJect Two
areas were outllned on a unlformly 1llum1nated mzlk glass screenn Each
.trial began with an auditory signal, -During.the euditory signal one cof

the following events oocurred:
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(1) A fixed increment in radiant intensity occurred in ares 1 -

a _Tl type trial.
(2) A_fixed increment in radiant intensity occurred in area 2 -

a T2 type trial.

- (3} No change in the. radiant character of either signal area

occurred - a TO type trial.

' Subjects were told that a change in illumination would occur in
ocne of the two areés on each triél, Following ﬁhe'auditory signal, the

{subject was required to make either¢an A, or A2 respohse (ice.,

1
select.one of two keys placed ﬁelow the signal areas)”tolindicéte which
areﬁihe believed.haé changed'in brighfnessn Thé subjecf'was given no
.infﬁrmafioﬁ at the eﬁd‘of the triél as to whether or nﬁt his.response
was ;orrebtn Thus, on & given trial oné of three events occurred (Tl 5
'Tg ’ TO ), fhe subject méde either an Al or A2 response, and a
“short time later the néxt trial begén, | |

.For‘a fixed signai-inﬁenSity'the experiﬁentér hgs thé option of
specifying a schedule for presénting the Ti events, Kinchla selected

[

a simple probabilistic procedure in which Pr(Ti n) = &, -and
. 2

El + §2 + §O =1 , . Two groups of subjects were run. For Group I,

£, = &y = ok agd Ep = +2 Fgr Group II, 8, = &g

The purpose of Kindhla‘s study was to determine hov‘these event schedules

= 02 and gg = o6 e

irfluenced the likelihood of correct détebtions¢
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The model that we will use to analyze the experlment combines
'.'two quite distinct processes- a8 simple perceptual process defined
with regard to the signal events -and a learning process associated

'r with background cues.' The stimulus situation is conceptually repre—

:sented in terms of two Sensory elements l. and L ; corresponding
'to the two alternative signals, and a set 8 of elements associated
'.with stimulus features common to all trials.- On every. trial the sub—
Ject is assumed to sample 8 single element from the background set S
1l

_and he mey or may not sample one of the sensory elements. If the s

element is sampled an - A occurs, if is sampled an A2

- %2
‘occurs.: If neither sensory element is sampled the subject makes the
_;Tresponse to which the background element is cOnditioned._ Conditioning
.Ll:of elements in S 'changes from trial to trial via a learnlng process.
| The sampling of sensory elements depends on the trial type ( T

sdé s T ) and is described by a simple probabilistic model. fTh] _
learning process associated with S is assumed to be the multi element

__pattern model presented in Sec. §. Specifically, the assumptions of

the model are embodied in the following statements-

1. If T, (1 =1, 2) occurs, then sensory element s, will be
sampled with probability h (with probability 1~h, neither

=3 nor s

1 , Will be sampled). If T  occurs, then neither

, -0
sl nor 52 will be sampled.
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2.,  Exactly. one element is sampled from S on gvery trial.
Given the set B8 of N elements, the probability of .
sampling a particular element is % N

3. If s (1=1, 2) 1is sampled on trial n , then with
probgbility -c! ~the element sampled from S on the
triai becomes conditionéd to A, at the end of trial n .

i

" If neither &. nor s

1 o is sampled, then with probabil-

ity - ¢ the element sampled from S hecomes conditioned

with equal likelihood to Al or A2 at the end of trial n .

L, If sensory element s, is sampled, then A, will occur.
If neither sensory element is sampled, then the response

to which the sampled element from S8 is conditioned will

OCCUY.

If we let. P, denote the expected proportion of elements in S
conditioned to A, &t the start of trial =n , then (in terms of state-
£l

ments 1 and 4 above)} we can immediately write an expression for the

likelihood of an -Ai response given .a Tj event; namely,

Pr(Al,n'Ir'F-ll;n) =h + (l' h)Pn . (883')
Pr(a, [T, ) =h+ (1-0)(1-p)) | (88b)
, P.'r'(ﬂ;ll.,,_.nlT_O,_n) =Py . (88c)
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The expression for p, can be obtained from statements 2 and 3 by the
same methods ueed throughout Sec. 3 of this chapter and 1s as follows

(for a derivation of this result see Atkinson, 1962a):.

Py 7 Be ~ [_Poo - Pl}[l - %(a&b)]n_l .

<
2

where & = £he' + (1-R)S +ELR S, b =ghe’ +(1-h)5+ goh;.% ,

and p =

o = aibh ° Dividing the numerator and denominator of 2, by ¢

A

V'yielgs the expression

E by + Z(1-n) + £ Z
pm_ } (l'go)(l -h+hy) + E‘O -

(89)

where ==, Thus, the asymptotic expression for 1 does not depend

¢

on the absolute values of ¢! and ¢ but only on their.ratio°

An inspection of Kinchla's data indicates that the curves for
IT(Ai]Tj) are extremely stable over the last 40O or so trials of the
experiment; consequently we shall view this portion of the data as
asymptotic. Table T presents the observed mean values of Pr(Ai[Tj)
for tﬁe‘last 400 trials. The corresponding asymptotic expressions are

. gpecified in terms of Egq. 88 and Eq. 89 and are simply

Insert Table 7 about here

i
i
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Table 7

Predicted and Observed Asymptotic Response Probabilities

for Visuwal Detection Experiment

Grbup I. . Group IT
Observed | Predicted | Observed |Predicted
- Pf(AllTl) 645 645 .558 .565
Pr(AEITe) 643 645 .T30 2k
pr(a]T,) L9k .500 388 .388
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Lim Pr(4; ani 2= h_é (1-n)p, (90e)
n - ? L '

lim Pr(A2 l =h+ (1-h)(1-p) © o (90)
1’1-—)90

lim Pr(Al-nlmo =R, e s {90e)

n—omw

"In order to generate asymptetlc predlctlons we need values for h and
¥ . We first note by 1nspect10n of Eq. 89 that P, % for Group I;

in faet, whenever §l = 52 we have P, ; % » Hence; taking the observed
asymptotic valug’for .Pr(Allil) in_Group T (i.e., .645) and setting
it equal to hl+l(1-h)% yields an estimate of h = ,289 » The back-
ground illumination and the;i;erementiin'redient intensity:are_the same
for both experimental groups and therefore we would require an estimate
of h obtainedrfrom_Group I to he app;icable to Group IT. In order to
estimate 1 , e take the observed aeymptotic value of Pr(AlLTO) in
Group II and set it equal to the right eide of qu 89_with h = ,289 5
51 = go = .2 and &, =.¢6 5 solving for we obtain.'$ ='éh8 .
Using these estimates of h and ¥ and Egs. 89 .and 90 yield the
as&mptotic predictions given in Table 7.

_Qver all the equations give an excellent aecount'of theSe_pa:ticular
response measures. However, a more cruciel test of the ﬁedel ie provided
by an ana;ysie_of the sequential deta, _To inqicate the nature of”the
sequentiallpredictions that can ee obtaiﬁed, conside: the probabiiity
tfiel gi#eﬁ ﬁﬁe-verious triel types aﬁd.

of an A, respongse ona T

1 L

responses that can occur on the preceding trial, i.e.,
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Pr(A |T

1,n+l

l,n+lAi,nTj,n) ’

where i1=1, 2 and j=0, 1, 2 . Explicit expressions for these
gquantities can be derived from the axioms by the same methods used
throughout this chapter. To indicate their form, theoretical expres-

sions for 1lim Pr{(a |T

n -

1,041 l,n+lAi,nTj,n) will be given and,  to
simplify notation, they will be written as Pr(AllTlAiTj) . The

expressions for these quantities are as follows:

(b + (1-n)8lp + (1-p Joy!

P;(Ai['ﬁ:lAlTl) . — » {H- LK - (92)
N el
‘PI_'(AllTlAETz) ) hyp_ + (o 1;{(1-h)a'](l—yo‘,) L —NIL)X (91¢)

"'*'Pr(AllTlﬁng)' _ (;(—lh-)i};m e -Nl)X | (914)
Pe(ay Tya,70) = § ¢ R - (91e)
'Pr(AlITiggTO) - %' + (N—'ng - : - (91f)

where y = c¢'h + (1-c') , 7' =c¢' + (l-chh, d=2h+ (1-3),
c ' ' : } -
81 = 5 h + (1-h)p ) and. YI= h + (1-h)(1-pm) .

1

o
+ ._(‘1.— E)h . bd
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Tt is interesting to note that the asymptotic expressions for

lim Pr(Aijanj’n) depend cnly on h and v , whereas the guantities
in Eg. 91 are functions of all four pargmeters N, ¢, ¢' and h .
Comparable sets of equations can be written for Pr(A2|I2AiTj) and
Pr(AliTOAiTj) .

| The expressions in Eq. 91 are rather formidable, but numerical pre-
dictions can be easily caldulated onee vﬁlues for the éarameters have
been cobtained. Further, independently of the parameter values, certain
- relations among the seguential prcbabilities can be specified. As an
example of such a relation, it can be shown that Pr(AilTlAlTO) >
Pr(AliTlAETO) for any stimulus schedule and any sgt of parameter values.

To see this, simply subtract Eq. 91f "from Eq. 9le and note that & > &' .

Insert Table 8 ahout here

In Table 8 the observed values for .Pr(AiITjAkTﬂ) are presented as
reported by Kinchla. HRstimates of these conditional probabilities were
computed for individual subjects using the data over the last 400 trials;
theavarages of these individual estimates are the guantities given in
the table. Each entry.is based on Eﬁ subjects.
| Tn order to generate theoretical prediciions for the cbserved
entrieg in Table 8 values for N, ¢, ¢' and h are needed. Of course,
estimétes of h and V¥ = %ﬁ glready hgve been made for this set of
data, and therefore it is only necessary to estimate N and either c

or c¢' . We obtain our estimstes of N and c by a least squares
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Teble 8

Predicted and Observed Asymptotic Segquential Response

Probabilities in Visuai Detection Experiment

, 'Group.I Group II
Obser}ed Predicted | Observed Predicted
PT(A2|T2AiTi) 57 .58 .59 ;6h.
Pr(AElTéAéTl) .65 .69 .70 .76
Pr(a, | T,A,T,) .71 7L 79 17
Pr(A,|T,A T,) 61 .59 .69 .66
Cpr(a,lTA T ) .5 .59 68 .66
Pr(A2|T2A2To) 66 ;70 AT (.
: Pr(Al]TlAlTl)' VT3 el 70 .65
.Pr(Al|TlA2le 62 59 59 52
- Pr(AllTlAETQ) : .53 ;58_ -.55 .51
| Pr(AerlAlTe)_ 66 70 By | ek
Pr(AlITlAlTO)_' .72 .70 .61 .63
. Pr(AlITlAafo) 61 .59 18 .52
Pr(AELTOAlml) .38 40 A7 Ao
- Ba(Ay|T AT .56 .58 .59 .66
Pr(AleOAETE) yan .60 67 .68
Pr(A2|TOAlT2) A7 b2 51 .51
-Pr(AE[TOAlTO) .h? W2 .50 .51
'ff(AngOAETO) .60 .58 .65 .66
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A
method; i.e., we select a value of N and e (where c' = cy) 8o that
the sum of squared deviations between the 36 observed values in Table 8

and the corresponding theoretical quantities is minimized. The theoreti-

cal quantities for Pr(AlﬁiﬁﬁiTﬁ) are computed from Eq. 91; theoretical
~expressions for Pr(AleaAiTj) and Pr(AEITOAiTj) have not been pre-

sented here but are of the same general form as those given in Eq. 91.

Using this technique, estimates of the parameters are as follows:

.N = 4.23 ¢! = 1.00
(92)
h = 4289 . c = n557

The predictions corresponding to these parameter values are presented

in Takle 8. When one considers that only four of the possible 56 degrees
of freedom repregented in Table 8 have been utilized in estimating ra-
rameters, the close correspondence between theoretical and observed
quantities may be interpreted as giving considerable support to the
assumptions ofthe. model.

A great deal of research needs to be done to explore the conseguences
of this approach to signal detections. In terms of the experimental pro-
blem considered in this section much progress can be made vis differential
tests amcng alternative formulations of the model. Fbr example, we

postulated a multi-element pattern model to describe the learning pro-

cess assoclated with background stimuli; it would be important to deter- o

mine whether other formulations of the learning process guch as those
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developed in Sec. 5 or those proposed-by Bush ard Mosteller (1955)
would provide as good or even hetter theoretical fits than the ones
displayed in Tables T and 8. Also, it would be valuable to examine
#ariations in the scheme for sampiing senscry elements salong lines
developed by luce {1959} and Restle (1961).

More generally, further development of the theory is required
before one could abtitempt %O deal with the wide range of empirical
phencmena encompassed iﬁ the approach to perception via decision theory
proposed by Swets, Tanner; and Birdsall (1961} and others. Some theo-
retical work has begnrddne by Atkinson{1961b} along the lines cutlined

~in this section to account for the ROC (receiverwpperatingﬁcharacteristic)
curves that are’typically observed in detection studies and to specifly

| the relation between forced-chclce and yéswno experiments. However,
this work is still quite tentative-and an evaluation of the approach
will require extensive.analyses of the detalled sequentisl properties

of psychophysical data.

6g5 Multiﬁlé Process Models

..Analyses-of certain behavioral éituations have proved to require
formulations in terms of two or more distinguishable, though possibly
int-gérdependen’f.; 9 learning'brocesses th_at.proceed s,imultaneously; For
- some situatiéns these sépafate proéesses may be directly obSérvable;
for other situations we may find it advantageous to postulate processes
that are uncbservable buﬁ which detefmine in some well-defined fashion

the sequence of obsarvable_behaviorsb
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For exzmple, in Restle's (1955) treatment of discrimination
learning it is assumed that irrelevant stimuli mmy become "adapted"
over a period of time and thus . bhe - rendered nonfunctional. BSuch an

analysig entalls.. a.. two-process system. Onre process has to do with

the conditioning of stimuli to responses, whereas the other process

presceribes both the conditions under which cues become irrelevant and

the rate at which adaptation occurs.

Another application of multiple process models arises with regard
to discrimination problems in which éither a covert or a directly ob-
servable ofienting'response is required. One process might describe
how the stimuli presented to the subject become conditioned to discrim-
inative'respoﬁses° Another process might specify the acquisition and
extinction of various orienting responges; these orienting responSeé
would determine the specific subset of the environment that the subject
would percelive on a given trial. For models dealing with this type of

“problem see Atkinson (1958), Bower (1959), and Wyckoff (1952).

As another example, consider a t%o—procéss scheme developed by
Atkinson (1960) to account for certain types of discrimination behavior. B
This model makes use of the disfinction, developed in Secs. 3 and 4 of
the present chapter, befween component models and pattern models and
suggésts.that the subject may (at any‘instant in time) perceive the

stimulus situation either as a unit pattern or as a collection of

i
H
i
i
i
i
i
i
i
i

individual components. Thus, .two perceptual states are defined; one

in Which the subject responds to the pattern of stimulation and one in
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which he responds to the separate components of the situation. Two
learniﬁgrpfocééses are alsé'defined. One'procesé'Speéifies how the -
patterns ahd‘cbmpohents”becomé conditioned td.fespbnses;'énd the second
' process.describes the conditions under which the subject-shifts from
one percegtual state to-another. The control of the second process is
'governed by the reinforcing schedule,:the subject's sequence of responses,
and by similarity of the discriminanda. Iﬁ this model nelther the condi-
tioning states nor the perceptual states are ocbservable; nevértheless,
~the behavior of the subject is rigorously defined in terms of these
-hypothetiéal'stéﬁés..

Models of the sort described above are generally difficult to work
with mathematically and consequently have .had only limitéd'deVélopment
and analysis. It is for this reason that we select a-particularly
éimple ekample ﬁo illustrate the type of formulation that is possible.
The éXamplé desls with a discrimination learning task investigated by
Atkinson {1961a) in which cbserving responses are categorized and di-

rectly measured.
The experimental situation consists of a sequence of discrete

trials. Each trial 1s specified in terms of the following classifications:

e

Trial type. Bach trial is either a 'I'l or a T2 . The

lJ
trial-type 1s set by the'experimenter and determinesrig

ﬁart:the stimulus event occurring on the trial.
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Rl, RQ: Observing responses. On each trial, the subject makes
either an Rl or R2° The particular observing response
determines in part the stimulus event for that trial.

B1s Sy sg: otimulus events. Following the cobserving response, one

and only one of these stimulus events (discriminative cues)

occurs. On & - Tl trial either, 8, Or sy can occurj on
15

a T2 trigl either 52 or Sb ¢can occur.

15

The subscript b has been used to denote the stimulus event that

may cccur on both- T. and T, +trizls; the subscripts 1 and 2 denote

L e
stimulus events unigue to Tl and T2 trials, respectively.
Al’ AE: Discriminative responses. On each trial the subject makes

either an Al or A response to the presentation of a

2

stimulus event.

0,5 O, Trial outcome. Each trial is terminated with the occurrence

of one of these events. An Ol indicates that Al was

the correct response for that trial, and 02 indicates

that A2 was correct.

The sequence of events on a trial is as follows: (1) The ready

slignal occurs and the subject responds with Rl or RB, (2) Following

1> 8, or s 1is presented. (3) To the onset

of the stimulus event the subject responds with either A or A (&)

the observing response s

The trial terminates with either an Ol or O2 event.
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To keep the analysis simple we consider an experimenter controlled
1 trial, either an Ol— occurs with
with probability 1 -«

reinforcement schedule. OCn e .T

probabllity = or an 0 ona T, trial

13
with probability l-x

1’ 2 2

an ;Ol occurs W1th probabl}lty_ ;2, | 5 ot

The T type trial occurs with probability B and TE- with probability

or an O

1
1 - B._ Thus a Tl - Ol combination oc¢curs with probability 5ﬂl;_ a

T, - O, with probability g(1 - m;); and so on.

- The particular stimulus event 8, (1 = L, 2, b) that the experi-

and

menter presents on any trisl depends on the trial type ('1__"l or T2)

the subject's observing'response (Rl_ or R2)‘ Specifically:

”(i)"If.an-'Rl is made then

(a) with probsbility a the sl' event occurs on &
Tl trial and the 52 event on a -Té .triel.

(b) with probability 1 - the s,_ event occurs,

B
regardless of the trial type.

(ii) " If -an RE"isrmade then

“(a) with probability o the gb'

fegardlees of the trial tyﬁe;

event occurs,

(b) with probability 1 - & the s, event occurs on

1
a le‘ trial and sazuen e: T2 ﬁr;elf
To clerify this procedure, consider the case where O = 1, x, = 1,
and m, = 0: ‘If the subject is to be torrect on eﬁer§ trial, he must

2
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meke an Al on a Tl type trlgl and en A2 on a T2 type trial.
However, the subject can only asCertain the trial type by making the

1
idéntify the trial type, for the occurrence of R, always leads to the

appropriate observing response. That is, R, must be made in order to

presentatibn of s regardless of the frial type. Heﬁce, fbr'perfect

b
respbnding the subject-ﬁust make Rl .With probability 1 and then

nake Al to ;1 or A2 td Sy » The purpdSe of the Atkinson study

was to detefmine how‘variations.in ﬂi ’ ﬁe snd O would affect both
tﬁe observing responses and the discriminaﬁive responses.

Cur analysis of this e#périmentai procedufe will be based on the
axioms presented in Secs. 2 and 3, However, in order to apply the theory
we must first_identify the stimnlus_and reinforeing events.in terms of
the experimental operations. The iddentification we offer seems quite
natural to us and is in accord with the formulations given in Sees. 2
and 3. |

We assume that associated With.the ready signal is & set SR of

pattern elements. ZEach element in 8 is conditioned to either the

R

Rl or the RE obsgrving response; there are N' such elements. At

the start of each trial (i.e., with the onset of the ready signal) an
element is sampled from SR and the subject makes the response to which
the element is bonditioned.

Associated with each stimulus event s, (1=1, 2, b) is a set Sy

of pattern elements; elements in Si are conditioned to either the Al

or the A2 discrimination response. .There are N such elements in each
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set 8, and; for simplicity,.wé assume ‘the sets are pairwise disjoint.
When the stimulus event eh occurs one eleménﬁ is randomly sampled from
Si and the subject mades the discriminaﬁive fespdnse to which the.ele—
ment is conditioned.

Thus, we have two types of learning processes; one defined on the
set S and the other defined on the sets S, 8, and S,. Once the
_reinforcing'eVents have been specified fof theée processes.we can apply
our axioms. The interpretation of reinfofcement for the discrimination
fesponsé process is identical to that'given in Sec. 3. 'If a pattern
element is sample from set Si for 1 =1, 2, b '&ﬂd*fbllbwed by an
0, (i =1, 2) outcome, then With probsbility ¢ the element becomes
condtioned to Aj and with probébility 1 - ¢ the conditioning state
of the sampled element remains unchanged,

The conditicning process for the 8 set is somewhat more complex

R

in that the reinforcing events for the observing responses are assumed
to be subject-contrelled. Specificglly, if an element conditioned to

Ri is sampled from SR and followed by either an Alol or A202

event, then the element will remain conditioned to Ri; however, if

AlO2 or A201 oceurs, then with probability ¢' the element will

become conditioned to the other observing response. Othérwise stated,

if an element from SR elicits an observing response ihat gselects a

stimulus event and, in turn, the stimulus event elicits a correct dis-

crimination response (i.e., Alol or AEOE)’ then the sampled element
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'.Iwiil_femain_qondiﬁioned to that_quexving response. 'HOWEQGr; ifftﬁg _.'
dbéér?ing response selects a stimulus event #haf givés riséutb'an iqé ;”
'_'éérrect discriminatigq_response‘(i;e.;. Alcb. or A,0;) , then tbére
will be a decrement in the tendency to repeat_that Qbserving response
.on the_nexﬁ trial. ‘ o

| Given_the above identification of events we caﬁ‘now geﬁerate &
‘mathematical model for the experiment. _Io-éim§;ifﬁ ﬁhe”énalygis we Let
Nf_;.N = 1.; nam;ly, we assume that there is one élement_in eachHgf“our
stimulus sets_and cOnsequently the sipgle:e;eﬁent is sampled ﬁith proba-
bilityul whénever'the set is afailable. With_this réstriction we may
&escribe the conditioning stgté éf a subject, at the start of each tfial,

by.' an ordered four tuple < ijk£> where

(1) the first member i is 1 or 2 and indicetes whether the

single'elemeﬁt of 'SR iz conditicned to Ri or R2 5

(2) +the second member j is.ll or .2 and indicates whether the

single.element of Sl is conditioned to Al or AE H

(3) the third member k is 1 or 2 and indicates whether the

element of Sb is conditioned to Al or A2 H

(4) - the fourth member. £ is 1 or 2. and indicates whether the

element of 82 ~is conditioned to Al .or AE

Thus,.if the subject is in state < ijkf > he will meke the Ri

observing response; then, to s s or s he will make discrimi-

1’ v 2?

respectively.

native response Aj’ Ak .or Ag’
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From our assumptions it followe that the sequence of random variables

that take the subject states < 1 jk £> as values is a 16 state Markov

chain. Figure 10 displays the possible transitions that can occur when

Insert Figure 10 about here

the subject is in state < 1122 > on trial n . To clarify this tree,

let us trace ocut the top branch. An R, is elicited with probability 1

1
and with probability ﬁﬂl a Tl trial with an Ci outcome occurs; %
further;, given an Rl response on. & T1 trial there ig probability O
that the Sl stimulus event occurs; the onset of the Sl event elicits

a correct response and hence no change occurs in the conditioning state
of any of the stimulus patterns. Now consider the next set of branches:

an Rl occurs and we have a Tlol trial; with probability 1-0 the

Sb stimulus is presented and an A2 occursy the ..A2 response is in-

correct (in that it is followed by an Ol

. bility ¢ the element of set Sb becomes conditioned to A, and

event)}, hence with proba-

1

with independent probability c¢' the element of set SR becones
conditioned to the alternative.observing response, namely R2 o

From this tree we obtéin probabllities corresponding to the <« 11220 >
row in the transition matrix. For example, the probability of going
from < 1122 > to < 2112 > is simply Bnl(l-a)ccf + (l— B)ﬂe(l-a)cc’ 3
that 1s, the sum over branches 2 and 15. An inspection of the transition
matrix ylelds some important results. For example, if @ =1, T, = 1,
and. Ty = C then states < 1112 > and < 1122 > are absorbing and
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Fig. 10. Branching process, starting in Sta£e<<1122>¥, for a single
trial in the two-process discrimination learning model.
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hence in the ;1m1t -Pr(R ‘)t:l s Pr(AlJanl’n) =1., and Pr(A2 [ ) 1.

As before; let u(n) denote the probability of being in state

k4
(n)

< ij'k;,8> on trial n:; when the limit exdists let u..,, = lim U‘ijkﬁ"

1jk2
Experimentally, we shall be interested in evaluating thé‘following

theofetical_predictions:

) . (n) (ﬁ) (n) (n)

Pr(Ry ) = upyqp *Wigp * 1121 T Y1122
Jm) L (m) (n) (n) . |
oyt Upin t Wipo oo (9%2)
on) (n) oin) (n)
Friag 1T n) = a3y +uip *ainy Uit

ol it -l + ol

e fg) vulgl v off) o éiég )

| P?(Al,nITE,n) iiil * £§gl * uéiil * uégil

.,f-a[uiﬁgl + uiggl * “é?%e * uéeizl

09 il ol ol o olgh o

Pr(Ry (M 4y ) = iiil o u§§%l (1= a)u(n)

L oru(n) )

T3 Mo 1951 ]

o (l' a) [y * oo 0 S (o)
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._Pr.(Rz,nn A g) = uéﬂ B @ u2212 * (l O‘)uggl -

309 (43 + ]

* - 30 -2, - uigh) (93¢)

1 ~response. The

second and third equations give the probability df an Al response on

 The first equation gives the probability of an R

_Tl and T2 trig;s, respectively.__Finally, the'last two equatibns_  
present the probability of the joint;occurrence of each observing

-response with an _A-

| response.

In the experiment reported by Atkinson (196la) six groups were run
with 40 subjects in each group. For all groups 7, = -9 and B = .5
‘The groups differed with respect to the value of @ . and ﬂe. For

Groups I~IIL, the value of & = 1; and for Groups IV-VI, & = .75. For

Groups 1 and IV, Ty = -9; for II and V, T, = .5; and for Groups III
and VI, T = .1. The design can be described by the following array:
T2
'9 '5 pl
Lo I I IT - IIT
o
15 v v VI

Given these values of = 52 @ and B our 16 state Markov

1"

) (n) |
chain is irreducible and aperiodic, $hgs? lim uijkﬂ ijkﬂ exists
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and can be cbtained by solving the appropriate set of 16 linear equations
(see Eq. 16). The values predicted by the model are given in Table 9

for the case where c = c'. Values for the uijkﬂ's were computed

Insert Table 9 about here

ﬁnd then combined by Eq. 93 fo predict the response probabilities. By
:ﬁrésenting.é single valﬁe for_éach theoretical.qﬁantitﬁ.in thé tabie we
imply'ﬁhat these predictions are.indeﬁendent of ¢ ahd et . TAdtuai}y
this is nbt_always £hé case. However, f&r_the.Scheduies.empioyed:in'
this expériment'the debendency of théSé'asymptotic predictions on ¢ and
:_é'_ is virtually négligiblé. For c_=-cf  raﬁging'dvér fhé3inﬁerval
rfrcm '.0001' to 1.0 tﬁe pfédictedjvéiueé givéﬁ iﬁ Tabié:9.aré éffected
in only the third-br fourth decimal placé;.it'is'for this reason fhﬁt )
.we_present theoretical values to only two decimal placeé.

In view of these comments i£ should be clear that the predictions
iﬁ Table.9 are_baSed'solely.on the experimental parameter values .
Consequently, differences between subjects (that may be represenfed by
intersubject variability in ¢ and c¢') do not substantially affect

these predictions.
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Tabie 9

- Predicted and Observed Asymptotic Response Probabilities

-in Qbserving Response Experiment

- Q@roup I - Group II_‘.. - Group  ITL ..
Pred. | obs.| b |pPrea. Obs. sp lpPrea. ovs.| sp
Pr(adT) | w90 | .94 | .onk} BLY .85} .16k .79 .79 1.158
Pr(a|Ty) | .90 jo.9h foak | 59| 61} .13k .21| .23 .82
~ Pr(R)) - | .50.) .b5 1279 .55 .59f .279 | 731 .70 .285
er(RyMA) | b5 kT | 29| | m 2% | 13| .16 | .161
Group IV Group V Group'VI:
Pred. Obs.. SD | Pred.| Obs. SD { Pred.] Cbs. SD
CoPe(alm) | .90} .93 | .063 ,8(5 g | | o3| a3 |8
) Pr.(AlIT'E) 90| .95 | .OLk 601 68t | 27 '.'2:5 '_.138 '
_lffr_(_Rl-) A9 | .s0 | a7 52 ] w53 L3055 ] 63 .72 | .265
CEr(R (VA | | b7 | 2| s | o8| 229 | | 36 |38
Pr(R, (&) | 46 | b7 | 247 | 3h] .36 2| 9| .13 |.168
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In-the.Atkinsoﬁ'study 400 trials were run and the response propor-

tions appear fo havé reached & fairly stable leVel'oVer the last half
‘of the experiment. Consequently, the proportions computed over the
final block of 16Q trials were used as estimgtes of asymptotic quantities,
Table 9 presents the mean and standard aeviation of the.hb obserﬁed pfo-
.ﬁbftionshdbtained ﬁnder each éxperimental condition. As can be seen,
-the agreement between theoretical and observed guantities is fairly good.

| Déspite the fact that these gross asymptotié prediétions hold up
zquite Wéll,.it is. obvious that'soﬁe 6f‘the predictions from the model
will not be cénfirmed. The difficulty with the one-element assumption
is that the fundamental theory laid down by the'éxioms of Bec. 3 is
=éomp}.etely deterministic in many respects. For example; when N'' =1
ﬁe have | |

Pr(R

_ 1,n+llol,nAl,an}n) =1

namely4 if an 'Rl_ occurs on trial.'n 'dnd iS'reinforced (i.e., followed

by an A, 0. event) then R

197 Will'reoccur_with pfobébility 1 on trial

1
“n+l . This prediction, of coursé, is a'conéequgnbe of:the assumptiqn
thét we have.but On¢ elem¢nt in set SR_ whi¢h necessarily is sam@led

on every trial. If ﬁe assume more than one element, the détérministié
féatures of fhe_mpdel.nO'longer.hold aﬁd such Sequenfial statistics
becomé functions of ¢, e¢' , N and N' . Unfortunateiy, for-eléboréte

experimental. procedures of the sort described in this section, the multi-

glement case leads to complicated mathematical processes for which it is
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extremely difficult to carry out computations. Thus, the generality
of the multi-element assumption may often be offset.by the difficulty
involved in making predictions.

Naturally it is usually preferable to choose from the availlable
models the one that best fits the data, but in the present state of
psychological knowledge no single‘mndel is clearly superior to all others
in every facet of analysis. The one-element assumption, despite some of
its erroneous features, may prove to be a valuable instrument for the
rapid explotation of a wide variety of complex phenomena. For most of
the cases we have examined, the predicted mean response probabilities
are usually independent/?ir,only slightly dependent on) the number of
- eiemenﬁs assumed. Thus the one-element assumption may be viewed as a
simple device for computing the grosser predictions of the general theory.

For exploratory weork in complex situations, then, we recommend using
the one-element model because of the greater difficulty of computations
for the multi-element models. In advocating this approach we are taking
8 methodological position with which some scientists do not agree. Ouf
position is in contrast to one which asserts that a model should be dis-
carded once it is clear that certain of its prediciions are in error.

We do not take it to be the principal goal (or efen, in many cases; an
important goal) of theory construction to provide models for particular
experimental situaticns. The assumptions of stimulus sampling theory
éfe intended to deseribe processes or reistionships that are common to a

wide variety of learning situations, but with no implication that behavior .
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in these situations is a function solely of the variables represented in
the theory. As we have attempted to illustrate by means of numerous
examples, formulation of a model within this framework for a particular
experiment is a matter of selecting the relevant assgmptidﬁs, or axioms,
of the éeneral theory and interpreting these in terms of the conditions
of the experiment. How much of the variance in a set of data can be
accounted for by a model debends jointl&:on the adequacy of the theoret-
ical assumptions and on the extent to which it has beén possible to
realize experimentally the boundary conditions envisaged in the theory
thereby minimizing ﬁhe effects of variablés not represented. In our
view, & model, in application to a given experiment, is not to be
classified as "correet” or "incorrect"; rather, the degree to which it
accounts for the data may pfovide evidence tending either to support or

to cast doubt on the theory from which the particular'model was derived.
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