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of correct responses over the presolution trial seQuence should fall

in the interval

and, in fact, the same bounds obtained for any subset of trials within

the presolution seQuence. Clearly predictions from this model concern-

ing presolution responding differ sharply from those derivable from any

model that assumes a continuous increase in probability of correct

responding during the presolution period; this model also differs,

though not so sharply, from a pure "insight" model assuming no learning

on presolution trials. So far as we know, no data relevant to these

differential predictions are available in the literature (though simi-

lar predictions have been tested in somewhat different situations:

Suppes and Ginsberg, 1962a; Theios, 1961). Now that the predictions are

in hand, it seems likely that pertinent analyses will be forthcoming.

The development in this section was for the case where there were

only three cues a, b and c. For the more general case we could as-

sume that there are Na cues associated with stimulus a, N
b

with

stimulus b, and N with stimulus c.
c

I~ we assume, as we have in

this section, that ex~p.erimental conditions are such to ensure the sub-

ject's sampling all cues presented 011 each trial, then EQ. 87 may be

rewritten as
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Pr(A
l

lac),n
c)n-l 1 (1 )n-l- - +- W -c
2 2 1

Further,

""
e L (~[l-pr(Al,nlac)] + ~[1-pr(A2,nlbC)])

h~l

~l(l+1:.w)
c 2

where The parameter w is an index of similarity be-

tween the stimuli ac and bc; as w approaches its maximum value of

1, the number of total errors increases. Further the proportion of

correct responses over the presolution trial sequence should fall in

either the interval

1:. < P < 1:. + ,!o (l-w )
2 - ps - 2 '+ 1

or the interval

1:. < P < 1:. + 1:. (1-w
2

) ,
2 - ps - 2 4

depending on whether ac or bc is conditioned first.

6.3 Component Models

So long as the number of stimulus patterns involyed in a discrim-

ination experiment is relatively small, an analysis in terms of an

appropriate case of the mixed model can be effected along the lines
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indicated in Sec. 6:.2. But the number of cues need become only moder­

ately large in order to generate a number of patterns so great as to be

unmanageable by these methods. However, if the number of patterns is

large enough so that any particular pattern is unlikely to be sampled
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more than once during an experiment, the emendations of the response

rule presented in Sec, 6.2 can be neglected and the process treated as

a simple extension of the component model of Sec. 5.1 •

Suppose, for example, that a classical discrimination involved a

set S:j. of cues available only on trials when Al is reinforced, a

set S2 of cues available only on trials when ~ is reinforced, and

a set ,Be of cues common to Sl and S2; further, assume that a constant

fraction of each set presented is sampled by the subject on any trial.

If the two types of 'trials occur with equal probabilities, and if the

numbers of cues in the various sets are large enough so that the number

of possible trial samples is larger than the number of trials in the

experiment, then we may apply Eq. 53 of Sec. 4.3 to obtain approximate

expressions for response prob~bilities. For example, asymptotically

all of the elements of and half of the elements of S
c

(on the average) would be conditioned to response A
l

, and therefore

probability of Al on a trial when Sl was presented would be predicted

by ,the component model to be

,

which will, in general, h~ve a value intermediate between 1
2" and unity.

Functions for learning curves and other aspects of the data can be de-

rived for various types of discrimination experiments from the assump-

tions of the component model. Numerous results of this sort have been
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published (Burke and Estes, 1957; Bush and Mosteller, 1951b; Estes,

1958, 1961a~ Estes, Burke, Atkinson, and Frankmann,1957; Popper, 1959;

Popper and A,t~inson,1958).

6.4 Analysis of a Signal Detection Experiment

Although thus far we have developed stimulus sampling models only

in connection with simple associative learning and discrimination learn­

ing, it should be noted that such models may have much broader areas of

application. On occasion one may even :;;ee possibilities of u:;;ing the

concepts of stimulus sampling and association to interpret experiments

that, by conventional classifications, do not fall within the area of

learning. In this section we examine such a case.

The experiment to be considered fits one of the standard paradigms

associated with :;;tudies of Signal detection (see, e.g., Tanner and

Swet~, 1954; Swets, Tanner and Birdsall, 1961). The subject's task

in this experiment, like that of an observer monitoring a radar screen,

is to detect the presence of a visual signal which may occur from time

to time in one of several possible locations. Problems of interest in

connection with theories of signal detection arise when the signals are

faint enough so that the observer is unable to report them with complete

accuracy on all occasions. One empirical relation that we would want

to account for, in quantitative detail, is that between detection proba­

bilities and the relative frequencies with which signals occur in differ­

ent location:;;. Another is the improvement in detection rate that may
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occur over a series of trials even when the observer receives no

knowledge of -r~ults.:'_:;·.

A possible way of accounting for the "practice effect" is suggested

by some rather obvious analogies between the detection experiment and

the probability learning experiment considered earlier: We would ex­

pect that, when the subject actually detects a signal (in terms of

stimulus sampling theory, samples the corresponding stimulus element),

he will make the appropriate verbal report. Further, in the absense of

any other information, this detection of the signal may act as a rein­

forcing event, leading to conditioning of the verbal report to other

cues in the situation which may have been available for sampling prior

to the occurrence of the signal. If so, and if signals occur in some

locations more often than in others, then on the basis of the theory

developed in earlier sections we should predict that the subject will

come to report the signal in the preferred location more frequently

than in others on trials when he fails -to detect a signal and is forced

to respond to backg:J:'0und cues. These notions will be made more explicit

in connection with the following analysis of a visual recognition exper­

iment reported by Kinchla (1962).

Kinchla employed a forced-choice visual detection situation

involving a series of over 900 discrete trials for each subject. Two

areas were outlined on a uniformly illuminated milk glass screen. Each

trial began with an auditory signal. -During the auditory signal one of

L the following events occurred:
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(1) A fixed increment in radiant intensity occurred in .area ~ -

a Tl
type trial.

(2) A fixed increment in radiant intensity occurred in area 2 -
a T2 type tri"l.

(3) No change in the. radiant character of either signal area

occurred - a TO type trial.

Subjects were told that a change in illumination wou~d occur in

one of the two areas on each trial. Following the auditory sign<>l, the

subject was required to make either. an Al or ~ response (i.e.,

select one of two keys placed below the slgnal areas) to indicate which

area he be~ieved had changed in brightness. The subject was given no

information at the end of the trial as to whether or not his response

was correct. Thus} on a given trial one of three events occurred (T
l

,

T2 ' TO)} the subject made either an Al or ~ response, and a

short time later the next tril?-l began.

For a fixed signl?-~ intensity the experimenter has the option of

specifying l?- schedu~e for presenting the T
i

events. Kinchla selected

a simple probabilistic procedure in which Pr(T. ) = So
l,.n 1

and

Sl + S2 + So = 1 . Two groups of subjects were run~ For group I,

Sl s2 . 4 and S = .2 . For Group II, Sl = So = .2 and S2 = .6
0

The purpose of Kinchla's study was to determine how these event schedules

influenced the .lill:elihood of correct detections.
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The model that we will 1.!se to analyze the experiment combines

two quite distinct processes: a simple perceptual process. defined

with regard to the signal events and a learning process associated

with background cues. The stimulus situation is conceptually repre-

sented in terms of two sensory elements ~l and s2' corresponding

to the two alternative signals, and a setS of elements associated

with stimulus features common to all trials. On every trial the sub-

ject is assumed to sample a single element from the background set S

and he mayor may not sample one of the sensory elements. If the

element is sampled an Al occurs; if s2 is sampled an ~

occurs. ~f neither sensory element is sampled the subject makes the

response to which the background element is conditioned. Conditioning

of elements in S changes from trial to trial via a learning process.

Th.e sampling of sensory elements depends on the trial type (Tl ,

T2 ' To) and is descriqed by a simple probabilistic model. The

learning process associated With S is assumed to be the multi-element

pattern model presented in Sec.). Specifically, the assumptions of

the model are embodied in the following statements:

If T. (i = 1, 2)
l

occurs, then sensory element will be

sampled with probability h (With probability l-h, neither

nor

nor

s2 will be sampled).

s2 will be sampled.

If occurs, then neither
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2. Exactly one element is sampled from S on every trial.

Given the set S of N elements, the probability of

sampling a partic~lar element is 1
iii '

If s. (i ~ 1, 2) is sampled on trial n, then with
~

probability c' the element sampled from S on the

trial becomes conditioned to Ai at the end of trial n •

If neither nor is sampled, then with prooabiJ-

ity c the element sampled from S becomes conditioned

with equal likelihood to Al or ~ at th" end of trial n.

4. If sensory element s. is sampled, then A. will occ~r.
1. l

If neit~er sensory element is sampled, then the response

to which the sampled element from S is conditioned will

Occur..

If we let Pn denote the expected proportion of elements in S

conditioned to Al at the start of trial n, then (in terms of state-

ments 1 and 4 ab\lve) we can immediately.write an expression for the

likelihood of an Ai response given a T
j

event; namely,

Pr(A_ IT
2

) ~
"""2, n . ,n

h + (l-h)p
n

h + (1 - h) (1 - P )
n

(88a)

(88b)

(88c)
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Th~ ~xpression for p can be obtained from statements 2 and 3 by the
n

sam~ methods us~d throughout S~c. 3 of this chapt~r and is as follows

(for a d~rivation of this r~sult s~~ Atkinson, 1962a):

and Dividing th~numerator and d~nominator of by c

yields th~ ~xpr~ssion

(89)

wh~r~
c'

\jI =c . Thus, th~ asymptotic ~xpr~ssion for p
n

do~s not d~p~nd

on th~ absolute valu~s of c' and c but only on th~ir ratio.

An insp~ction of Kinchla's data indicat~s that th~ curv~s for

pr(AiITj) ar~ ~xtr~m~ly stabl~ ov~r th~ last 400 or so trials of th~

exp~rim~nt; cons~qu~ntly w~ shall vi~w this portion of th~ data as

asymptotic. Tabl~ 7 pr~s~nts th~ obs~rv~d m~an valu~s of Pr(A
i

ITj)

for th~ last 400 trials. Th~ corr~sponding asymptotic expr~ssions ar~

Sp~cifi~d in t~rms of Eq. 88 and Eq. 89 and ar~ simply

Ins~rt Table 7 about h~r~
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Table 7

Predicted and Observed Asymptotic Response Probabilities

for Visual Detection Experiment

Group I Group II

Observed Predicted Observed Predicted

Pr(A1IT1) .645 .645 .558 .565

Pr(~IT2) .64~ .645 .7~0 .724

pr(A1lTo) .494 ·500 .~88 .~88
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lim

lim
n ~ ¢O

lim
ll"7'7OO

Pr(Al iTl. ) =,n . ,n

Pr(A_ \T2·) =
~""2jn JlD

Pr(Al ITo ),n ,n

h+(l_h)p. .,

h + (l-h)(l-p ).,

P.,

(9Gb)

(90c)

In order to generate asymptotic predictions we need values for hand

1*. We £irst note by inspection of Eq. 89 that P., = 2 for Group I;

1
in fact, whenever ~:l = ~2 we have P., =2' Hence, taking the observed

asymptoti.c valu<j'·for pr(Al!Tl ) in Group I (Le., .645) and setting

it equal to h + (1 - h)~ yields an estimate of h = .289. The back-

ground illumination and the increment in radiant intensity are the same

for both experimental groups and therefore we WOuld require an estimate

of h obtaihedfrom Group I to be applicable to Group II.. In order to

estimate *, we take the observed asymPtotic value of pr(Al!To) in

Gr"up II and set it equal to the right side of Eq. 89 w.ith h co .289 ,

'"~l = ~o =.2 and ~·2 = .6; solving for * we obtain *=2.8 •

Using these estimates of hand * and Eqs. 89· and 90 yield the

asymptotic predictions given in Table 7.

Over all the equations give an excellent account of these particular

response measures. However, a more crucial test of the model is provided

by g,n analysis of thi= sequential data. To indicate the nature of the

sequential predictions that can be obtained, consider the probability

of an Al response on a T
l

trial given the various trial types and

responses that .can occur on the preceding trial, i. e.,
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Pr(Al +.lITl +lA. T. ) ,,u . ,n l,n J,n

where i =1, 2 and j =0, 1, 2 • Explicit expressions for these

quantities can be derived from the axioms by the same methods used

throughout this chapter. To indicate their form, theoretical expres-

sions for lim pr(Al llTl lAo T. ) will be given and, to
n ~oo ,n+. ,n+ l,n J,n

expressions for these quantities are as follows:

[h + (1 - h)5]p + (1 - p )h)" (N - l)X
pr(Al[T1A1Tl ) '" '"= NX

+
N

(1-h)5'(1-p) (N - l)X
pr(All Tl~Tl)

, - - 00

= N(l- X)
+

N

h)'p + [h
2

+ (1-h)5'](1-p) (N - l)X
Pr(Al [T1A2T2 ) '" ""

NY + N

(91a)

(91b)

(91c)

(1- h)5p
. '"
N(l - Y) +

(N - l)X
N

(91e)

(9lf)

where)' = c'h + (l-c'), 7' = c' + (l-c')h, 5 = ~ h + (l-~) ,

5' = ~ + (l-~)h, X = h + (l-h)p"" and Y = h + (l-h)(l-p) •
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It is interesting to note that the asymptotic expressions for

lim Pr(A. IT. ) depend only on hand *, whereas the ~uantities
J.,n JJn

in E~o 91 are functions of all four parameters N, c ,c' and h 0

Comparable sets of equations can be written for Pr(~IT2AiTj) and

pr(Al!TchTj) 0

The expressions in Eqo 91 are rather formidable, but numerical pre-

dictions can be easily calculated once values for the parameters have

been obtainedo -Further, independently of the parameter values, certain

relations among the sequential probabi.lities can be specified.o As an

example of such a relation, it can be shown that pr(~ITIAITO) >

pr(AlITl~To) for any stimulus schedule and any set of parameter valueso

To see this, simply subtract Eqo 91f:Troni Eqo 91e and note that 5 > 5' 0

Insert Table 8 about here

In Table 8 the observed values for pr(AiITj~T£) are presented as

reported by Kinchlao Estimates of these conditional probabilities were

computed for individual subjects using the data over the last 400 trials;

the averages of these individual estimates are the ~uantities given in

the tableo Each entry is based on 24 subjectso

In order to generate theoretical predictions for the observed

entriep in Table 8 values for N, c ,c' and hare neededo Of course,

estimates of h and c'*= c
already have been made for this set of

data, and therefore it is only necessary to estimate N and either c

or c' 0 We obtain our estimates of Nand c by a least squares
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Table 8

Predicted and Observed Asymptotic Sequential Response

Probabilities in Visual Detection Experiment

Group I Group II

Observed Predicted Observed Predicted

Pr(~IT2A1Tl} .57 .58 ·59 .64

pr(~IT2~Tl) .65 .69 .70 .76

Pr(A2IT2~T2) ·71 ·71 ·79 ·77

pr(~!T2A1T2) .61 ·59 .69 .66

Pr(~ IT2Al TO) .54 .59 Jill .66

pr(~IT2~TO) .66 ·70 ·11 .76

pr(Al !T1A1Tl ) ·73 ·71 ·70 .65

pr(AlITl~Tl) .62 ·59 .59 .52

pr(AIIT1~T2) ·53 .58 .53 .51
..

pr(Al !T1A1T2) .66 ·70 .64 .64

pr(Al lT1Al TO) ·72 ·70 .61 .63

pr(Al lT1A2TO) .61 .59 .48 .52

pr(~IT(hTl) .38 .40 .47 .49

p'(~ITchTl) .56 .58 ·59 .66

pr(~ITchT2) .64 .60 .67 .68

Pr(~ IT<flT2) .47 .42 .51 ·51

Pr(~ IT<flTO) .47 .42 .50 .51

pr(~ ITOA2TO) .60 .58 .65 .66

-
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"method; i. e 0, we select a value of Nand c (where c I = c1jr) so that

the sum of squared deviations between the 36 observed values in Table 8

and the corresponding theoretical quantities is minimized. The theoreti-

cal quantities for pr(Al'I'T1A.iT
j

) are computed from Eq. 91; theoretical

expressions for pr(~IT2AiTj) and pr(~IT~iTj) h~ve not been pre­

sented here but are of the same general form as those given in Eqo 91.

Using this technique, estimates of the parameters are as follows:

c' = 1 .. 00

(92)

h 0289 C ::; 0357

The predictions corresponding to these parameter values are presented

in Table 8. When one considers that only four of the possible 36 degrees

of freedom represented in Table 8 have been utilized in estimating pa-

rameters; the close correspondence between theoretical and observed

quantities may be interpreted as giving considerable support to the

assumptions of· ··the .. mbdel.

A great deal of research needs to be done to explore the consequences

of this approach to signal detections. In terms of the experimental pro-

blem conSidered in this section much progress can be made vi.a different·ial

tests among alternative formulations of the model. For example, we

postulated a multi-element pattern model to describe the learning pro-

cess associated with background stimuli; it would be important to deter-

mine whether other formulations of the learning process such as those
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developed in Sec. 5 or those proposed.·by Bush and Mosteller (1955)

would provide as good or even better theoretical fits than the ones

displayed in Tables 7 and 8. Also, it would be valuable to examine

variation" i.n the scheme for sampling sensory elements along .lines

developed by Luce (1959) and Restle (1961).

More generally, further development of the theory is required

before one could attempt to deal with the wide range of empirical

phenomena encompassed in the approach to perception via decision theory

proposed by Swets, Tanner, and Birdsall (1961) and others. Some theo~

retical work has been done by Atkinson (1961b ) along the lines outlined

in this section to account for the ROC (receiver-operating~characteristic)

curves that are' typically ob"erved in detection studies and to specify

the relation between forced_choice and yes-no experiments. However,

this work is still quite tentative and an evaluation of the approach

will require extensive analyses of the detailed sequential properties

of psychophysical data.

6~5 MUltiple Process Models

Analyses of certain behavioral situations have proved to require

formulations in terms of two or more distinguishable, though possibly

interdependent, learning processes that proceed simultaneously. For

some situations these separate processes may be directly observable;

for other situations we may find it advantageous to postulate processes

th~t are unobservable but which determine in some well-defined fashion

the sequence of obsElrvable behaviors.
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For example, in Restle's (1955) treatment of discrimination

learning it is assumed that irrelevant stimuli may become "adapted"

over a period of time and thus be: rendered nonfunctionaL Such an

analysis entails. a. two-process system. One process has to do with

the conditioning of stimuli to responses, whereas ·,the other process

prescribes both the conditions under which cues become irrelevant and

the rate at which adaptation occurs.

Another application of multiple process models arises with regard

to discrimination prOblems in which either a covert or a directly ob­

servable orienting response is required. One process might describe

how the stimuli presented to the subject become conditioned to discrim­

inative responses. Another process might specify the acquisition and

extinction of various orienting responses; these orienting responses

would determine the specific subset of the environment that the subject

would perceive on a given triaL For models dealing with this type of

problem see Atkinson (1958), Bower (1959), and WYckoff (1952).

As another example, consider a two-process scheme developed by

Atkinson (1960) to account for certain types of discrimination behavior.

This model makes use of the distinction, developed in Sec". 3 and 4 of

the present chapter, between component models and pattern models and

suggests that the subject may (at any .instant in time) perceive the

stimulus situation either as a unit pattern or as a collection of

individual components. ThuS, two perceptual states are defined; one

in which the subject responds to the pattern of stimulation and one in
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which he responds to the separate components of the situation. Two

learning processes are also defined. One process specifies how the

patterns and components become conditioned to responses, and the second

process describes the conditions under which the subject shifts from

one perceptual state to 'another. The control of the second process is
)

governed by the reinforcing schedule, the subject's sequence of responses,

and by similarity of the discriminanda. In this model neither the condi-

tioning states nor the perceptual states are observable; nevertheless,

the behavior of the subject is rigorously defined in terms of these

hypothetical states.

Models of the sort described above are generally difficult to work

with mathematically and consequently have had only limited development

and analysis. It is for this reason that we select a particularly

simple example to illustrate the type of formulation that is possible.

The example deals With a discrimination learning task investigated by

Atkinson (1961a) tn which observing res:pcnses are categorized and di-

rectly measured.

The experimental situation consists of a sequence of discrete

trials. Each trial is specified in terms of the following classifications:

Trial type. Each trial is either a T
l

or a T2 • The

trial type is set by the experimenter and determines in

part the stimulus event occurring on the trial.
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Observing responses. On each trial, the subject makes

either an R
l

or R2 • The particular observing response

determines in part the stimulus event for that trial.

sl' sb' s8: Stimulus events. Following the observing response, one

and only one of these stimulus events (discriminative cues)

can occur; onor sb

occur. 13canor

trial eitherOn a Tl

trial either

occurs 0

13 The subscript b has been used to denote the stimulus event that

may occur on both Tl
and T2 trials; the subscripts 1 and 2 denote

stimulus events unique to Tl and T2
trials, respectively.

Discriminative responses. On each trial the subject makes

either an A
l

or A
2

response to the presentation of a

stimulus event.

Trial outcome. Each trial is terminated with the occurrence

of one of these events. An 01 indicates that Al was

the correct response for that trial, and 02 indicates

that A
2

was correct.

The sequence of events on a trial is as follows: (1) The ready

signal occurs and the subject responds with Rl or R
2

• (2) Following

the observing response or is presented. To the onset

of the stimulus event the subject responds with either A
l

or A2 • (4)

The trial terminates with either an 01 or 02 event.
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To keep the analysis simple we consider an experimenter controlled

reinforcement schedule. On a T
l

trial, either an 01 occurs with

probability "1' or an 02 with probability 1 - "1;. on a T2 trial

an 01 occurs with probability "2' or an 02 with probability 1-"2'

The Tl type trial occurs with probability ~ and T
2

with probability

1 -~. Thus a Tl - 01 combination occurs with probability ~l;

Tl - 02 with probability .~(l - rr
l

); and so on.

The particular stimulus event si (i = 1, 2, b) that the experi-

menter presents on any trial depends on the trial type (T
l

or T
2

) and

the subject's observing response (R
l

or R2 ). Spectfically:

(i) If an R
l

is made then

(a) with probability ex the sl event occurs on a

Tl trial and the s2 event on a T2 trial.

(b) with probability 1 - ex the sb event occurs,

regardless of the trial type.

( ii ) If an R2 is made then

(a) with probability ex the sb event occurs,

regardless of the trial type;

(b) with probability 1 - ex the sl event occurs on

a Tl trial and 8
2

on a T
2

trial,

To clarify this procedure, consider the case where ex = 1, "1 = 1,

and rr2 = O. If the subject is to be correct on every trial, he must
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make an Al on a Tl type trial and an ~ on a T2 type trial.

However, the subject can only ascertain the trial type by making the

appropriate observing response. That is, R
l

must be made in order to

identify the trial type, for the occurrence of ,E2 always leads to the

presentation of sb regardless of the trial type. Hence, for perfect

responding the subject must make Rl with probability 1 and then

make Al to or ~ to The purpose of the Atkinson study

was to determine how variations in 111 , 112 and a would affect both

the observing responses and the discriminative responses.

Our analysis of this experimental procedure will be based on the

axioms presented in Sees. 2 and 3. However, in order to apply the theory

we must first identify the stimulus and reinforcing events, in terms of

the experimental operations,. The identification we offer :seems 'quite

natural to us and is in accord with the formulations given in Sees. 2

and 3.

We assume that associated with the ready signal is a set SR of

pattern elements. Each element in SR is conditioned to either the

Rl or the ~ observing response; there are N' such elements. At

the start of each trial (i.e., with the onset of the ready signal) an

element is sampled from SR and the subject makes the response to which

the element is conditioned.

Associated with each stimulus event s. (i = 1, 2,b)
~

is a set Si

of pattern elements; elements in Si are conditioned to either the A
l

or the ~ discrimination response. There are N such elements in each
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set Si and, for simplicity, we assume the sets are pairwise disjoint.

When the stimulus event occurs one element is randomly sampled from

Si and the subject mades the discriminative response to which the ele-

ment is conditioned.

Thus, we have two types of learning processes; one defined on the

set SR and the other defined on the sets Sl' Sb and S2' Once the

.reinforcing events have been specified for these processes we can apply

our axioms. The interpretation of reinforcement for the discrimination

response process is identical to that given in Sec. 3. If a pattern

element is sample from set Si for i; 1, 2, b and fallowed by an

0. (j ; 1, 2) outcome, then with probability c the element becomes
J

the conditioning state1 - cand with probabilitycondtioned to A
j

of the sampled element remains unchanged.

The conditioning process for the SR set is somewhat more complex

in that the reinforcing events for the observing responses are assumed

to be subject-controlled. Specifically, if an element conditioned to

R. is sampled from SR and followed by either an A10l or A2021

event, then the element will remain conditioned to Ri ; however, if

A102 or A201 occurs, then with probability c' the element will

become conditioned to the other observing response. Otherwise stated,---
if an element from SR elicits an observing response that selects a

stimulus event and, in turn, the stimulus event elicits a correct dis-

crimination response (i.e., A10l or A
2

0
2

), then the sampled element
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will remain conditioned to that observing response. However, if the

observing response selects a stimulus event that gives rise to an in­

correct discrimination response (i.e., A102 or ~Ol)' then there

will be a decrement in the tendency to repeat that observing response

on the next trial.

Given the above identification of events we can now generate a

mathematical model for the experiment. To simplify the analysis we let

N' = N = 1 ; namely, we aSSume that there is one element in each of our

stimulus sets and consequently the single element is sampled with proba­

bility 1 whenever the set is available. With this restriction we may

describe the' conditioning state of a subject, at the start of each trial,

by an ordered four tuple < i j k I, > where

(1) the first member i is 1 or 2 and indicates whether the

single element of 8
R

is conditioned to R
l

or R2 ;

(2) the second member j is 1 or 2 and indicates whether the

single element of 8
1

is conditioned to A
l

or A2 ;

(3) the third member k is 1 or 2 and indicates whether the

element of 8
b

is conditioned to A
l

or A
2

;

(4) the fourth member I, is 1 or 2 and indicates whether the

element of 8
2

is conditioned to A
l

,or A
2

.

observing response; then, to sl' sb or s2'

native response Aj , Ak or AI,' respectively.

Thus, if the subject is in state < ijkl, > he will make the Ri

he will make discrimi-
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From our assumptions it follows that the sequence of random variables

that take the subject states < i j k £ > as values is a 16 state Markov

chain. Fi~reIO displays the possible transitions that can occur when

Insert Fi~re 10 aboilt here

the subject is in state < 1122 > on trial n. To clarify this tree,

let us trace out the top branch. An R
l

is elicited with probability 1

and with probability ~rtl a Tl trial with an 01 outcome occurs;

further, given an R
l

response on . a T
l

trial there is probability

that the sl stimulus event occurs; the onset of the sl event elicits

a correct response and hence no change occurs in the conditioning state

of any of the stimulus patterns. Now consider the next set of branches:

an Rl occurs and we have a TIOl tria,l; with probability 1 - a the

sb stimulus is presented and an ~ occurs; the ~ response is in­

correct (in that it is followed by an 01 event), hence with proba­

bility c the element of set Sb becomes conditioned to Al and

with independent probability c' the element of set SR becomes

conditioned to the alternative observing response, namely R2 •

From this tree we obtain probabilities corresponding to the < 1122: >

row in the transition matrix, For example, the probability of going

from < 1122 > to < 2112 > is simply ~rtl(l-a)cc' + (1- ~)rt2(1-a)cc' ;

that is, the sum over branches 2 and IS. An inspection of the transition

matrix yields some important results. For example, if a = 1 , rt l = 1 ,

and rt2 = ° then states < 1112 > and < 1122 > are absorbing and
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1122

2112
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Rl 2121

1121

". 2122

1122

.. 211205'0 '
~j;,

1112

2122

1122

ex : s2 &. Az 1122

Fig. 10. Branching process, starting in state <:1122>, for a single
trial in the two-process discrimination learning model.
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As before, let
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Pr(Rl )= i, Pr(Al ITl ) =1 , and Pr(A_ !T2 . )d.,n ,n , ,n '"'"2.,.n,n

ui~~£ denote the probability of being in state

< i j k £ > on trial n's when the limit exists let u"!'
~J r ..

1
, (n)

= J.m ui "k.€
n-4oo J

Experimentally, we shall be interested in evaluating the following

theoretical predictions:

(n) (n) (n) (n)+ u1211 + u1212 + u1221 + u1222

(n) (n) (n) (n)+ ex[ul121 + ul122 + u2211 + u2212 ]

( ) [ (n) (n) (n) (n) ]+ 1 - ex . u1211 + u1212 + u2121 + u2122

( I ) (n) (n) (n) (n)
Pr Al,n T2,n = ullll + u1211 + U21l1 + u2211

[ (n) (n) (n) (n) ]+ ex ul121 + u1221 + u2112 + u2212

( ) [ (n) (n) (n) (n) ]
+ 1 - Qi ull12 + u1212 + u2121 + U2221

( ) (n) . (n) . ( ) (n)Pr Rl , n n Al , n = ul111 + ex u l121 +. 1 - Qi u1212

1 [(n) (n)]+ 2 Qi ul122 + u122l

(93a)

(93c)

(93d)
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1 (n) (n)
+ 2(1 - a) [~122 + u2221l

1 (n) (n)
+ [1-2(1-a)][~112 + ~211l (93e)

The first equation gives the probability of an R
l

response. The

second and third equations give the probability of an A
l

response on

Tl and T2 trials, respectively. Finally, the last two equations

present the probability of the joint occurrence of each observing

response with an Al response.

In the experiment reported by Atkinson (1961a) six groups were run

with 40 subjects in each group. For all groups rt l = ·9 and ~ = ·5·

'The groups differed with respect to the value of a and For

Groups I-III, the value of a = 1; and for Groups IV-VI, a = .75. For

Groups I and IV, rt = ·9;2
for II and V, and for Groups III

and VI, rt
2

~ .1. The design can be described by the following array:

a
1.0

.75

.9

I

IV

.5

II

V

.1

III

VI

Given these values of rt l , rt2 ' a and

chain is irreducible and aperiodic. Thus,

~ our 16 state Markov

(n)
lim uijk£ = uijk£ exists
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and can be obtained by solving the appropriate set of 16 linear equations

(see Eq. 16). The values predicted by the model are given in Table 9

for the case whe~e Values for the were computed

Insert Table 9 about here

and then combined by Eq. 93 to predict the response probabilities. By

presenting a single value for each theoretical quantity in the table we

imply that these predictions are independent of c and c' • Actually

this is not always the case. However, for the schedules employed in

this experiment the dependency of these· asymptotic predictions on c and

c' is virtually negligible. For c = c' ranging over the interval

from .0001 to 1.0 the predicted values given in Table 9 are affected

in on~ the third or fourth decimal place; it is for this reason that

we present theoretical values to only two decimal places.

In view of these comments it should be clear that the predictions

in Table 9 are based solely on the experimental parameter values.

Consequently, differences between subjects (that may be represented by

intersubject variability in c and c l
) do not substantially affect

these predictions.
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Table 9

Predicted and Observed Asymptotic Besponse Probabilities

in Qbserving Besponse Experiment

Group I Group II Group III

Pred. Obs. 3D Pred. Obs. 3D Pred. Obs • 3D
.

Pr(A1IT1) .90 .94 .01.4 .81 .85 .164 ·79 ·79 .158

pr(A1 IT2) ·90 .94 .014 ·59 .61. .134 .21 .23 .182
.

Pr(Bl } .50 .45 .279 ·55 ·59 .279 ·73 ·70 .285

Fr(I\ n~) .45 .43 .266 .39 .42 .226 .37 .36 .164

Pr(~nA1) .45 ' .47 .293 .31 .31 .232 .13 .16 .161
i.

Group IV Group V Group VI

Fred. Obs. 3D Pred. Obs. 3D Pred. Obs. 3D

...
pr(Al!Tl ) .90 .93 .063 .80 .82 .114 ·73 ·73 .138

p;r(All T2} .90 .95 .014 .60 .68 .114 .27 .25 .138

Pr(I\} .49 ·50 .257 . ·52 ·53 .305 .63 .72 .263

Pr(Bln Al } .44 .47 .241 .35 .38 .219 .32 .36 .138

Pr(~ () Al } .46 .47 .247 .34 .36 .272 .19 .13 .168
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In the Atkinson study 400 trials were run and the response propor-

tions appear to have reached a fairly stable level over the last half

of the experiment. Consequently, the proportions computed over the

final block of 160 trials were used as estimates of asymptotic quantities.

Table 9 presents the mean and standard deviation of the 40 observed pro-

portions' obtained under each experimental condition. As can be seen,

the agreement between theoretical and observed quantities is fairly good.

Despite the fact that these gross asymptotic predictions hold up

quite well, it is obvious that some of the predictions from the model

will not be confirmed. The difficulty with the one-element assumption

is that the fundamental theory laid down by the axioms of Sec. 3 is

completely deterministic in many respects. For example, when N' ; 1

we have

pr(Rl +11°1 Al Rl ); 1 ;. .,n ,on -- , n , n

namely, if an ~ occurs on trial n and is reinforced (i.e., followed

by an A101 event) then Rl will reoccur with probability 1 on trial

n +1. This prediction, of course, is a consequence of the assumption

that we have but one element in set SR which necessarily is sampled

on every trial. If we assume more than one element, the deterministic

features of the model no longer hold and such sequential statistics

become functions of c, c' , Nand N' Uqfortunately, for elaborate

experimental procedures of the sort described in this section, the multi-

element case leads to complicated mathematical processes for which it is
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extremely difficult to carry out computations. Thus, the generality

of the multi-element assumption may often be offset by the difficulty

involved in making predictions.

Naturally it is usually preferable to choose from the available

models the one that best fits the data, but in the present state of

psychological knowledge no single model is clearly superior to all others

in every facet of analysis. The one-element assumption, despite some of

its erroneous features, may prove to be a valuable instrument for the

rapid exploi,ation of a wide variety of complex phenomena. For most of

the cases we have examined, the predicted mean response probabilities
of

are usually independent/ (or on;Ly slightly dependent on) the number of

elements assumed. Thus the one-element assumption may be viewed as a

simple device for computing the grosser predictions of the general theory.

For exploratory work in complex situations, then, we recommend using

the one-element model because of the greater difficulty of computations

for the multi-element models. In advocating this approach we are taking

a methodological position with which some scientists do not agree. Our

position is in contrast to one which asserts that a model should be dis-

carded once it is clear that certain of its predictions are in error.

We do not take it to be the principal goal (or even, in many cases, an

important goal) of theory construction to provide models for particular

experimental situations. The assumptions of stimulus sampling theory

are intended to describe processes or re;Lationships that are common to a

wide variety of learning situations, but with no implication that behavior.
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in these situations is a function solely of the variables represented in

the theory. As we have attempted to illustrate by means of numerous

examples, formulation of a model within this framework for a particular

experiment is a matter of selecting the relevant assumptions, or axioms,

of the general theory and interpreting these in terms of the conditions

of the experiment. How much of the variance in a set of data can be

accounted for by a model depends jointly on the adequacy of the theoret­

ical assumptions and on the extent to which it has been possible to

realize experimentally the boundary conditions envisaged in the theory

thereby minimizing the effects of variables not represented. In our

view, a model, in application to a given experiment, is not to be

classified as IIcorrectll or f1incorrect"; rather,- the degre-e to which it

accounts for the data may provide evidence tending either to support or

to cast doubt on the theory from which the particular model was derived.
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