
Dynamic Properties of ComputablyEnumerable SetsLeo HarringtonandRobert I. Soare�November 28, 1995AbstractA set A � ! is computably enumerable (c.e.), also called recursivelyenumerable, (r.e.), or simply enumerable, if there is a computable al-gorithm to list its members. Let E denote the structure of the c.e. setsunder inclusion. Starting with Post [1944] there has been much inter-est in relating the de�nable (especially E-de�nable) properties of a c.e.set A to its �information content�, namely its Turing degree, deg(A),under �T, the usual Turing reducibility. [Turing 1939]. Recently, Har-rington and Soare answered a question arising from Post's programby constructing a nonemptly E-de�nable property Q(A) which guar-antees that A is incomplete (A <T K). The property Q(A) is of theform (9C)[A �m C & Q�(A;C)], where A �m C abbreviates that �Ais a major subset of C�, and Q�(A;C) contains the main ingredientfor incompleteness.A dynamic property P (A), such as prompt simplicity, is one whichis de�ned by considering how fast elements elements enter A relative tosome simultaneous enumeration of all c.e. sets. If some set in deg(A) ispromptly simple then A is prompt and otherwise tardy. We introducehere two new tardiness notions, small-tardy(A;C) and Q-tardy(A;C).We begin by proving that small-tardy(A;C) holds i� A is small inC (A �s C) as de�ned by Lachlan [1968]. Our main result is thatQ-tardy(A;C) holds i� Q�(A;C). Therefore, the dynamic property,Q-tardy(A;C), which is more intuitive and easier to work with than theE-de�nable counterpart, Q�(A;C), is exactly equivalent and capturesthe same incompleteness phenomenon.�The �rst author was supported by National Science Foundation Grant DMS 92-14048,and the second author by National Science Foundation Grant DMS 91-06714 and DMS94-00825. 1



Dynamic Properties of Computably Enumerable Sets 21 IntroductionWarning. From now on all sets and degrees will be c.e. unless speci�edotherwise. Post [16] initiated the study of the relationship between de�nableproperties of a c.e. set A and its �information content� as measured by itsTuring degree, deg(A), under the usual Turing reducibility �T. By the 1950'sMyhill noticed that the c.e. sets form a lattice E under inclusion and fromthen on most de�nable properties considered for c.e. sets were E-de�nable.An exception is hyper-simplicity.Friedberg and Muchnik solved Post's problem by constructing an incom-plete and nonrecursive c.e. set, and invented the priority method to do it. Themethod was quickly developed into more sophisticated forms (in�nite injuryand the 0000-method) and used to prove a number of theorems on c.e. setsand degrees. Sacks used the second method to construct an incomplete max-imal set, Yates constructed a complete maximal set, and Martin [15] broughtthese results together and extended them in his beautiful theorem that thedegrees of maximal sets are exactly H1, the high degrees. Then Lachlan [8]and Shoen�eld [17] proved that the degrees of the atomless sets (those withno maximal supersets) are L2, the complement of the low2 degrees. Bothproperties of being maximal or atomless are E-de�nable properties.Meanwhile Soare [18] developed a new method for generating automor-phisms of E, and used it to show that maximal sets form an orbit. (The orbitof A 2 E is the set of all sets B which are automorphic to A, written A ' B.)The question stemming from Post's program remained open of whether therewas an E-de�nable property P (A) which guarantees that A is incomplete andnonrecursive. It seemed that automorphisms could be used to give a negativeanswer by showing that every nonrecursive set A has a complete set in itsorbit. However, Harrington and Soare gave a negative answer to this questionby proving the following.Theorem 1.1 (Harrington-Soare [3]) There is a nonempty E-de�nableproperty Q(A) such that every c.e. set A satisfying Q(A) is noncomputableand Turing incomplete.The property, which we shall describe fully in �4, is in two parts,Q(A) () A �m B & Q�(A;C);where A �m C abbreviates that �A is a major subset of C�, and Q�(A;C),an E-de�nable property with several quanti�ers which contains the main in-gredient for incompleteness. The property Q�(A;C) succeeds but it is notvery intuitive or easy to work with. The main achievement of the presentpaper is to produce a simpler and dynamic property, called Q-tardy(A;C),



Dynamic Properties of Computably Enumerable Sets 3and to prove Q�(A;C) () Q� tardy(A;C):(1)Hence, the dynamic property Q-tardy(A,C) is exactly equivalent to Q�(A;C)(in the presence of A �m C) and therefore captures the incompleteness phe-nomenon.In �2 we discuss dynamic properties and particularly promptness proper-ties, such as prompt simplicity, and their opposite, i.e., tardiness properties.This will motivate our present tardiness property, Q-tardy(A;C).The above result led us to a curious discovery Theorem 3.2 about the E-de�nable and new dynamic de�nitions of small subsets. Lachlan �rst de�nedthe notion of A being a small subset of C, written A �s C, in connection withhis decision procedure for part of the elementary theory of E as described in �3.This notion proved useful and other facts about small sets were added by Stob[20] (see [19, pp. 193�195]), and others. The property bQ(A) = (9C)[A �s C]comes tantalizingly close to being a property like Q(A) which guaranteesA incomplete, but not quite. We note that bQ(A) implies that A is not apromptly simple set by Corollary 3.3, but does not ensure that A is not ofpromptly simple degree.The investigation of tardy properties with an eye toward incompletenessled naturally to a new tardiness property, small-tardy(A;C). Our other mainresult in the present paper is that,A �s C () small-tardy(A;C):(2)This property small-tardy(A;C) gave new insight into the nature of smallsubsets, and led to a brand new and simpler E-de�nable de�nition for therelation A �s C which had been overlooked researchers for 25 years. Thegeneral point is that dynamic notions frequently are more intuitive and easierto work with than E-de�nable ones. Each sheds light on the other, particularlywhen one can show equivalence of the two such notions.We use the terms �computably enumerable (c.e.)� and �recursively enu-merable (r.e.)� interchangably, and likewise �computable� and �recursive.�2 Dynamic PropertiesMost properties of an r.e. set A are static properties in that they refer toA as a completed object without mention of the enumeration of A. Suchinclude Post's properties of being simple or hh-simple, and Myhill's propertyof being maximal, all of which are also E-de�nable properties. Another staticproperty which is not E-de�nable or even invariant under automorphismsis hyper-simplicity. A dynamic property on the other hand is one which isde�ned using an computable enumeration fAsgs2! of A.



Dynamic Properties of Computably Enumerable Sets 42.1 The Extension Theorem and AutomorphismsThe �rst essential use of a dynamic property was probably the covering hy-pothesis in the Extension Theorem of Soare's maximal set automorphismtheorem [18]. Here there were several simultaneous enumerations of arraysof r.e. sets, fUngn2! and f bV gn2!, and it was important to measure for anelement x which Un sets it entered before entering certain bVm sets.2.2 d-simple setsIn 1980 Lerman and Soare [11] attempted to capture part of the dynamicproperty of the Extension Theorem with an E-de�nable property which iscalled d-simple, but they succeeded in capturing only a small part.De�nition 2.1 A coin�nite set A is d-simple if for all X there exists Y � Xsuch that X \ A = Y \ A; and(3) (8Z)[(Z �X) in�nite =) (Z � Y ) \ A 6= ;]:(4)The tension in constructing Y is that to meet (4) we wish to make Y assmall as possible, but to meet (3) we must eventually put every element ofX �A into Y . Every hh-simple is d-simple, and every d-simple set is simple.The degrees of d-simple sets include H1 and split L1. Also a d-simple setcannot be small [11, p. 141]. (This old result takes on new signi�cance inview of the present paper because d-simple sets behave like prompt sets andby the result here Theorem 3.2 on small sets, small sets must be tardy.) Themajor open question left over from Post's program is the following.Question 2.2 Find a necessary and su�cient condition on A for A to be au-tomorphic to a complete set. In particular, is every d-simple set automorphicto a complete set?The second question is not of great intrinsic interest itself, but it appearsto be on the cutting edge of the symmetry between the methodologies forgenerating automorphisms and for producing invariant properties (such asQ(A)), and may therefore be useful in gaining insight into the completenessphenomenon and the �rst part of the question.2.3 Promptly Simple SetsThe next signi�cant advance came with the following de�nition of promptlysimple sets by Maass [12].



Dynamic Properties of Computably Enumerable Sets 5De�nition 2.3 (i) A coin�nite r.e. set A is promptly simple if there is acomputable function p and a computable enumeration fAs gs2! of A suchthat for every e,We in�nite =) (9s) (9x) [x 2 We; at s \Ap(s)]:(5)(ii) An r.e. setA is prompt if A has promptly simple degree namely,A �T Bfor some promptly simple set B, and an r.e. degree is prompt if it contains aprompt set.(iii) An r.e. set or degree which is not prompt is tardy.By the Promptly Simple Degree Theorem [19, Theorem XIII.1.7(iii)] a setA being prompt is equivalent to the following property which we may take asthe de�nition. Let fAsgs2! be any recursive enumeration of A. Then thereis a recursive function p such that for all s, p(s) � s, and for all e,We in�nite =) (91x) (9s) [x 2 We; at s & As�x 6= Ap(s)�x];(6)namely in�nitely often A �promptly permits� on some element x 2 We.Promptly simply sets and degrees helped bring some dramatic advancesin the subject. Maass [12] proved that any two promptly simple low setsare automorphic and discovered other properties of these sets [13]. Ambos-Spies, Jockusch, Shore, and Soare [1] used prompt degrees to unify and extendresults about r.e. degrees, and promptness has been very in�uential ever since.(See [19, Chap. XIII].)2.4 Almost Prompt Sets and DegreesThe material from the next two subsections �2.4 and 2.5 is not strictly neces-sary for this paper but is helpful to understand other notions of promptnessand tardiness.Harrington and Soare [4, Theorem 1.2] proved that every prompt set isautomorphic to a complete set. They noticed that the same proof would workfor a strictly larger dynamically de�ned class of sets called almost prompt,which are de�ned in terms of n-r.e. sets.De�nition 2.4 (i) A set X �T K is n-r.e. if X = lims Xs for some recursivesequence fXs gs2! such that for all x, X0(x) = 0 andcardf s : Xs(x) 6= Xs+1(x) g � n:(For example, the only 0-r.e. set is ;, the 1-r.e. sets are the usual r.e. sets,and the 2-r.e. sets are the d.r.e. sets.)(ii) Such a sequence fXsgs2! is called an n-r.e. presentation of X.



Dynamic Properties of Computably Enumerable Sets 6It is well-known and easy to show [19, Exercise III.3.8., p. 38] that for n > 0,X is n-r.e. i�X = (We1 �We2) [ (We3 �We4) [ : : : [ We2k+1 ; or(7) X = (We1 �We2) [ (We3 �We4) [ : : : [ (We2k+1 �We2k+2 );(8)according as n = 2k + 1 is odd or n = 2k + 2 is even.De�nition 2.5 For n = 0 let X00 = ;. For n > 0 and e = he1; e2; : : : enide�ne Xne = (We1 �We2) [ : : : ;(9)as in (7) or (8) according as n is odd or even. We say that hn; ei is an n-r.e.index for Xne . Let Xne;s = (We1;s �We2;s) [ : : : :(10)De�nition 2.6 Let A be an r.e. set and let fAsgs2! be a recursive enu-meration of A. We say A is almost prompt, abbreviated a.p., if there is anondecreasing recursive function p(s) such that for all n and e,Xne = A =) (9x)(9s)[x 2 Xne;s & x 2 Ap(s)]:(11)Note that, as in the case of promptly simple, this de�nition is independentof the enumeration of A; if p(s) works for the enumeration fAsgs2!, and iffA0sgs2! is another enumeration of A, de�ne p0(s) = (�t)[A0t � Ap(s)]: Wemay think of De�nition 2.6 as asserting that A will p-promptly hit everyapproximation fXne;sgs2! for every n-r.e. set Xne = A where the recursiveapproximation Xne;s is determined by the standard enumeration fWe;sge;s2!of the r.e. sets. In [4, Conversion Lemma 11.4] we prove that if we specifyanother collection of n-r.e. sets fcXne gn;e2!, by some recursive approximationfcXne;sgn;e;s2!, then there is a recursive function q such that A will q-promptlyhit fcXne;sgn;e;s2! if cXne = A.2.5 Very Tardy SetsThe negation of the property of almost prompt is called very tardy. Animportant special case of this is known as 2-tardy and is closely related tothe property Q(A).De�nition 2.7 Let A be an r.e. set and let fAsgs2! be a recursive enumer-ation of A.



Dynamic Properties of Computably Enumerable Sets 7(i) We say A is very tardy if A is not almost prompt, namely if for everynondecreasing recursive function p(s),(9n)(9e)[Xne = A & (8y)(8s)[y 2 Xne;s =) y 62 Ap(s)]]:(12)(ii) We say A is n-tardy if in (i) the �xed n works uniformly for all suchfunctions p, namely for every nondecreasing recursive function p(s),(9e)[Xne = A & (8y)(8s)[y 2 Xne;s =) y 62 Ap(s)]]:(13)The main idea about a very tardy set A is that if x 2 Xne;s then x canlater enter A eventually, but x must �rst undergo a delay until at least stagep(s)+1 before doing so. Since class of almost prompt sets is a strict extensionof the class of prompt sets it follows that the class of very tardy sets is a strictsubclass of the class of tardy sets, hence the name �very tardy.� Note that Ais 0-tardy i� A = !, and A is 1-tardy i� A is recursive. The 2-tardy sets playa special role in our work and have additional characterizations as follows, aswe prove in [5].Proposition 2.8 (Harrington-Soare [5]) For an r.e. set A the followingare equivalent:(i) A is 2-tardy;(ii) For every nondecreasing recursive function p(s),(9Wi � A)(9We = A)(8y)(8s)[y 2 Wi;s �We;s =) y 62 Ap(s)]]:(14)3 Small SubsetsLachlan [9] introduced small sets in his program to construct canonical ex-amples of certain diagrams and then rule out possible extensions so as togive a decision procedure for the �!8 �!9 -theory of the lattice of r.e. sets. Thefollowing de�nition is clearly equivalent to the standard de�nition as in [19,De�nition 4.10, p. 193].De�nition 3.1 A subset A � C is a small subset of C (written A �s C) ifA �1 C and for all X and Y , if(i) X \ (C �A) � Y; then(ii) (9Z)Z�X [Z � (X � C) & (Z \ C) � Y ]:If A is both a small subset and major subset of C we say it is a smallmajor subset and write A �sm C.



Dynamic Properties of Computably Enumerable Sets 8Note that the consequent of the implication in (ii) is equivalent to theproperty (8Y � C �A)[Y [ C is r.e. ]:(15)It is interesting now to see that this important notion of small subset,Theorem 3.2(i) below, just like the Q(A) property, has a dynamic equiva-lent, Theorem 3.2(iii), below which we now prove. It is particularly that theequivalent dynamic de�nition (iii) led to the discovery of another E-de�nablede�nition (ii) below which is simpler than the original E-de�nable one, butlay undiscovered for over 25 years.Theorem 3.2 (Harrington and Soare) Suppose A �1 C. Then the fol-lowing are equivalent:(i) A �s C;(ii) (8Y )[[(C �A) � Y ] =) (9Z)[C � Z & Z \ C � Y ]];(iii) small-tardy(A;C), namely:(8f)(9T )[C � T & (8x)[x 2 (T \ C)at s =) x 62 Af(s)]]:(16)(In (iii) it is understood that f ranges over recursive functions which arenondecreasing.)Note that (ii) is equivalent to the property,(8Y � C �A)[Y [ C is r.e. ]:We refer to the property (iii) on A �1 C as small-tardy(A;C) because it isa dynamic property.Proof. (i) =) (ii). Trivial. Let X = !.(ii) =) (iii). Fix a recursive function f as in (iii). We (BLUE) willbuild Y � (C �A), so by (ii) the opponent (RED) must reply with Z = Wjfor some j, satisfying (ii). De�ne Wg(j) = Wj & C. If x 2 (Wj & C)at s,then by the Recursion Theorem and Slowdown Lemma [19, Lemma XIII.1.5]we can compute t = (�v)[x 2 Wg(j);v], and know that t > s.Namely, if x 2 Cs+1�Cs take all j such that x 2 Wj;s (necessarily j � s).For each j compute tx;j = (�v)[x 2 Wg(j);v]. Let t = maxftx;j : all such jg. Ifx 62 Af(t) then enumerate x in Y at stage f(t) + 1. Since every x 2 C � Aenters Y after some �nite delay we have,C �A � Y:(17)However, no element once in A ever enters Y , soY \ A � Y & A:(18)



Dynamic Properties of Computably Enumerable Sets 9By (17) and (ii), RED must play some Z satisfying (ii). In (iii) we letT = Z n C: Let Wj = T . Now C � T because C � Z. But T \ C � Y by(ii) implies by (18) that T \ C � Y n A. Now A& Y = ;. Hence, for all x,if x 2 (T \ C)at s; then x 2 (T & C)at s;x 2 Wg(j);t for some t > s;x 62 Yf(t) by (18) and de�nition of Y ;x 62 Af(s) since s < t and f is nondecreasing:(iii) =) (i). Fix A �1 C satisfying (iii). Given X and Y satisfyingDe�nition 3.1 (i), we (RED) de�ne Z satisfying De�nition 3.1 (ii) as follows.De�ne f(s) = (�t > s)(8x)[x 2 Xs \ Cs =) x 2 At [ Yt]:Such t exists by De�nition 3.1 (i). Choose T satisfying (iii). Enumeratex 2 Zs () x 2 Zs�1 _ x 2 (Xs \ Ts)�Cs:(19)Now by (iii) for all x,x 2 (Zs \ Cs) =) x 2 (Xs \ Ts); andx 2 (T \ C) at s =) x 62 Af(s); sox 2 (Z \ C) at s =) x 2 Yf(s)by de�nition of f .Consider the property bQ(A) : (9C)[A � C]: This resembles the propertyQ(A) because bQ(A) implies that A is not a promptly simple set. However,it does not guarantee that A is not of promptly simple degree, and therefore,unlike Q(A) it does not ensure that the orbit of A contains only incompletesets.Corollary 3.3 If A �s C then A is not a promptly simple set.Proof. Let A �s C. Let p(s) be any nondecreasing total recursive function.By Theorem 3.2 (iii) there exists T � C such that(8x)[x 2 (T \ C)at s =) x 62 Af(s)]]:Hence, Wj = T \ C witnesses that A fails to satisfy (5).



Dynamic Properties of Computably Enumerable Sets 104 Q(A) And Tardy PropertiesIn the following de�nition we separate the �rst property of Q(A) into twoparts: the �rst part Q�(A;C) which is equivalent to a purely dynamic prop-erty and is the key to satisfying tardiness and hence incompleteness; and thesecond part asserting A �m C, which is entirely standard.De�nition 4.1 (i) Q�(A;C) : A �1 C & (8B � C)(9D � C)(8S)S@C [[B \ (S �A) = D \ (S �A)](20) =) (9T )[C � T & A \ (S \ T ) = B \ (S \ T )]]:(21) (ii) Q(A) : (9C)[A �m C & Q�(A;C)]:De�nition 4.2 If A � C then Q-tardy (A;C) holds ifA �1 C & (8f)(9I � C)(9E = A)(E n C)\ I=;(22) (8x)[x 2 (I & C & E)at s =) x 62 Af(s)]:The main result of the present paper is the following.Theorem 4.3 (Main Theorem) Q�(A;C) () Q-tardy(A,C):We prove this in the next two theorems. The �rst resembles Lemma 1 of [3],and the second Lemma 2 there.Theorem 4.4 Q�(A;C) =) Q-tardy(A,C):Proof. Fix A and C 2 E such that A satis�es Q(A) via C, and �x indicesWa = A and Wc = C such that Wa �Wc &Wa, which we write,A � C & A;(23)because we de�ne As = Wa;s and Cs = Wc;s. To utilize the hypothesis Q(A)BLUE will �rst split C into the disjoint union of uniformly r.e. sets fSigi2!,written C = ti2!Si, and then on Si BLUE will play B against D = Wi tosatisfy (20). Since Q(A) holds, RED must reply with T = some Wj to satisfy(21). Now BLUE will use a �02 guessing procedure (described in �4.2 below)to determine the correct values of i and j. We let � = hi; ji.To better explain the basic �-module we will assume in �4.1 two simplifyinghypotheses (discharged later in �4.2), the �rst of which asserts that BLUEhas �xed the correct i and j so that BLUE is playing single sets B and S andhas the indices i and j (respectively) of single r.e. sets D and T such that ifBLUE satis�es (20) then RED satis�es (21). Also all sets below except A,B, and C have subscript � which we drop for this subsection.



Dynamic Properties of Computably Enumerable Sets 114.1 The basic �-module under simplifying assumptionsNow BLUE begins to satisfy (20) by �rst arranging that on S �A,B � (D & B):(24)Hence, RED must ensure that on S \ T ,A � (B & A);(25)because if x 2 (S\T \A) n B then BLUE can restrain x 2 B forever therebyrefuting (21) while still maintaining (20) by ensuring (24) and (27) on S�A.Now (24) and (25) together ensure that on T \ S,A � (D& B & A):(26)To achieve the rest of (20) for every x currently in (D � B) \ (S � A),after a �nite number of stages of �restraint on x� BLUE will enumerate x inB. Thus, on S �A BLUE will playD �B = ;:(27)This will force RED to ensure (21) by enumerating in A all x currently in(B �A) \ (S \ T ) so that on S \ T ,B �A = ;:(28)As a second simplifying assumption BLUE assumes in �4.1 that if (21)holds for T then (21) also holds with T replaced by a certain set U � T whichwill be played by BLUE and which also satis�es(U \ C) �� S:(29)(BLUE will discharge this assumption in �4.2.)But A �m C and C � U (from (21)) implyA �� U;(30)so from (29) and (30) we get (C �A) �� S:(31)



Dynamic Properties of Computably Enumerable Sets 124.2 Describing the �-moduleWe (BLUE) will de�ne r.e. sets U�, S�, E�, and B, whose indices we know inadvance by the Recursion Theorem. Let f(Di; Tj)gi;j2! be an e�ective listingof all pairs of r.e. sets. Below BLUE will de�ne r.e. sets fSi;jgi;j2! such thatC = ti;j2!Si;j . Now BLUE begins by playing for every i and j the set Bon Si;j against Di to satisfy (24) and (27) and therefore (20). Hence, (20) isalso satis�ed by the sets B, Di, and Si = tj2!Si;j. Thus, for some j, Tj mustsatisfy (21) and hence (25) and (28) for B, Di, and Si, and therefore also forB, Di, and Si;j. Let � = hi; ji; and let D�, S�, and T� denote Di = Wi, Si;j,and Tj = Wj , respectively, and D�;s = Wi;s and T�;s = Wj;s. For each � theconjunction of all the conditions in the matrices of (20) and (21) (with D, S,T replaced by D�, S�, and T� respectively) is a �02 condition F (�). Hence,there is an r.e. sequence of r.e. sets fZ�g�2! such that for every �, F (�) holdsi� jZ�j =1.De�ning U�. De�ne r.e. set U� byx 2 U�;s () x 2 U�;s�1 _ [x 2 T�;s �Cs & x � jZ�;sj ]:(32)By the Recursion Theorem with parameter � and the Slowdown Lemma [19,Lemma XIII.1.5] there is an index u� (which we know in advance) such thatU� = Wu� & Wu� � (U� n Wu�):(33)De�ning S�. If x 2 Cs+1 � Cs choose the least � such that x 2 U�;s, andenumerate x in S�;s+1. (If no such � exists enumerate x in Sx;s+1.) Thisde�nes an r.e. set S�.De�ning E�. Using the enumerations above for C, A, D�, S�, and We� =U� we now de�ne the r.e. set,E� = ((Wu� \ S�)& D�) [ ((C n Wu�)& A):(34)This de�nes a recursive enumeration fE�;sgs2! of the r.e. set E�. Again bythe Recursion Theorem with parameter � and the Slowdown Lemma there isan index e� such that We� = E� and We� � (E� nWe�).De�ning B. Fix a nondecreasing recursive function p(s).1. If x 2 (Wu�;s � We�;s) \ We�;s+1, then �-restrain x from Bt for allt � p(s).2. If x 2 (Wu�;s \ S�;s \ We�;s+1) � Bs and x is not �-restrained fromBs+1 then enumerate x in Bs+1.



Dynamic Properties of Computably Enumerable Sets 13This de�nes a recursive enumeration fBsgs2! of the r.e. set B. Note that xcan be �-restrained for only �nitely many stages, starting when 1. �rst holds,and then never again after the �-restraint is dropped. Hence, there is nopermanent restraint on x entering B so (27) holds. (Note that x can be �-restrained only if x 2 S� so x can never be �-restrained and also �-restrainedfor � 6= � because the S� sets are disjoint. Thus, unlike the predecessor [3,Lemma 1], there is no injury and no con�ict between �-strategies.)Let � be the least � such that Z� is in�nite. Hence, D�, S�, T�, and U�satisfy the �rst two simplifying assumptions in �4.1 including (29), becauseby (32) Z� and hence U� and S� are �nite for every � < �. Hence, (29), (30),and (31) hold. De�ne the �nite set bS� = [ �<�S�:Lemma 4.5 Q-tardy(A,C) holds.Proof. Fix a nondecreasing recursive function p(s). Apply the above con-struction to produce Wu� and We� for the least � satisfying F (�). Now(We� n C) \ Wu� = ;;(35)by (34). Next We� = A and Wu� = U� � C by (32) because T� � C. De�nek = max( bS�), and G = [0; k] \ A. Let I� = Wu� �G. We claim that I� andE� = We� satisfy (22) so Q-tardy(A;C) holds.Suppose x 62 bS� andx 2 (Wu�;s1 �We�;s1) & x 2 At:(36)Then (9s2 < t)[x 2 Cs2];(37)by (23). Then x 2 U�;s. But x 2 U� n C because C & U� = ; by (32).Furthermore, when x 2 U� enters C, x enters S� since x 62 bS�. However, onS� \ U� we know A � D� & B & A by (26). Hence, we may assume(9s3)s1�s3�t[x 2 Wu�;s3 \ S�;s3 \ W e�;s3 \ We� ;s3+1](38)(Namely, while in Wu� \ S� \ W e� , at stage s3 element x �announces itsintention� to eventually enter A by �rst entering We�;s+1.) By the action ofthe �-module, x 62 Bt for all t, s3 + 1 � t � p(s3). But then by (26), x 62 At,s3 + 1 � t � p(s3). In (36) we must have v > p(s1) since p is nondecreasing.Hence, (22) so Q-tardy(A;C) holds.This completes the proof of Theorem 4.4.Theorem 4.6 Q-tardy (A;C) =) Q�(A;C).



Dynamic Properties of Computably Enumerable Sets 14Proof. We let the opponent (BLUE) play one set B and we (RED ) play oneset D against B (rather than the in�nitely many Bi and Di as in Lemma 2of [3]). Next we let f(Sj ; bSj) : j 2 !g be an e�ective listing of all disjointpairs of r.e. sets (i.e., played by BLUE). RED must reply with a set Thj;kisuch that if B, D, and Sj satisfy (20) then Thj;ki satis�es (21). Fix recursiveenumerations As and Cs of A and C.For each j de�ne the nondecreasing partial recursive function fj(s) as fol-lows. For each x � s perform the following subroutine to obtain s00 dependingon x:1. If x 2 Cs de�ne s0 = (�v � s)[x 2 Sj;v t bSj;v]:2. If x 2 Sj;s0 \ Ds0 let s00 = (�v � s0)[x 2 Bv [ Av]:De�ne fj(s) = maxffj(s� 1); maxfs00x : x � sgg:If B,D, and Sj satisfy condition (20) of Q(A), then fj(s) is total recursive.Now applying the hypothesis of Q-tardy(A;C) to C, A, and fj, and letting� = hj; ki, we get a pair of sets I� and E� such thatI� � A & E� = A & I� \ (E� n C) = ;(39) & (8y)(8s)[y 2 I�;s �E�;s =) y 62 Afj(s)]]:For � = hj; ki let S�, bS�, T�, and f� denote Sj, bSj, Thj;ki, and fj , respectively.We now use I� and E� to build T� which satis�es (21). For each � = hj; ki theconjunction of: (20) for (B;D;S�); S� t bS� = C; B � C; and the conditionsin (39) is a �02 condition F (�). Let fZ�g�2! be an r.e. array of r.e. sets suchthat F (�) holds i� jZ�j =1.De�ne T� byx 2 T�;s () x 2 T�;s�1 _ [x 2 I�;s � Cs & x � jZ�;sj ]:(40)Hence, C & T� = ;, T� � I�, and T� � C i� jZ�j =1:Suppose x enters C at some stage t. (By hypothesis x 62 E�;t.) Choosethe least � such that x 2 T�;t. For all s � t let x 2 Ds i� x 2 E�;s. (Namely,for the least such � let � de�ne D in the sense that we let D copy E� onT� & C.)Lemma 4.7 Q�(A;C) holds.Proof. Suppose (20) holds for (B;D;Sj). Let � = hj; ki be the least � suchthat Z� is in�nite. We must show that (21) holds for (B;S�; T�). NowS� t bS� = C, and f� is total.



Dynamic Properties of Computably Enumerable Sets 15By the de�nition of F (�) the pair I� and E� witnesses that A is 2-tardyrelative to f�. Now T� � I�, and T� � C because I� � C and jZ�j = 1.But the f� delay ensures that on S� \ T� the sets obey the intended order ofenumeration, namely x 2 A implies that x 2 D & B & A, and hence Q(A)holds. To verify this suppose x 2 T� \ S� \ A: Thenx 2 T� & C & S� & A:Hence, x 2 I� & C & S� & A;because T � I�, and x 2 T� implies x 2 I� n C. Hence,x 2 I� & C & E� & A;because E� = A and I� \ (E� n C) = ; by (39). Hence,x 2 (I� & C & E�) at s =) x 62 Af�(s);by the 2-tardy assumption. Hence,x 2 (I� & C & E�) at s =) x 2 Bf�(s);by the de�nition of f�(s). Therefore,x 2 (I� & C & E�) at s =) x 2 B n A:This completes the proof of Theorem 4.6.5 Relation of Q-tardy to 2-tardyNote that Q-tardy(A;C) implies small-tardy(A;C). In [5, Theorems 3.3 and3.8] we prove the following results.Theorem 5.1 (i) A �sm C =) [Q(A) () A is 2-tardy]:(ii) Q(A) () (9C)[A �sm C & A is 2-tardy].Thus, it is not true that Q(A) holds i� A is 2-tardy, but this does hold ifA �sm C for some C.What is the relation between Q-tardy(A;C) and and 2-tardy(A)? If Q-tardy(A;C) and A �x C where x denotes either major subset �m or weakmajor subset �wm, a slightly weaker condition, then 2-tardy(A) holds. Alsoif 2-tardy(A) and A �s C then Q-tardy(A;C) holds. These are all fairlyeasy to prove, and they establish the relationship between 2-tardy(A) andQ-tardy(A;C).In [5, Theorem 3.11] we prove that there is a maximal 2-tardy set andhence: (i) the property of A being 2-tardy does not guarantee that the orbitof A consists only of incomplete sets; and (ii) the property of A being 2-tardyis not E-de�nable.
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