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Abstract

A set A C wis computably enumerable (c.e.), also called recursively
enumerable, (r.e.), or simply enumerable, if there is a computable al-
gorithm to list its members. Let £ denote the structure of the c.e. sets
under inclusion. Starting with Post [1944] there has been much inter-
est in relating the definable (especially £-definable) properties of a c.e.
set A to its “information content”, namely its Turing degree, deg(A4),
under <, the usual Turing reducibility. [Turing 1939]. Recently, Har-
rington and Soare answered a question arising from Post’s program
by constructing a nonemptly £-definable property Q(A) which guar-
antees that A is incomplete (A <1 K). The property Q(A) is of the
form (3C)[A Cn € & Q7 (A, )], where A Cyy, C abbreviates that “A
is a major subset of C”, and @~ (A,C) contains the main ingredient
for incompleteness.

A dynamic property P(A), such as prompt simplicity, is one which
is defined by considering how fast elements elements enter A relative to
some simultaneous enumeration of all c.e. sets. If some set in deg(A) is
promptly simple then A is prompt and otherwise tardy. We introduce
here two new tardiness notions, small-tardy( A4, C') and Q-tardy(A, C).
We begin by proving that small-tardy(A,C') holds iff A is small in
C (A Cq C) as defined by Lachlan [1968]. Our main result is that
Q-tardy(A, C') holds iff Q= (A,C). Therefore, the dynamic property,
Q-tardy(A, C'), which is more intuitive and easier to work with than the
E-definable counterpart, )~ (A, (), is exactly equivalent and captures
the same incompleteness phenomenon.

*The first author was supported by National Science Foundation Grant DMS 92-14048,
and the second author by National Science Foundation Grant DMS 91-06714 and DMS
94-00825.



Dynamic Properties of Computably Enumerable Sets 2

1 Introduction

Warning. From now on all sets and degrees will be c.e. unless specified
otherwise. Post [16] initiated the study of the relationship between definable
properties of a c.e. set A and its “information content” as measured by its
Turing degree, deg(A), under the usual Turing reducibility <t. By the 1950’s
Myhill noticed that the c.e. sets form a lattice £ under inclusion and from
then on most definable properties considered for c.e. sets were £-definable.
An exception is hyper-simplicity.

Friedberg and Muchnik solved Post’s problem by constructing an incom-
plete and nonrecursive c.e. set, and invented the priority method to do it. The
method was quickly developed into more sophisticated forms (infinite injury
and the 0”-method) and used to prove a number of theorems on c.e. sets
and degrees. Sacks used the second method to construct an incomplete max-
imal set, Yates constructed a complete maximal set, and Martin [15] brought
these results together and extended them in his beautiful theorem that the
degrees of maximal sets are exactly H;, the high degrees. Then Lachlan [8]
and Shoenfield [17] proved that the degrees of the atomless sets (those with
no maximal supersets) are Ly, the complement of the low, degrees. Both
properties of being maximal or atomless are £-definable properties.

Meanwhile Soare [18] developed a new method for generating automor-
phisms of £, and used it to show that maximal sets form an orbit. (The orbit
of A € € is the set of all sets B which are automorphic to A, written A ~ B.)
The question stemming from Post’s program remained open of whether there
was an E-definable property P(A) which guarantees that A is incomplete and
nonrecursive. It seemed that automorphisms could be used to give a negative
answer by showing that every nonrecursive set A has a complete set in its
orbit. However, Harrington and Soare gave a negative answer to this question
by proving the following.

Theorem 1.1 (Harrington-Soare [3]) There is a nonempty E-definable
property Q(A) such that every c.e. set A satisfying Q(A) is noncomputable
and Turing incomplete.

The property, which we shall describe fully in §4, is in two parts,

QA) = ACwn B & Q7(A,0),

where A C,, C abbreviates that “A is a major subset of C”, and @~ (A, C),
an &-definable property with several quantifiers which contains the main in-
gredient for incompleteness. The property )~(A, (') succeeds but it is not
very intuitive or easy to work with. The main achievement of the present
paper is to produce a simpler and dynamic property, called Q-tardy(A,C),
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and to prove

(1) Q (A C) <= @ —tardy(A,C).

Hence, the dynamic property @)-tardy(A,C) is exactly equivalent to Q~ (A, (')
(in the presence of A C,, (') and therefore captures the incompleteness phe-
nomenon.

In §2 we discuss dynamic properties and particularly prompitness proper-
ties, such as prompt simplicity, and their opposite, i.c., tardiness properties.
This will motivate our present tardiness property, Q-tardy(A, C).

The above result led us to a curious discovery Theorem 3.2 about the &-
definable and new dynamic definitions of small subsets. Lachlan first defined
the notion of A being a small subset of C', written A C; ', in connection with
his decision procedure for part of the elementary theory of £ as described in §3.
This notion proved useful and other facts about small sets were added by Stob
[20] (see [19, pp. 193-195]), and others. The property @(A) = (3O)[A s (]
comes tantalizingly close to being a property like ()(A) which guarantees
A incomplete, but not quite. We note that @(A) implies that A is not a
promptly simple set by Corollary 3.3, but does not ensure that A is not of
promptly simple degree.

The investigation of tardy properties with an eye toward incompleteness
led naturally to a new tardiness property, small-tardy( A, C'). Our other main
result in the present paper is that,

(2) A C, C <= small-tardy(A4, C).

This property small-tardy(A, (') gave new insight into the nature of small
subsets, and led to a brand new and simpler £-definable definition for the
relation A C; €' which had been overlooked researchers for 25 years. The
general point is that dynamic notions frequently are more intuitive and easier
to work with than £-definable ones. Each sheds light on the other, particularly
when one can show equivalence of the two such notions.

We use the terms “computably enumerable (c.e.)” and “recursively enu-

”

merable (r.e.)” interchangably, and likewise “computable” and “recursive.”

2 Dynamic Properties

Most properties of an r.e. set A are static properties in that they refer to
A as a completed object without mention of the enumeration of A. Such
include Post’s properties of being simple or hh-simple, and Myhill’s property
of being maximal, all of which are also £-definable properties. Another static
property which is not £-definable or even invariant under automorphisms
is hyper-simplicity. A dynamic property on the other hand is one which is
defined using an computable enumeration {A;}¢, of A.
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2.1 The Extension Theorem and Automorphisms

The first essential use of a dynamic property was probably the covering hy-
pothesis in the Extension Theorem of Soare’s maximal set automorphism
theorem [18]. Here there were several simultaneous enumerations of arrays
of r.e. sets, {U,},c, and {V}HEW, and it was important to measure for an
element = which U, sets it entered before entering certain Vm sets.

2.2 d-simple sets

In 1980 Lerman and Soare [11] attempted to capture part of the dynamic
property of the Extension Theorem with an £-definable property which is
called d-simple, but they succeeded in capturing only a small part.

Definition 2.1 A coinfinite set A is d-simple if for all X there exists ¥ C X
such that
(3) X(VA=Y[) A and

(4) (YZ)[(Z — X) infinite = (Z—Y) () A %0

The tension in constructing Y is that to meet (4) we wish to make Y as
small as possible, but to meet (3) we must eventually put every element of
X — Ainto Y. Every hh-simple is d-simple, and every d-simple set is simple.
The degrees of d-simple sets include H; and split L;. Also a d-simple set
cannot be small [11, p. 141]. (This old result takes on new significance in
view of the present paper because d-simple sets behave like prompt sets and
by the result here Theorem 3.2 on small sets, small sets must be tardy.) The
major open question left over from Post’s program is the following.

Question 2.2 Find a necessary and sufficient condition on A for A to be au-
tomorphic to a complete set. In particular, is every d-simple set automorphic
to a complete set?

The second question is not of great intrinsic interest itself, but it appears
to be on the cutting edge of the symmetry between the methodologies for
generating automorphisms and for producing invariant properties (such as
(Q(A)), and may therefore be useful in gaining insight into the completeness
phenomenon and the first part of the question.

2.3 Promptly Simple Sets

The next significant advance came with the following definition of promptly
simple sets by Maass [12].
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Definition 2.3 (i) A coinfinite r.e. set A is promptly simple if there is a
computable function p and a computable enumeration { A }sc., of A such
that for every e,

(5) We infinite = (Js) (Jz) [z € We, acs N Apy))-

(i1) Anr.e. set Ais promptif A has promptly simple degree namely, A =7 B
for some promptly simple set B, and an r.e. degree is prompt if it contains a
prompt set.

(iii) An r.e. set or degree which is not prompt is tardy.

By the Promptly Simple Degree Theorem [19, Theorem XIII.1.7(iii)] a set
A being prompt is equivalent to the following property which we may take as
the definition. Let {A;}sc., be any recursive enumeration of A. Then there
is a recursive function p such that for all s, p(s) > s, and for all e,

(6) W, infinite = (3%z) (Js) [x € We a5 & Asla # Ap(s)[x],

namely infinitely often A “promptly permits” on some element x € W..
Promptly simply sets and degrees helped bring some dramatic advances
in the subject. Maass [12] proved that any two promptly simple low sets
are automorphic and discovered other properties of these sets [13]. Ambos-
Spies, Jockusch, Shore, and Soare [1] used prompt degrees to unify and extend
results about r.e. degrees, and promptness has been very influential ever since.

(See [19, Chap. XIII].)

2.4 Almost Prompt Sets and Degrees

The material from the next two subsections §2.4 and 2.5 is not strictly neces-
sary for this paper but is helpful to understand other notions of promptness
and tardiness.

Harrington and Soare [4, Theorem 1.2] proved that every prompt set is
automorphic to a complete set. They noticed that the same proof would work
for a strictly larger dynamically defined class of sets called almost prompt,
which are defined in terms of n-r.e. sets.

Definition 2.4 (i) A set X <t K is n-r.e. if X = lim; X, for some recursive
sequence { X; }ec, such that for all 2, Xy(z) =0 and

card{ s : X;(a) # Xopa1 ()} < n.

(For example, the only O-r.e. set is (}, the 1-r.e. sets are the usual r.e. sets,
and the 2-r.e. sets are the d.r.e. sets.)
(i1) Such a sequence {X;}sc, is called an n-r.e. presentation of X.
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It is well-known and easy to show [19, Exercise II1.3.8., p. 38] that for n > 0,
X 1s n-r.e. iff

(7) X = (W61 - W62) U (W53 - W64) U U W52k+17 or

(8) X = (W61 - W62) U (W53 - W64) U U (W52k+1 - W52k+2)7

according as n = 2k + 1 is odd or n = 2k + 2 1s even.

Definition 2.5 For n = 0 let XJ = (. For n > 0 and e = (ey,€3,...¢,)
define
(9) X::(Wel_W@)U"'v

as in (7) or (8) according as n is odd or even. We say that (n,e) is an n-r.e.
index for X', Let
(10) X=Weo = We o U -

Definition 2.6 Let A be an r.e. set and let {A;},c, be a recursive enu-
meration of A. We say A is almost prompt, abbreviated a.p., if there is a
nondecreasing recursive function p(s) such that for all n and e,

(11) X'=A = (Jo)(3s)[z € Xl & v € Ayl

Note that, as in the case of promptly simple, this definition is independent
of the enumeration of A; if p(s) works for the enumeration {A;}c,, and if
{A’}sc. is another enumeration of A, define p'(s) = (put)[A} D A,(s)]. We
may think of Definition 2.6 as asserting that A will p-promptly hit every
approximation { X", };c, for every n-re. set X' = A where the recursive
approximation X[/ is determined by the standard enumeration {W, s}e sew
of the r.e. sets. In [4, Conversion Lemma 11.4] we prove that if we specify
another collection of n-r.e. sets {)?g}n,eem by some recursive approximation
{)?gs}mwew, then there is a recursive function ¢ such that A will ¢-promptly

hit { X7, }ocsew if X0 = A,

2.5 Very Tardy Sets

The negation of the property of almost prompt is called very tardy. An
important special case of this is known as 2-tardy and is closely related to

the property Q(A).

Definition 2.7 Let A be an r.e. set and let {A};c, be a recursive enumer-
ation of A.



Dynamic Properties of Computably Enumerable Sets 7

(i) We say A is very tardy if A is not almost prompt, namely if for every
nondecreasing recursive function p(s),

(12) (Fn)(F)XT = A & (Vy)(Vs)ly € X!, = y & Ayl

(i1) We say A is n-tardy if in (i) the fixed n works uniformly for all such
functions p, namely for every nondecreasing recursive function p(s),

(13) ()X = A & (Vy)(Vs)ly € XI, = y & Ay0)]l-

The main idea about a very tardy set A is that if + € X then x can
later enter A eventually, but = must first undergo a delay until at least stage
p(s)+1 before doing so. Since class of almost prompt sets is a strict extension
of the class of prompt sets it follows that the class of very tardy sets is a strict
subclass of the class of tardy sets, hence the name “very tardy.” Note that A
is O0-tardy iff A = w, and A is 1-tardy iff A is recursive. The 2-tardy sets play
a special role in our work and have additional characterizations as follows, as
we prove in [5].

Proposition 2.8 (Harrington-Soare [5]) For an r.e. set A the following
are equivalent:
(i) A is 2-tardy;

(ii) For every nondecreasing recursive function p(s),

(14) (AW, D AW, = A)(Vy)(Vs)ly € Wi, — Wey = y & Ayoll.

3 Small Subsets

Lachlan [9] introduced small sets in his program to construct canonical ex-
amples of certain diagrams and then rule out possible extensions so as to
give a decision procedure for the Vﬁ—theory of the lattice of r.e. sets. The
following definition is clearly equivalent to the standard definition as in [19,
Definition 4.10, p. 193].

Definition 3.1 A subset A C C is a small subset of C' (written A C, C) if
A Cy C and for all X and Y, if

(i) X N (C — A) CY, then

(1) (A2)zex [Z22(X =C) & (ZNC)CY].

If A is both a small subset and major subset of (' we say it is a small
major subset and write A Cg, C.
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Note that the consequent of the implication in (ii) is equivalent to the
property
(15) VY 2C—-A)Y U Cisre. .

It i1s interesting now to see that this important notion of small subset,
Theorem 3.2(i) below, just like the ()(A) property, has a dynamic equiva-
lent, Theorem 3.2(iii), below which we now prove. It is particularly that the
equivalent dynamic definition (iii) led to the discovery of another £-definable
definition (ii) below which is simpler than the original £-definable one, but
lay undiscovered for over 25 years.

Theorem 3.2 (Harrington and Soare) Suppose A C., C'. Then the fol-
lowing are equivalent:

(i) A Cs C;
(it) V[(C-A)CY] = F0)CCZ & ZnCCY];
(tii) small-tardy(A,C ), namely:

(16)  (VHEDICCST & (Va)le e (TN C)gp s = o & Ags)ll-

(In (iii) it is understood that f ranges over recursive functions which are
nondecreasing.)

Note that (ii) is equivalent to the property,
(VY 2C-A)Y UCisre.|.

We refer to the property (iii) on A C., C as small-tardy(A, C') because it is
a dynamic property.

Proof. (1) = (ii). Trivial. Let X = w.

(i) = (iii). Fix a recursive function f as in (iii). We (BLUE) will
build Y O (C' — A), so by (ii) the opponent (RED) must reply with 7 = W;
for some j, satisfying (ii). Define Wy;) = W; \, C. If . € (W; N\, C)at s,
then by the Recursion Theorem and Slowdown Lemma [19, Lemma XIII.1.5]
we can compute ¢ = (pv)[z € Wy(;.], and know that ¢ > s.

Namely, if © € Cs4q — C; take all j such that @ € W, ; (necessarily j < s).
For each j compute 1, ; = (pv)[x € Wy(;y.]. Let £ = max{t,; : all such j}. If
& & Ajy) then enumerate  in Y at stage f(4) + 1. Since every x € C' — A
enters Y after some finite delay we have,

(17) C—-—ACY.
However, no element once in A ever enters Y, so

(18) Y NACY N\, A
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By (17) and (ii), RED must play some 7 satisfying (ii). In (iil) we let
T=7Z\C.Let W; =T. Now C C T because C C Z. But T N C CY by
(ii) implies by (18) that 7' N ¢ C Y \ A. Now A\, Y = (). Hence, for all z,
if € (T'N C)yt g, then

v € (TN, Clat s

x € Wy, for some ¢ > s,
x & Yy by (18) and definition of Y,
x & Aj(s) since s <t and f is nondecreasing.

(i) = (¢). Fix A C. C satisfying (iii). Given X and Y satisfying
Definition 3.1 (i), we (RED) define 7 satisfying Definition 3.1 (ii) as follows.
Define

fls)=(ut>s)(Vo)lre Xs N Cy, = € A, UY.

Such t exists by Definition 3.1 (i). Choose T satisfying (iii). Enumerate
(19) rE€ELy = x€Z 1 Vae(X,NT)—Ch.
Now by (iii) for all z,

r€(Z;NCs) = x€(X;NTs), and

r€(TNCC)ats = ¢ & Aps), 50
re€(ZNC)ags = =€ Yy
by definition of f. [ ]
Consider the property @(A) : (3C)[A C C]. This resembles the property
(Q(A) because Q)(A) implies that A is not a promptly simple set. However,
it does not guarantee that A is not of promptly simple degree, and therefore,

unlike Q)(A) it does not ensure that the orbit of A contains only incomplete
sets.

Corollary 3.3 If A C; C then A is not a promptly simple set.

Proof. Let A Cs C. Let p(s) be any nondecreasing total recursive function.
By Theorem 3.2 (iii) there exists 7' 2 C such that

(Va)lz e (T NClats = ¢ Af(S)]]-

Hence, W; =T N C witnesses that A fails to satisfy (5).
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4 (Q(A) And Tardy Properties

In the following definition we separate the first property of )(A) into two
parts: the first part ()7 (A, C') which is equivalent to a purely dynamic prop-
erty and is the key to satisfying tardiness and hence incompleteness; and the
second part asserting A C,,, C, which is entirely standard.

Definition 4.1 (i) Q (A,C): AC.. C & (YBCC)( 3D C CO)VS)sce |
(20) [BN(S—A)=Dn(5—A)]

(21) — (AN[CCcT & AN(SNT)=BnN(SnT).
(i) Q(A): (AO)ACwm C & Q(A,C)).

Definition 4.2 If A C C then Q-tardy (A, C) holds if

(22) ACe C & (VHBIDC)IE = A)p\ c)nr=s
(Vo) e UNC N E)ag s = v ¢ Apy)-

The main result of the present paper is the following.
Theorem 4.3 (Main Theorem) @~ (A,C) < Q-tardy(A,C).

We prove this in the next two theorems. The first resembles Lemma 1 of [3],
and the second Lemma 2 there.

Theorem 4.4 Q= (A,C) = Q-tardy(A,C).

Proof. Fix A and C € & such that A satisfies Q(A) via (', and fix indices
W, = A and W, = (' such that W, C W. \, W,, which we write,

(23) ACCON A,

because we define A, = W, ; and C; = W, ;. To utilize the hypothesis Q(A)
BLUE will first split ' into the disjoint union of uniformly r.e. sets {S;}.c.,
written C' = U;¢,5;, and then on S; BLUE will play B against D = W, to
satisfy (20). Since Q)(A) holds, RED must reply with 7' = some W, to satisfy
(21). Now BLUE will use a Il guessing procedure (described in §4.2 below)
to determine the correct values of ¢ and j. We let oo = (1, j).

To better explain the basic a-module we will assume in §4.1 two simplifying
hypotheses (discharged later in §4.2), the first of which asserts that BLUE
has fixed the correct ¢ and j so that BLUE is playing single sets B and S and
has the indices ¢ and j (respectively) of single r.e. sets D and 7T such that if
BLUE satisfies (20) then RED satisfies (21). Also all sets below except A,

B, and C have subscript o which we drop for this subsection.
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4.1 The basic a-module under simplifying assumptions

Now BLUE begins to satisfy (20) by first arranging that on S — A,
(24) B C (DN, B).

Hence, RED must ensure that on SN 7T,

(25) AC (BN A),

because if z € (SNTNA)\ B then BLUE can restrain x € B forever thereby
refuting (21) while still maintaining (20) by ensuring (24) and (27) on S — A.
Now (24) and (25) together ensure that on 7N 9,

(26) AC (DN, B\ A).

To achieve the rest of (20) for every x currently in (D — B) N (S — A),
after a finite number of stages of “restraint on ” BLLUE will enumerate « in

B. Thus, on S — A BLUE will play
(27) D—-B=1.

This will force RED to ensure (21) by enumerating in A all x currently in
(B—A)N(SNT)sothaton SNT,

(28) B—A=0.

As a second simplifying assumption BLUE assumes in §4.1 that if (21)
holds for 7" then (21) also holds with 7" replaced by a certain set /' C 7" which
will be played by BLUE and which also satisfies

(29) (UnC)c s

(BLUE will discharge this assumption in §4.2.)
But A C,,, C and C C U (from (21)) imply

(30) AC U,
so from (29) and (30) we get

(31) (C— A)C* 8.
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4.2 Describing the a-module

We (BLUE) will define r.e. sets U,, S,, E., and B, whose indices we know in
advance by the Recursion Theorem. Let {(D;,T;)}; jc. be an effective listing
of all pairs of r.e. sets. Below BLUE will define r.e. sets {5, ;}; je. such that
C' = U jen5i;- Now BLUE begins by playing for every ¢ and j the set B
on S, ; against D; to satisfy (24) and (27) and therefore (20). Hence, (20) is
also satisfied by the sets B, D;, and S; = U;¢,5; ;. Thus, for some j, 7 must
satisfy (21) and hence (25) and (28) for B, D;, and S;, and therefore also for
B, D;,and S, ;. Let o = (¢,5), and let D,, S,, and T, denote D; = W;, S, ;,
and 7, = W;, respectively, and D, = W, and T, , = W, ,. For each « the
conjunction of all the conditions in the matrices of (20) and (21) (with D, S,
T replaced by D,,, S, and T, respectively) is a II5 condition F'(«). Hence,
there is an r.e. sequence of r.e. sets {7, },c., such that for every o, F'(«) holds

iff |Z,] = oo.

Defining U,. Define r.e. set U, by
(32) r€Us ;<= ax€lU,sq1 V] el —Cs & < |Z,4]

By the Recursion Theorem with parameter o and the Slowdown Lemma [19,
Lemma XIII.1.5] there is an index u, (which we know in advance) such that

(33) Upy=We., & Wa, C(Us\ Wa,).

Defining 5,. If 2 € C,yy — C; choose the least o such that = € U, ;, and
enumerate @ in S, 541. (If no such « exists enumerate « in S, ;11.) This
defines an r.e. set S,.

Defining F,. Using the enumerations above for C'; A, D,, S,, and W, =
U, we now define the r.e. set,

(34) Eo=((Wu, N5) N Do) U ((C\ W) N\ A).

This defines a recursive enumeration {F, ;}sc, of the r.e. set £,. Again by
the Recursion Theorem with parameter o and the Slowdown Lemma there is

an index e, such that W. = E, and W, C (E, \ W,,).

Defining B. Fix a nondecreasing recursive function p(s).

1L.Ifx € (Wy,s — W, s) N W, 541, then a-restrain x from B, for all
t < p(s).

2. If v € (Wyys N Sas N W, s41) — Bs and x is not a-restrained from
By1 then enumerate = in Byyq.
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This defines a recursive enumeration {B;}sc, of the r.e. set B. Note that x
can be a-restrained for only finitely many stages, starting when 1. first holds,
and then never again after the a-restraint is dropped. Hence, there is no
permanent restraint on x entering B so (27) holds. (Note that x can be a-
restrained only if x € S, so = can never be a-restrained and also -restrained
for 5 # « because the S, sets are disjoint. Thus, unlike the predecessor [3,
Lemma 1], there is no injury and no conflict between a-strategies.)

Let o be the least 3 such that Zg is infinite. Hence, D, S,, T, and U,
satisfy the first two simplifying assumptions in §4.1 including (29), because
by (32) Z; and hence U and Sj are finite for every 5 < a. Hence, (29), (30),
and (31) hold. Define the finite set S, = U g<aSg-

Lemma 4.5 Q-tardy(A,C) holds.

Proof. Fix a nondecreasing recursive function p(s). Apply the above con-
struction to produce W, and W, _ for the least « satisfying F'(«). Now

(35) (W, \C)n W,, =0,

by (34). Next W, = Aand W,,, =U, 2 C by (32) because T,, 2 C. Define
k = max(S,), and G =[0,k] N A. Let I, = W, — (. We claim that [, and
E, = W, satisfy (22) so Q-tardy(A, (') holds.

Suppose = &€ S, and

(36) € Wipsy — Wens,) & © € Ag
Then
(37) (Jse < t)[x € Cy,],

by (23). Then = € U,,. But € U, \ C because C \ Uy = 0 by (32).
Furthermore, when x € U, enters (', x enters S5, since = ¢ S5,. However, on
So N U, we know A C D, \, B\, A by (26). Hence, we may assume

(38) (383)51§53§t[x € WuouSS N SOZ753 N W6a753 N W5a753+1]

(Namely, while in W,, N S, N W.,, at stage s3 element = “announces its
intention” to eventually enter A by first entering W, s11.) By the action of
the a-module, © ¢ B; for all £, s3 + 1 <t < p(s3). But then by (26), + ¢ A,,
s3+1 <t < p(s3). In (36) we must have v > p(sy) since p is nondecreasing.
Hence, (22) so -tardy(A, (') holds. ]

This completes the proof of Theorem 4.4. [ ]

Theorem 4.6 Q-tardy(A,C) = Q~(A,C).
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Proof. We let the opponent (BLUE) play one set B and we (RED ) play one
set D against B (rather than the infinitely many B; and D; as in Lemma 2
of [3]). Next we let {(5,,5;) : j € w} be an effective listing of all disjoint
pairs of r.e. sets (i.e., played by BLUE). RED must reply with a set 1};
such that if B, D, and S; satisfy (20) then T, satisfies (21). Fix recursive
enumerations A, and C of A and C.

For each j define the nondecreasing partial recursive function f;(s) as fol-
lows. For each # < s perform the following subroutine to obtain s depending
on x:

1. If © € C5 define ' = (pv > s)[z € S;, U g]’,v]-

2. Ifx e 5,0 N Dylet 8" = (pv > sz e B, UA

Define f;(s) = max{f;(s — 1), max{s, : z < s}}.

If B, D, and 95 satisfy condition (20) of )(A), then f;(s) is total recursive.
Now applying the hypothesis of ()-tardy(A,C) to C, A, and f;, and letting
a = (j, k), we get a pair of sets [, and F, such that

(39) [LOA & E,=A & 1,0 (E,\C)=0
& (Vy)(Vs)ly € Loy — Eoy = y & Ay 0]l-

For oo = (j, k) let S, Su, T, and f, denote Sy, S’j, T';x), and f;, respectively.
We now use [, and F, to build 7}, which satisfies (21). For each o = (j, k) the
conjunction of: (20) for (B, D, S,); S, U S, = (; BC (' and the conditions
in (39) is a IIj condition F'(a). Let {Z,},ec. be an r.e. array of r.e. sets such
that F'(«) holds iff | Z,| = <.

Define T, by

(40) r €T, s €T, V]eel,s—Cs & < |Z,4|]

Hence, C \ T, =0, T, CI,,and T, D C iff |Z,| = .

Suppose « enters ' at some stage . (By hypothesis « ¢ F,;.) Choose
the least « such that « € T,, ;. Forall s > tlet € D, iff « € E, ;. (Namely,
for the least such « let « define D in the sense that we let D copy F, on

T.\.C.)
Lemma 4.7 ()~ (A, C) holds.

Proof. Suppose (20) holds for (B, D, S;). Let a = (j, k) be the least  such
that 7 is infinite. We must show that (21) holds for (B, S,,T,). Now
S, U S, =C, and f, is total.



Dynamic Properties of Computably Enumerable Sets 15

By the definition of F'(«) the pair I, and F, witnesses that A is 2-tardy
relative to f,. Now 7, C I,, and T, O C because I, D C and |Z,| = oo.
But the f, delay ensures that on 5, N 7}, the sets obey the intended order of
enumeration, namely @ € A implies that @ € D \ B \, A, and hence Q(A)
holds. To verify this suppose € T, N S, N A. Then

€T, N\, O\, 5, \ A
Hence,

x €1, N\ O\, 5\, A4,
because T'C [, and = € T, implies = € [, \ C. Hence,

x €L, N\ O\ F,\ A,
because F, = A and I, N (£, \ C) =0 by (39). Hence,

€U O N Ey)ats = v ¢ Ajgs),
by the 2-tardy assumption. Hence,

€ (Lo O N Eo) at s = © € By,
by the definition of f,(s). Therefore,

wE(]a\C\Ea)a‘ts — wEB\A

This completes the proof of Theorem 4.6. [ ]

5 Relation of ()-tardy to 2-tardy

Note that Q-tardy(A, C') implies small-tardy(A, C'). In [5, Theorems 3.3 and
3.8] we prove the following results.

Theorem 5.1 (i) A Co C = [Q(A) <= A is 2-tardy|.
(it) Q(A) <= (FC)[A Cem C & A is 2-tardy).

Thus, it is not true that ()(A) holds iff A is 2-tardy, but this does hold if
A Cen C for some C.

What is the relation between Q-tardy(A,C') and and 2-tardy(A)? If Q-
tardy(A,C) and A Cy C where @ denotes either major subset C,, or weak
major subset Cym, a slightly weaker condition, then 2-tardy(A) holds. Also
if 2-tardy(A) and A C. C then Q-tardy(A,C') holds. These are all fairly
easy to prove, and they establish the relationship between 2-tardy(A) and
Q-tardy(A, C).

In [5, Theorem 3.11] we prove that there is a maximal 2-tardy set and
hence: (i) the property of A being 2-tardy does not guarantee that the orbit
of A consists only of incomplete sets; and (ii) the property of A being 2-tardy
is not &-definable.
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