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Abstract

Algorithms for factoring polynomials in one or more variables over various coefficient
domains are discussed. Special emphasis is given to finite fields, the integers, or algebraic
extensions of the rationals, and to multivariate polynomials with integral coefficients. In par-
ticular, various squarefree decomposition algorithms and Hensel lifting techniques are
analyzed. An attempt is made to establish a complete historic trace for today’s methods. The
exponential worst case complexity nature of these algorithms receives attention.
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1. Introduction

The problem of factoring polynomials has a long and distinguished history. D. Knuth
traces the first attempts back to Isaac Newton’s Arithmetica Universalis (1707) and to the
astronomer Friedrich T. v. Schubert who in 1793 presented a finite step algorithm to compute
the factors of a univariate polynomial with integer coefficients. (Cf. [22, Sec. 4.6.2]) A not-
able criterion for determining irreducibility was given by F. G. Eisenstein in 1850 [12, p.
166]. L. Kronecker rediscovered Schubert’s method in 1882 and also gave algorithms for fac-
toring polynomials with two or more variables or with coefficients in algebraic extensions [23,
Sec. 4, pp. 10-13]. Exactly one hundred years have passed since then, and though early com-
puter programs relied on Kronecker’s work [17], modern polynomial factorization algorithms
and their analysis depend on major advances in mathematical research during this period of
time. However, most papers which have become especially important to recent investigations
do not deal with the problem per se, and we shall refer to them in the specific context.

When the long-known finite step algorithms were first put on computers they turned out
to be highly inefficient. The fact that almost any uni- or multivariate polynomial of degree up
to 100 and with coefficients of a moderate size (up to 100 bits) can be factored by modern
algorithms in a few minutes of computer time indicates how successfully this problem has
been attacked during the past fifteen years. It is the purpose of this paper to survey the
methods which led to these developments. At the risk of repeating ourselves later or omitting
significant contributions we shall give some main points of reference now.

In 1967 E. Berlekamp devised an ingenious algorithm which factors univariate polynomi-
als over Zp, p a prime number, whose running time is of order 0(n3+prn2) where n is the
degree of the polynomial and r the number of actual factors (cf. [22, Sec. 4.6.2]). The
incredible speed of this algorithm suggested factoring integer polynomials by first factoring
them modulo certain small primes and then reconstructing the integer factors by some mean
such as Chinese remaindering [21, Sec. 4.6.2]. H. Zassenhaus discussed in his landmark 1969
paper [60] how to apply the "Hensel lemma" to lift in k iterations a factorization modulo p to
a factorization modulo p2k

, provided that the integral polynomial is squarefree and remains
squarefree modulo p. Readers familiar with basic field theory will know that if a polynomial
over a field of characteristic 0 has repeated roots, then the greatest common divisor (GCD) of
the polynomial and its derivative is nontrivial. Hence casting out multiple factors is essen-
tially a polynomial GCD process, but we will come back to this problem in a later section.
Squarefreeness is preserved modulo all but a reasonable small number of primes. Given a
bound for the size of the coefficients of any possible polynomial factor, one then lifts the
modular factorization to a factorization modulo p2k

such that p2k

⁄2 supersedes this coefficient
bound. At this point factors with balanced residues modulo p2k

either are already the integral
factors or one needs to multiply some factors together to obtain a true factor over the integers.
The slight complication arising from a leading coefficient not equal to unity will be resolved
later.
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D. Musser [32,33] and, using his ideas, P. Wang in collaboration with L. Rothschild
[53], generalized the Hensel lemma to obtain factorization algorithms for multivariate integral
polynomials. Subsequently P. Wang has incorporated various improvements to these mul-
tivariate factorization algorithms [49,50,52]. In 1973 J. Moses and D. Yun found the Hensel
construction suitable for multivariate GCD computations (now called the EZGCD algorithm)
[31], and D. Yun has used this algorithm for the squarefree decomposition process of mul-
tivariate polynomials [58]. The classical algorithm for factoring polynomials over algebraic
number fields was considered and modified by B. Trager [42] but again the Hensel approach
proved fruitful [48, 56]. In 1976 M. Rabin, following an idea of E. Berlekamp [5], intro-
duced random choices in his algorithm for factoring univariate polynomials over large finite
fields whose expected running time is at most of the order 0(n3 (log n)3 log(p)) where n is the
degree and p the size of the field [41], [4]. In 1979 G. Collins published a thorough analysis
of the average time behavior for the univariate Berlekamp-Hensel algorithm [10], while in the
same year improved algorithms for squarefree factorization [54] and Chinese remaindering on
sparse multivariate polynomials appeared [63,64,65].

To completely factor a univariate polynomial over the integer means, of course, to also
factor the common divisor of all its coefficients. This paper does not include the topic of fac-
torization of integers and we will not consider this problem as a part of polynomial factoriza-
tion. However, some comparisons are in order. Factoring large random integers seems much
harder than factoring integral polynomials. This was partially confirmed by a polynomial-
time reduction from polynomial to integer factorization, which is, however, subject to an old
number theoretic conjecture [3]. The problem of finding polynomially long irreducibility
proofs ("succinct certificates") was first solved for prime numbers in 1975 [40] and has
recently also been achieved for densely encoded integral polynomials [7]. A polynomial-time
irreducibility test for prime numbers depending on the validity of the generalized Riemann
hypothesis (GRH) was discovered in 1976 (cf. [22, Sec. 4.5.4]). Peter Weinberger obtained
the corresponding result for densely encoded integer polynomials [55] (also see [22, p. 632,
Exercise 38]). In 1971 E. Berlekamp pointed out that the modular projection and lifting algo-
rithm may take an exponential number of trial factor combinations [5]. Except for P.
Weinberger’s algorithm, whose complexity analysis is subject to the GRH, the author knows
of no procedure which significantly reduces this exponential behavior in contrast to the stun-
ning advances for the integer case by L. Adleman, C. Pomerance, and R. Rumley [2]. Also,
no fast probabilistic irreducibility tests for integer polynomials seem to be known, again leav-
ing a gap for work parallel to that of M. Rabin, R. Solovay and V. Strassen (cf. [22, Sec.
4.5.4]). Little work has been done on the theoretical analysis of the multivariate versions of
the Berlekamp-Hensel algorithm. Similar to the univariate case, the steps involved may
require an exponential number of trial factor combinations, though this problem may be pro-
babilistically controllable by virtue of the Hilbert Irreducibility Theorem. G. Viry has also
shown how to replace the trial divisions of multivariate polynomials by a simple degree test
which makes his algorithm the asymptotically fastest, though still exponential in the degrees



- 4 -

in the worst case, of all known deterministic algorithms [47]. Recently the author has proven
that it is only polynomially harder to factor densely encoded multivariate integer polynomials
with a fixed number of variables than integer polynomials with just two variables [18].

In this paper we take the concrete approach of discussing the algorithms for coefficient
domains such as Galois fields, the integers, or finite algebraic extensions of the rationals. An
excellent reference for a general algebraic setting is the work of D. Musser [32,33]. Sections
2, 3 and 4 deal with univariate polynomial factorization over the previously mentioned
domains. Section 5 discusses the multivariate factorization problem over these domains with
emphasis on integer coefficients. We conclude with a list of open problems in section 6. 2.
Factorization of univariate polynomials over finite fields

The exposition of this problem given in D. Knuth’s book [22, Sec. 4.6.2] is quite com-
plete, and we refer the reader who seeks an introduction to current algorithms to that work.
We wish to mention here that testing a polynomial f(x) ε Zp[x] of degree n for irreducibility
can be achieved in O(n2 log(n)3 log(p)) arithmetic steps using the distinct degree factorization
[41]. This bound is polynomial in n log(p) which is the order of the size needed to encode f
on the tape of a Turing machine. The distinct degree factorization algorithm also produces
for each factor of degree m the product polynomial of all factors of degree m. Though this is
still an incomplete factorization, it is a further refinement of the squarefree decomposition and
no corresponding algorithm is known for integers. It is the goal of any probabilistic factoriza-
tion algorithm to make the expected running time polynomial in n log(p). As we have noted
in the introduction, M. Rabin’s algorithm, which is based on finding the roots of f in some
larger Galois field of characteristic p, achieves this goal. Recently D. Cantor and H.
Zassenhaus proposed a probabilistic version of Berlekamp’s algorithm which takes
O(n3 + n2log(n)log(p)3) expected steps [8]. It is not clear which of the algorithms is more
efficient in practice [6] though the root-finding algorithm has been proven to be asymptoti-
cally faster [4]. Further probabilistic improvements to the Berlekamp algorithm are reported
in [26]. There is no known deterministic complete factorization algorithm whose worst time
complexity is polynomial in n log(p), except in the case that p-1 is highly composite (e.g.
p = L 2k+1 with L of the same size as k). In that case R. Moenck devised an algorithm very
similar to the root finding algorithm which factors f in O(n3 + n2 log(p) + n log(p)2) steps
[29]. So far we have only addressed the problem where the coefficients lie in a prime residue
field but, as one might have expected, most of the above algorithms can be modified to also
work in Galois fields of order pk, k>1. 3. Factorization of univariate polynomials over the
integers

Given a polynomial h(x) ε Z[x] we seek to compute its content (see chapter on "Arith-
metic") and all its primitive irreducible polynomial factors gij(x) ε Z[x], that is

h(x) = cont(h)
i=1
Π

r
(
j=1
Π
si

gij(x))i
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with all gij irreducible and pairwise distinct. The complete algorithm consists of three
separate steps, namely

[Factorization of h(x) ε Z[x]]

(C) [Content computation:] The integer GCD of all coefficients of h constitutes the cont(h),
h ← h⁄cont(h) [h is now a primitive polynomial.]

(S) [Squarefree decomposition of h:] Compute squarefree polynomials fi(x) ε Z[x], 1≤i≤r,

GCD(fj,fk) = 1 for 1≤j≠k≤r such that h(x) =
i=1
Π

r
(fi(x))i.

(F) [Factor the squarefree fi:] FOR i=1,...,r DO

Compute irreducible polynomials gij(x) ε Z[x], 1≤j≤si such that fi(x) =
j=1
Π
si

gij(x). 

Step (C) is a repeated integer GCD computation and shall not be discussed further.

The computational aspects of step (S) were first investigated by E. Horowitz following
an idea of R. Tobey in 1969 (cf. [16]) whose algorithms were later improved by D. Musser
[33], D. Yun [58] and P. Wang and B. Trager [54]. We shall briefly present D. Yun’s algo-
rithm:

[Squarefree decomposition of a primitive polynomial h:]

(S1) g(x) ← GCD(h(x), dh(x)⁄dx) where dh(x)⁄dx = h′(x) is the derivative of h w.r.t. x.

c1(x) ← h(x)⁄g(x); d1(x) ← (dh(x)⁄dx)⁄g(x)−dc1(x)⁄dx. [Assume that h =
i=1
Π

r
fi

i with the fi

squarefree and pairwise relatively prime. Then g =
i=2
Π

r
fi

i−1, c1 =
i=1
Π

r
fi,

h′⁄g =
i=1
Σ
r 



i fi′

j=1,j≠i
Π

r
fj





which is relatively prime to g since GCD(fi,fi′) = 1 (The fi are

squarefree!). Thus d1 =
i=2
Σ
r 



(i−1)fi′

j=1,j≠i
Π

r
fj




.]

(S2) FOR k ← 1,2,... UNTIL ck = 1 DO

[At this point ck =
i=k
Π

r
fi, dk =

i=k+1
Σ
r 



(i−k)fi′

j=k,j≠i
Π

r
fj




.]

fk(x) ← GCD(ck(x),dk(x)); ck+1(x) ← ck(x)⁄fk(x); dk+1(x) ← dk(x)⁄fk(x) − dck+1(x)⁄dx.
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The reader should be able to derive the correctness of this algorithm from the embedded com-
ments. It is important that the cofactor of h′ in the GCD computation of step (S1) and that of
dk in step (S2) are relatively prime to the computed GCDs. This enables one to use, besides
the modular GCD algorithm, the EZGCD algorithm [31] whose general version needs the
above algorithm if both cofactors have a common divisor with the GCD. The relation
between polynomial GCDs and squarefree decompositions is even more explicit (cf. [59]).

Step (F) is the actual heart of the algorithm. As outlined in the introduction, various
substeps are needed for the Berlekamp-Hensel algorithm:

[Factorization of a primitive, squarefree polynomial f:]

(F1) [Choice of a modulus:] Find a prime number p which neither divides ldcf(f(x)) nor the
resultant of f(x) and df(x)/dx. The latter is equivalent to the condition that f(x) modulo
p is squarefree. By trying various primes in connection with the distinct factorization
procedure we may also attempt to minimize the number of modular factors in the next
step.

(F2) [Modular factorization:] Factor f(x) modulo p completely, namely compute irreducible
polynomials u1(x),...,ur(x) ε Zp[x] such that ldcf(u1) ≡ ldcf(f) (modulo p), u2,...,ur are
monic and u1(x)...ur(x) ≡ f(x) (modulo p).

(F3) [Factor coefficient bound:] Compute an integer B(f) such that all coefficients of any
possible factor of f(x) in Z[x] are absolutely bounded by B(f) (see chapter on ‘Useful
Bounds’).

(F4) [Lift modular factors:] q ← p;

FOR k ← 1,2,... UNTIL q ≥ 2 B(f) DO

q ← q2; [At this point q = p2k

.]

Compute polynomials ui
(k)(x) ε Zq[x] such that u1

(k). . .ur
(k) ≡ f(x) (modulo q),

ldcf(u1
(k)) ≡ ldcf(f) (modulo q) and ui

(k) ≡ ui (modulo p) where the coefficients of
ui

(k) are interpreted as p-adic approximations.

(F5) [Form trial factor combinations:]
h(x) ← f(x); C ← {2, . . . ,r}; s ← 0; j ← 1;

REPEAT t ← s;
FOR m ← j , . . . , cardinality of C DO

FORALL subsets {i1, . . . ,im} of C DO
Test whether g(x) = pp(ldcf(h) ui1

(k). . .uim

(k) (modulo p2k

)) divides h, where k

is the number of iterations in (F4) and the modulus is balanced before
taking the primitive part over the integers. If so then set s ← s+1; gs(x)
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← g(x); h(x) ← h(x)⁄g(x); j ← m; C ← C minus {i1 , . . . , im}; and exit
both FOR loops.

END FORALL
END FOR

UNTIL t = s [No more factors discovered in the FOR loops]

s ← s+1; gs(x) ← h(x)
[All factors are computed as f(x) = g1(x). . .gs(x).] 

We must scrutinize various steps further. By the choice of p in step (F1)
f(x) = f(x) modulo p is of the same degree as f(x) and the inverse of ldcf(f) exists in Zp. We
factor the monic polynomial ldcf(f)−1f(x) first into distinct degree factors and then into irredu-
cibles in step (F2). To satisfy the condition on the ldcf(u1) we multiply the monic u1 by
ldcf(f) in Zp. Step (F4) utilizes the "Hensel-lemma" and various lifting techniques have been
investigated [60], [32], [51] (see also the chapter on "Homomorphic Images"). The following
algorithm is due to P. Wang:

[Hensel Lifting Algorithm:]

[Given polynomials f(x) ε Z[x], q relatively prime to ldcf(f), u1
*(x), . . . ,ur

*(x) ε Zq[x] such that
ldcf(u1) ≡ ldcf(f) (modulo q), u2

*, . . . ,ur
* monic and

u1
*(x). . .ur

*(x) ≡ f(x) (modulo q). (1)

Furthermore given polynomials v1
*(x), . . . ,vr

*(x) ε Zq[x] with deg(vi
*) < deg(ui

*) for 1≤i≤r, and

if we set ũi
* =

j=1,j≠i
Π

r
ui

* then

v1
*(x)ũ1

*(x) +...+ vr
*(x)ũr

*(x) ≡ 1 (modulo q).

The goal is to produce polynomials u1
**(x),...,ur

**(x), v1
**(x), . . . ,vr

**(x) ε Zq2[x] which satisfy

the same conditions as the single-starred polynomials if we replace the modulus q by q2.]

(H1) Replace ldcf(u1
*) by ldcf(f) modulo q2;

[Lift ui
* by computing ûi

* ε Zq[x] such that ui
** = ui

*+qûi
* with deg(ûi

*) < deg(ui
*) for

i≥1.]

t(x) ←



f(x)−

i=1
Π

r
ui

*(x)




modulo q2;

[The above replacement guarantees deg(t) < deg(f). Also all coefficients of t are divisible
by q because of (1).]

t(x) ← t(x)⁄q; [Integer division, hence t(x) ε Zq[x]. We need to determine ûi
* with

û1
*(x)ũ1

*(x) +...+ ûr
*(x)ũr

*(x) = t(x). (2)]
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FOR i ← 1,...,r DO

ûi
*(x) ← remainder(t(x)vi

*(x), ui
*(x)) in Zq[x]; ui

**(x) ← ui
*(x) + qûi

*(x).
[Obviously the polynomials tvi

* solve (2) but do not satisfy the degree constraint for the

ûi
*. Hence the ûi

* solve (2) modulo
i=1
Π

r
ui

* but since all degrees are less than deg(f) there

must be equality.]

(H2) [Lift vi
* by computing v̂i

* ε Zq[x] such that vi
** = vi

* + qv̂i
* and deg(v̂i

*) < deg(ui
*).]

b(x) ←







1 −

i=1
Σ
r

vi
*(x)ũi

*(x)




modulo q2




⁄ q; [Again the division is integral and

b(x) ε Zq[x] with deg(b) < deg(f).]

FOR i ← 1,...,r DO

v̂i
*(x) ← remainder(b(x)vi

*(x), ui
*(x)) in Zq[x]; vi

**(x) ← vi
*(x) + qv̂i

*(x).

In order to use the above algorithm within the loop of step (F4) we also need to initial-

ize the vi(x) in Zp with 1⁄
i=1
Π

r
ui(x) =

i=1
Σ
r

vi(x)⁄ui(x) and deg(vi) < deg(ui). To do this one can use

the extended Euclidian algorithm r-1 times (see chapter on "Remainder Sequences") or use
fast partial fraction decomposition algorithms [24], [1].

Step (H2) is not necessary if one only considers the first solution vi and corrects ui
* from

modulus q to modulus pq by calculating ûi
* in Zp[x]. This method is referred to as "linear

lifting" whereas our algorithm has quadratic p-adic convergence. We also lift all factors in
parallel while earlier versions proceeded with one factor and its cofactor at a time. It is not
clear which technique is preferable (cf. [57], [61]), though the parallel quadratic approach
seems superior [51]. In order to prevent p2k

from overshooting B(f) by too much one may cal-
culate the last correction polynomials ûi

* with a smaller modulus than q.

As we will see below, in the worst case step (F5) is the dominant step in our algorithm.
Therefore one is advised to test first whether the second highest coefficient is absolutely
smaller than deg(f) f 2, the corresponding factor coefficient bound (see chapter on ‘Useful
Bounds’) [43], or whether the constant coefficient of g(x) divides that of f(x).

D. Musser has carefully analysed a variation of steps (F1) - (F5), the result of which is
the following [32]: Let f = g1

. . .gs in Z[x], deg(g1)≤deg(g2)≤. . .≤deg(gs), and let

µ =







deg(f)⁄2
i=2,...,s
max {deg(gi−1), 

deg(gi)⁄2

}

if f is irreducible

if s>1

.

If f factors into r polynomials modulo p then
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min(2r,rµ) µn2 (n+log(B(f)))2

dominates the complexity of the factorization problem. This bound depends intrinsically on r
which is one reason why one should attempt to minimize this number in step (F2). If one
does not, the algorithm still performs quite well – on the average. An n-th degree polynomial
in Zp[x] has an average of log(n) factors as p tends to infinity and 2r averages n+1 where r is
the number of modular factors (cf. [22, Sec.4.6.2., Exercise 5]. However, almost all integer
polynomials are irreducible (cf. [22, Sec.4.6.2, exercise 27]), and one may not expect almost
all inputs to our algorithm to behave that way since a user probably tries to factor polynomi-
als which are expected to be composite. In this matter G. Collins has shown, subject to two
conjectures, that if we restrict our set to those polynomials which factor over the integers into
factors of degree d1,d2, . . . ,ds for a given additive decomposition of n = d1+...+ds, the average
number of trial combinations will be below n2. This result only holds if one processes combi-
nations of m factors at a time as we did in step (F5) ("cardinality procedure"), because if one
chooses to test combinations of a possible total degree ("degree procedure") the average
behavior may be exponential in n [10].

The worst case complexity of the Berlekamp-Hensel algorithm is unfortunately exponen-
tial in n, the degree of f. This is because, as we will prove below, there exist irreducible
integer polynomials of arbitrarily large degree which factor over every prime into linear or
quadratic factors. This means that we must test at least 2n⁄2−1−1 trial factor combinations to
show that no integral factor occurs. The following theorem is attributed to H.P.F.
Swinnerton-Dyer by E. Berlekamp [5, pp.733-734].

Theorem: Let n be an integer and p1, . . . ,pn positive distinct prime numbers. Then the monic
polynomial fp1, . . . ,pn

(x) of degree 2n whose roots are e1√ p1+...+en√ pn with ei=±1 for 1≤i≤n has

integral coefficients and is irreducible in Z[x]. Moreover, for any prime q,
fp1, . . . ,pn

(x) modulo q factors into irreducible polynomials in Zq[x] of at most degree two.

Proof: In the following we assume that the reader is familiar with some basic facts of Galois
theory. The book by van der Waerden [44] is a standard reference whose notation we adopt.
The following abbreviations are useful. fk(x)≡fp1, . . . ,pk

(x) and Kk≡Q(√ p1, . . . ,√ pk) for 1≤k≤n.

By induction we prove that fn(x) ε Z[x], [Kn:Q] = 2n, and that θ = √ p1+...+√ pn is a primitive
element of Kn. For n=1 the facts are trivial. It follows from the hypothesis fn−1(x) ε Z[x] and
from fn(x) = fn−1(x+√ pn) fn−1(x−√ pn) that fn(x) ε Z[√ pn, x] with coefficients that are sym-
metric in the two conjugates √ pn and −√ pn. By the fundamental theorem on symmetric func-
tions the coefficients must be integers. (Actually fn(x) = resy(fn−1(x−y),x2−pn) as is shown in
the chapter on "Algebraic Domains".) From the second hypothesis, namely [Kn−1:Q]=2n−1, we
conclude that the set

Bk = {1} ∪ {√ pi1
. . .pij j=1,...,k, 1≤i1<i2<. . .<ij≤k}

forms a basis for Kk over Q, 1≤k≤n−1.
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We show by induction that √ pn does not lie in the Q-span of Bn−1. Assume it does, namely
there exist rationals r0,ri1, . . . ,ij

such that

r0 +
1≤i1<...<ij≤n−1

Σ ri1, . . . ,ij√ pi1
. . .pij

= √ pn. (1)

Since pn is a new prime, at least two coefficients on the left hand side of (1) are non-zero.
Then for the two corresponding basis elements there exists a pk such that √ pk occurs in one
but not the other. Without loss of generality assume pk=pn−1. Then (1) can be rewritten as

s0 + s1√ pn−1 = √ pn, s0, s1 ε Kn−2. (2)

Since s0 and s1 are linear combinations in Bn−2 with a non-zero coefficient it follows that both
s0≠0 and s1≠0. Squaring (2) then leads to √ pn−1 = (pn−s0

2−s1
2pn−1)⁄2s0s1 ε Kn−2 in contradic-

tion to the induction hypothesis.

Therefore [Kn:Kn−1]=2 and hence [Kn:Q]=2n. We proceed to show that Kn=Q(θ). Let
α1=√ p1+...+√ pn−1, α2, . . . ,α2n−1 be the roots of fn−1(x) and consider the polynomials

g1(x) = fn−1(α1+√ pn−x) and g2(x) = x2−pn. Obviously g1 , g2 ε Q(θ)[x] and √ pn is a common
root. However, g1(−√ pn)≠0 because α1+2√ pn ≠ αi for 1≤i≤2n−1 since αi−α1 ε Kn−1 but

√ pn ε Kn−1. Therefore GCD(g1, g2) = x−√ pn ε Q(θ)[x] and hence Q(θ) = Q(α1,√ pn). By
hypothesis Kn−1 = Q(α1) which gives Q(θ)=Kn. The irreducibility of fn now follows quickly.
The minimal polynomial of θ has degree [Q(θ):Q]=[Kn:Q]=2n and therefore fn is this irreduci-
ble polynomial.

The factorization property modulo q can be proven by the following argument. Since
√ pi modulo q ε GF(q2) for 1≤i≤n all roots of fn modulo q lie in GF(q2). If fn modulo q had
an irreducible factor of degree m>2 its roots would generate the larger field GF(qm) and could
not be elements of GF(q2). 

The construction of fp1, . . . ,pn
has been generalized using higher radicals instead of square

roots [20] and it can be shown that log( fp1, . . . ,pn ) = O(2nlog(n)) which makes the worst case

of the Berlekamp-Hensel algorithm truly exponential in its input size. Here the following
remark is in place. We always assume that our algorithm operates on densely encoded poly-
nomials. If we allow sparse encoding schemes, various primitive operations on the input poly-
nomials such as GCD computations are NP-hard (cf. [38, 39]) and the factorization problem
actually requires exponential space. In order to substantiate the last claim we consider the
polynomial xn−1 whose sparse encoding requires O(log n) bits. However, R. Vaughan [45]
has shown that for infinitely many n the cyclotomic polynomials Ψn, which constitute irredu-
cible factors of xn−1, have coefficients absolutely larger than exp(nlog 2⁄log log n).

One question about our algorithm remains to be answered. That is how the choice of
various primes in step (F1) can influence later steps, especially step (F5). It is clear that if a
polynomial f factors modulo p1 into all quadratic and modulo p2 into all cubic factors, then
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the degrees of integral factors must be multiples of 6. Indeed if the degree sets of factoriza-
tions modulo various primes are completely incompatible we know the input polynomial to be
irreducible without the need of steps (F2) - (F5). For this situation D. Musser has developed
an interesting model which, given a random irreducible polynomial f(x) ε Z[x] of degree n,
shows how to derive the average number µ(n) of factorizations modulo distinct primes
p1, . . . ,pµ(n) needed to prove f irreducible [34]. His approach is based on the fact that the
degrees d1, . . . ,dr of a factorization f ≡ g1

. . .gr modulo p, di=deg(gi) for 1≤i≤r and p a random
prime correspond to the cycle lengths of a random permutation
(1,...,d1)(d1+1,...,d1+d2)...(d1+...+dr−1+1,...,d1+...+dr) of n elements. The Swinnerton-Dyer poly-
nomials fp1,...,pn

of the previous theorem obviously do not satisfy this property but it remains

valid for any specific polynomial f provided that the Galois group of f is the full symmetric
group. Our statement is somewhat stronger than what D. Musser proves because the latter fol-
lows from the fact that almost all polynomials have the symmetric group as Galois group
[13]. Our claim is a consequence of the Chebotarev Density Theorem [35, Chap.8.3]. This
theorem also applies to the Swinnerton-Dyer polynomials, and an effective version has been
used to construct succinct certificates for normal polynomials, i.e.,
N={f f ε Z[x], f irreducible and normal} ε NP [19]. D. Cantor has recently shown the same
by more elementary means for generally irreducible polynomials, i.e.,
I={f f ε Z[x], f irreducible} ε NP∩co−NP [7]. However, in P. Weinberger’s algebraic

number theoretic proof showing that the Generalized Riemann Hypothesis implies I ε P, the
Chebotarev Density Theorem again plays an important rôle [55]. 4. Factorization of univari-
ate polynomials over algebraic extensions of Q

The decidability of factoring a polynomial f(x) ε Q(θ)[x], θ an algebraic number, goes
back to L. Kronecker [23, sec.4, pp. 12-13]. The same algorithm can also be found in [44,
pp.136-137] which has been adopted and improved for computer usage by B. Trager [42].
However, again the Hensel lemma provides a more efficient method. We shall briefly outline
the ideas involved and refer the reader to P. Weinberger’s and L. Rothschild’s paper [56] for
the details. Without loss of generality, we may assume that θ is an algebraic integer with
minimal polynomial h(θ) ε Z[θ] of degree m (see chapter on "Algebraic Domains" for termi-
nology.) We seek to factor f(x) ε Q(θ)[x] of degree n which we can assume to be monic. Let

f(x) = xn + 1⁄d
i=0
Σ
n−1 


 j=0

Σ
m−1

bijθj



xi

with d, bij ε Z. It can be shown [56, Sec.8] that if g(x) ε Q(θ)[x], monic, and g(x) divides
f(x), then

g(x) = xk + 1⁄(dD)
i=0
Σ
k−1 


 j=0

Σ
m−1

cijθj



xi

with k<n, cij ε Z and D the discriminant of h, D = res(h,dh⁄dθ). Furthermore, there is an
effective bound B of length polynomial in n log( f ) such that  cij  ≤ B for
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0≤i≤k−1, 0≤j≤m−1 [56, Sec.8]. Let p be a prime number such that p divides neither d nor D
and that h(θ) = h(θ)modulop is irreducible. The last condition may not be satisfiable but we
shall defer that case for later. Then the coefficients of f(x) = f(x) modulo p can be viewed as
elements of GF(pm) generated by a root of h(θ). We factor f(x) = g1(x)...gr(x) over this finite
field, i.e.,

gs(x) = xks +
i=0
Σ

ks−1 

 j=0

Σ
m−1

cij
(s)θj




xi, cij

(s) ε Zp (1≤s≤r),

k1+...+kr = n. We can now lift the factors into a larger residue domain q = pk ≥ 2B adjoined
by a root of h̃(θ) = h(θ) modulo q. By multiplication of dD modulo q we obtain
f(x) ≡ g̃1(x). . .g̃r(x) modulo (q, h̃(θ)) with

g̃s(x) = xks + 1⁄(dD)
i=0
Σ

ks−1 

 j=0

Σ
m−1

c̃ij
(s)θj




xi

with c̃ij
(s) balanced residues in Zq. It remains to test whether any trial combination of factors

g̃s(x) constitutes an actual factor.

If h(θ) factors for all primes, we then can perform the lifting modulo any factor h*(θ) of
h(θ). To construct factors g̃s(x) modulo (q, h̃(θ)) we may either use the Chinese remainder
theorem [56, Sec.10] or the lattice algorithm by A. Lenstra [27,28]. Both algorithms are,
however, of exponential complexity in the number of modular factors.

5. Factorization of multivariate polynomials

We shall begin this chapter with Kronecker’s algorithm which, for certain coefficient
domains (such as C), is still the only one known.

[Factorization of f(x1, . . . ,xv) ε D[x1,...,xv] with D being a unique factorization domain.]

(K1) [Compute degree bound:] Obtain an integer d larger than the degree of f in any single
variable.]

(K2) [Reduction:] f(y) ← Sd(f) = f(y,yd, . . . ,ydv−1

).

(K3) [Factorization:] Factor f(y) into irreducibles, i.e., f(y) = g1(y)...gs(y),
gi(y) ε D[y] for 1≤i≤s.

(K4) [Inverse reduction and trial division:] For all products gi1
(y)...gim

(y) (similar to step (F5)

in section 3) perform the following test:

gi1,...,im
(x1,. . .,xv) ← Sd

−1(gi1
. . .gim

) where Sd
−1 is the inverse of Sd which is additive and

Sd
−1(λyb1+db2+...+dv−1bv) = λx1

b1. . .xv
bv with 0≤bi<d for 1≤i≤v , λ ε Z.
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Test whether gi1,...,im
divides f and if so remove this irreducible factor from f and proceed

with its co-factor. 

The correctness of this algorithm follows easily from the fact that no variable in any fac-
tor of f can occur with degree d or higher. The running time of the algorithm depends on of
how fast the univariate polynomial f(y) can be factored, the degree of which can be substan-
tially large. It should be clear that step (K4) can take time exponential in the degree of f,
e.g., if D = C and f is irreducible. Unfortunately this exponential worst case complexity
remains true for D = Z [19]. In this case, the Hensel lemma has produced a much more
efficient approach. In the following we will take a closer look at this algorithm.

The overall structure of the multivariate factorization algorithm is remarkably close to
that of the univariate algorithm of section 3. First we choose a main variable x, i.e., the input
polynomial h ε Z[y1,...,yv,x]. The content computation of step (C) now becomes a GCD com-
putation in Z[y1, . . . ,yv]. The squarefree decomposition performed in step (S) can also be
achieved by D. Yun’s algorithm if we replace the derivatives d/dx by partial derivatives ∂⁄∂x
and the GCDs by multivariate polynomial GCDs. However, in this case P. Wang’s and B.
Trager’s algorithm becomes more efficient [54].

The idea of their algorithm is to find an evaluation point (b1, . . . ,bv) such that if

h(y1, . . . ,yv,x) =
i=1
Π

r
fi(y1, . . . ,yv,x)i is the squarefree decomposition of h, and

h(b1, . . . ,bv,x) = ĥ(x) =
i=1
Π

r̂
f̂i(x)i is that of ĥ, then r = r̂ and fi(b1, . . . ,bv,x) = f̂i(x), 1≤i≤r. Under

these conditions fr divides g = 1⁄(r−1)!(∂⁄∂x)r−1(h), f̂r divides ĝ = 1⁄(r−1)!(d⁄dx)r−1ĥ(x) and we
can lift the equation

g(y1,...,yv,x) ≡ f̂r(x)(ĝ(x)⁄f̂r(x)) modulo (y1−b1, . . . ,yv−bv)

to determine fr from the univariate square decomposition of ĥ, provided ĝ⁄f̂r≠1. Evaluation
points for which the above conditions do not hold are, as in the modular multivariate GCD
algorithm, very rare.

Step (F), the complete factorization of a squarefree polynomial f(y1, . . . ,yv,x), is again a
major challenge. As in the above squarefree decomposition algorithm we evaluate the minor
variables yi at integers bi,1≤i≤v then factor the resulting univariate polynomial f(b1, . . . ,bv,x)
and finally rebuild multivariate factor candidates by a Hensel lifting algorithm with respect to
the prime ideal p generated by {(y1−b1),...,(yv−bv)}. Instead of presenting a complete algo-
rithm we shall work out a simple example and refer the reader to the papers by P. Wang
[53,49,50,52] and D. Musser [33] for the details.

Example: Factor

f(y,z,x) = x3+((y+2)z+2y+1)x2
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+((y+2)z2+(y2+2y+1)z+2y2+y)x

+(y+1)z3+(y+1)z2+(y3+y2)z+y3+y2.

The polynomial is monic and squarefree.

Step F1: Choose an evaluation point which preserves degree and squarefreeness but contains
as many zero components as possible.

y=0, z=0: f(0,0,x) = x3 + x2 is not squarefree

y=1, z=0: f(1,0,x) = x3 + 3x2 + 3x + 2 is squarefree.

Translate variables for nonzero components

f(w+1,z,x) = x3+3x2+3x+2+(2x2+5x+5)w

+(2x+4)w2+w3+((3x2+4x+2)+(x2+4x+5)w

+(x+4)w2+w3)z+((3x+2)+(x+1)w)z2+(2+w)z3

By fij(x) we denote the coefficient of wjzi.

Step F2: Factor f00(x) = g00(x)h00(x) in Z[x]. We get
x3 + 3x2 + 3x + 2 = (x+2) (x2 + x + 1).

Step F3: Compute highest degrees of w and z in factors of
f(w+1,z,x) = g(w,z,x)h(w,z,x) : degw(g,h)≤3, degz(g,h)≤2.

Step F4: Lift g00 and h00 to highest degrees in w and z. We set
g(w,z,x) = g00(x) + g01(x)w + g02(x)w2 + . . . + (g10(x) + g11(x)w + ...)z + . . . and
h(w,z,x) = h00(x) + h01(x)w + h02(x)w2 + . . . + (h10(x) + h11(x)w + ...)z
+ (h20(x) + h21(x)w + ...)z2 + . . . and compute g01,h01,g02,h02,...,g10,h10,g11,h11,...,g20,h20,. . . in

that sequence. Since f is monic deg(gij)≤1 and deg(hij)≤2 for i+j≥1 . Multiplying g times h
with undetermined gij, hij we get g00h01 + h00g01 = f01 whose unique solution is
(x+2)(x+2) + (x2+x+1).1 = 2x2+5x+5 by the extended Euclidean algorithm. In the next step
we get g00h02 + h00g02 = f02−g01h01 which is solved by
(x+2).1 + (x2+x+1).0 = 2x+4 − 1.(x+2). Finally g00h03 + h00g03 = f03 − g01h02 − g02h01, or
(x+2).0 + (x2+x+1).0 = 1 − 1.1 − 0.(x+2). This gives factor candidates for
f(w+1,0,x) = ((x+2)+1.w+0.w2)((x2+x+1)+(x+2)w+w2) and a trial division shows them to be
true factors.

We now lift z: g00h10 + h00g10 = f10, or (x+2)x + (x2+x+1).2 = 3x2+4x+2;
g00h11 + h00g11 = f11 − g01h10 − g10h01, or (x+2).0 + (x2+x+1).1 = x2+4x+5 − 1.x − 2(x+2);
g00h20 + h00g20 = f20 − g10h10, or (x+2).1 + (x2+x+1).0 = 3x+2−2x. All other equations have
0 as their right-hand sides.
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The factor candidates are f(w+1,z,x) = 
(x+2)+w+(2+w)z





(x2+x+1)+(x+2)w+w2+xz+z2 


which are the actual factors. Setting w=y-1 we obtain

f(y,z,x) = 
x+yz+y+z+1





x2+(y+z)x+y2+z2 

.

In factoring the above sample polynomial we followed the algorithm by P. Wang [50].
Our construction is actually a linear lifting technique. There is also the possibility of qua-
dratic lifting [33], but in the multivariate case, the linear algorithm seems to be more efficient
[57]. If more than two univariate factors are present, one can again lift each one iteratively or
lift them in parallel as we demonstrated for the univariate case.

Various complications have been identified with the multivariate Hensel algorithm.

a) The leading coefficient problem: In our example we dealt with a monic polynomial in
which case the leading coefficients of all factors are known. If a polynomial leading
coefficient is present, one can impose it on one factor as in the univariate case, but this
leads most likely to dense factor candidates. P. Wang describes an algorithm to
predetermine the actual leading coefficients of the factors, which avoids this intermediate
expression growth [50, Sec.3].

b) The "bad zero" problem: In our example, y had to be evaluated at 1 in order to preserve
squarefreeness. The change of variables yi = wi+bi for bi≠0 can make the polynomial
f(w1+b1, . . . ,wv+bv,x) dense. P. Wang suggests to compute the coefficients fi1

. . .iv
(x) of

w1
i1. . .wv

iv by Taylor’s formula without performing the substitution

fi1
. . .iv

(x) =
i1!...iv!

1_ ______


 ∂y1

∂_ ___




i1

. . .


 ∂yv

∂_ ___




iv

f(y1, . . . ,yv,x) yi=−bi

See also R. Zipple’s work on preserving sparseness [64,65].

c) The "extraneous factors" problem: This problem is the same as in the univariate case,
namely that f(b1, . . . ,bv,x) has more factors than f(y1, . . . ,yv,x) (in which case we call
b1, . . . ,bv "unlucky"). One immediate consequence may be that the correction coefficients
gi1

. . .iv
(x), hi1

. . .iv
(x) have non-integral coefficients. In order to avoid working with denomi-

nators one can choose to work with coefficients modulo a prime which preserves the
squarefreeness of f(b1, . . . ,bv,x), and as a first step lift the coefficients. A good factor
coefficient bound can be found in [14, pp.135-139]. G. Viry has employed the initial
transformation f̃(y1, . . . ,yv,x) = f(y1+b1x,...,yv+bvx,x) with f̃(0,...,0,x) squarefree. Then
f̃(y1, . . . ,yv,x) is "normalized", meaning that if
f̃(y1, . . . ,yv,x) = xn+a1(y1, . . . ,yv)xn−1+...+an(y1, . . . ,yv) with ai ε Q[y1,...,yn] then the total
degrees of the coefficients satisfy degy1, . . . ,yv

(ai) ≤ i for 1≤i≤n. Using a polyhedron

representation of polynomials introduced by A. Ostrowski [37] G. Viry then shows that a
factor candidate with integral coefficients derived from the lifted factorization of
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f̃(0,...,0,x) divides f̃(y1, . . . ,yv,x) if and only if it is normalized. Thus the trial division
can be replaced by a check for being normalized [46,47].

Various implementation issues can be found in [30]. A good set of polynomials for
benchmarking an actual implementation of the factorization algorithm can be found in [9].

Little is known about the average computing time of the multivariate Hensel algorithm.
The worst case complexity can be exponential in the degree of the main variable depending
on what evaluation points one chooses. However, unlike in the univariate case, it cannot hap-
pen that an irreducible polynomial factors for all possible evaluations. Actually, quite the
opposite is true due to the Hilbert Irreducibility Theorem.

Theorem: Let f(y1, . . . ,yv,x1,...,xt) be irreducible in Z[y1, . . . ,yv,x1, . . . ,xt]. By U(N) we denote
the number of v-tuples (b1,. . .,bv) ε Zv such that  bi  ≤N for 1≤i≤v and f(b1,...,bv,x1, . . . ,xt) is
reducible in Z[x1,...,xt]. Then there exist constants α and C (depending on f) such that
U(N)≤C(2N+1)v−α and 0< α <1 (cf. [25, Chap.8]).

Unfortunately, no polynomial upper bounds on the length of C seem to be known which
would make the theorem useful for "realistic" evaluations. In practice lucky evaluations seem
quite frequent.

However, the situation for the theoretical study of the multivariate factorization does not
appear completely hopeless. It can be shown, for instance, that if
f(x1,y2,...,yv,x2) ε Z[x1,y2, . . . ,yv,x2], v arbitrary but fixed, is irreducible then one can compute
integers b1, . . . ,bv, c2, . . . ,cv in time polynomial in deg(f)log( f ) such that
f(x1−b1,c2(x1−b2),...,cv(x1−bv),x2) ε Z[x1,x2] is also irreducible. This theorem can be extended
to show that factoring multivariate polynomials with a fixed number of variables is only poly-
nomially harder than factoring bivariate polynomials [18,19].

We will not discuss special algorithms for coefficient domains other than the integers
here. Factoring polynomials in GF(q)[y,x] is very similar to factoring univariate polynomials
over the integers. More general algorithms can be found in [11]. A multivariate Hensel algo-
rithm for factoring polynomials in Q(θ)[x1, . . . ,xv] can be found in [48]. A special problem is
to test a polynomial f(x1, . . . ,xv) ε Z[x1, . . . ,xv] for absolute irreducibility, that is, to test
f(x1, . . . ,xv) for irreducibility in C[x1, . . . ,xv]. The first criterion probably goes back to E.
Noether [36] which also implies that if f(x1,...,xr) is absolutely irreducible, then f(x1, . . . ,xr)
remains irreducible modulo almost all prime numbers. Unfortunately, the first such prime
number may be very large. A more efficient test for absolute irreducibility can be found in
[15].

6. Conclusion

We have tried to capture the current situation for the problem of factoring polynomials.
We believe that various algorithms presented here will be significantly improved in the future
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but we also believe that some of these ideas will persist through new developments. Follow-
ing is a list of open problems which the author believes should receive attention.

1. Probabilistic univariate irreducibility test: Does there exist a probabilistic algorithm
which tests f(x) ε Z[x] for irreducibility in expected time polynomial in deg(f)log( f )
? Can the algorithm also find factors?

2. Deterministic univariate factorization: Does there exist an algorithm which factors
f(x) ε Z[x] in time polynomial in deg(f)log( f )? (Cf. [62])

3. Polynomial reduction from bivariate to univariate factorization: Assuming that problem 2
has a positive answer, does there exist an algorithm which factors f(y,x) ε Z[y,x] in time
polynomial in deg(f)log( f )? (Cf. [19])

4. Bivariate factorization over finite fields: Can one factor f(y,x) ε Zp[y,x] in time polyno-
mial in p deg(f)? Can one test f(y,x) for irreducibility in time polynomial in
log(p)deg(f)?

5. Factorization of normal univariate polynomials: Given f(x) ε Z[x] irreducible and nor-
mal. Can one factor f over its own splitting field in time polynomial in deg(f)log( f )?
Notice that a solution of problem 2 provides one for this problem.

6. Analysis of multivariate Hensel algorithm: Provide an effective version of the Hilbert
irreducibility theorem. What is the average number of evaluation points needed to prove
irreducibility or achieve a "lucky" evaluation?

Note added in proof: A. Lenstra, H. Lenstra, and L. Lovasz have recently solved the open
problem 2. Their algorithm takes O(deg(f)12+deg(f)9log( f 2)3) steps. The author has
recently solved the open problem 3 using ideas from [62].

Acknowledgement: The author wishes to acknowledge the support he received from Prof. B.
Caviness and Prof. P. Wang while writing this paper.
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