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Abstract

The aim is a description of discrete mathematics used in a project'
devoted to the implementation of a software package for the simulation of
combinatorial chemistry.

1 Discrete mathematics and chemistry

In the March issue 1996 of the Notices of the American Mathematical Society,
the following article was published:

George A. Hagedorn: Crossing the Interface between Chemistry and
Mathematics.

It was motivated by the report

Mathematical Challenges from Theoretical/Computational Chem-
istry,

published by the National Academy Press and available via Internet under the
address http://www.nap.edu/readingroom/books/mctcc. In fact, G. A. Hage-
dorn contributes to this “crossing the interface” by making helpful remarks on
applications of quantum mechanical resonances, which play an important role
in chemical reactions.

The report of the National Academy is very useful, since it brings a very
important field of applications of all kinds of mathematics into focus, listing
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a lot of examples of constructive cross-fertilization between mathematics and
chemistry. This is by no means trivial since the mathematization of chemistry
is several hundred years younger than the mathematization of physics and it is
not yet well established.

As the present conference lays emphasis upon applications of discrete math-
ematics in chemistry, we should like here to point to the fact that there is (or at
least was) a cross—fertilization in the other direction, too. Let us describe our
personal experiences with that, during the last thirty years.

The crucial point is that still today, the graph theoretic model of molecules
is dominating, a model that was motivated by a classical problem of chemistry,
namely by the problem of isomerism. Let us briefly indicate the history of that
problem, since it is a decisive part of the history of graph theory (the other
sources of graph theory are better known: Euler’s solution of the Konigsberg
bridge problem, and Kirchoft’s description of electrical networks).

In 1797, Alexander von Humboldt, a German geographer, famous for the
scientific results of his expeditions to South America, published a book [10]
with the title “Versuche iiber den gereizten Muskel- und Nervenfaser nebst Ver-
muthungen iiber den chemischen Prozess des Lebens”, in which he made (in
volume II, page 128) the following surprising statement:

Drei Korper a, b und ¢ koénnen aus gleichen Quantititen Sauer-
stoff, Wasserstoff, Kohlenstoff, Stickstoff und Metall zusammenge-
setzt und in ihrer Natur doch unendlich verschieden sein.

This expresses his opinion that substances should exist with the very same
constituents (atomic constitutents, in today’s language, like oxygen, hydrogen,
carbon, nitrogen and metal) but with different properties. And he did this long
before the concepts of molecular structure, chemical bond or valence of atoms
were introduced (for a detailed history and a list of corresponding references
see e.g. [16] and the literature cited there). A quarter of a century later, after
the development of suitable analytic methods, Humboldt’s thesis was shown to
be true by the famous chemists Joseph-Louis Gay-Lussac, Justus von Liebig
and Friedrich Wohler. Here is a quotation from a footnote by Gay-Lussac to a
paper by Wohler which shows that he clearly foresaw the combinatorial reason
for that phenomenon:

...comme ces deux acides sont tres différents, il faudrait pour ex-
pliquer leur différence admettre entre leurs éléments un mode de
combinaison différent. C’est un objet qui appelle un nouveau exa-
men.

It is interesting to know that Gay-Lussac was a close friend, and von Liebig a
protégé of von Humboldt, but there is no proof yet that von Humboldt had told
them about this problem.

About 1830 Berzelius called this phenomenon isomerism. Chemists tried to
understand it, and to find a solution by sketching molecules. Here are a few
prominent ways of drawing the alcohol CoH5; OH. The first one is the version by
Couper:
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The next drawing is due to Loschmidt
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But the solution (which was in fact already in the hands of Loschmidt and
Couper, as you can easily see, except that Couper had a different opinion about
the weight of oxygen, and so he put two such atoms instead of one) was not
clear until Alexander Crum Brown introduced the following notation which
in modern terms is the graph theoretical notation for molecules. The given

example demonstrates why there are in fact two molecular graphs corresponding
to alcohol with the chemical formula C3H;OH:
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The corresponding alcohols differ, for example, in their boiling points which are
97.1 °C and 82.4 °C, respectively. If we leave out the names of the atoms then
we immediately obtain the corresponding graphs:




and

There are altogether three graphs with 3 carbon atoms, 8 hydrogen atoms and a
single oxygen, but one of them does not represent an alcohol, since in this third
case the oxygen is not connected to a hydrogen atom. For sake of completeness,
here is the third graph as well:

2 Graphs and molecular graphs

In parallel with this development in chemistry, the mathematician A. Cayley
considered so-called rooted trees ([4]). He saw the connection with chemistry,
and he recognized that the number of rooted trees with root degree < 3 is
exactly the number of isomers of alcohols ([5]), since C,Hap41 OH, for natural
numbers n, is the formula for alcohol, which always has a substructure of the
form COH. If that substructure is identified with the root of the rooted tree,
we get the desired and canonic bijection. The rooted tree corresponds to the
skeleton of the alcohol, which is the molecule without the hydrogen atoms. Here
are the smallest rooted trees, they all have root degree < 3. It is easy to obtain
the corresponding alcohols. The two rooted trees with exactly two vertices e
correspond to the alcohols of formula C3H;OH:
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At about the same time J. J. Sylvester published a note (in Nature 17 (1877-
1878), 284) entitled Chemistry and Algebra [20], where he introduced the name
graph for this kind of mathematical structure, and he took this name from chem-
istry. The paper deals with invariants and mentions the connection to chemistry
by stating



Every invariant and covariant thus becomes expressible by a graph
precisely identical with a Kekuléan diagram or chemicograph.

On the side of chemistry a lot of activities was devoted to the enumeration of
chemical isomers. In a paper of Lunn and Senior the first connections between
this kind of a problem and group theoretic methods were mentioned. But the
main clarification is due the famous paper

G. Pélya: Anzahlbestimmungen fiir Gruppen, Graphen und Chemis-
che Verbindungen. Acta Mathematica 68, (1937), 145-254.

This paper, together with its long-time overlooked predecessor by J. H. Red-
field [15], can be considered as the foundation of graphical enumeration or, more
generally, of the enumeration under group action or even of algebraic combina-
torics. (For further historical notes see e.g. [2].)

Molecular graphs are (usually connected) multigraphs, the points of which
are colored by atom names. This will be described in more detail now since we
need it to prepare the description of applications to combinatorial chemistry.
It obviously is a challenge for mathematics to provide efficient algorithms and
implementations for the fast and redundancy free gemeration of the molecular
graphs corresponding to a molecular formula and (optionally) further conditions
like prescribed or forbidden substructures, ring sizes etc.

In this paper we introduce labeled multi-graphs  like many other discrete
structures and following the ideas of Pdlya as mappings. For example, a
labeled multigraph on p points and with edge multiplicities at most equal to
m — 1, can be considered as a mapping

v (g)—)m,

where p := {0,1,...,p — 1} means the set of numbers of the points, while
(g) = {{0,1},{0,2},...,{p — 2,p — 1}} denotes the set of pairs of points. The
set m := {0,...,m — 1} stands for the set of admissible bond multiplicities,
while the value v({i,j}) = k£ means that the points ¢ and j of that particular
graph are connected by a k-fold edge.

In order to describe organic molecules we take the usual model, identifying
atoms with vertices and bonds with edges. The atomic types are defined by
an additional mapping 8 from the set p of points of the multigraph to the set
E:={C,H,O,N,...} of admissible chemical elements. A molecular graph then
is a pair (v, ) of a graph and a coloring of the vertices with atomic types. (It is
clear that not all such mappings are admissible since a coloring of a point by an
atom name needs to be compatible with the valence of the atom in question.)

Furthermore we call

n (;) = {0,...,m — 1} with ¢t C p, Vi.j € t: n({i,q}) = 2({i. })

a subgraph of v, which we indicate by 5 C ~.



Following Pdélya, we denote by YX the set of all the mappings from X to Y,
hence a labeled molecular graph turns out to be a pair

(v,8), where v € m(g), while g € £P.

For example, the labeled benzene ring, the skeleton of the benzene molecule
with the hydrogen atoms left off is

The numbers of the points are indicated as upper indices of the carbon atoms
(which are the atom types with which the atoms are colored by (). More
formally, this molecular graph is the pair (v, 8), where v and g are as follows:

pairs || {0,1} | {0,2} | {0,3} | {0,4} | {0,5} | {1,2} | {1,3} | {1,4} | ...
G T o o o0 |2 [ 2 |0 [ o0 |-

points || 0 [ 1 | 2]3]4]5
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We shall use these labeled molecular graphs later on in order to describe the
generation of particular combinatorial libraries.

But let us mention here, that a molecule is an unlabeled molecular graph,
since the numbering of the atoms does not really matter, which means an orbit
of the symmetric group on the set of all labeled molecular graphs corresponding
to a particular molecular formula.

In the past this graph theoretic model of molecule lead to very many publi-
cations using discrete mathematics in chemistry. The development of such ap-
plications of discrete mathematics, in particular of graph theory, in chemistry
during the last twenty years, say, can be seen while reading the journal MATCH
(communications in mathematical and in computer chemistry), founded in 1975
during a conference on “Graph Theory in Chemistry” by the organizer of that
meeting, O. E. Polansky, Max-Planck-Institute, Miilheim, Germany. Together
with him and André Dreiding, one of us (A.K.) was one of the organizers of that
meeting, and with pleasure we mention that this journal still exists, it may be
the worldwide oldest journal for (discrete) mathematical chemistry, and one of
the organizers of the present conference, Patrick Fowler, is in its editorial board,
too. When you read MATCH, then you can clearly see, that

e during the first ten years, say, the main emphasis was laid upon basic
examination of the graph theoretic model of molecules and its applications,
counting of isomers, eigenvalues of graphs, topological indices etc.

e then the first generators of molecular graphs corresponding to a given
molecular formula and (optional) further conditions were described (see



vol. 27), that were available on cheap and efficient computers. (The very
first generator was in fact implemented in the USA by Lederberg and his
co-workers in the famous DENDRAL project. It already used the main
ingredients of today’s generators, but at that time, computers were not
yet efficient or cheap enough in order to make DENDRAL as successful
as it should have been.) These generators serve for molecular structure
elucidation by providing all the molecular graphs that correspond to a
given set of data.

e and nowadays, since efficient generators are available, the next step is
done already. 3D-placements are considered, conformations are classified,
combinatorial chemistry will be simulated.

All in all T should like to say that the cross-fertilization between discrete math-
ematics and chemistry is in very good progress.

3 Combinatorial chemistry

Rapid technical screening methods have been developed recently which allow
quickly to test thousands of chemical substances if they are helpful or not.
Thus the results of mass synthesis (in contrast to classical synthesis of a single
substance) can rapidly be searched for an efficient pharmaceutical drug, say.
Correspondingly, automatic devices for controlled mass synthesis are available
now.

This is a challenge for mathematicians to provide methods that allow a
simulation of such experiments in order to see in advance if a planned mass
synthesis can deliver an interesting substance, at least in principle. The history
of mass synthesis is described in the review article

I. Ugi: Fast and permanent changes in preparative and pharmaceuti-
cal chemistry through multicomponent reactions and their ‘libraries’.
Proc. Estonian Acad. Sci. Chem., 1995, 44,4,237-273.

Let us pick some of the crucial points of these developments from this article:
- 1850 Strecker discovers the first 3-component-reaction.
- 1929 Bergs and Bucherer find the first 4-component-reaction.

Then isocyanide chemistry was invented which completely differs from the rest
of organic chemistry: Isocyanides are the only stable organic chemical com-
pounds which contain divalent carbon C'!. This is always formed from a start-
ing material with a functional group of C'V. An important step in this branch of
chemistry was made 1948 by Rothe who found antibiotic Xanthocilline. In 1957,
Ugi et al. found the first widely applicable methods of isocyanide preparation
and isocyanide chemistry really began.

- 1959 Ugi et al. find a four-component-reaction of isocyanides: U-4CR.



One of the first attempts to apply the U-4CRs was made by the Swedish com-
pany AB Astra. It was preparation of Xylocain, that is still one of the most
widely used dental anaesthetics in the world.

- 1961 Ugi suggests first “liquid library” in book on Isonitrile Chemistry:
Obtainable from U-4CR using 40 different compounds (so that, in princi-
ple, 2 560 000 different chemical products can be formed)

In 1966 Bodanszky and Ondetti recognized that U-4CRs would have great ad-
vantages in the synthesis of peptide derivatives, 5-CR’s and 6-CR’s were in-
vented. The first 7-CR was reported in 1993 by Ugi and Démling. It turned
out that quite often the MCRs proceed in better yields, if the components are
not just mized but are added sequentially!

- 1982 Furka et al. introduce peptide libraries,

- 1993 Still/Yoon introduce a peptide library of 117 649 different members.

4 Combinatorial libraries

The aim of an experiment in combinatorial chemistry is the synthesis of a suit-
able library of molecules. There are single and multistep methods to do that,
and they all use well defined building blocks and known reactions for the gen-
eration of such a library which is then screened in order to find synthesized
molecules with the required medical or biological activity.

A mathematical model for a chemical reaction between two molecules (there
are, of course, much more difficult cases, but for the purposes here, it suffices to
cousider two-component syntheses of the form A +B — C) is a reaction scheme,
say

(1, B1), (2, B2), p),

which is a pair of labeled molecular graphs, together with a mapping p that
describes the reaction in the form of a matrix?:

0 1 and j remain unconnected

k i and j are connected by a bond of degree k
p(i,j) = {
—oc  one of the atoms 7 or j is dropped

For example, peptides are built by joining amino acids via condensation of the
carboxyl group (COOH) and the amid group (NHy). The building blocks (n;, 8;)
contain a substructure of the following form:

3N 04
|l

_1c_c2_05

2This definition is a simplification of the situation and is only used for a formalization of the
construction problem discussed below. For more sophisticated purposes more comprehensive
approaches like the algebra of be- &r-matrices of [6] are necessary.



The condensation is represented by the mapping

0O 0 0 0
o 0 1 0
p=| 0 0 0 0
O 0 0 0

- X -0 -0 —x

OO OO

We consider, for example, the amino acids

1 1
C—-C-C-0 and C—-C-0
Alanin Glycin

(For sake of simplicity we took of the numbering of the atoms which is supposed
to be — in the common substructure — the very same as indicated above.)
Taking Alanin first gives

N

I
C—C—C-N-C—-C-0

While Glycin as 7 yields

] ]
C—(|T“—N—(|J—C—O
C

0

This was a case of so-called single-attachment. The case of multiple attachment
is, of course, more complicated. Consider the following core with several reaction
sites and a number of ligand compounds, assuming, for sake of simplicity, that
each of them contains exactly one substructure isomorphic to (72, x2) and that
the sites are all equivalent. Here is a sketch of such a situation where there are
exactly four equivalent sites:

7i1 ')’ig



From the mathematical point of view this situation is the very same situation as
in the case when we want to obtain permutational isomers, say the 22 isomers
of dioxin which has the skeleton

E. Ruch and co-workers have shown [17, 18], how permutational isomers are
bijectivley related to double-cosets. The set of permutational isomers of the
dioxin is Jr.bijective to the set of double cosets

Vi\Ss/Ss @ Sa.

(The Kleinian four group Vj comes from the fact that this is the symmetry group
of the skeleton, while the subgroup Sy & S, is due to the fact that we have to
distribute 4 chlorine and 4 hydrogen atoms among the 8 free valences on which
the symmetric group Sg acts transitively.) This set of double cosets is of order
22, but even more: Using double cosets we can construct and not just count,
a complete system of representatives of these orbits, i. e. we can construct the
molecular graphs corresponding to these 22 permutational isomers of dioxin!

5 A mathematical model

Slightly more abstract than the consideration of permutational isomers is the
approach used by Pdlya [13] in order to consider isomers and many other situ-
ations. He considered sets

V¥ ={f{ X >V}

of mappings together with actions of a group G on X and the corresponding
action of G on VX :

GxYX —)YX:(g,f)b—)fogfl.

It is not difficult to see that also here the set of orbits of G on Y X consisting of
mappings of a fixed weight is bijectively related to a set of double cosets.

Let us apply this approach to some of the famous examples from combina-
torial chemistry, taken from

T. Carell, E. A. Wintner, A. J. Sutherland, J. Rebek Jr., Y. M.
Dunayevskiy, P. Vouros: New promise in combinatorial chemistry:
synthesis, characterization, and screening of small-molecule libraries
in solution. Chem. & Biol. 2 (1995), 171-183.

3

10



Here are the cores that are considered:

o a © d_o0 00
cl
0
o)
cl cl
cl — O
0 0
I
Cl (6]
Cl
(@]
(6]
N
Cl
I1I

The first (upper left) is a cuban derivative, the second one a xanthene, and
the third one is a benzene triacid chlorine. The reaction scheme consists of the
substructures

g N 0!
Cl\01_ M
2\
0 —10-C2-0°

and the matrix

p=( 0 0 0 0 0

-0 - -0 -0 —x

6 The size of the library

The situation just described can easily be reformulated in terms of Pdlya’s
approach. The four active sites of the cuban or of the xanthen, as well as the
three active sites of the benzene triacid chlorine, respectively, form the set X
while the set Y consists of a subset of the set of the twenty natural amino acids.
Attaching amino acids at the active sites is the same as forming a mapping
f € YX and the equivalence classes of attachments are the orbits of YX under
the symmetry group of the core. The general formula for the number of such
orbits with respect to the symmetry group G is obtained from the well-known
Lemma of Cauchy-Frobenius. If applied to the Pdlya situation, where a group

11



G acts on a set X and therefore also on Y, we obtain the following formula
for the number of orbits of G on Y X :

1
@ Z ‘Y‘C(g)a

geG

where ¢(g) means the number of cyclic factors of g on X. For example in the
case of the cuban and if we use as symmetry group the full symmetric group
S4, then we obtain for the number of orbits the expression [23]

2—14 (JY|*+6- Y[+ 11-|Y|”+6-]Y]).
If we take Y to be the set of 20 amino acids, then we obtain 8 855 orbits of Sy
and 13 700 orbits of A4. A table with all the values, for the alternating group,
is given in Table 1.

In the xanthen case, the symmetry group is of order 2, and so the formula
for the size of the library turns out to be

1
SUYE+ 1Y),
The full library, i. e. |Y| = 20 gives the number 80 200.

In the case of the benzene triacid chlorine, the symmetry group is the cyclic
group of order 3 on the set of three active sites, and so the size of the library is

1
SIYP 4217,
For |Y| = 20, we obtain the number 2680.

7 The elements of the library by weight

The evaluation of the size of the library is, of course, only the very first step
in order to get an idea how big the library in principle might be. Much more
important is the construction of the elements of it. A first step towards this
refinement can also be done using Polya’s theory of enumeration under finite
group actions.

Pélya’s Theorem gives the numbers of orbits of G on YX by weight (=mul-
tiplicities of amino acids) in terms of the so-called cycle index polynomial:

| X

Cyce(G,X) := é Z H:U;“(g),

geG i=1

if a;(g) denotes the number of orbits of (g) on X which are of length i, i.e. the
number of i-cycles of g on X. The number of orbits of G on Y X which consist of

12



n | cubane xanthen triacid
1 1 1 1
2 5 10 4
3 15 45 11
4 35 136 24
5 70 325 45
6 126 666 76
7 210 1225 119
8 330 2080 176
9 495 3321 249
10 715 5050 340
11 1001 7381 451

12 1365 10440 084
13 1820 14365 741
14 2380 19306 924
15 3060 25425 1135
16 3876 32896 1376
17 4845 41905 1649
18 9985 52650 1956
19 7315 65341 2299
20 8855 80200 2680

Table 1: Sizes of libraries depending on the number of building-blocks used

13



mappings f that take the value y € Y with multiplicity b, is then the coefficient
of the monomial Her y% in the polynomial

Cye(@ | 3y

which arises from the cycle index by replacing the indeterminate x; by the
polynomial )7 y’.

Using SYMMETRICA?, we obtain, for example, in the dioxin case the fol-
lowing generating function for the permutational isomers:

Cls+2H,Cl:+10HClg+14H3Cl5+22H,Cly+14H5Cl3+10HCla+2H7Cly + Hg .

The summand 22H,Cl, means that there are exactly 22 permutational isomers
containing both 4 hydrogen and 4 chlorine atoms.

There exists an interesting reformulation in terms of irreducible representa-
tions [a], o a partition of the number |X|, for short: a F | X|, of the symmetric
group Sx and the corresponding Schur functions {a} :

Cye(G 1Y y) = Y (IG18x,[a]) - {a}.

ak| X |

(IG 1 Sx means the representation of Sx, induced by the identity representa-
tion IG of the subgroup G < Sx.)
The cuban case is trivial since the symmetry group is the symmetric group
S4, and so the resulting generating function is simply the Schur polynomial {4}.
A bit less trivial is the situation of the triacid chlorine, where the symmetry
group G is the cyclic group of order 3, and so the resulting generating function
for the elements of the library by weight is

Cyc(Cs) = {3} + {1°}.

In the case when Y consists of 4 amino acids, say of types which we denote by
a,b,c and d, then we obtain, using the computer algebra package SYMMET-
RICA:

d® + ed® + A*d + & + bd® +2bed + b + b2d + Ve + b + ad®

+2 acd + ac® +2abd +2abc + ab®> + a’d + d*c + a*b + d?

The summand 2acd, for example, shows that there are two essentially different
attachments of an amino acid of type a, an amino acid of type ¢ and an amino
acid of type d. This is, of course, obvious, but it shows that we can use Schur
polynomials in order to get a refined count of the elements of the combinatorial
library.

3SYMMETRICA can be obtained via Internet from http://www.mathe2.uni-bayreuth.de

14



8 The generation of the library

Here we can use — at least for our particular examples taken from [3] — the
very same method as in the case of the construction of permutational isomers:
there exists a canonical bijection onto a set of double cosets. The reason is that
the symmetric group Sx on X acts transitively on the set of mappings f € Y
which have a prescribed weight (which means prescribed multiplicities f~!(y) for
the values y € Y, for our chemical examples this means: prescribed multiplicities
of amino acids). Hence the orbit of a fixed mapping (= labeled molecule) under
that symmetric group is essentially the same as the set Sx /(Sx)y, of left cosets
of the stabilizer (Sx)y,. Therefore the set of orbits G(f) of the symmetry group
G (of the cubane derivative, say) on this orbit Sx(fq) can be mapped bijectively
onto the corresponding set of double cosets

©:0rb(G, Sx (fo)) = G\Sx/(Sx)s, : G(g9fo) = Gg(Sx)s,-

Thus, once we have obtained a complete system of representatives of these dou-
ble cosets we obtain, by an application of the inverse mapping ¢!, a complete
system of molecules with prescribed multiplicities of the admissible amino acids.
This can be carried out, as it is described in several papers in detail, by going up
and down along a leporello of Young subgroups, from Sx to (Sx)y,, a method
that applies in the same way to the construction of full sets of permutational
isomers. This method was invented by B. Schmalz (see [19]), applied to the
construction of combinatorial designs and called the ladder game. Here is a
selfexplanatory example of such a folder which can be used in the dioxin case,
in order to construct all the permutational isomers successively:

Sg

Sy &S
Se @ Sa
Se ®S1®S
6 1 1 556953
S5 B S1 DS Sy @D Sy
Sys®S1 P S3

The method used is to start from above with the subgroup Ss of Sg. It
has exactly one left coset and so there is exactly one orbit of V; on this set of
left cosets, and hence exactly one isomer containing 8 hydrogen atoms and no
chlorine. In the second step this one-elment set of left cosets of Sg is split up into
the 8 left cosets of S;®S;. It turns out that V4 has exactly two orbits on this set,

15



representatives of which yield the two different permutational isomers containing
7 hydrogen atoms and 1 chlorine, ..., until we reach S4 @ S4, obtaining from the
orbits of V4 on the set of left cosets the corresponding permutational isomers
with 4 hydrogen and 4 chlorine atoms. The “Homomorphism Principle”, see
[11],[12], shows how we can obtain a transversal of this bigger set of orbits
from the smaller set we had before. This principle is combined with orderly
generation which is popular in constructive combinatorics (see [14],[7]).

This rather general and efficient approach allows a very rapid generation of
the combinatorial libraries. In the three cases from our example (taking the
natural amino acids as building blocks), we examined a computing speed of 40
structures per second on a Pentium 90 MHz PC, writing all solutions to the
hard disk. Figure 1 shows six molecules from each of the three libraries. More
details are given in [22, 23, 24].

9 Summary

We have shown that enumeration under finite group action can cover famous
examples of combinatorial chemistry. The methods used are Pdlya’s Ansatz to
choose suitable sets X,Y and a finite group G acting on X. The examination
of the induced action of G on the set of mappings YX allows to evaluate the
total number of elements in a combinatorial library arising from a core with the
set X as set of active sites by attaching elements of a set Y of building blocks,
and with respect to the symmetry group G of X. This number is obtained by
an easy application of the Cauchy-Frobenius Lemma. Moreover we can obtain
(by an application of Pélya’s Theorem) a generating function for the elements
of the library, which enumerates these elements by weight. Finally we can even
construct the library using the double coset reformulation of the orbits, the
Homomrophism Principle and Orderly Generation. The corresponding software
is under development.

16



Figure 1: Extracts from the combinatorial libraries produced from the structures
5, 2 and 3 and the natural amino acidbé
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