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a lot of examples of constructive cross-fertilization between mathematics andchemistry. This is by no means trivial since the mathematization of chemistryis several hundred years younger than the mathematization of physics and it isnot yet well established.As the present conference lays emphasis upon applications of discrete math-ematics in chemistry, we should like here to point to the fact that there is (or atleast was) a cross{fertilization in the other direction, too. Let us describe ourpersonal experiences with that, during the last thirty years.The crucial point is that still today, the graph theoretic model of moleculesis dominating, a model that was motivated by a classical problem of chemistry,namely by the problem of isomerism. Let us brie
y indicate the history of thatproblem, since it is a decisive part of the history of graph theory (the othersources of graph theory are better known: Euler's solution of the K�onigsbergbridge problem, and Kircho�'s description of electrical networks).In 1797, Alexander von Humboldt, a German geographer, famous for thescienti�c results of his expeditions to South America, published a book [10]with the title \Versuche �uber den gereizten Muskel- und Nervenfaser nebst Ver-muthungen �uber den chemischen Prozess des Lebens", in which he made (involume II, page 128) the following surprising statement:Drei K�orper a, b und c k�onnen aus gleichen Quantit�aten Sauer-sto�, Wassersto�, Kohlensto�, Sticksto� und Metall zusammenge-setzt und in ihrer Natur doch unendlich verschieden sein.This expresses his opinion that substances should exist with the very sameconstituents (atomic constitutents, in today's language, like oxygen, hydrogen,carbon, nitrogen and metal) but with di�erent properties. And he did this longbefore the concepts of molecular structure, chemical bond or valence of atomswere introduced (for a detailed history and a list of corresponding referencessee e.g. [16] and the literature cited there). A quarter of a century later, afterthe development of suitable analytic methods, Humboldt's thesis was shown tobe true by the famous chemists Joseph-Louis Gay-Lussac, Justus von Liebigand Friedrich W�ohler. Here is a quotation from a footnote by Gay-Lussac to apaper by W�ohler which shows that he clearly foresaw the combinatorial reasonfor that phenomenon:: : :comme ces deux acides sont tr�es diff�erents, il faudrait pour ex-pliquer leur di��erence admettre entre leurs �el�ements un mode decombinaison di��erent. C'est un objet qui appelle un nouveau exa-men.It is interesting to know that Gay-Lussac was a close friend, and von Liebig aprot�eg�e of von Humboldt, but there is no proof yet that von Humboldt had toldthem about this problem.About 1830 Berzelius called this phenomenon isomerism. Chemists tried tounderstand it, and to �nd a solution by sketching molecules. Here are a fewprominent ways of drawing the alcohol C2H5OH. The �rst one is the version byCouper: 2



C �O � � �OHH2...C � � �H3The next drawing is due to Loschmidt������������g gg gg glBut the solution (which was in fact already in the hands of Loschmidt andCouper, as you can easily see, except that Couper had a di�erent opinion aboutthe weight of oxygen, and so he put two such atoms instead of one) was notclear until Alexander Crum Brown introduced the following notation whichin modern terms is the graph theoretical notation for molecules. The givenexample demonstrates why there are in fact two molecular graphs correspondingto alcohol with the chemical formula C3H7OH:
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The corresponding alcohols di�er, for example, in their boiling points which are97.1 �C and 82.4 �C, respectively. If we leave out the names of the atoms thenwe immediately obtain the corresponding graphs:
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and t t tt t t t tt t t
tThere are altogether three graphs with 3 carbon atoms, 8 hydrogen atoms and asingle oxygen, but one of them does not represent an alcohol, since in this thirdcase the oxygen is not connected to a hydrogen atom. For sake of completeness,here is the third graph as well:

t t tt t t t t tt t t
2 Graphs and molecular graphsIn parallel with this development in chemistry, the mathematician A. Cayleyconsidered so-called rooted trees ([4]). He saw the connection with chemistry,and he recognized that the number of rooted trees with root degree � 3 isexactly the number of isomers of alcohols ([5]), since CnH2n+1OH, for naturalnumbers n, is the formula for alcohol, which always has a substructure of theform COH. If that substructure is identi�ed with the root of the rooted tree,we get the desired and canonic bijection. The rooted tree corresponds to theskeleton of the alcohol, which is the molecule without the hydrogen atoms. Hereare the smallest rooted trees, they all have root degree � 3: It is easy to obtainthe corresponding alcohols. The two rooted trees with exactly two vertices �correspond to the alcohols of formula C3H7OH:

c c c c c c cca a a a a a aar r r r r r r r r r rr r r r rrAA AA�� �� AA ��AA AA ��At about the same time J. J. Sylvester published a note (in Nature 17 (1877-1878), 284) entitled Chemistry and Algebra [20], where he introduced the namegraph for this kind of mathematical structure, and he took this name from chem-istry. The paper deals with invariants and mentions the connection to chemistryby stating 4



Every invariant and covariant thus becomes expressible by a graphprecisely identical with a Kekul�ean diagram or chemicograph.On the side of chemistry a lot of activities was devoted to the enumeration ofchemical isomers. In a paper of Lunn and Senior the �rst connections betweenthis kind of a problem and group theoretic methods were mentioned. But themain clari�cation is due the famous paperG. P�olya: Anzahlbestimmungen f�ur Gruppen, Graphen und Chemis-che Verbindungen. Acta Mathematica 68, (1937), 145-254.This paper, together with its long-time overlooked predecessor by J. H. Red-�eld [15], can be considered as the foundation of graphical enumeration or, moregenerally, of the enumeration under group action or even of algebraic combina-torics. (For further historical notes see e.g. [2].)Molecular graphs are (usually connected) multigraphs, the points of whichare colored by atom names. This will be described in more detail now since weneed it to prepare the description of applications to combinatorial chemistry.It obviously is a challenge for mathematics to provide e�cient algorithms andimplementations for the fast and redundancy free generation of the moleculargraphs corresponding to a molecular formula and (optionally) further conditionslike prescribed or forbidden substructures, ring sizes etc.In this paper we introduce labeled multi-graphs | like many other discretestructures and following the ideas of P�olya | as mappings. For example, alabeled multigraph on p points and with edge multiplicities at most equal tom� 1, can be considered as a mapping
 : �p2�! m;where p := f0; 1; : : : ; p � 1g means the set of numbers of the points, while�p2� = ff0; 1g; f0; 2g; : : : ; fp� 2; p� 1gg denotes the set of pairs of points. Theset m := f0; : : : ;m � 1g stands for the set of admissible bond multiplicities,while the value 
(fi; jg) = k means that the points i and j of that particulargraph are connected by a k-fold edge.In order to describe organic molecules we take the usual model, identifyingatoms with vertices and bonds with edges. The atomic types are de�ned byan additional mapping � from the set p of points of the multigraph to the setE := fC;H;O;N; : : :g of admissible chemical elements. A molecular graph thenis a pair (
; �) of a graph and a coloring of the vertices with atomic types. (It isclear that not all such mappings are admissible since a coloring of a point by anatom name needs to be compatible with the valence of the atom in question.)Furthermore we call� : �t2�! f0; : : : ;m� 1g with t � p; 8i; j 2 t : �(fi; jg) = 
(fi; jg)a subgraph of 
, which we indicate by � � 
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Following P�olya, we denote by Y X the set of all the mappings from X to Y ,hence a labeled molecular graph turns out to be a pair(
; �); where 
 2 m(p2); while � 2 Ep:For example, the labeled benzene ring, the skeleton of the benzene moleculewith the hydrogen atoms left o� is C0 C1C2C3C4C5The numbers of the points are indicated as upper indices of the carbon atoms(which are the atom types with which the atoms are colored by �). Moreformally, this molecular graph is the pair (
; �); where 
 and � are as follows:pairs f0; 1g f0; 2g f0; 3g f0; 4g f0; 5g f1; 2g f1; 3g f1; 4g : : :
(fi; jg) 1 0 0 0 2 2 0 0 : : :points 0 1 2 3 4 5�(i) C C C C C CWe shall use these labeled molecular graphs later on in order to describe thegeneration of particular combinatorial libraries.But let us mention here, that a molecule is an unlabeled molecular graph,since the numbering of the atoms does not really matter, which means an orbitof the symmetric group on the set of all labeled molecular graphs correspondingto a particular molecular formula.In the past this graph theoretic model of molecule lead to very many publi-cations using discrete mathematics in chemistry. The development of such ap-plications of discrete mathematics, in particular of graph theory, in chemistryduring the last twenty years, say, can be seen while reading the journal MATCH(communications in mathematical and in computer chemistry), founded in 1975during a conference on \Graph Theory in Chemistry" by the organizer of thatmeeting, O. E. Polansky, Max-Planck-Institute, M�ulheim, Germany. Togetherwith him and Andr�e Dreiding, one of us (A.K.) was one of the organizers of thatmeeting, and with pleasure we mention that this journal still exists, it may bethe worldwide oldest journal for (discrete) mathematical chemistry, and one ofthe organizers of the present conference, Patrick Fowler, is in its editorial board,too. When you read MATCH, then you can clearly see, that� during the �rst ten years, say, the main emphasis was laid upon basicexamination of the graph theoretic model of molecules and its applications,counting of isomers, eigenvalues of graphs, topological indices etc.� then the �rst generators of molecular graphs corresponding to a givenmolecular formula and (optional) further conditions were described (see6



vol. 27), that were available on cheap and e�cient computers. (The very�rst generator was in fact implemented in the USA by Lederberg and hisco-workers in the famous DENDRAL project. It already used the mainingredients of today's generators, but at that time, computers were notyet e�cient or cheap enough in order to make DENDRAL as successfulas it should have been.) These generators serve for molecular structureelucidation by providing all the molecular graphs that correspond to agiven set of data.� and nowadays, since e�cient generators are available, the next step isdone already. 3D-placements are considered, conformations are classi�ed,combinatorial chemistry will be simulated.All in all I should like to say that the cross-fertilization between discrete math-ematics and chemistry is in very good progress.3 Combinatorial chemistryRapid technical screening methods have been developed recently which allowquickly to test thousands of chemical substances if they are helpful or not.Thus the results of mass synthesis (in contrast to classical synthesis of a singlesubstance) can rapidly be searched for an e�cient pharmaceutical drug, say.Correspondingly, automatic devices for controlled mass synthesis are availablenow.This is a challenge for mathematicians to provide methods that allow asimulation of such experiments in order to see in advance if a planned masssynthesis can deliver an interesting substance, at least in principle. The historyof mass synthesis is described in the review articleI. Ugi: Fast and permanent changes in preparative and pharmaceuti-cal chemistry through multicomponent reactions and their `libraries'.Proc. Estonian Acad. Sci. Chem., 1995, 44,4,237-273.Let us pick some of the crucial points of these developments from this article:- 1850 Strecker discovers the �rst 3-component-reaction.- 1929 Bergs and Bucherer �nd the �rst 4-component-reaction.Then isocyanide chemistry was invented which completely di�ers from the restof organic chemistry: Isocyanides are the only stable organic chemical com-pounds which contain divalent carbon CII : This is always formed from a start-ing material with a functional group of CIV : An important step in this branch ofchemistry was made 1948 by Rothe who found antibiotic Xanthocilline. In 1957,Ugi et al. found the �rst widely applicable methods of isocyanide preparationand isocyanide chemistry really began.- 1959 Ugi et al. �nd a four-component-reaction of isocyanides: U-4CR.7



One of the �rst attempts to apply the U-4CRs was made by the Swedish com-pany AB Astra. It was preparation of Xylocain, that is still one of the mostwidely used dental anaesthetics in the world.- 1961 Ugi suggests �rst \liquid library" in book on Isonitrile Chemistry:Obtainable from U-4CR using 40 di�erent compounds (so that, in princi-ple, 2 560 000 di�erent chemical products can be formed)In 1966 Bodanszky and Ondetti recognized that U-4CRs would have great ad-vantages in the synthesis of peptide derivatives, 5-CR's and 6-CR's were in-vented. The �rst 7-CR was reported in 1993 by Ugi and D�omling. It turnedout that quite often the MCRs proceed in better yields, if the components arenot just mixed but are added sequentially!- 1982 Furka et al. introduce peptide libraries,- 1993 Still/Yoon introduce a peptide library of 117 649 di�erent members.4 Combinatorial librariesThe aim of an experiment in combinatorial chemistry is the synthesis of a suit-able library of molecules. There are single and multistep methods to do that,and they all use well de�ned building blocks and known reactions for the gen-eration of such a library which is then screened in order to �nd synthesizedmolecules with the required medical or biological activity.A mathematical model for a chemical reaction between two molecules (thereare, of course, much more di�cult cases, but for the purposes here, it su�ces toconsider two-component syntheses of the form A+B! C) is a reaction scheme,say ((�1; �1); (�2; �2); �);which is a pair of labeled molecular graphs, together with a mapping � thatdescribes the reaction in the form of a matrix2:�(i; j) = ( k i and j are connected by a bond of degree k0 i and j remain unconnected�1 one of the atoms i or j is droppedFor example, peptides are built by joining amino acids via condensation of thecarboxyl group (COOH) and the amid group (NH2). The building blocks (�i; �i)contain a substructure of the following form:1C3N C2O4 O52This de�nition is a simpli�cation of the situation and is only used for a formalization of theconstruction problem discussed below. For more sophisticated purposes more comprehensiveapproaches like the algebra of be- &r-matrices of [6] are necessary.8



The condensation is represented by the mapping� = 0BBBB@ 0 0 0 0 00 0 1 0 00 0 0 0 00 0 0 0 0�1 �1 �1 �1 �1 1CCCCAWe consider, for example, the amino acidsC CN CO OAlanin and CN CO OGlycin(For sake of simplicity we took of the numbering of the atoms which is supposedto be | in the common substructure | the very same as indicated above.)Taking Alanin �rst gives C CN CO N C CO OWhile Glycin as �1 yields CN CO N CC CO OThis was a case of so-called single-attachment. The case of multiple attachmentis, of course, more complicated. Consider the following core with several reactionsites and a number of ligand compounds, assuming, for sake of simplicity, thateach of them contains exactly one substructure isomorphic to (�2; �2) and thatthe sites are all equivalent. Here is a sketch of such a situation where there areexactly four equivalent sites:
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From the mathematical point of view this situation is the very same situation asin the case when we want to obtain permutational isomers, say the 22 isomersof dioxin which has the skeleton
CC C C O C C CCCCOCCE. Ruch and co-workers have shown [17, 18], how permutational isomers arebijectivley related to double-cosets. The set of permutational isomers of thedioxin is Jr.bijective to the set of double cosetsV4nS8=S4 � S4:(The Kleinian four group V4 comes from the fact that this is the symmetry groupof the skeleton, while the subgroup S4 � S4 is due to the fact that we have todistribute 4 chlorine and 4 hydrogen atoms among the 8 free valences on whichthe symmetric group S8 acts transitively.) This set of double cosets is of order22, but even more: Using double cosets we can construct and not just count,a complete system of representatives of these orbits, i. e. we can construct themolecular graphs corresponding to these 22 permutational isomers of dioxin!5 A mathematical modelSlightly more abstract than the consideration of permutational isomers is theapproach used by P�olya [13] in order to consider isomers and many other situ-ations. He considered sets Y X := ff :X ! Y gof mappings together with actions of a group G on X and the correspondingaction of G on Y X : G� Y X ! Y X : (g; f) 7! f � g�1:It is not di�cult to see that also here the set of orbits of G on Y X consisting ofmappings of a �xed weight is bijectively related to a set of double cosets.Let us apply this approach to some of the famous examples from combina-torial chemistry, taken fromT. Carell, E. A. Wintner, A. J. Sutherland, J. Rebek Jr., Y. M.Dunayevskiy, P. Vouros: New promise in combinatorial chemistry:synthesis, characterization, and screening of small-molecule librariesin solution. Chem. & Biol. 2 (1995), 171-183.10



Here are the cores that are considered:
Cl

Cl
Cl

Cl
O

O

O

O

I
O

Cl Cl

ClCl

O

O O

OII
Cl

Cl

O

Cl

O

OIIIThe �rst (upper left) is a cuban derivative, the second one a xanthene, andthe third one is a benzene triacid chlorine. The reaction scheme consists of thesubstructures 3Cl C12O 1C3N C2O4 O5and the matrix � = 0@ 0 0 1 0 00 0 0 0 0�1 �1 �1 �1 �1 1A :6 The size of the libraryThe situation just described can easily be reformulated in terms of P�olya'sapproach. The four active sites of the cuban or of the xanthen, as well as thethree active sites of the benzene triacid chlorine, respectively, form the set Xwhile the set Y consists of a subset of the set of the twenty natural amino acids.Attaching amino acids at the active sites is the same as forming a mappingf 2 Y X ; and the equivalence classes of attachments are the orbits of Y X underthe symmetry group of the core. The general formula for the number of suchorbits with respect to the symmetry group G is obtained from the well-knownLemma of Cauchy-Frobenius. If applied to the P�olya situation, where a group11



G acts on a set X and therefore also on Y X ; we obtain the following formulafor the number of orbits of G on Y X :1jGjXg2G jY jc(g);where c(g) means the number of cyclic factors of g on X: For example in thecase of the cuban and if we use as symmetry group the full symmetric groupS4; then we obtain for the number of orbits the expression [23]124 �jY j4 + 6 � jY j3 + 11 � jY j2 + 6 � jY j� :If we take Y to be the set of 20 amino acids, then we obtain 8 855 orbits of S4and 13 700 orbits of A4: A table with all the values, for the alternating group,is given in Table 1.In the xanthen case, the symmetry group is of order 2, and so the formulafor the size of the library turns out to be12(jY j4 + jY j2):The full library, i. e. jY j = 20 gives the number 80 200.In the case of the benzene triacid chlorine, the symmetry group is the cyclicgroup of order 3 on the set of three active sites, and so the size of the library is13(jY j3 + 2 � jY j):For jY j = 20; we obtain the number 2680.7 The elements of the library by weightThe evaluation of the size of the library is, of course, only the very �rst stepin order to get an idea how big the library in principle might be. Much moreimportant is the construction of the elements of it. A �rst step towards thisre�nement can also be done using P�olya's theory of enumeration under �nitegroup actions.P�olya's Theorem gives the numbers of orbits of G on Y X by weight (=mul-tiplicities of amino acids) in terms of the so-called cycle index polynomial:Cyc(G;X) := 1jGjXg2G jXjYi=1xai(g)i ;if ai(g) denotes the number of orbits of hgi on X which are of length i; i.e. thenumber of i-cycles of g on X: The number of orbits of G on Y X which consist of12



n cubane xanthen triacid1 1 1 12 5 10 43 15 45 114 35 136 245 70 325 456 126 666 767 210 1225 1198 330 2080 1769 495 3321 24910 715 5050 34011 1001 7381 45112 1365 10440 58413 1820 14365 74114 2380 19306 92415 3060 25425 113516 3876 32896 137617 4845 41905 164918 5985 52650 195619 7315 65341 229920 8855 80200 2680Table 1: Sizes of libraries depending on the number of building-blocks used
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mappings f that take the value y 2 Y with multiplicity by is then the coe�cientof the monomial Qy2Y yby in the polynomialCyc(G jX yi)which arises from the cycle index by replacing the indeterminate xi by thepolynomial Py yi:Using SYMMETRICA3, we obtain, for example, in the dioxin case the fol-lowing generating function for the permutational isomers:Cl8+2H1Cl7+10H2Cl6+14H3Cl5+22H4Cl4+14H5Cl3+10H6Cl2+2H7Cl1+H8:The summand 22H4Cl4 means that there are exactly 22 permutational isomerscontaining both 4 hydrogen and 4 chlorine atoms.There exists an interesting reformulation in terms of irreducible representa-tions [�]; � a partition of the number jX j, for short: � ` jX j; of the symmetricgroup SX and the corresponding Schur functions f�g :Cyc(G jX yi) = X�`jXj(IG " SX ; [�]) � f�g:(IG " SX means the representation of SX ; induced by the identity representa-tion IG of the subgroup G � SX :)The cuban case is trivial since the symmetry group is the symmetric groupS4; and so the resulting generating function is simply the Schur polynomial f4g:A bit less trivial is the situation of the triacid chlorine, where the symmetrygroup G is the cyclic group of order 3, and so the resulting generating functionfor the elements of the library by weight isCyc(C3) = f3g+ f13g:In the case when Y consists of 4 amino acids, say of types which we denote bya; b; c and d; then we obtain, using the computer algebra package SYMMET-RICA:d3 + cd2 + c2d + c3 + bd2 + 2 bcd + bc2 + b2d + b2c + b3 + ad2+2 acd+ ac2 + 2 abd + 2 abc + ab2 + a2d + a2c + a2b + a3The summand 2acd; for example, shows that there are two essentially di�erentattachments of an amino acid of type a; an amino acid of type c and an aminoacid of type d: This is, of course, obvious, but it shows that we can use Schurpolynomials in order to get a re�ned count of the elements of the combinatoriallibrary.3SYMMETRICA can be obtained via Internet from http://www.mathe2.uni-bayreuth.de14



8 The generation of the libraryHere we can use | at least for our particular examples taken from [3] | thevery same method as in the case of the construction of permutational isomers:there exists a canonical bijection onto a set of double cosets. The reason is thatthe symmetric group SX on X acts transitively on the set of mappings f 2 Y Xwhich have a prescribed weight (which means prescribed multiplicities f�1(y) forthe values y 2 Y; for our chemical examples this means: prescribed multiplicitiesof amino acids). Hence the orbit of a �xed mapping (= labeled molecule) underthat symmetric group is essentially the same as the set SX=(SX)f0 of left cosetsof the stabilizer (SX )f0 . Therefore the set of orbits G(f) of the symmetry groupG (of the cubane derivative, say) on this orbit SX(f0) can be mapped bijectivelyonto the corresponding set of double cosets': Orb(G;SX (f0))! GnSX=(SX)f0 : G(gf0) 7! Gg(SX)f0 :Thus, once we have obtained a complete system of representatives of these dou-ble cosets we obtain, by an application of the inverse mapping '�1; a completesystem of molecules with prescribed multiplicities of the admissible amino acids.This can be carried out, as it is described in several papers in detail, by going upand down along a leporello of Young subgroups, from SX to (SX)f0 ; a methodthat applies in the same way to the construction of full sets of permutationalisomers. This method was invented by B. Schmalz (see [19]), applied to theconstruction of combinatorial designs and called the ladder game. Here is aselfexplanatory example of such a folder which can be used in the dioxin case,in order to construct all the permutational isomers successively:

S4 � S1 � S3���� S5 � S3S4 � S4����S5 � S1 � S2 ���� S6 � S2S7 � S1����S6 � S1 � S1 ��������
S8����

The method used is to start from above with the subgroup S8 of S8: Ithas exactly one left coset and so there is exactly one orbit of V4 on this set ofleft cosets, and hence exactly one isomer containing 8 hydrogen atoms and nochlorine. In the second step this one-elment set of left cosets of S8 is split up intothe 8 left cosets of S7�S1. It turns out that V4 has exactly two orbits on this set,15



representatives of which yield the two di�erent permutational isomers containing7 hydrogen atoms and 1 chlorine, : : : ; until we reach S4�S4; obtaining from theorbits of V4 on the set of left cosets the corresponding permutational isomerswith 4 hydrogen and 4 chlorine atoms. The \Homomorphism Principle", see[11],[12], shows how we can obtain a transversal of this bigger set of orbitsfrom the smaller set we had before. This principle is combined with orderlygeneration which is popular in constructive combinatorics (see [14],[7]).This rather general and e�cient approach allows a very rapid generation ofthe combinatorial libraries. In the three cases from our example (taking thenatural amino acids as building blocks), we examined a computing speed of 40structures per second on a Pentium 90 MHz PC, writing all solutions to thehard disk. Figure 1 shows six molecules from each of the three libraries. Moredetails are given in [22, 23, 24].9 SummaryWe have shown that enumeration under �nite group action can cover famousexamples of combinatorial chemistry. The methods used are P�olya's Ansatz tochoose suitable sets X;Y and a �nite group G acting on X: The examinationof the induced action of G on the set of mappings Y X allows to evaluate thetotal number of elements in a combinatorial library arising from a core with theset X as set of active sites by attaching elements of a set Y of building blocks,and with respect to the symmetry group G of X: This number is obtained byan easy application of the Cauchy-Frobenius Lemma. Moreover we can obtain(by an application of P�olya's Theorem) a generating function for the elementsof the library, which enumerates these elements by weight. Finally we can evenconstruct the library using the double coset reformulation of the orbits, theHomomrophism Principle and Orderly Generation. The corresponding softwareis under development.
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Figure 1: Extracts from the combinatorial libraries produced from the structures5, 2 and 3 and the natural amino acides17
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