
The Practical Use of the A� Algorithm forExact Multiple Sequence AlignmentMartin Lermen� Knut Reinert�December 30, 1997AbstractMultiple alignment is an important problem in computational biology. It is well knownthat it can be solved exactly by a dynamic programming algorithm which in turn can beinterpreted as a shortest path computation in a directed acyclic graph. The A� algorithm(or goal directed unidirectional search) is a technique that speeds up the computation of ashortest path by transforming the edge lengths without losing the optimality of the shortestpath. We implemented the A� algorithm in a computer program similar to MSA [GKS95]and FMA [SI97b]. We incorporated in this program new bounding strategies for both, lowerand upper bounds and show that the A� algorithm, together with our improvements, canspeed up computations considerably. Additionally we show that the A� algorithm togetherwith a standard bounding technique is superior to the well known Carillo-Lipman boundingsince it excludes more nodes from consideration.1 IntroductionOne of the most prominent problems in computational molecular biology is multiple sequencealignment. It is used for extracting and representing biologically important commonalitiesfrom a set of sequences. It is easy to generalize the standard algorithm of Needleman andWunsch ([NW70]) to more than two sequences. However the time and space complexity growsexponentially in the number of sequences. Solving the problem to optimality is thereforeonly tractable for small problem instances. Nevertheless exact algorithms are important,because they can be used as a last step of algorithms that use motif-search or divide-and-conquer approaches. For example Stoye et al. ([SMD97]) try in their approach to divide thesequences at appropriate \slicing" locations which are determined through a branch-and-bound procedure. The resulting subproblems are solved recursively. The recursion stops ifthe lengths of the sequences in a subproblem fall below a certain threshold. The subproblemis then solved to optimality. Of course this approach tries to end the recursion as soon aspossible. Therefore programs are needed that can solve large instances with many sequencesto optimality. We refrain from citing further seminal papers concerning pairwise and multiplealignment, because by now a general methodology has been established and the three quiterecently published monographs (Gus�eld [Gus97], Setubal and Meidanis [SM97], Waterman[Wat95]) give an excellent overview and motivation for the problem.In this paper we show that the application of the so-called A� algorithm, together withnew strategies for computing better lower and upper bounds, considerably speeds up thecomputation of optimal multiple alignments. We implemented the A� algorithm in a com-puter program (GSA) in which we incorporated these new bounding strategies and comparedour program with other implementations. Additionally we show that the A� algorithm to-gether with a standard bounding technique is superior to the well known Carillo-Lipmanbounding since it excludes more nodes from consideration. We conjecture that the speedup�Max-Planck-Institut f�ur Informatik, Im Stadtwald, D-66123 Saarbr�ucken, Germany.1

imposed by our techniques will be transfered to an ongoing implementation of our algorithmthat supports a�ne gap costs.We now de�ne the problem formally. Let S1; : : : ; SK , K � 2 be sequences of lengthN1; : : : ; NK over an alphabet � which must not contain the reserved blank character '�' andde�ne �0 := � [f�g. A multiple alignment of these strings is a K � ! matrix A = (aij)with the following properties:1. A has exactly K rows,2. ignoring the blank character, the i-th row is the sequence Si,3. there is no column consisting only of blank characters.We denote with ! = !(A) the number of columns of A and with Ai1;i2;:::;ik the projection ofA to the sequences Si1 ; Si2 ; : : : ; Sik . An alignment of a subset fSi1 ; : : : ; Sikg of the K stringsis denoted by A(Si1 ; : : : ; Sik) (e.g. A(Si; Sj ; Sk) is an alignment of the three sequences Si,Sj and Sk).The quality of an alignment is often measured with a function over the columns. Thecost measure that is most widely used is the (weighted) sum of pairs cost ((W)SOP) whichis de�ned as follows: If sub is a �xed symmetrical function sub : �0 ��0 !N = f0; 1; 2; : : :gwith sub(-; -) = 0 then we de�ne c(Ai;j) =P!l=1 sub(ail; ajl) as the cost of the projection ofA to the sequences Si and Sj . Using this de�nition the sum of pairs (SOP) cost function isde�ned as c(A) = X1�i<j�Kc(Ai;j) = X1�i<j�K� !Xl=1 sub(ail; ajl)�:The goal is then to compute a minimum cost SOP alignment A�. For convenience we willonly talk about the SOP cost measure, however, all our results hold for the WSOP measureas well. In the sequel we will denote optimal alignments with the superscript �, i.e., A�ij isthe projection of an optimal alignment A� to the sequences Si and Sj and A�(Si; Sj) is anoptimal alignment for the sequences Si and Sj .Like most multiple alignment problems, the SOP alignment problem can be solved by dy-namic programming and is equivalent to �nding a shortest path from a designated source toa designated sink in a K-dimensional acyclic mesh-shaped graph, the so-called dynamic pro-gramming graph. The set of paths from the source to the sink codes all possible alignments.Each (directed) edge of the dynamic programming graph represents a possible column. Theweight of such an edge is the SOP cost of the column it represents. Dynamic programmingyields an algorithm with time complexity O(K22KN) and space complexity O(N), whereN = QiNi which is feasible only for very small problem instances. While the SOP align-ment problem is NP-complete, Kececioglu et al. presented in [GKS95] a branch-and-boundalgorithm whose implementation (c.f. [KAL94]) { called MSA in the sequel { can optimallyalign some examples of six sequences of length 250 in a few minutes. Larger examples, how-ever, require excessive space. In their approach, a heuristic alignment of the K sequencesyields an upper bound for the branch-and-bound procedure. Lower bounds are calculatedby adding up the cost of all optimal pairwise alignments over su�xes of the sequences.The A� algorithm also computes a shortest path in the dynamic programming graph withrede�ned edge weights which improves the speed of the computation considerably. Shibuyaet al. presented in [SI97b] an implementation of the A� algorithm { called FMA in the sequel{ which they used for a parametric analysis for multiple sequence alignment.In Section 2 we will review the techniques of Kececioglu et al., Carillo and Lipman andthe A� algorithm in more detail and �nally prove that the A� algorithm bounds the numberof explored vertices in the dynamic programming graph more e�ciently than the Carillo-Lipman technique. In Section 3 we explain three ideas, each of which gives great performanceimprovements in the implementation. The �rst idea is not only to use projections to two butalso to three sequences to obtain a better lower bound. The second idea is to periodicallyrecompute a better upper bound during the execution of the algorithm. The third idea con-sists of enumerating the neighbors of a node q in a clever way, so that only small incrementalchanges are necessary when moving from edge to edge. Finally we give some computationalresults in Section 4 to show how our enhancements compare to the two implementations ofKececioglu et al. and Shibuya et al. 2

2 Shortest path computation and the A� algorithmAn alignment of the K sequences can be interpreted as a path in a K-dimensional grid graphwith node set: V = fv = (v[1]; v[2]; : : : ; v[K]) : v[i] 2 f1; : : : ; Niggand edges E = f(p; q) : p; q 2 V; p 6= q and q � p 2 f0; 1gKgLet us denote the set of all paths from a node p to a node q by p! q.p! q := n(p=v0; v1; : : : ; v!=q) : (vi; vi+1) 2 E; 0 � i < !oLikewise we write p ! q ! r for the set of paths from p to r passing through node q. Apath � of length ! from s = (0; : : : ; 0) to t = (N1; : : : ; NK) corresponds to the alignmentdescribed by the following matrix:aij = � - if vj [i]� vj�1[i] = 0Si[vj[i]] if vj [i]� vj�1[i] = 1 for 1 � i � K; 1 � j � !Thus, the cost of an alignment can be interpreted as the sum of edge costsc(�) := !�1Xi=0 c(vi; vi+1)with c(vi; vi+1) := X1�k<l�K sub(akx; alx)where x denotes the number of the column corresponding to the edge (vi; vi+1). Note that weoverload the notation of c because an edge in the dynamic programming graph correspondsexactly to a column of a multiple alignment. We denote the shortest path in p! q by p!� qand its length by c(p !� q). A node r in the grid naturally divides each sequence Si in apre�x �ri and a su�x �ri .Of course it is not feasible to compute a shortest path in the full grid graph, since its sizeis O(N = QiNi). Using Dijkstra's algorithm for computing shortest paths in graphs withnonnegative edge costs, Kececioglu et al. described in [GKS95] an algorithm which reducesthe number of nodes that have to be visited by a bounding procedure. In their approach, aheuristic alignment Aheur of the K sequences yields an upper bound U = c(Aheur) for thecost of the optimal alignment A�. Lower bounds L(r ! t) are calculated by adding up thecost of all optimal pairwise alignments over su�xes of the sequences, i.e., for each node r inthe grid graph we have: L(r ! t) := X1�i<j�K c(A�(�ri ; �rj)) (1)The algorithm uses a priority queue Q, where it stores the values of the best known paths forpre�xes of the sequences as keys. In each step the node q with minimum key k is extractedfrom Q and then expanded, which means that all neighbors r of q are inserted in Q with thekey k + c(q; r). Dijkstra's algorithm ensures that the key k of the node q with the minimalkey is always the cost of the shortest path from s to q, i.e., k = c(s!� q). In the expansionof a node q one does not need to insert a neighbor r if c(s !� q) + c(q; r) + L(r ! t) > U .That means if the sum of the length of the optimal path from s to q plus the length of theedge (q; r) plus the lower bound L(r ! t) is already greater than an upper bound U , then nooptimal alignmentA� can go through r. Later we will see that this simple bounding strategyapplied to a dynamic programming graph with changed edge weights always yields betterresults than the well known Carillo-Lipman bounding.Carillo and Lipman employ a di�erent idea to reduce the number of vertices in the dy-namic programming graph. The following property holds for any optimal multiple alignmentA� (c.f. [CL88]): 3

Theorem 2.1 (Carillo, Lipman) Let A� be an optimal alignment of the K stringsS1; : : : ; SK , L := L(s ! t) be the lower bound de�ned in Equation 1 and U = c(Aheur)be an upper bound for c(A�). Then the following inequality holds for every projection on apair Si; Sj of sequences: c(A�i;j) � c(A�(Si; Sj)) + U � LProof: U � L � X1�k<l�K(c(A�k;l) � c(A�(Sk; Sl)))� c(A�i;j)� c(A�(Si; Sj)); 8 1 � i < j � K) c(A�i;j) � c(A�(Si; Sj)) + U � LDue to Theorem (2.1) an optimal alignment path cannot pass through a node r if for anypair i; j holds:CLi;j(r) := c(A�(�ri ; �rj)) + c(A�(�ri ; �rj))� c(A�(Si; Sj)) + L(s! t) > U:We call a node r CL-valid if CLi;j(r) � U for all pairs i; j. Otherwise we call it CL-invalid.A representation of the set of CL-valid nodes can be precomputed, so that we can e�cientlydecide whether a given node q is CL-valid or not.The A�-algorithm speeds up computations by directing the search of a shortest source-to-sink path more towards the sink node t. It rede�nes the cost of all edges in E as follows:c0(q; r) := c(q; r)� l(q ! t) + l(r ! t);where l(u! v) is a lower bound for the cost c(u!� v) of a shortest path from u to v. If l()ful�lls the consistency conditionc(q; r) + l(r ! t) � l(q ! t); 8(q; r) 2 E;then it is easy to show that the rede�nition of the edge costs does not change the optimalpath and the edge costs are still positive so Dijkstra's algorithm with the simple boundingprocedure can be used as before.We can choose L(q ! t) as the lower bound in the rede�nition of the edge weights,because L ful�lls the consistency condition:c(q; r) + L(r ! t) = X1�i<j�K(c(A�(�ri ; �rj)) + c(q; r)� X1�i<j�K(c(A�(�qi ; �qj))= L(q ! t)The rede�nition of the edge weights directs the search in the grid more towards the sink nodet. Therefore this technique is also called Goal Directed Unidirectional Search (GDUS) (c.f.[Len90]). We now want to apply the simple bounding procedure described above. With thenew edge weights a shortest path from s to q has the length c0(s!� q) = c(s !� q)+L(q !t)� L(s ! t). Since the value L(s ! t) is a precomputed constant we discard it and inserta neighboring node r with the key Prioq(r) into the priority queue Q, wherePrioq(r) := c(s!� q) + c(q; r) + L(r ! t): (2)Applying the bounding procedure, we do not always have to insert a node r into thepriority queue Q, namely if Prioq(r) > U where U is an upper bound for c(s !� t).The argumentation is as before, because Prioq(r) is a lower bound for a path from sto t passing through q and r. This does not exclude that r might be inserted later ifit is inspected from another neighbor q0. However, if r is never inserted into Q, i.e., ifPrio(r) := min(q;r)2E Prioq(r) > U , then we call r U-invalid, otherwise we call it U-valid.We will now show that the rede�ning of the edge costs together with the simple bound-ing strategy always yields better results than the bounding achieved by the Carillo-Lipmantechnique. 4

Theorem 2.2 CL-invalidity implies U-invalidity.Proof:CLi;j(q) = c(A�(�qi ; �qj)) + c(A�(�qi ; �qj)) � c(A�(Si; Sj)) + L(s! t)= c(A�(�qi ; �qj)) + c(A�(�qi ; �qj)) � c(A�(Si; Sj)) + X1�k<l�K c(A�(Sk; Sl))= c(A�(�qi ; �qj)) + c(A�(�qi ; �qj)) + X1�k<l�K(k;l)6=(i;j) c(A�(Sk; Sl))� c(A�(�qi ; �qj)) + c(A�(�qi ; �qj)) + X1�k<l�K(k;l)6=(i;j)�c(A�(�qk; �ql)) + c(A�(�qk; �ql))�= X1�k<l�Kc(A�(�qk; �ql)) + X1�k<l�Kc(A�(�qk; �ql))= X1�k<l�Kc(A�(�qk; �ql)) + L(q ! t)� c(s !� q) + L(q ! t)=: Prio(q)If CLi;j(q) > U , then Prio(q) > U , so q is always U-invalid if it is CL-invalid.The above proof was �rst published in the master thesis of the �rst author ([Ler97]), however,the authors acknowledge that the above theorem has been shown independently by Hortonand Lawler in [Hor97].The U-bounding reduces the number of relevant nodes substantially. However, we stillexplore enough of the grid to guarantee that the computed alignment is optimal. Now wegive up that guarantee in order to obtain an even better bounding. This is done similarly tothe program of Kececioglu et al. whereas Shibuya et al. do not employ this technique. LetAheur be a heuristically computed alignment yielding an upper bound U . We de�neepsi;j := c(Aheuri;j)� c(A�(Si; Sj))and EPSi;j := min(max(epsi;j ;MIN EPS);MAX EPS)where MIN EPS, MAX EPS are nonnegative constants with MIN EPS�MAX EPS.We make the (not always true) assumption, that any alignment A� for a path � 2 s !r! t cannot be optimal, if for a pair (i; j)c(A�(�ri ; �rj)) + c(A�(�ri ; �rj)) > c(A�(Si; Sj)) +EPSi;j (3)and call r face-invalid in this case, otherwise face-valid. The following choice produces goodresults: MIN EPS := 2 �P1�i<j�K(epsi;j)K(K � 1)Information on face-invalid nodes can be e�ciently precomputed and stored using so-calledfaces. For each pair of dimensions (i; j) a face merely consists of two arrays of the sizeO(max(Ni; Nj)). The values MIN EPS and MAX EPS are crucial parameters. If MIN EPSis set too low, it can be that we do not �nd an optimal alignment, since nodes on an optimalpath in s ! t might then be ignored. If we set it to high, removing the e�ect of face-bounding, the time and space consumption rises. If we set the MAX EPS parameter too lowit is often the case that we do not �nd an alignment at all. We will discuss this problem inmore detail in Section 4. 5

3 ImprovementsIn this section we explain three ideas, each of which results in great performance improve-ments in the implementation. The �rst idea is not to use only projections to two but also tothree sequences to obtain better lower bounds. The second idea is to periodically recomputea tighter upper bound during the execution of the algorithm and �nally we enumerate theneighbors of a node q in a clever way, so that only small incremental changes are neededwhen moving from edge to edge.3.1 Triple alignmentsAlready Carillo and Lipman noted that their idea of reducing the volume of the search-space by using lower-dimensional optimal alignments can be extended to higher dimensions.Unfortunately the number of optimal d-dimensional alignments is O(�Kd �), and what is evenworse, the space consumption is O(�Kd � �N), where N = Qidi=i1 Ni. In this section we showhow to carefully select a reasonable number of triples of strings, the alignments of whichyield good lower bounds compared to the bounds that are achieved by computing pairwisealignments.We replace three optimal pair alignments with one optimal triple alignment. This isallowed, since the projection of an optimal multiple alignment to three strings can neveryield a better alignment than the optimal alignment of these three strings. On the otherhand, the cost for the optimal triple alignment is never smaller than the sum of the threeoptimal pairwise alignment costs.We want to �nd a set of triples (more precisely a selection of sets of three elements fromthe set of indices) T = nfi; j; kg : i; j; k 2 f1; 2; : : : ;Kg and i 6= j 6= kowith the additional property j� \ � j < 2 for all �; � 2 T ; � 6= �:That means, we want to �nd a set of triples with no common pair. For a given set T we alsode�ne P := f(i; j); (j; k); (i; k) : 8fi; j; kg 2 T gFor any optimal alignment Ar;� going through node r we de�ne:L3(r ! t) := Xfi;j;kg2T c(A�(�ri ; �rj ; �rk)) + X(i;j)=2Pc(A�(�ri ; �rj))� X1�i<j�Kc(A�(�ri ; �rj)) = L(r ! t)Computing L3(r ! t) usually yields a much tighter lower bound than L(r ! t). The newlower bound L3 can be shown to ful�ll the consistency condition in the same way as L inEquation 2. Note that U-bounding is also improved, since the the value of Prio(q) increasesif L3 is used. How much the bounds are improved depends on the choice of the triples. Weadopted the following heuristic which yields good results: for each triple fi; j; kg computeD(i; j; k) := c(A�(Si; Sj; Sk))� c(A�(Si; Sj))� c(A�(Sj ; Sk))� c(A�(Si; Sk)):We select a triple fi; j; kg if1. D(i; j; k) > 0 and2. there is no triple fi0; j0; k0g with jfi; j; kg\ fi0; j0; k0gj � 2 and D(i0; j0; k0) � D(i; j; k).The di�culty in using triple alignments for better lower bounds is that we have to pre-compute and store a three-dimensional grid with the values c(A�(�ri ; �rj ; �rk)) (distance grid)for every used triple, which is quite space consuming. Such a distance grid for fi; j; kg can be6

computed with the Dijkstra-algorithm. In fact, we only need those values c(A�(�ri ; �rj ; �rk))which we want to compute L3(r ! t) for, namely for the nodes r that are face-valid forthe K-dimensional problem. Therefore we can cut o� large areas of the three-dimensionaldistance grids if we use face-bounding with respect to the EPS(i; j) of the K-dimensionalproblem.3.2 Dynamic Upper BoundIn the preceding section we described how the volume of the search space in the multi-dimensional grid can be reduced by ignoring U-invalid nodes. We can do even better if it ispossible to improve the upper bound during the progress of the algorithm.For each node q we know its optimal distance c(s !� q) from the source s as soon as itis removed from the priority queue in Dijkstra's algorithm. The closer we get to the sink t,the better the chance that U 0 := c(s!� q) + c(Aq;heur)de�nes a better upper bound than U . In this term, Aq;heur is a heuristically computedalignment of the su�xes �q1; : : : ; �qK.If U 0 < U , then more nodes can be ignored because of U-invalidity (more precisely: U'-invalidity) than it was possible before. Therefore we compute at \promising" trial nodes q,just removed from the priority queue, a heuristic alignment of the su�xes and try to improvethe upper bound (dynamic upper bound). We have to select those trial nodes carefully becausecomputing the heuristic multiple alignment is time-consuming, especially in the beginning,when the path from q to t is still long. Two heuristics were tested in order to select the trialnodes, each one with acceptable results. In both cases the �rst trial node is u0 = s.Heuristic 1The node q becomes a new trial node ui+1, ifc(s!� q) > c(s!� ui) + c(Au0;heur)� L(s! t)const1where ui was the previous trial node and const1 � 1 is a constant, indicating the maximumtotal number of trial nodes. Heuristic 1 regards a trial node q as good, if the algorithm hasmade enough progress with respect to the cost of the optimal pre�x path of the previoustrial node.Heuristic 2The node q becomes a new trial node ui+1, ifStepCount(s ! q) = StepCount(s! ui) + const2where ui was the previous trial node, const2 � 1 is a constant, and StepCount(s ! r) isthe number of edges on an optimal path from s to r. Heuristic 2 regards a trial node q asgood, if the algorithm has made enough progress with respect to the number of steps thealgorithm has made since visiting the previous trial node.In our implementation we preferred heuristic 1 because it does not require additionalmemory space. After successfully improving the upper bound from U to U 0 it is possibleto search the grid for U-valid nodes, which have now become U'-invalid. All edges to thesenodes that have been visited up to that stage of the algorithm can be ignored and the nodescan be deleted from the grid (garbage collection).3.3 Gray-CodeFor every node q that is extracted from the priority queue the A� algorithm examines alloutgoing edges to neighboring nodes r. The di�erence vector r� q is an element of f0; 1gn�f(0; : : : ; 0)g. All neighbors r1; : : : ; r2K�1 have to be checked if they are within the boundsof the grid. If so, ri must then be checked for face-validity. Representing the node ri withits coordinates in a trie usually takes time O(K). This time can be substantially reducedif the neighbors are enumerated in Gray-Code succession. Gray-Code is an enumeration of7

all elements of f0; 1gn � f(0; : : : ; 0)g, where subsequent nodes only di�er in one dimension.If we reuse the representation of ri in order to get ri+1 by changing only one integer, onlyconstant time is needed for each neighbor. For notational convenience we de�ne r0 as q. Let: : : i[3]i[2]i[1] be the binary representation of i. De�nebi := � 0 for i = 0j else, where j minimal with i[j]=1and d0 := 0di := (di�1) XOR 2bi�1 for 1 � i � 2K � 1The neighbors are given asri := q + di= (q[1] + di[K�1]; q[2] + di[K�2] ; : : : ; q[K] + di[0])The Gray-Code technique is used in the algorithm in two further ways. Firstly it can beused to check in two steps if the neighbor ri of a node q is within the grid bounds. We markall indices i with q[i] + 1 > Ni in a bit �eld a of length K by setting the bit a[i]. Before r1is checked, all bits of a should be set to 0. A neighbor ri for i > 0 is within the bounds if0 � ri[K � bi � 1] � NK�bi�1 and (di AND a) = 0:If ri[K�bi�1] > NK�bi�1 then this is marked by setting the bit a[i] for subsequent neighbors.Secondly the computation of edge costs can be speed up. As described above, every edge(q; ri) uniquely de�nes a column of an alignment. We store this column in an array chari oflength K over the alphabet �0:chari[j] = � - if ri[j]� q[j] = 0Sj [r[j]] if ri[j]� q[j] = 1 for 1 � i � KIf char0 is initialized with blank characters 0�0, then chari can be obtained from chari�1 bymodi�cation of the single character char[K � bi � 1]. Additionally one could compute thecost of an edge in time O(K). One only needs to subtract the pairwise costs between thex-th (x = K� bi�1) character in chari�1 and all others and add the pairwise costs betweenthe x-th character in chari and all others to the previous cost value c(q; ri�1).c(q; ri) = c(q; ri�1)� X1�k 6=x�K�sub(chari�1[k]; chari�1[x])� sub(chari[k]; chari[x])� (4)It is easy to check that for K � 5 the right hand side of Equation 4 has less terms than theright hand side of the usual computation of the edge costs which is:c(q; ri) = X1�k<l�Ksub(chari[k]; chari[l]) (5)However, in practice it turned out to be faster to use Equation 5 for edge cost computation.This is due to two reasons:1. The cost for evaluating Equation 5 are in practice seldom O(K2) since one can checkfor U-invalidity each time after adding K terms, say. Very often only a few checks areneeded to prove that a node is U-invalid.2. On the other hand, if one uses Equation 4 to compute the edge costs, it is necessary tocompute the costs to all neighboring nodes, even if they are face-invalid. This imposesa considerable overhead compared to the other method which does not consider face-invalid nodes. 8

4 Computational resultsWe implemented the described algorithm in C++ using the library of e�cient data types andalgorithmsLEDA (c.f. [MN95]). Although this imposes a time and space overhead by a factorof 2 to 3 compared to ad hoc implementations it makes the software easy to read, to maintain,and to extend. Based on our implementation (GSA=goal directed sequence alignment) thereis an ongoing implementation of a version supporting a�ne gap costs which is intended toreplace MSA as a last step of the divide-and-conquer approach of Stoye et al. ([SMD97]). Intheir approach they try to divide the K sequences at appropriate \slicing" locations which aredetermined through a branch-and-bound procedure. The resulting subproblems are solvedrecursively. The recursion stops if the lengths of the sequences in a subproblem fall belowa certain threshold. The subproblem is then solved to optimality, currently using MSA. Ofcourse this approach tries to end the recursion as soon as possible. Therefore programs areneeded that can solve large instances with many sequences to optimality.We divide this section into two parts. In the �rst part we discuss the e�ect of the al-gorithmic techniques introduced before (dynamic upper bound, GDUS, triple alignments)on the time and space consumption of the algorithm. In the second part we compare ourimplementation with two other packages for optimal sequence alignment, namely the widelyknown program MSA in its latest version 2.1 [KAL94], and FMA, a very recent implemen-tation by Shibuya and Imai [SI97a], which also uses an A� strategy. In order not to havean advantage against FMA or MSA, we use their two default cost matrices which are calleddayhoff (MSA) and PAM250 (FMA).All examples were run on an UltraSparc Station 2/200 with 1024 MB memory. Theprogram together with all examples and converting tools can be obtained via anonymous ftpfrom ftp://ftp.mpi-sb.mpg.de/pub/outgoing/reinert/GSA.tgz. The LEDA Softwarelibrary can be downloaded from http://www.mpi-sb.mpg.de/LEDA/leda.html. We testedcombinations of the above mentioned
ags on the following three examples. The �rst is anbenchmark example of �ve protein fragments that are relatively easy to align:Example 1:1: ASVLTQPPSVSGAPGQRVTISCTGSSSNIGAGHNVKWYQQLPGTAPKLLIFHNNARFSVSKSGT2: QSVLTQPPSASGTPGQRVTISCSGTSSNIGSSTVNWYQQLPGMAPKLLIYRDAMRPSGVPDRFS3: EVQLVQSGGGVVQPGRSLRLSCSSSGFIFSSYAMYWVRQAPGKGLEWVAIIWDDGSDQHYADSV4: AVQLEQSGPGLVRPSQTLSLTCTVSGTSFDDYYWTWVRQPPGRGLEWIGYVFYTGTTLLDPSLR5: PSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPQVKFNWYVDGVQVHNAKTKPREQQYNSTYR1: SATLAITGLQAEDEADYYCQSYDRSLRVFGGGTKLTVLR2: GSKSGASASLAIGGLQSEDETDYYCAAWDVSLNAYVFGTGTKVTVLGQ3: KGRFTISRNDSKNTLFLQMDSLRPEDTGVYFCARDGGHGFCSSASCFGPDYWGQGTPVTVSS4: GRVTMLVNTSKNQFSLRLSSVTAADTAVYYCARNLIAGGIDVWGQGSLVTVSS5: VVSVLTVLHQNWLDGKEYKCKVSNKALPAPIEKTISKAKGThe next two examples are taken from McClure's globin dataset. In the second examplethere are 11 fragments from this dataset.Example 2: 11 fragments of McClure's globin dataset1 : VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK2 : MLTDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKTYFSHFDLSHGSAQIKAHGK3 : VLSAADKTNVKGVFSKIGGHAEEYGAETLERMFIAYPQTKTYFPHFDLSHGSAQIKAHGK4 : VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV5 : VHLSGGEKSAVTNLWGKVNINELGGEALGRLLVVYPWTQRFFEAFGDLSSAGAVMGNPKV6 : VHWTAEEKQLITGLWGKVNVADCGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPMV7 : GLSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASED8 : GLSDGEWQLVLKVWGKVEGDLPGHGQEVLIRLFKTHPETLEKFDKFKGLKTEDEMKASAD9 : MKFFAVLALCIVGAIASPLTADEASLVQSSWKAVSHNEVEILAAVFAAYPDIQNKFSQFA10: GVLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQNNPDL11: MLDQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLFDMGRQESLEQPKALAMTThe third example is a set from 5 complete sequences from the globin dataset.9

Example 3: 5 sequences of McClure's globin dataset1: VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGKKVAD2: VHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHG3: MKFFAVLALCIVGAIASPLTADEASLVQSSWKAVSHNEVEILAAVFAAYPDIQNKFSQFAGKDL4: GVLTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQNNPDLQAHA5: MLDQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLFDMGRQESLEQPKALAMTVLAA1: ALTNAVAHVDDMPNALSALSDLHAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKF2: KKVLGAFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQA3: ASIKDTGAFATHATRIVSFLSEVIALSGNTSNAAAVNSLVSKLGDDHKARGVSAAQFGEFRTAL4: GKVFKLTYEAAIQLEVNGAVASDATLKSLGSVHVSKGVVDAHFPVVKEAILKTIKEVVGDKWSE5: AQNIENLPAILPAVKKIAVKHCQAGVAAAHYPIVGQELLGAIKEVLGDAATDDILDAWGKAYGV1: LASVSTVLTSKYR2: AYQKVVAGVANALAHKYH3: VAYLQANVSWGDNVAAAWNKALDNTFAIVVPRL4: ELNTAWTIAYDELAIIIKKEMKDAA5: IADVFIQVEADLYAQAVE4.1 Di�erent GSA runsWe demonstrate the e�ects of the above mentioned algorithmic techniques on the time andspace consumption of GSA. The following
ags for GSA were used:� -Without any
ag, GSA uses the GDUS strategy. It does not use the dynamic upperbound but the triple alignments (see Section 3.1) to achieve better lower bounds. Thevalue MIN EPS is computed as explained in Section 2. By default the unit cost editdistance is used to compute the cost of an edge.� -2With this
ag, GSA only uses pairwise projections for computing lower bounds.� -uWith this
ag, GSA uses the dynamic upper bound strategy described in Section 3.2� -aThis
ag prevents the insertion of U-invalid nodes into the trie. This slightly slowsdown the computation but uses slightly less space.� -gThis
ag disables the GDUS strategy.� -e<x>This
ag overrides the computation of the MIN EPS values described in Section 2 andsets the value to x.� -c<cost matrix>This
ag overrides the unit cost edit distance and rather computes the cost of an edgeusing the speci�ed cost matrix.The time and space consumption for the di�erent
ags is given in the following two tablesusing the PAM250 cost matrix (-cpam250). The �rst table shows the result with the GDUSstrategy: Example 1 Example 2 Example 3
ags time (sec) space (MB) time (sec) space (MB) time (sec) space (MB)- 21 17 5.8 6.2 57 47-a 24 17 6 6 62 47-2 33 14 4.6 5.6 233 87-a2 35 14 5.6 5.5 256 87-u 37 14 20 7.2 80 34-au 38 14 22 7.1 87 33The second table shows the results without the GDUS strategy (
ag: -g).10

Example 1 Example 2 Example 3
ags time (sec) space (MB) time (sec) space (MB) time (sec) space (MB)-g 52 9.1 13.7 6.3 887 23-ag 58 8.6 16 6.2 998 23-2g 54 7.2 11.4 5.6 1036 20-a2g 58 7.2 13.9 5.5 1081 19-ug 58 7.7 23 7 895 25-aug 56 7.5 26 7 543 21The above table justi�es the following observations which are strengthened by further exam-ples:1. The GDUS strategy considerably speeds up the computations but it uses more space.This e�ect gets more dramatic with bigger problem instances. Therefore the user hasto decide whether time or space is the limiting factor and use the -g
ag accordingly.2. The dynamic upper bound slows down the computations but reduces space consumptionfor bigger problem instances. The bigger the problem the more one can neglect theincrease in running time compared to the decrease in space consumption. It is alwayswise to use the -u
ag for big problem instances.3. The same argument holds for the improved lower bound for triple alignments. For shortexamples the relative increase in space and time consumption through the computationof triple alignments is high. However, this e�ect diminishes with bigger problem in-stances (e.g. Example 3 with the PAM250 cost matrix) where again space is the limitingfactor. Therefore it is advisable to use triple alignments for lower bound computationon big problem instances, instead of switching them o� with -2.4. The
ag -a usually gives a small increase in running time and a small decrease in spaceconsumption. This e�ect varies but in any case the memory allocation is less. Wetherefore recommend to use the -a
ag.4.2 Comparison of GSA with MSA and FMAIn order to allow a comparison we had to adapt some de�nitions in the MSA code. First weremoved the precompiler de�nition #define MINE 5 in the �le ecalc.c which sets the valuefor MIN EPS in MSA. We replaced it by an integer variable MINE which can be set by a newcommand line switch -x value and is initialized to 5. Then we replaced the precompilerde�nition #define MAXE 50 by #define MAXE 9999 in the �le ecalc.c. This actually seemsto be a good idea in general, because the value 50 very often prevents MSA from �ndingany alignment, whereas the high value very often �nds an alignment. We also changed thedefault de�nition of gap costs in main.c from 8 to 0, since the current implementation ofGSA only supports linear gap costs. Finally we changed the de�nition of #define NUMBER10 in the �le defs.h to #define NUMBER 12 in order to be able to compute alignments ofup to 12 sequences.It should be explicitly noted that MSA supports a�ne gap costs, a feature which isswitched o� here in order to yield the same alignments. Nevertheless MSA uses this moretime and space consuming algorithm. Until GSA supports a�ne gap costs, there can beno �nal judgment about the quality of the two programs. Nevertheless we hope that ourcomparison illustrates the advantage of the A� algorithm together with our improvementsover the standard bounding techniques.The code of the program FMA was not changed, because it also uses linear gap costs.Unfortunately FMA does not use face-bounding, so that it naturally cannot compute largerexamples to optimality. The programs were invoked (at least) with the following
ags inorder to compute the same alignments:fma -g -12 -12 -f <string-file> -c dat/dayhoff.score (dayhoff matrix)fma -f <string-file> -c dat/PAM250-score (PAM250 matrix)msa -g -b <string-file> (dayhoff matrix)msa -g -b <string-file> -c pam250.dat (PAM250 matrix)11

gsa -cpam250 <string-file> (dayhoff matrix)gsa -cdayhoff <string-file> (PAM250 matrix)We regard the computed alignment value as optimal if we compute it with su�ciently largeMIN EPS or, since this is not always possible for large examples, if all three programs yieldthe same value. The program FMA is invoked only once on each example, since we cannotin
uence its face bounding. The programs MSA and GSA are called four times. Once withtheir default values for MIN EPS (5 for MSA and calculated like in Section 2 for GSA), oncewith the lowest MIN EPS that still yields the optimal alignment, once with the lowest valueof MIN EPS that yields an alignment at all and once with the value of MIN EPS set to avery large value so that no face-bounding is done. If a program uses more space than 512MB or computes longer than one hour we mark this fact by the table entry +. The column\
ags" contains additional
ags. Note that the MIN EPS values for GSA and MSA are notcorrelated, although we display the values for MIN EPS in the same column. For a startwe compare our �rst benchmark problem computed with the PAM250 cost matrix. GSAcomputed the following upper and lower bounds:lower bound L(s! t) 37028lower bound L3(s ! t): 37318upper bound U0: 38014optimal cost: 37740The following table shows the results with the PAM250 cost matrix:program
ags min eps. time (sec) space (MB) alignment costFMA - - 426 158 37440GSA -a 99 21 17 37440GSA -ae46 46 6.8 6.7 37440GSA -ae1 1 2.8 4.4 37956GSA -aue99999 99999 226 135 37440MSA - 5 3.4 2.5 37790MSA -x46 46 78 3.9 37440MSA -x1 1 1.8 1 37816MSA -x99999 99999 + + +With the dayho� matrix GSA computes the following bounds:lower bound L(s! t) 17751lower bound L3(s ! t): 17907upper bound U0: 18253optimal cost: 18040The next table shows the results of the programs run with the dayho� cost matrix:program
ags min eps. time (sec) space (MB) alignment costFMA - - 1954 440 18040GSA -a 51 80 56 18040GSA -ae10 10 12 8.8 18040GSA -ae1 1 4.3 5.8 18202GSA -ae99999 99999 233 198 18040MSA - 5 81 5.5 18070MSA -x13 13 555 11 18040MSA -x1 1 37 3.6 18091MSA -x99999 99999 + + +With both cost matrices FMA needs more time and space than GSA run with
ag -e99999.MSA invoked with -x99999 could not �nd an alignment within the speci�ed space and timebounds. Called with the standard option GSA produces always the optimal result within 21respectively 80 seconds. With its default values MSA solves the problem with the PAM250cost matrix quicker, however it does not compute the optimal solution due to the small12

MIN EPS value. If one increases this value until the optimal solution is found then MSAneeds considerably more time than GSA (78 sec. compared to 6:8 sec. with the PAM250 and555 sec. compared to 12 sec. with the dayho� matrix).In the second example we demonstrate that GSA is able to align a lot of sequences ofreasonable length in a short time to optimality. This fact makes it particulary useful for thedivide-and-conquer approach of Stoye et al. GSA computed the following upper and lowerbounds with the PAM250 cost matrix:lower bound L(s ! t) 105136lower bound L3(s! t): 105670upper bound U0: 106782optimal cost: 105990The following table shows the results with the PAM250 cost matrix:program
ags min eps. time (sec) space (MB) alignment costFMA - - + + +GSA -a 30 5.8 6.2 105990GSA -ae22 22 4.9 5.3 105990GSA -ae1 1 5 5.1 106732GSA -aue99999 99999 340 142 105990MSA - 5 0.9 1 105990MSA -x1 1 0.8 1 105990MSA -x1 1 0.8 1 105990MSA -x99999 99999 + + +With the dayho� matrix GSA computes the following bounds:lower bound L(s! t) 51338lower bound L3(s ! t): 51693upper bound U0: 52200optimal cost: 51998The next table shows the results of the programs run with the dayho� cost matrix:program
ags min eps. time (sec) space (MB) alignment costFMA - - + + +GSA -au 16 + + +GSA -ae7 7 40 8.8 51988GSA -ae1 1 8.5 6.3 52088GSA -aue99999 99999 + + +MSA - 5 44 3 52008MSA -x10 10 + + +MSA -x1 1 16 2.8 52008MSA -x99999 99999 + + +The optimal alignment with the PAM250 cost matrix computed by GSA is:1 : V-L-SPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGK-2 : M-L-TDAEKKEVTALWGKAAGHGEEYGAEALERLFQAFPTTKTYFSHFDLSHGSAQIKAHGK-3 : V-L-SAADKTNVKGVFSKIGGHAEEYGAETLERMFIAYPQTKTYFPHFDLSHGSAQIKAHGK-4 : VHL-TPEEKSAVTALWGKV--NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKV5 : VHL-SGGEKSAVTNLWGKV--NINELGGEALGRLLVVYPWTQRFFEAFGDLSSAGAVMGNPKV6 : VHW-TAEEKQLITGLWGKV--NVADCGAEALARLLIVYPWTQRFFASFGNLSSPTAILGNPMV7 : G-L-SDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASED-8 : G-L-SDGEWQLVLKVWGKVEGDLPGHGQEVLIRLFKTHPETLEKFDKFKGLKTEDEMKASAD-9 : MKFFAVLALCIVGAIASPLTADEASLVQSSW-KA-VSHNEVEILAAVFAAYPDIQNKFSQFA-10: GVL-TDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFS-F-LKGSSEVPQNNPDL11: M-L-DQQTINIIKATVPVLKEHGVTITTTFYKNLFAKHPEVRPLFD-MGRQESLEQPKALAMTGSA is the only program, that can compute a guaranteed optimal alignment with the PAM250cost matrix. If one subtracts the 120MB used for the triple alignments the space consumption13

of the main algorithm is quite moderate thanks to our improved lower and upper bounds.MSA and FMA in turn need excessive space and time. In the case of the PAM250 cost matrixMSA very quickly �nds an optimal alignment, even with a MIN EPS value of 1. This showsthat the heuristic alignment is very close to the optimal alignment. However with its defaultdayhoff cost matrix MSA is not able to �nd an optimal alignment within the space andtime bounds, whereas GSA �nds an probably optimal alignment in 40 sec.In the third example we take 5 full length globin seuqences fromMcClure's dataset. GSAcomputed the following upper and lower bounds with the PAM250 cost matrix:lower bound L(s! t) 49860lower bound L3(s ! t): 50260upper bound U0: 51320optimal cost: 50694The following table shows the results with the PAM250 cost matrix:program
ags min eps. time (sec) space (MB) alignment costFMA - - + + +GSA -a 147 57 47 50694GSA -ae124 124 53 42 50694GSA -ae1 1 32 22 51194GSA -aue99999 99999 + + +MSA - 5 25 3.6 50756MSA -x90 90 + + +MSA -x1 1 17 3.0 50762MSA -x99999 99999 + + +With the dayho� matrix GSA computes the following bounds:lower bound L(s! t) 24012lower bound L3(s ! t): 24194upper bound U0: 24575optimal cost: 24445The next table shows the results of the programs run with the dayho� cost matrix:program
ags min eps. time (sec) space (MB) alignment costFMA - - + + +GSA -a 57 735 235 24445GSA -ae6 6 139 53 24445GSA -ae1 1 66 38 24486GSA -aue99999 99999 + + +MSA - 5 757 12 24447MSA -x10 10 2144 20 24445MSA -x1 1 352 5.7 24450MSA -x99999 99999 + + +The optimal alignment with the PAM250 cost matrix computed by GSA is:1 : V--LSPAD--K-TNVKAAW--GK--V--GA-HAGEYGA-EALERMFLSFPTTKTYFPHF-D---LS2 : VH-LTPEE--K-SAVTALW--GK--V--NV-DEVG-GE-A-LGRLLVVYPWTQRFFESFGDLSTPD3 : MKFFAVLALCIVGAIASPLTADEASLVQSSWKAVSHNEVEILAAVFAAYPDIQNKFSQFAG-KDLA4 : GV-LTDVQ--V-ALVKSSF--EE--F--NA-NIPKNTH-RFFTLVLEIAPGAKDLFSFLKG--SSE5 : M--LDQQT--I-NIIKATV--PV--L--KE-HGVTITT-TFYKNLFAKHPEVRPLFDMGRQ-ESLE1 : --HGSAQVKGHGKKVAD-ALTNAVA-HVD-DMPNALSAL-SDL-HAHKLR-VDPVNFKLLSHCLLV2 : AVMGNPKVKAHGKKVLG-AFSDGLA-HLD-NLKGTFATL-SEL-HCDKLH-VDPENFRLLGNVLVC3 : SIKDTGAFATHATRIVS-FLSEVIALSGNTSNAAAVNSLVSKLGDDHKARGVSAAQFGEFRTALVA4 : VPQNNPDLQAHAGKVFKLTYEAAIQLEVN-GAVASDATL-KSLGSVHVSKGVVDAHFPVVKEAILK5 : QPKALAMTVLAAAQNIE-NLPAILP-AVK-KIAVK-HCQ-AGVAAAHYPI-VGQELLGAIKEVLGD1 : TLAAHLPAEFTPAVHASLDKFLASVSTVLTSKYR---14

2 : VLAHHFGKEFTPPVQAAYQKVVAGVANALAHKYH---3 : YLQANV--SWGDNVAAAWNKALDNTFAIVVPRL----4 : TIKEVVGDKWSEELNTAWTIAYDELAIIIKKEMKDAA5 : AATDDILDAWGKAYGVIADVFIQVEADLYAQAVE---For the longer sequences none of the programs can guarantee optimality. GSA is the onlyprogram that can compute the \optimal" value within the space and time bounds with bothcost matrices. In fact it needs only 53 sec. with the PAM250 and 139 sec. with the dayhoffcost matrix, whereas MSA needs 2144 sec. with the dayhoff matrix.In all our examples the strategy of GSA for computing the MIN EPS values is always suchthat the optimal alignment is computed. Additionally the strategy achieved in all but onecases the optimal alignment in reasonable time so that the user can trust this heuristicallycomputed value.In conclusion one can say, that the A� algorithm together with the proposed improve-ments considerably speeds up the computation for multiple sequence alignment. It certainlywill do this also with a�ne gap costs. What needs to be shown is whether our improvementsthen still dominate the overhead imposed by C++ and LEDA.5 ConclusionIn this paper we showed that the A� algorithmwith standard bounding techniques is superiorto the well known Carillo-Lipman bound, because it excludes at least as many nodes in thedynamic programming graph from consideration. Further on we improved this algorithm inform of better lower and upper bounds. We implemented the algorithm in a C++ class usingthe software library LEDA. This makes the algorithm easy to read and to maintain. We showthat this implementation outperforms similar programs due to our algorithmic improvementsand conjecture that an ongoing implementation of GSA with a�ne gap costs will be a usefultool for multiple sequence alignment.References[CL88] H. Carrillo and David J. Lipman. The multiple sequence alignment problem inbiology. SIAM J. Appl. Math., 48(5):1073{1082, 1988.[GKS95] S.K. Gupta, J.D. Kececioglu, and A.A. Schae�er. Improving the practical spaceand time e�ciency of the shortest-paths approach to sum-of-pairs multiple se-quence alignment. J. Comput. Biol., 2:459{472, 1995.[Gus97] Dan Gus�eld. Algorithms on strings, trees, and sequences : Computer Science andComputational Biology. Cambridge University Press, New York, NY, �rst edition,1997.[Hor97] Paul Horton. String algorithms and machine learning applications for computa-tional biology. PhD dissertation, UC Berkeley, Department of Computer Science,December 1997.[KAL94] John D. Kececioglu, Steven Altschul, and David J. Lipman. Msa2.1 : A program for computing multiple alignments. source codes(http://www.ibc.wustl.edu/ibc/msa.html), 1994.[Len90] Thomas Lengauer. Combinatorial Algorithms for Integrated Circuit Layout. Wiley-Teubner, Chichester, �rst edition, 1990.[Ler97] Martin Lermen. Multiple sequence alignment. Master's thesis, Universit�at desSaarlandes, Im Stadtwald, 66123 Saarbr�ucken, 1997.[MN95] Kurt Mehlhorn and Stefan N�aher. LEDA, a platform for combinatorial and geo-metric computing. Communications of the ACM, 38(1):96{102, 1995.[MVF94] Marcella McClure, Taha K. Vasi, and Walter M. Fitch. Comparative analysis ofmultiple protein-sequence alignment methods. Mol. Biol. Evol., 4(11):571{592,1994. 15

[NW70] S.B. Needleman and C.D. Wunsch. A general method applicable to the search forsimilarities in the amino-acid sequence of two proteins. J. Mol. Biol., 48:443{453,1970.[SI97a] Tetsuo Shibuya and Takahiro Ikeda. Flexible multiple alignment program - version0.34 alpha, suboptimal and parametrix analysis. Obtained by shibuya@is.s.u-tokyo.ac.jp, 1997.[SI97b] Tetsuo Shibuya and Hiroshi Imai. New
exible approaches for multiple sequencealignment. In Proceedings of the First Annual International Conference on Com-putational Molecular Biology (RECOMB97), pages 409{420, 1997.[SM97] Joao Carlos Setubal and Joao Meidanis. Introduction to computational molecularbiology. PWS Publishing Company, Boston, 1997.[SMD97] J. Stoye, V. Moulton, and A. W. M. Dress. DCA: An e�cient implementationof the divide-and-conquer approach to simultaneous multiple sequence alignment.CABIOS, 13(6), 1997. In press.[Wat95] Michael S. Waterman. Introduction to computational biology : maps, sequences,and genomes. Chapman & Hall, London, 1995.

16

