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ABSTRACT

In this paper we present and compare several confidence mea-
sures for large vocabulary continuous speech recognition.We
show that posterior word probabilities computed on word graphs
and N-best lists clearly outperform non-probabilistic confidence
measures, e.g. the acoustic stability and the hypothesis density.
In addition, we prove that the estimation of posterior word prob-
abilities on word graphs yields better results than their estimation
on N-best lists and discuss both methods in detail. We present
experimental results on three different corpora, the EnglishNAB

’94 20k development corpus, the GermanVERBMOBIL ’96 eval-
uation corpus and a Dutch corpus, which has been recorded with
a train timetable information system in theARISE project.

1. INTRODUCTION

In previous studies, the combination of several confidence fea-
tures was investigated. These features were collected during the
acoustic decoding process, e.g. [1] or were extracted from N-
best lists and word graphs, e.g. [2, 5]. Most of these features
were non-probabilistic and had to be combined to form a single
confidence measure.

In this paper we estimate the confidence in a hypothesized
word following a probabilistic approach. We associate the con-
fidence in a word directly with its posterior probability.

In [6] we computed these posterior probabilities on word
graphs using a modification of the forward-backward algorithm.
Usually, a word is hypothesized more than once and the word
graph thus contains several hypotheses for the same word with
different starting and ending times (later referred to assegmen-
tation). In order to obtain satisfying results we had to sum up the
posterior probabilities of these hypotheses for each word in the
reference sentence.

We now extend our previous work in several directions. First,
we study three different methods of determining which hypoth-
esis probabilities have to be accumulated. Second, we estimate
the posterior probabilities on N-best lists instead of wordgraphs,
in an approach comparable to the work presented in [5]. The
main advantage of N-best lists over word graphs is that the com-
putation of posterior probabilities can directly be carried out on
the basis of word positions. The accumulation of posterior prob-
abilities might thus be unnecessary. Third, we compare both
approaches with alternative criteria, i.e. the acoustic stability [4]
and the hypothesis density [2].

2. WORD PROBABILITIES ON WORD GRAPHS

In the following, we briefly describe the most important aspects
of our previous work. For details, the reader is referred to [6].
The posterior probability for a word hypothesis(ts; te; w) with
starting timets and ending timete, given a sequence of acoustic
feature vectorsxT1 = x1 x2 : : : xT , is computed with a forward-
backward algorithm. We sum up the posterior probabilities of all

those sentences which contain this specific word hypothesis:pts;te(wjxT1 ) =XWs XWe p(WswWejxT1 ) == 1p(xT1 ) �XWs XWe �p(xts�11 jWs) � p(xtets jw) �� p(xTte+1jWe) � p(WswWe)	 ; (1)

whereWs denotes all word sequences precedingw andWe all
those succeedingw .

Since a word graph is a compact representation of the most
probable sentences, the summation can be restricted to all hy-
pothesis sequences contained in it. Let us assume that we use
an m-gram language model and lethm�11 = h1 h2 : : : hm�1 be
the history of wordw. Regarding the word history as an equiv-
alence class containing all word sequences whose last wordsarehm�11 , we can now compute the forward probability that the last
words of a word sequenceWs = w1 w2 : : : wjWsj ending at
time t are identical tohm�11 :�t(hm�11 ) = XWs2hm�11 p(xt1jWs) � jWsjYn=1 p(wnjwn�11 ) ;

(2)

wherejWsj denotes the number of words inWs. This equation
can be solved recursively:�t �hm�12 w� = p(xtts(w)jw) ��Xh1 �ts(w)�1(h1 hm�12 ) � p(wjh1 hm�12 ) : (3)

Sincets(w) is the starting time of wordw, ts(w) � 1 denotes
the ending time of the preceding wordhm�1. Analogously,e	t(fm�11 ) denotes the backward probability that the first word
hypotheses of a word sequenceWe = w1 w2 : : : wjWej begin-
ning at timet are identical tofm�11 = f1 f2 : : : fm�1:e	t(fm�11 ) = XWe2fm�11 p(xTt jWe) � jWejYn=m p(wnjwn�1n�m+1) :

(4)jWej denotes the number of words inWe. The missing language
language model probabilities for all wordsw1w2 : : : wm�1 are
computed later in Equation (6) for algorithmic reasons.

Equation (4) can be evaluated recursively as well. The word
graph is sorted on the ending times of the word hypotheses and
the backward probabilities are computed in a descending order:e	t �w fm�21 � = p(xte(w)t jw) �� Xfm�1 e	te(w)+1(fm�21 fm�1) � p(fm�1jw fm�21 ) :

(5)



With the definitions in Equations (1), (3) and (5), the posterior
hypothesis probability can now be computed as follows:pts;te(wjxT1 ) == Xhm�12 Xfm�21 �te(hm�12 w) � e	ts(w fm�21 )p(xT1 ) � p(xtets jw) �� m�2Yn=1 p(fnjhm�1n+1 w fn�11 ) : (6)

In addition to a language model scaling factor, we also use a scal-
ing factor� < 1 to scale down both, the acoustic and the lan-
guage model probabilities. This scaling has a major impact on
the performance of the posterior probabilities. If the scores are
not scaled appropriately, the sums in all of the equations above
are dominated by only a few word graph hypotheses because of
the large differences in the acoustic scores. For details see [6].

The posterior hypothesis probability defined in Equation (6)
can now be used as a measure of confidence in the word under
consideration: C(w) := pts;te(wjxT1 ) : (7)

In the experiments, the confidence is compared with a tagging
threshold, which has to be optimized on a cross validation corpus
beforehand. Words whose confidence exceeds this threshold are
tagged as ‘correct’, all others as ‘false’.

Equation (7) only has a very poor discriminating ability be-
tween these two classes, see Table 3. This observation is not
surprising when considering the fact that the fixed startingand
ending times of a word hypothesis determine which paths in the
word graph are included during the computation of the forward-
backward probabilities. The segmentation of the word graph
thus has a strong impact on the posterior probabilities of the hy-
potheses contained in it. Although several hypotheses represent
the same word, the probability mass of the word is split among
them. The unsatisfactory performance of the confidence mea-
sure defined in Equation (7) is thus a strong indication that the
segmentation of the word graph must be relaxed.

In the following we describe several relaxation methods we
implemented. The underlying principle is to sum up the poste-
rior probabilities of all hypotheses for the same wordw over a
common time frame. Since a word usually extends over several
time frames, the determination of this time frame has an imme-
diate influence on the selection of hypotheses, whose posterior
probabilities are accumulated. In a first attempt we summed up
the probabilities of all hypotheses with an identical word index
for which the intersection of the time intervals defined by the
starting and ending times of the considered hypotheses is not
empty: C2(w) := X(ts;te):[ts:::te]\T (w)6=;pts;te(wjxT1 ) ; (8)

whereT (w) = [ts(w) : : : te(w)] denotes the time interval de-
fined by the starting and ending times of the hypothesis for wordw. As the results in Table 3 show, Equation (8) performs signif-
icantly better than Equation (7) on all testing corpora.

Unfortunately, the sum of the accumulated posterior proba-
bilities over all different words for one time frame does no longer
sum up to unity by definition. Although performing better in
terms of confidence error rate (defined in [2, 6]) the questionre-
mains, whether the missing normalization has an effect on the
confidence measure. If we restrict the accumulation of the pos-
terior hypothesis probabilities to a single time frame, common to

all hypotheses for a specific word, the accumulated probabilities
do sum up to unity. Thus, we have implemented the following
confidence measure:C?(w) := X(ts;te):t2[ts:::te] pts;te(wjxT1 ) ;

where t = � te(w)� ts(w)2 �+ ts(w) : (9)

We accumulated the posterior probabilities of all hypotheses for
word w which intersect the middle time frame of the hypothe-
sis under consideration. As our results show, the performance is
comparable with the confidence measure defined in Equation (8).
Still, the choice of the time frame might be sub-optimal. We
therefore carried out the accumulation not only for the middle
time frame of the current hypothesis but for all of its time frames
and chose the maximum of these values as a measure of confi-
dence: Cmax(w) := maxt2T (w) X(ts;te):t2[ts:::te] pts;te(wjxT1 ) : (10)

As the experiments presented in Table 3 indicate, this measure
performs slightly, but not significantly better than the onede-
fined in Equation (9).

3. WORD PROBABILITIES ON N-BEST LISTS

As described in the previous section, the relaxation of the word
graph segmentation is crucial for a reliable estimation of the con-
fidence. One of the main advantages of N-best lists over word
graphs is that the different sentence hypotheses containedin the
N-best list are based on word positions. In [5] the author sug-
gests to compute posterior probabilities for semantic items in a
recognized sentence on N-best lists. This approach is very simi-
lar to the computation of posterior probabilities on word graphs
and can easily be extended to the computation of posterior proba-
bilities for individual words. In doing so, the segmentation prob-
lem can be solved.

LetA be the vocabulary of the recognizer. For simplification
we define a functionL which computes the Levenshtein align-
ment between two sentencesW 2 A� andV 2 A� contained
in the N-best list and which returns that wordv in sentenceV
which was aligned to then-th word in sentenceW .L : A� �A� � N �! AL(W;V; n) 7�! v : (11)

Using this definition, the posterior word probability for each
wordwn in sentenceW can be computed on N-best lists:pn(wjxT1 ) = XV :L(W;V;n)=w p(V jxT1 ) == XV :L(W;V;n)=w p(xT1 jV ) � p(V )XV p(xT1 jV ) � p(V ) : (12)

The summation is carried out over all sentencesV contained in
the N-best list. As shown later, the computation on N-best list
performs worse than the computation on word graphs.



Table 1: Specification of the word graphs.
corpus WGD NGD BGD GER [%]

VERBMOBIL 131.6 42.6 12.4 4.7
NAB 75.0 35.7 8.5 5.1
ARISE 86.1 37.6 16.3 7.8

4. ALTERNATIVE CRITERIA

In order to compare the posterior probabilities with alternative
criteria we implemented the acoustic stability criterion [4] and
the hypothesis density criterion [2].

The motivation for the acoustic stability is that a word is
most probably correct if it is contained at the same position,
specified by the Levenshtein alignment, in the majority of sen-
tences generated with different weighting between the acous-
tic and the language model scores. In a first step, we rescore
the word graph with the standard language model scaling factor�ref in order to obtain the first-best sentenceW . Second, we
rescore the word graph withM different language model scaling
factors and obtainM alternative first-best sentencesV1 : : : VM .
All of these sentences are then aligned with the reference sen-
tenceW . The relative frequency of any word taken from the
reference sentence at the same position in all of the sentencesV1 : : : VM is a direct measure for the acoustic stability:Cacu(wn) := 1M � MXi=1 �(wn;L(W;Vi; n)) : (13)

Another criterion suggested previously, is the hypothesisden-
sity [2]. In order to reduce the computational complexity during
the decoding process, unlikely hypotheses are usually pruned. If
a large number of hypotheses have similar scores for a given time
frame, no effective pruning will take place and the number ofhy-
potheses in the word graph will be above average. Since a word
is usually hypothesized several times with different starting and
ending times, we count each word only once while computing
the hypothesis density for a given time frame. Each hypothesis
is determined by the word indexw, its starting timets and its
ending timete. Let WG = f(ts; te; w)g denote the set of all
hypotheses contained in the word graph. The hypothesis density
for time framet can then be computed as follows:D(t) := jfw : (ts; te; w) 2WG ^ t 2 T (w)gj :

(14)

To capture the dynamics of this quantity we used the average
hypothesis density overT (w) as our measure of confidence:Cden(w) := 1te(w)� ts(w) + 1 � Xt2T (w)D(t) :

(15)

5. EXPERIMENTAL RESULTS

We present experimental results on three different corpora. The
NAB ’94 20k corpus consists of read newspaper articles (vocabu-
lary size 19987 words), recorded under high-quality conditions,
theVERBMOBIL ’96 corpus of spontaneous human-to-human di-
alogues (vocabulary size 5532 words), also recorded under high-
quality conditions and theARISE corpus of human-to-machine
dialogues (vocabulary size 985 words), recorded over the tele-
phone with an automatic train timetable information system.

Table 1 specifies the word graphs generated with our speech
recognition system. For a definition of the word graph density

Table 2: Word error rates on the different testing corpora.
bigram LM trigram LM

corpus del/ins/WER [%] del/ins/WER [%]

VERBMOBIL 4.4/3.9/21.7 3.6/3.4/19.5
NAB 2.9/2.5/17.4 2.1/2.3/14.7
ARISE 1.8/3.8/16.5 2.0/3.2/15.9

Table 3: Confidence error rates in [%] for posterior word prob-
abilities computed on a word graph with different relaxation
strategies.

corpus baseline C C2 C? Cmax
VERBMOBIL

bigram LM: 17.4 16.9 14.9 15.0 14.9
trigram LM: 15.9 14.6 13.0 13.2 12.9

NAB

bigram LM: 14.6 13.3 11.9 11.8 11.8
trigram LM: 12.6 11.7 9.9 9.9 9.9

ARISE

bigram LM: 14.4 11.8 9.8 9.8 9.7
trigram LM: 13.8 11.8 9.1 9.3 9.1

(WGD), the node graph density (NGD), the boundary graph den-
sity (BGD) and the graph error rate (GER), see [3]. Table 2 com-
prises the baseline word error rates on the three different testing
sets.

For all of the following experiments we have optimized all
model parameters, i.e. the acoustic scaling factors, the language
model scaling factors and the tagging thresholds on a separate
cross-validation set beforehand.

Table 3 summarizes the effect of different relaxation strate-
gies used during the computation of posterior word probabilities
on the word graphs. As the table clearly indicates, the relaxation
of the word graph segmentation is essential for the computation
of the confidence measure. Compared to the posterior prob-
ability defined in Equation (7) all of the relaxed probabilities
perform significantly better. The missing probability normaliza-
tion for C2(w) seems to have only a minor influence on the per-
formance. SinceCmax(w) yields the best results we chose this
criterion as our standard confidence measure for all furthercom-
parisons. In Figure 1, we plotted the detection error trade-off
curves for the three corpora using Equation (10) and a trigram
language model.

Figure 2 clearly shows that the computation of posterior prob-
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Figure 1: Detection error trade-off for all corpora using a trigram
language model.
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Figure 2: Word graph vs. N-best list for the evaluation corpora
using a bigram language model.

abilities on word graphs performs significantly better thanthe
computation on N-best lists, even for rather large values ofN .
The effect of the computation on a word basis, which is an ad-
vantage over word graphs, is outweighed by several other effects.
First, the word graphs represent a drastically larger number of
alternative sentences. With an average word graph density of
131.6 and an average sentence length of 18 words on theVERB-
MOBIL corpus, an upper bound to the mean number of sentences
represented by the word graph is1:4 � 1038, whereas the N-best
lists contain only100 to 500 sentences. Second, the computa-
tion on a word basis itself might in fact cause problems. The
slight increase in the confidence error rate forN = 500 can be
regarded as an indication for this assumption. The information
about starting and ending times which is contained in the word
graphs and which highly influences the computations carriedout
in the forward-backward algorithm is in fact not a problem, but
very important for a reliable estimation of the posterior proba-
bilities. The rather good performance of the N-best list criterion
on theARISE corpus is caused by the average sentence length
of just over three words. The difference between the number of
sentences contained in the word graph on the one hand and the
N-best list on the other is smaller by orders of magnitude com-
pared to the other two corpora.

The M language model scales�1 : : : �M chosen for the
acoustic stability criterion are equidistant values takenfrom the
interval [(1� �) � �ref : : : (1 + �) � �ref ]. For the experiments
we used� = 0:9 andM = 100. We noticed only a negligible
change in confidence error rate for larger values ofM . As Ta-
ble 4 indicates, the acoustic stability achieves good results on all
corpora. On the other hand, the acoustic stability is clearly not
able to outperform the accumulated posterior probability.In ad-
dition, the computing time is several times higher than the time

Table 4: Confidence error rates in [%] for the acoustic stability,
the hypothesis density and the accumulated posterior probability.

corpus baseline Cacu Cden Cmax
VERBMOBIL

bigram LM: 17.4 16.4 16.6 14.9
trigram LM: 15.9 14.5 15.4 12.9

NAB

bigram LM: 14.6 13.0 14.1 11.8
trigram LM: 12.6 10.8 12.5 9.9

ARISE

bigram LM: 14.4 9.9 10.6 9.7
trigram LM: 13.8 8.9 10.4 9.1

needed for the computation of the accumulated posterior proba-
bilities.

The hypothesis density criterion is also not able to excel the
performance of the accumulated posterior probability which is
also listed in Table 4 for comparison. The number of parallel
hypotheses for a given time frame is not sufficient to be used as
a measure of confidence. It is interesting to note that the number
of hypotheses for a time frame is implicitly considered in the
forward-backward algorithm, anyway.

6. CONCLUSION

We presented and compared several confidence measures, based
on word graphs and N-best lists. We showed that posterior word
probabilities clearly outperform alternative confidence measures,
e.g. the acoustic stability and the hypothesis density. In addition,
we proved that the estimation of posterior word probabilities on
word graphs yields better results than the estimation on N-best
lists. The relative reduction in confidence error rate ranges be-
tween 18.9% and 34.1% using a trigram language model on dif-
ferent corpora and our best confidence measure, defined in Equa-
tion (10).
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