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ABSTRACT

In this paper we present and compare several confidence mea-

sures for large vocabulary continuous speech recognitide.
show that posterior word probabilities computed on worggs
and N-best lists clearly outperform non-probabilistic idence
measures, e.g. the acoustic stability and the hypotheskstge

In addition, we prove that the estimation of posterior woratp
abilities on word graphs yields better results than theinestion

on N-best lists and discuss both methods in detail. We presen
experimental results on three different corpora, the Ehglia

'94 20k development corpus, the GermaerRBMOBIL '96 eval-
uation corpus and a Dutch corpus, which has been recordéd wit
a train timetable information system in th&ISE project.

1. INTRODUCTION

In previous studies, the combination of several confidepee f
tures was investigated. These features were collectedgitive
acoustic decoding process, e.g. [1] or were extracted froam N
best lists and word graphs, e.g. [2, 5]. Most of these feature
were non-probabilistic and had to be combined to form a singl
confidence measure.

In this paper we estimate the confidence in a hypothesized
word following a probabilistic approach. We associate tbe-c
fidence in a word directly with its posterior probability.

In [6] we computed these posterior probabilities on word
graphs using a modification of the forward-backward aldonit
Usually, a word is hypothesized more than once and the word
graph thus contains several hypotheses for the same wolnd wit
different starting and ending times (later referred teapgnen-
tation). In order to obtain satisfying results we had to sum up the
posterior probabilities of these hypotheses for each wortthé
reference sentence.

We now extend our previous work in several directions. First
we study three different methods of determining which hizpot
esis probabilities have to be accumulated. Second, we &stim
the posterior probabilities on N-best lists instead of wagrabhs,
in an approach comparable to the work presented in [5]. The
main advantage of N-best lists over word graphs is that the co
putation of posterior probabilities can directly be cadr@ut on
the basis of word positions. The accumulation of posteniobp
abilities might thus be unnecessary. Third, we compare both
approaches with alternative criteria, i.e. the acoustbitity [4]
and the hypothesis density [2].

2. WORD PROBABILITIESON WORD GRAPHS

In the following, we briefly describe the most important agpe
of our previous work. For details, the reader is referred@p [
The posterior probability for a word hypothesis, t., w) with
starting timet; and ending time., given a sequence of acoustic
feature vectors? = zyzy ... z7,iS computed with a forward-
backward algorithm. We sum up the posterior probabilitiealio

those sentences which contain this specific word hypothesis
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whereW, denotes all word sequences precedingnd W, all
those succeeding .

Since a word graph is a compact representation of the most
probable sentences, the summation can be restricted ty-all h
pothesis sequences contained in it. Let us assume that we use
an m-gram language model and#ét ! = hi hs ... hm_1 be
the history of wordw. Regarding the word history as an equiv-
alence class containing all word sequences whose last \aogds
R, we can now compute the forward probability that the last
words of a word sequencd’s = wi w2 ... w;w,| ending at
timet are identical tdh" '
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where|W;| denotes the number of words ;. This equation
can be solved recursively:
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Sincet, (w) is the starting time of wordv, ¢;(w) — 1 denotes
the ending time of the preceding word,_.. Analogously,

W, (f~") denotes the backward probability that the first word
hypotheses of a word sequeridé = w; ws ... ww,| begin-
ning at timet are identical tof™ ' = fi fo ... fm—1:
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|W.| denotes the number of wordsTifi.. The missing language
language model probabilities for all words ws . .. w.,,—1 are
computed later in Equation (6) for algorithmic reasons.
Equation (4) can be evaluated recursively as well. The word

graph is sorted on the ending times of the word hypotheses and
the backward probabilities are computed in a descendingrord

Ty (wf72) = plais™|w) -

Y Tyt (777 fnm) -
fm-1

Pt 7).



With the definitions in Equations (1), (3) and (5), the pdster
hypothesis probability can now be computed as follows:

Pro .t (wlal) =
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In addition to a language model scaling factor, we also usala s
ing factora < 1 to scale down both, the acoustic and the lan-
guage model probabilities. This scaling has a major impact o
the performance of the posterior probabilities. If the ssoare
not scaled appropriately, the sums in all of the equatiomvab
are dominated by only a few word graph hypotheses because of
the large differences in the acoustic scores. For detadl$6je

The posterior hypothesis probability defined in Equation (6
can now be used as a measure of confidence in the word under
consideration:

C(w) = pi, 1. (w|z]) (7)

In the experiments, the confidence is compared with a tagging
threshold, which has to be optimized on a cross validatiopuo
beforehand. Words whose confidence exceeds this thresteold a
tagged as ‘correct’, all others as ‘false’.

Equation (7) only has a very poor discriminating ability be-
tween these two classes, see Table 3. This observation is not
surprising when considering the fact that the fixed staréind
ending times of a word hypothesis determine which pathsen th
word graph are included during the computation of the fodwar
backward probabilities. The segmentation of the word graph
thus has a strong impact on the posterior probabilities @htx
potheses contained in it. Although several hypothese&sept
the same word, the probability mass of the word is split among
them. The unsatisfactory performance of the confidence mea-
sure defined in Equation (7) is thus a strong indication that t
segmentation of the word graph must be relaxed.

In the following we describe several relaxation methods we
implemented. The underlying principle is to sum up the poste
rior probabilities of all hypotheses for the same wardbver a
common time frame. Since a word usually extends over several
time frames, the determination of this time frame has an imme
diate influence on the selection of hypotheses, whose paster
probabilities are accumulated. In a first attempt we sumnged u
the probabilities of all hypotheses with an identical wandex
for which the intersection of the time intervals defined bg th
starting and ending times of the considered hypothesestis no
empty:

Cow):= Y pra(uwel) (8)
(tsite):
[ts...te]NT (w)#0
whereT(w) = [ts(w)...t.(w)] denotes the time interval de-

fined by the starting and ending times of the hypothesis fadwo
w. As the results in Table 3 show, Equation (8) performs signif
icantly better than Equation (7) on all testing corpora.
Unfortunately, the sum of the accumulated posterior proba-
bilities over all different words for one time frame does nogder
sum up to unity by definition. Although performing better in
terms of confidence error rate (defined in [2, 6]) the questien
mains, whether the missing normalization has an effect en th
confidence measure. If we restrict the accumulation of tle po
terior hypothesis probabilities to a single time frame, awon to

all hypotheses for a specific word, the accumulated proiiaksil
do sum up to unity. Thus, we have implemented the following

confidence measure:
> pue(wlal)
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where t = { + ts(w)

We accumulated the posterior probabilities of all hypo#isefor

word w which intersect the middle time frame of the hypothe-
sis under consideration. As our results show, the perfocmas
comparable with the confidence measure defined in Equatjon (8
Still, the choice of the time frame might be sub-optimal. We
therefore carried out the accumulation not only for the redd
time frame of the current hypothesis but for all of its timarfres

and chose the maximum of these values as a measure of confi-

dence:
Z Pts,te w\il)

(tste):
tE[ts..te]

(10)
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As the experiments presented in Table 3 indicate, this nneasu
performs slightly, but not significantly better than the ates
fined in Equation (9).

3. WORD PROBABILITIESON N-BEST LISTS

As described in the previous section, the relaxation of tbedw
graph segmentation is crucial for a reliable estimatiorefdon-
fidence. One of the main advantages of N-best lists over word
graphs is that the different sentence hypotheses contairtee
N-best list are based on word positions. In [5] the author sug
gests to compute posterior probabilities for semantic stéma
recognized sentence on N-best lists. This approach is Wiy s
lar to the computation of posterior probabilities on wordjs
and can easily be extended to the computation of posteiadapr
bilities for individual words. In doing so, the segmentatfmrob-
lem can be solved.

Let A be the vocabulary of the recognizer. For simplification
we define a functionC which computes the Levenshtein align-
ment between two sentencls € A* andV € A* contained
in the N-best list and which returns that wosdn sentencé/
which was aligned to the-th word in sentencéV’.

LA XA xN— A

L(W,V,n) — v (11)

Using this definition, the posterior word probability foraka
word w, in sentencédV can be computed on N-best lists:

>
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The summation is carried out over all sententesontained in
the N-best list. As shown later, the computation on N-best li
performs worse than the computation on word graphs.

pn(wle]) = p(V|zi) =

p(V) (12)




Table 1: Specification of the word graphs.

Table 2: Word error rates on the different testing corpora.

[ corpus | WGD | NGD | BGD | GER [%] ] bigram LM trigram LM
VERBMOBIL | 131.6 | 42.6 | 12.4 | 4.7 corpus del/ins/WER [%] | del/ins/WER [%)]
NAB 75.0 | 35.7 85 | 51 VERBMOBIL 4.4/3.9/21.7 3.6/3.4/19.5
ARISE 86.1 | 376 | 16.3 | 7.8 NAB 2.9/2.5/17.4 2.1/2.3/14.7

ARISE 1.8/3.8/16.5 2.0/3.2/15.9

4. ALTERNATIVE CRITERIA

In order to compare the posterior probabilities with altgive

criteria we implemented the acoustic stability criterief} &nd strategies.

the hypothesis density criterion [2]. | corpus | baseline] € | Co [ C- [ Coaa |
The motivation for the acoustic stability is that a word is VERBMOBIL

most probably correct if it is contained at the same posjtion bigram LM: 17.4 16.9| 14.9| 15.0| 149

specified by the Levenshtein alignment, in the majority of-se trigram LM: 15.9 14.6 | 13.0| 13.2| 129

tences generated with different weighting between the scou NAB

tic and the language model scores. In a first step, we rescore bigram LM: 14.6 13.3| 11.9| 11.8| 11.8

the word graph with the standard language model scalingifact trigram LM: 12.6 11.7| 99| 99| 99

ares in order to obtain the first-best senteridé. Second, we ARISE

rescore the word graph with/ different language model scaling bigram LM: 14.4 11.8| 98| 98| 97

factors and obtaid/ alternative first-best sentencks. .. Va,. trigram LM: 13.8 11.8 9.1 9.3 91

All of these sentences are then aligned with the referenge se
tenceW. The relative frequency of any word taken from the
reference sentence at the same position in all of the sesgenc
Vi ...V is adirect measure for the acoustic stability:

Table 3: Confidence error rates in [%] for posterior word prob
abilities computed on a word graph with different relaxatio

(WGD), the node graph density (NGD), the boundary graph den-
sity (BGD) and the graph error rate (GER), see [3]. Table 2-com
prises the baseline word error rates on the three diffeesting
sets.

For all of the following experiments we have optimized all
model parameters, i.e. the acoustic scaling factors, tigukge
model scaling factors and the tagging thresholds on a separa
cross-validation set beforehand.

Table 3 summarizes the effect of different relaxation strat
gies used during the computation of posterior word prolitads|
on the word graphs. As the table clearly indicates, the etlar
of the word graph segmentation is essential for the comiputat
of the confidence measure. Compared to the posterior prob-
ability defined in Equation (7) all of the relaxed probali
perform significantly better. The missing probability naima-
tion for Ca (w) seems to have only a minor influence on the per-
formance. Sinc€,,..(w) yields the best results we chose this
criterion as our standard confidence measure for all futber-
parisons. In Figure 1, we plotted the detection error traffie-
curves for the three corpora using Equation (10) and a tmgra
language model.

M
Cacu(wn) = % . Z(S(wn; E(W; ‘/lan)) (13)

Another criterion suggested previously, is the hypothédsis
sity [2]. In order to reduce the computational complexityidg
the decoding process, unlikely hypotheses are usuallyepkulf
a large number of hypotheses have similar scores for a given t
frame, no effective pruning will take place and the numbédnof
potheses in the word graph will be above average. Since a word
is usually hypothesized several times with different gtgrand
ending times, we count each word only once while computing
the hypothesis density for a given time frame. Each hypighes
is determined by the word index, its starting timet; and its
ending timet.. Let WG = {(¢s,t.,w)} denote the set of all
hypotheses contained in the word graph. The hypothesistdens
for time framet can then be computed as follows:

D(t) = {w : (ts,te,w) E WG AL € T(w)}

(14)

To capture the dynamics of this quantity we used the average
hypothesis density ovéf (w) as our measure of confidence:

1
to(w) — ts(w) + 1 Z D)

teT (w)

Caden(w) 1= s

5. EXPERIMENTAL RESULTS

We present experimental results on three different corpdre

NAB '94 20k corpus consists of read newspaper articles (vocabu-
lary size 19987 words), recorded under high-quality cood,
theVERBMOBIL '96 corpus of spontaneous human-to-human di-
alogues (vocabulary size 5532 words), also recorded uriger h
quality conditions and th@aRrISE corpus of human-to-machine
dialogues (vocabulary size 985 words), recorded over tlee te
phone with an automatic train timetable information system

recognition system. For a definition of the word graph dgnsit

Figure 2 clearly shows that the computation of posteriobpro
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Figure 1: Detection error trade-off for all corpora usingigram
Table 1 specifies the word graphs generated with our speech language model.
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Figure 2: Word graph vs. N-best list for the evaluation cogpo
using a bigram language model.

400 500

abilities on word graphs performs significantly better thiba
computation on N-best lists, even for rather large valuedof
The effect of the computation on a word basis, which is an ad-
vantage over word graphs, is outweighed by several othectstf
First, the word graphs represent a drastically larger nurnolbe
alternative sentences. With an average word graph denkity o
131.6 and an average sentence length of 18 words ongke-
MOBIL corpus, an upper bound to the mean number of sentences
represented by the word graphlist - 10**, whereas the N-best
lists contain onlyl100 to 500 sentences. Second, the computa-
tion on a word basis itself might in fact cause problems. The
slight increase in the confidence error rate Mr= 500 can be
regarded as an indication for this assumption. The infoionat
about starting and ending times which is contained in thedwor
graphs and which highly influences the computations caigd

in the forward-backward algorithm is in fact not a problerat b
very important for a reliable estimation of the posterioolpa-
bilities. The rather good performance of the N-best listecion

on theARISE corpus is caused by the average sentence length
of just over three words. The difference between the number o
sentences contained in the word graph on the one hand and the
N-best list on the other is smaller by orders of magnitude -com
pared to the other two corpora.

The M language model scales; ...an chosen for the
acoustic stability criterion are equidistant values taikem the
interval [(1 — d) - ayes ... (1 +6) - a,ep]. For the experiments
we usedd = 0.9 and M = 100. We noticed only a negligible
change in confidence error rate for larger valued\bf As Ta-
ble 4 indicates, the acoustic stability achieves good resul all
corpora. On the other hand, the acoustic stability is cjeaok
able to outperform the accumulated posterior probabilityad-
dition, the computing time is several times higher than theet

Table 4: Confidence error rates in [%] for the acoustic siigbil
the hypothesis density and the accumulated posterior piliipa

[ corpus [ baseline] Cacu | Cicn | Crmax |
VERBMOBIL
bigram LM: 17.4 16.4 | 16.6 | 149
trigram LM: 15.9 145 | 154 | 129
NAB
bigram LM: 14.6 13.0 | 14.1 | 118
trigram LM: 12.6 10.8 | 125 9.9
ARISE
bigram LM: 14.4 9.9 | 10.6 9.7
trigram LM: 13.8 89 | 104 9.1

needed for the computation of the accumulated posteridrgaro
bilities.

The hypothesis density criterion is also not able to exael th
performance of the accumulated posterior probability Wwhic
also listed in Table 4 for comparison. The number of parallel
hypotheses for a given time frame is not sufficient to be used a
a measure of confidence. It is interesting to note that thebeum
of hypotheses for a time frame is implicitly considered ie th
forward-backward algorithm, anyway.

6. CONCLUSION

We presented and compared several confidence measureas, base
on word graphs and N-best lists. We showed that posteriod wor
probabilities clearly outperform alternative confidenceasures,

e.g. the acoustic stability and the hypothesis densitydditian,

we proved that the estimation of posterior word probalesiton

word graphs yields better results than the estimation orest-b
lists. The relative reduction in confidence error rate ranige-
tween 18.9% and 34.1% using a trigram language model on dif-
ferent corpora and our best confidence measure, defined e Equ
tion (10).
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