
Power Domain ConstructionsReinhold HeckmannFB 14 { InformatikUniversit�at des SaarlandesD-6600 Saarbr�uckenBundesrepublik Deutschlandemail: heckmann@cs.uni-sb.deSeptember 10, 1998AbstractThe variety of power domain constructions proposed in the literature is put into ageneral algebraic framework. Power constructions are considered algebras on a higherlevel: for every ground domain, there is a power domain whose algebraic structure isspeci�ed by means of axioms concerning the algebraic properties of the basic operationsempty set, union, singleton, and extension of functions. A host of derived operationsis introduced and investigated algebraically. Every power construction is shown to beequipped with a characteristic semiring such that the resulting power domains becomesemiring modules. Power homomorphisms are introduced as a means to relate di�erentpower constructions. They also allow to de�ne the notion of initial and �nal constructionsfor a �xed characteristic semiring. Such initial and �nal constructions are shown to existfor every semiring, and their basic properties are derived. Finally, the known powerconstructions are put into the general framework of this paper.1 IntroductionA power domain construction maps every domainX of some distinguished class of domainsinto a so-called power domain over X whose points represent sets of points of the grounddomain. Power domain constructions were originally proposed to model the semantics of non-deterministic programming languages [14, 16, 10, 13]. Other motivations are the semanticrepresentation of a set data type [9], or of relational data bases [2, 5].In 1976, Plotkin [14] proposed the �rst power domain construction. Because his construc-tion goes beyond the category of bounded complete algebraic domains, Plotkin proposed thelarger category of SFP-domains that is closed under his construction. A short time later,Smyth [16] introduced a simpler construction, the upper or Smyth power construction, thatrespects bounded completeness. In [17], a third power domain construction occurs, the lowerpower domain, that completes the trio of classical power domain constructions.Starting from problems in data base theory, Buneman et al. [2] proposed to combinelower and upper power domain to a so-called sandwich power domain. Gunter investigated- 1 -



the logic of the classical power domains [4]. By extending the logic of Plotkin's domain in anatural way, he developed a so-called mixed power domain [5, 6]. Plotkin's power domain isa subset of the mixed one, and this in turn is a subset of the sandwich power domain.We independently found the sandwich and mixed power domains in an isomorphic form asbig and small set domains when developing domain constructions that would give semanticsto an abstract data type of sets in a functional programming language (see [9]).Given at least �ve di�erent power domain constructions, the question arises what is theessence of these constructions, i.e. what are their common features which allow the applicationof the notion `power domain'. Thus, we look for a theory of power domain constructions thatcovers the existing ones and provides answers to the following questions:(1) What are power domain constructions?(2) How are di�erent power domain constructions related to each other?(3) Are there more than the �ve constructions enumerated above?(4) If so, how are these �ve constructions distinguished among all the others?In addition, a general theory of power constructions provides | if it is to be useful | generaltheorems that are applicable to all speci�c power domain constructions.Gunter presents in [6] the semantics of a non-deterministic language in terms of a genericpower domain construction using the three basic operators of singleton, binary union, andextending set-valued functions from points to sets. These generic semantics may then beinstanciated by choosing a concrete construction instead of the generic one. The concreteconstruction only has to provide the necessary basic operations.Thus, we de�ne a power domain construction by axioms concerning the existence of somebasic operations. In addition, we specify some axioms that should be satis�ed by the basicoperations. One might worry about the actual choice of these axioms, but we think that ourchoice is quite natural. This opinion is strengthened by the fact that our de�nition leadsto a rich theory, covers the known power constructions, and allows to characterize themalgebraically.After introducing some notions and notations, we present the basic operations and theiraxioms in section 3. In section 4, we indicate a variety of consequences of these axioms.Main proposed in [13] to de�ne power domains as free modules over semirings. In section 5,we show that our power constructions are equipped with a characteristic semiring , and theresulting power domains are (not necessarily free) modules w.r.t. this semiring.Power homomorphisms are introduced in section 6 as a means to relate di�erent powerconstructions. They also allow to de�ne the notion of initial and �nal constructions for a givencharacteristic semiring. In sections 8 and 9, we prove that such initial and �nal constructionsexist for every semiring, and we derive their basic properties. Since the concept of a semiring isvery general, we thus obtain a host of power domain constructions. The concluding section 10then puts the �ve known power constructions mentioned above into the general frameworkof this paper. - 2 -



2 Notions and notationsFollowing the programme outlined above, the paper mainly uses algebraic techniques,e.g. equational reasoning. Only a minimum of domain theory is needed; it is collected in thissection.A poset (partially ordered set) (P; �) is a set P together with a reexive, antisymmetric,and transitive relation `�'. Most often, we identify the poset P = (P; �) with its carrier P .We refer to the standard notions of upper and lower bounds, bounded subsets, least upperbound (lub) denoted by `F', greatest lower bound (glb), directed set, directed complete poset(domain), monotonic and continuous function.1 Hence, a domain is just a directed completeposet. It need not possess a least element.A domain is bounded complete if every bounded subset has a lub, and it is complete ifall subsets have lubs. A domain is discrete if x � y implies x = y. There is a one-to-onecorrespondence between discrete domains and (unordered) sets.The product of two sets A and B is denoted by A � B, and similarly, the product oftwo domains X and Y is written X � Y. The set of all functions from a set A to a setB is denoted by A ! B, whereas the domain of continuous functions from domain X todomain Y is written [X! Y]. Consequently, f : A! B means f is just a function, whereasf : [X! Y] means f is continuous. Continuous functions are also called morphisms.A point a in a domain X is way-below a point b, written a � b, i� for all directed setsD � X with b � FD, there is an element d in D such that a � d. The domain is continuousif for every point x, the set fa j a� xg is directed and has lub x.A point a in a domain X is isolated (or: �nite) i� it is way-below itself. The set of allisolated points of X is called X0. A domain X is algebraic i� every point of X is the lub of adirected set of isolated points. The set X0 of all isolated points ofX is called the base. Everyalgebraic domain is continuous.Bi�nite or pro�nite domains [3] are the limits of !-chains of �nite domains. Everybounded complete algebraic domain is bi�nite, and every bi�nite domain is algebraic. Thefunction space of two bi�nite domains is bi�nite again, whereas the function space of twoalgebraic domains need not be algebraic.Following [15], a functor in the category of domains and continuous functions is locallycontinuous if its functional part acts continuously on the function spaces. Such functors arecontinuous. Hence they map bi�nite domains to bi�nite domains if they map �nite domainsto �nite domains.3 Speci�cation of power constructions3.1 ConstructionsA power construction is something like a function which applied to a domain X yieldsa new domain, the power domain over X. It is not really a function since there is no set ofall domains. There may be total constructions that are applicable to all domains, as well aspartial constructions applicable to a special class of domains only.1w.r.t. directed sets, not ascending sequences. - 3 -



De�nition 3.1 A (domain) construction F : X 7! FX attaches a domain FX to everydomain X belonging to a distinguished class def F . F is a total construction if def F isthe class of all domains, otherwise a partial one.A power (domain) construction P is a domain construction satisfying the axioms pre-sented in the next paragraphs. PX is called the power domain over the ground domainX. The elements of (the carrier of) PX are called formal sets.If a power construction P is de�ned for a class C = def P, then the power domains PXare not required to be in C again.Often, a power domain cannot be realized concretely as a set of subsets of the grounddomain. Hence the notion of formal sets in contrast to actual sets, i.e. the ordinary subsetsof the ground domain. Formal set operations will be notationally distinguished from actualset operations by means of additional bars, e.g. �[ vs. [.In the following, the symbol P denotes a generic partial power construction de�ned for aclass D = def P of domains. We immediately require the class D to contain the one-point-domain 1 because the power domain P1 plays an important algebraic role.3.2 Empty set and �nite unionAs a �rst requirement, we want the power domain PX to contain a formal empty set andto provide formal set union. Both the existence of an empty set and the axioms for unionmay be subject to discussions.None of the original power domain constructions contained the empty set. However, theywere sometimes extended by the empty set in later developments. For our work, the emptyset is important and cannot be dispensed with.Mathematical set theory suggests that union be commutative, associative, and idempo-tent. The last requirement turns out to be the least important one. For the sake of generality,we omit it as far as possible. Thus, the following results apply for `multi-power' domain con-structions as well.For a (generalized) power construction P , all power domains PX have to be equippedwith a commutative and associative operation �[ : [PX�PX! PX]. In addition, there hasto be a point -0 in PX which is the neutral element of union `�[ '. If union is idempotent, itis a real power construction, and otherwise a multi-power construction.3.3 Monoid domainsTo have generally applicable notions, we de�ne the algebra of domains with empty setand union in a more abstract setting.De�nition 3.2 (Monoid domains and additive maps)A monoid domain (or simply monoid) (M; +; 0) is a domain M together with an asso-ciative operation + : [M �M !M ] and an element 0 of (the carrier of) M which is theneutral element of `+'.The monoid is commutative i� `+' is.A map f : [X ! Y ] between two monoids is additive i� it is a monoid homomorphism,i.e. f(0X) = 0Y and f(a+ b) = fa + fb hold.- 4 -



Many authors, including myself in previous papers, call the additive maps linear. However,the term `linear' is more appropriate for the module homomorphisms introduced in section 5.1.In many common cases, including the usual power constructions, additivity and linearitycoincide.3.4 Singleton setsReturning to the power construction, we next require a morphism which maps elementsinto singleton sets. We denote it by � = fj:jg : [X! PX], x 7! fjxjg.By means of the operations -0 and �[ , we may extend fj:jg to �nite sequences of grounddomain points:fjx1; : : : ; xnjg = ( fjx1jg �[ � � � �[ fjxnjg if n > 0-0 if n = 0Because of commutativity and associativity, one is free to permute the n arguments offjx1; : : : ; xnjg. If union is idempotent, one additionally might delete and add multiple occur-rences of elements. Thus fj:jg becomes a mapping from �nite actual sets to formal sets in thiscase.3.5 Function extensionSo far, we required the existence of singletons, empty set, and binary union. Singletonand union are not yet interrelated by axioms, and there are no axioms yet relating powerdomains over di�erent ground domains. Both relationships are established by the extensionfunctional. It takes a set-valued function de�ned on points of a ground domain and extendsit to formal sets.De�nition 3.3 Let X be a domain in D and Z an arbitrary domain. A function F :[PX! Z] is an extension of a function f : [X! Z] i� Ffjxjg = fx holds for all x in X ,or equivalently i� F � � = f .For every two domains X and Y in D, ext is a morphism mapping morphisms from Xto PY into morphisms from PX to PY. For every f : [X ! PY], the extended functionf = extf should be an additive extension of f . These axioms imply f fjx1; : : : ; xnjg =fx1 �[ � � � �[ fxn for n > 0. fPX - PY� 6���������fX - 5 -



We call the ext axioms indicated above primary axioms because their relevance is im-mediate. In addition, we require some `secondary axioms' which will be stated below as(Si). (S1) and (S2) specify additivity in the functional argument. In the next section, powerconstructions are shown to be functors by means of (S3) and (S4).� For all domains X, Y in D, there is a morphism ext = � : [[X! PY]! [PX! PY]]with(P1) f -0 = -0(P2) f (A �[ B) = (f A) �[ (f B)(P3) f fjxjg = fx or: f � � = fTogether, (P1) through (P3) mean f is an additive extension of f .(S1) ext (�x: -0)A = -0 or shortly ext -0 = -0 where -0 denotes the constant function �x: -0.(S2) ext (�x: fx �[ gx)A = (ext f A) �[ (ext g A).Raising `�[ ' to functions, one may shortly write f �[ g = f �[ g.(S3) ext (�x: fjxjg)A = A or: � = id(S4) For every two morphisms f : [X! PY] and g : [Y! PZ],ext g (ext f A) = ext (�a: ext g (fa)) Aholds for all A in PX, or: g � f = g � ffPX -� 6���������fX gPY - PZ� 6���������gYNote that we do not require f to be the only morphism satisfying (P1) through (P3) forgiven f . However, an important class of power constructions will have this property. Forthese constructions, (S1) through (S4) become provable (see section 8). That is why we callthem secondary axioms.3.6 ExamplesSets may be conceived as discrete domains, and all functions between discrete domainsare continuous. Hence, ordinary power set formation is a partial power domain constructionde�ned for discrete domains. - 6 -



� Pset X = PX = fA j A � Xg ordered discretely for discrete domains X,� -0 = ;,� A �[ B = A [B,� fjxjg = fxg,� ext f A = Sa2A fa.Union is obviously commutative, associative, and the empty set is its neutral element. Theaxioms for extension read as follows:(P1) Sa2; fa = ; (P2) Sc2A[B fc = Sa2A fa [ Sb2B fb(P3) Sx2fag fx = fa(S1) Sa2A ; = ; (S2) Sa2A (fa [ ga) = Sa2A fa [ Sa2A ga(S3) Sa2A fag = A (S4) Sfgb j b 2 Sa2A fag = Sa2ASb2fa gbAll these equations hold, i.e. Pset is a power construction.ext f is not the only additive extension of f if X is in�nite. Another additive extension off :X! PsetY is FA = ( Sa2A fa if A is �niteY otherwiseAn extension functional de�ned in this manner would however violate axiom (S3).The empty set and all singletons are �nite, and �nite unions of �nite sets are �nite. Hence,there is another power construction for sets:P�n X = fA � X j A is �nitegwhose operations are the restrictions of the operations above. In this construction, everyfunction f :X! P�n Y has a unique additive extension.3.7 SummaryA power construction is a tuple (D; P ; -0; �[ ; �; �) where� D is a class of domains;� P maps domains belonging to class D into domains;� -0 = ( -0X)X2D with -0X : PX� �[ = (�[X)X2D with �[X : [PX �PX ! PX ]� � = (�X)X2D with �X : [X ! PX ]� � = (extXY )X;Y 2D with extXY : [[X ! PY ]! [PX ! PY ]]satisfying the axioms (domain indices are dropped!)(C) A �[ B = B �[ A(A) A �[ (B �[ C) = (A �[ B) �[ C(N) -0 �[ A = A �[ -0 = A - 7 -



(P1) f -0 = -0(P2) f (A �[ B) = (f A) �[ (f B)(P3) f � � = f(S1) �x: -0 = �X: -0(S2) f �[ g = f �[ g with `�[ ' raised to functions(S3) � = id(S4) g � f = g � f4 Derived operations in a power constructionThe operations as speci�ed above allow to derive many other operations with usefulalgebraic properties. We �rst consider some set operations including function mapping (4.1),big union (4.2), and Cartesian product (4.3). Function mapping turns the power constructioninto a locally continuous functor.In section 4.4, we concentrate on the power domain P1 over the one-point-domain 1 andshow that it incorporates the inherent logic of the power construction in its operations. Insection 4.5, existential quanti�cation E is introduced. Given a formal set and a predicate, Eintuitively tells whether some member of the set satis�es the predicate. In section 9, E willbe used to de�ne power domain constructions in terms of second order predicates.Elements of a power domain PX may be multiplied by logical values, i.e. members ofP1 (see section 4.6). Intuitively, multiplication of A by the logical value b results in theconditional if b then A else ;. In case X = 1, this operation induces a binary operationwithin P1. This operation may be interpreted as conjunction (section 4.7).4.1 Mapping of functions over setsGiven a morphism f : [X ! Y], it can be composed with the singleton operation toobtain ��f : [X! PY]. The resulting set-valued function can be extended to set arguments.Thus, we obtainmap = b : [[X! Y]! [PX! PY]] bf = � � f:The primary and some secondary axioms of extension may be translated into correspondingproperties of map.(P1)' bf -0 = -0(P2)' bf (A �[ B) = ( bf A) �[ ( bf B)(P3)' bf � � = � � f or: bf fjxjg = fjfxjg(S3)' cid = id(S4)' bg � bf = dg � f bfPX - PY� 6 6�fX - Y- 8 -



Proof:(P1)' bf -0 = � � f ( -0) = -0 by (P1)(P2)' immediately by (P2)(P3)' bf � � = � � f � � = � � f by (P3)(S3)' cid = � � id = � = id by (S3)(S4)' bg � bf = � � g � � � f (S4)= � � g � � � f (P3)= � � g � f = dg � f 2The properties (P1)' through (P3)' imply bf fjx1; : : : ; xnjg = fjfx1; : : : ; fxnjg. The lasttwo properties show that P becomes a functor by means of map. Since map is continuouswhen considered a second order function, this functor is locally continuous, whence everypower construction sends bi�nite domains to bi�nite domains if it sends �nite domains to�nite domains (see section 2).4.2 Big unionIf X is in D such that PX is back in D again, the identityid : [PX ! PX] may be extended to a morphism U =id : [P(PX) ! PX]. The axioms (P1) through (P3) ofextension imply(1) U -0 = -0(2) U (A �[ B) = UA �[ UB(3) U fjSjg = Swhence U fjS1; : : : ; Snjg = S1 �[ � � � �[ Sn. Thus, U is aformal big union of formal sets of formal sets.
P(PX)� 6@@@@@@@@RUidPX - PX4.3 Double extensionLet X, Y, and Z be three domains in D, and let ? : [X�Y ! PZ] be a binary operationwritten in in�x notation. By double extension, one obtainsA!? B = ext (�a: ext (�b: a ? b) B) A and A  ? B = ext (�b: ext (�a: a ? b) A) BThe results are two morphisms !? ;  ? : [PX� PY! PZ].A power construction is symmetric i� A !? B = A  ? B holds for all X, Y, and Z in D,A in PX, B in PY, and ? : [X � Y ! PZ]. Power constructions are not automaticallysymmetric. Later, we shall meet examples for this.Our two sample power constructions for discrete domains | set of arbitrary subsets andset of �nite subsets | are both symmetric because of[a2A [b2B a ? b = [b2B [a2A a ? b - 9 -



For two singletons, fjajg !? fjbjg = fjajg  ? fjbjg = a ? b may be shown using (P3) twice.Because of (P1) and (P2), `!? ' is obviously additive in its �rst argument:-0 !? B = -0 (A1 �[ A2)!? B = (A1 !? B) �[ (A2 !? B)For additivity in the second argument, (S1) and (S2) have to be employed in addition becauseB appears in the functional argument of the outer occurrence of ext . Thus, we getA!? -0 = -0 A!? (B1 �[ B2) = (A!? B1) �[ (A!? B2)` ? ' has the same properties; the proofs are however exchanged.For formal �nite sets, one then obtainsfjx1; : : : ; xnjg!? fjy1; : : : ; ymjg = fjx1; : : : ; xnjg ? fjy1; : : : ; ymjg =fjxi ? yj j 1 � i � n; 1 � j � mjgusing an obvious generalization of ZF notation to formal sets.Cartesian product of formal sets is a special instance of double extension. If X and Y arein D such that X�Y is also in D, thenA!�B = ext (�a: ext (�b: fj(a; b)jg) B) A andA �B = ext (�b: ext (�a: fj(a; b)jg) A) Bare formal Cartesian products.If the class D where the power construction is de�ned is closed w.r.t. Cartesian product,then symmetry may be de�ned in terms of formal Cartesian products because of the followingproposition:Proposition 4.1 Let X and Y be in D such that X�Y also is in D. Then for all Z inD and ? : [X�Y ! PZ], A !? B = ext (?) (A!� b) and A ? B = ext (?) (A � b) hold.Proof:ext (?) (A!� B) = ext (?) (ext (�a: ext (�b: fj(a; b)jg) B) A)(S4)= ext (�a: ext (?) (ext (�b: fj(a; b)jg) B)) A(S4)= ext (�a: ext (�b: ext (?) fj(a; b)jg) B) A(P3)= ext (�a: ext (�b: a ? b) B) AThe statement about ` ? ' and ` �' is proved analogously. 2Corollary 4.2 Let P be a power construction such that D = def P is closed w.r.t.product, i.e. X, Y in D implies X�Y in D. Then P is symmetric i� for all X, Y in D,A in PX, and B in PY, A!� B = A � B holds.- 10 -



4.4 The logic of power constructionsEach power construction is equipped with an inherent logic. In this section, we presentthe domain of logical values together with disjunction and existential quanti�cation. Thecorresponding conjunction is de�ned in section 4.7.The domain of logical values is obtained by interpreting the power domain P1 where1 = f�g. It has at least two elements: -0 and fj�jg, and is equipped with the binary operation`�[ '. We interpret -0 as `false' denoted by 0, fj�jg as `true' denoted by 1, and `�[ ' as formaldisjunction `+'. From the power axioms, one gets the following properties:� `+' is commutative and associative.� 0 + a = a+ 0 = a for all a in P1.� In case of a real power construction, one additionally has a + a = a for all a in P1.Table of values for a generalized power construction: for a real power construction:+ 0 10 0 11 1 ? + 0 10 0 11 1 1Further statements about P1 beyond the ones above are not possible for generic powerconstructions. In particular, one does not know whether there are further logical valuesbesides 1 and 0, and a + 1 = 1 does not generally hold, even for real power constructions.There is no information about the relative order of 0 and 1; 0 might be below 1, above 1, orincomparable to 1.The two power set constructions | set of arbitrary subsets and set of �nite subsets |both have the same logic: P1 is f;; f�gg or f0; 1g with ordinary disjunction.4.5 Existential quanti�cationExtension ext : [[X! PY] ! [PX ! PY]] is polymorphic over the domains X and Y.In this section, we consider the special case Y = 1; section 4.6 is concerned with X = 1.Extension to the one-point domain ex : [[X ! P1] ! [PX ! P1]]2 may be logicallyinterpreted along the lines of the previous section. It has the following properties:(P1) ex p -0 = 0(P2) ex p (A �[ B) = (ex p A) + (ex p B)(P3) ex p fjxjg = p x(S1) ex (�x: 0)A = 0(S2) ex (�x: p x+ q x)A = (ex p A) + (ex q A)(S4) ex p (ext f A) = ex (�a: ex p (fa))A ex pPX - P1� 6���������pXwhence ex f fjx1; : : : ; xnjg = fx1 + � � �+ fxn. Thus, ex means existential quanti�cation. Ittakes a predicate p : [X ! P1] and a formal set A and tells whether some member of A2This morphism is called ex to distinguish it from the fully polymorphic ext .- 11 -



satis�es p. (S4) then informally reads: There is x in Sa2A fa satisfying p i� there is a in Asuch that there is x in fa satisfying p.Existential quanti�cation may also be used to translate formal sets into second orderpredicates. For this end, we exchange the order of arguments of ex by uncurrying, twisting,and then currying again. The outcome is a morphism E : [PX! [[X! P1]! P1]] mappingformal sets into second order predicates. The properties of ex presented above translate easilyinto properties of E :(P1) E -0 = �p: 0(P2) E (A �[ B) = �p: (E A p) + (E B p)(P3) E fjxjg = �p: p x(S4) E (ext f A) = �p: E A (�a: E (fa) p)These results suggest to de�ne a power construction for given domain P1 by (a slight variantof) PX = [[X! P1] ! P1]. This method to obtain power constructions will be presentedand explored in section 9.4.6 Multiplication by a logical valueIn this section, we consider extension of a morphism with domain 1, i.e. the instanceext : [[1! PX]! [P1! PX]]. The function space [1 ! PX] is isomorphic to PX. Thus,we get a morphism [PX ! [P1 ! PX]]. Uncurrying and exchanging arguments leads tothe `product' � : [P1 � PX ! PX]. The de�nition is b � S = ext (��: S) b. We call thisproduct external since its left operand is not a member of PX. The axioms of ext imply thecharacteristic properties of the product.Proposition 4.3(P1�) 0 � S = -0(P2�) (a+ b) � S = (a � S) �[ (b � S)(P3�) 1 � S = S(S1�) b � -0 = -0(S2�) b � (S1 �[ S2) = (b � S1) �[ (b � S2)(S4�) ext f (b � S) = b � (ext f S)(S4a�) (a � b) � S = a � (b � S)(SY�) If P is symmetric, then ext (�x: b � fx)S = b � (ext f S)Algebraists will notice that these properties essentially are the axioms of left modules. Thistopic will be further explored in section 5.1.Proof:(P1�) 0 � S = ext (��: S) -0 = -0(P2�) (a+ b) � S = ext (��: S) (a �[ b) etc.(P3�) 1 � S = ext (��: S) fj�jg = (��: S) � = S(S1�) b � -0 = ext (��: -0) b = -0(S2�) b � (S1 �[ S2) = ext (��: S1 �[ S2) b etc.- 12 -



(S4�) ext f (b � S) = ext f (ext (��: S) b)(S4): = ext (��: ext f ((��: S) �)) b= ext (��: ext f S) b= b � (ext f S)(S4a�) (a � b) � S = ext (��: S) (a � b)(S4�): = a � (ext (��: S) b)= a � (b � S)(SY�) ext (�x: b � fx)S = ext (�x: ext (��: fx) b)Sby symmetry: = ext (��: ext (�x: fx)S) b= b � (ext f S) 2Interpreted logically, the product b � S resembles the conditional `if b then S else -0'. At leastfor the cases b = 1 and b = 0, product and conditional coincide because of 1 � S = S and0 � S = -0.4.7 ConjunctionUp to now, the logical domain P1 was only equipped with constants 0 and 1 and adisjunction `+'. We now interpret the external product on P1 as conjunction since a � bresembles `if a then b else -0'. The algebraic properties of conjunction � : [P1�P1! P1] aregiven by the next proposition:Proposition 4.4� 0 � b = b � 0 = 0� Distributivities: (a1 + a2) � b = (a1 � b) + (a2 � b)a � (b1 + b2) = (a � b1) + (a � b2)� Neutral element: 1 � b = b � 1 = b� Associativity: (a � b) � c = a � (b � c)� If the construction P is symmetric, then `�' is commutative.Proof:� 0: immediate by (P1�) and (S1�)� Distributivities: (P2�) and (S2�)� 1: 1 � b = b holds by (P3�). b � 1 = ext (��: fj�jg) b = b holds by (S3).� Associativity is just (S4a�).� Commutativity: a � b = ext (��: b) a = ext (��: b � 1) a =b � ext (��: 1) a = b � (a � 1) = b � a using (SY�) 2The axioms of generic power constructions do not allow to derive more algebraic propertiesfor conjunction. In particular, idempotence of conjunction, the opposite distributivities, andthe laws of absorption do not generally hold. On the other side, the existing laws are powerfulenough to obtain the following table of values: � 0 10 0 01 0 1- 13 -



5 Power constructions considered algebraically5.1 Semirings and modulesThe host of algebraic properties of power constructions may be described in terms ofwell-known algebraic structures.De�nition 5.1 (Semiring)A semiring domain (R; +; 0; �; 1) is a domain R with continuous operations such that(R; +; 0) is a commutative monoid, (R; �; 1) is a monoid, and multiplication `�' is additivein both arguments, i.e.a � 0 = 0 � a = 0 a � (b1 + b2) = (a � b1) + (a � b2) (a1 + a2) � b = (a1 � b) + (a2 � b)The semiring is commutative i� its multiplication is, and it is idempotent i� its additionis, i.e. a+ a = a holds.A semiring homomorphism h : [R ! R0] between two semirings is a mapping that pre-serves the semiring operations:h (a+ b) = h a+ h b h (0) = 00 h (a � b) = h a � h b h (1) = 10The power domain P1 is such a semiring with 0 = -0, a + b = a �[ b, 1 = fj�jg, anda � b = ext (��: b) a as shown in the previous sections.Semirings are generalizations of both rings and distributive lattices. These in turn aregeneralizations of �elds and Boolean algebras. Hence, both the notations (R; +; 0; �; 1) asused in this paper and a more logical notation (R; _; F; ^; T) seem to be adequate.When semiring domains are considered which are lattices, there is a high risk to confusethe order `�' of the domain and the lattice order `v' de�ned by a+ b = b. Generally, there isno relation between these two orders. In special cases only, they are equal or just opposite.De�nition 5.2 (Modules)Let R = (R; +; 0; �; 1) be a semiring domain and M = (M; +; 0) be a commutativemonoid domain. (R; M; �) is a module i�� : [R�M ! M ]a � 0M = 0M a � (B1 + B2) = (a �B1) + (a �B2)0R �A = 0M (a1 + a2) �B = (a1 �B) + (a2 �B)1R �A = A a � (b � C) = (a � b) � CWe also say `M is an R-module'.Let M1 and M2 be two R-modules. A morphism f : [M1 !M2] is linear i�f (A+B) = fA + fB and f (r �A) = r � fAParticularly prominent modules are those over a �eld; they are called vector spaces. Thenotion of linearity is drawn from there.The most important results of the previous sections may be summarized to- 14 -



Theorem 5.3 Let P be a power construction and let+ = �[ : [PX�PX! PX]0 = -0 : PX� = �(a; S): ext (��: S) a : [P1� PX! PX]1 = fj�jg : P1Then P1 with these operations is a semiring domain, and PX is a P1-module for alldomains X. For f : [X ! PY], the extension f : [PX ! PY] is linear, and f � � = fholds.The semiring P1 is called the characteristic semiring of the power construction P. Dif-ferent power constructions may have the same characteristic semiring. For instance, theconstruction of the set of all subsets and the construction of the set of �nite subsets for theclass of discrete domains both have characteristic semiring f0; 1g with 1 + 1 = 1.Conversely, one may wonder whether there is a power construction for every given semi-ring. The answer is yes; in sections 8 and 9, two distinguished constructions with givensemiring are presented.5.2 R-constructionsIt is generally useful not to stick to the fact that the characteristic semiring be exactlyP1. It is better to be more exible and let the characteristic semiring be some isomorphiccopy of P1. In this case, it is important to �x an isomorphism.De�nition 5.4 Let R be a semiring domain. An R-construction is a pair (P; ') of apower construction P and a semiring isomorphism ' : [R! P1].If R allows non-trivial automorphisms, then there are several di�erent isomorphisms be-tween P1 andR. Hence, we �x an isomorphism in the de�nition. The importance of this �xingwill be seen in the subsequent sections. Nevertheless, we shall mostly use the sloppy notation`P is an R-construction' without explicitly mentioning the �xed isomorphism ' : [R! P1].Various derived power operations involved the power domain P1 in their functionality.By means of the isomorphisms ' and '�1, they may be turned into operations involvingR instead. For the sake of clarity, we mark the original operations by an asterisk in thefollowing, and denote the original products by `�'.� : [R� PX! PX] r �A = 'r �Aex : [[X! R]! [PX! R]] ex p = '�1 � ex� (' � p)E : [PX! [[X! R]! R]] EAp = '�1 (E�A (' � p))These new operations enjoy the same algebraic properties as the original operations. Theproofs may be performed by simple equational reasoning. In the sequel, we shall mostly usethe new operations. - 15 -



5.3 Examples for characteristic semiringsIn this section, we informally present some examples for power constructions and theircharacteristic semirings.� The lower power construction has characteristic semiring f0 < 1g where 1 + 1 = 1.In this logic, 0 is unstable because it may become 1 while the computation proceeds.Thus, 0 actually means `don't know' since only positive answers are reliable.� The upper power construction has the dual semiring f1 < 0g. Here, 1 is unstable andmay change to 0 in the course of a computation. Only negative answers are reliable.� The convex or Plotkin power construction has semiring f0; 1g with 1 + 1 = 1. Theelements are not comparable, whence computations with logical result cannot proceed.They have immediately to decide whether the result is 1 or 0, and cannot change their`opinion' afterwards.The constructions of the set of all subsets and of the set of �nite subsets have the samecharacteristic semiring as Plotkin's construction. Indeed, the construction of �nitesubsets is just a special instance of Plotkin's.The three examples above show the importance of the empty set in our algebraic the-ory. Without empty set resp. 0, all three semirings would collapse to f1g and could not bedistinguished.� A power construction with a more reasonable logic should have the Boolean domainB = f?; 0; 1g as semiring. Such constructions are called set domain constructionsin [9]. The interpretation of ? is `I do not (yet) know'. Computations with logicalresults start in this state which may change to 0 or 1 if the computation proceeds.The sandwich power domain [2] or big set domain [9] and the mixed power domain [5, 6]or small set domain [9] both have characteristic semiring B with parallel conjunctionand disjunction.� Multi-power domains containing formal multi-sets should have the natural numbers astheir semiring. There are many di�erent ways how to arrange the naturals to form asemiring domain. They may be ordered ascending, descending, or discretely; specialelements ? or 1 may be added etc.The multi-power domain of [1] has semiring f0; 1 < 2 < � � � <1g, i.e. 0 is incomparableas in Plotkin's construction whereas the remaining naturals form an ascending chain.� In [13], discrete probabilistic non-determinism is modeled by a power construction withcharacteristic semiring R10 | the non-negative reals including in�nity ordered as usualwith ordinary addition and multiplication.� In [13] again, oracle non-determinism is modeled by a construction whose semiring isthe power set of a �xed set. The power set is ordered by inclusion `�', addition is union,and multiplication is intersection.� A third construction in [13] models ephemeral non-determinism. Its semiring is theso-called tropical semiring T = (f0 < 1 < 2 < � � � < 1g; u; 1; +; 0), i.e. addition inT is minimum, and multiplication in T is arithmetic addition.- 16 -



6 Power homomorphisms6.1 De�nitionHomomorphisms between algebraic structures are mappingspreserving all operations of these structures. Power construc-tions may be considered algebraic structures on a higher level.Thus, it is also possible and useful to de�ne corresponding ho-momorphisms.A power homomorphism H : P _!Q between two power con-structions P and Q with def P � def Q is a `family' of mor-phisms H = (HX)X2def P : [PX ! QX] commuting over allpower operations, i.e.� The empty set in PX is mapped to the empty set in QX:H -0 = -0.� The image of a union is the union of the images:H(A �[ B) = (HA) �[ (HB).� Singletons in PX are mapped to singletons in QX:HfjxjgP = fjxjgQ, or: H � �P = �Q.� Let f : [X ! PY]. Then H � f : [X ! QY], andextQ (H � f) (HA) = H(extP f A) has to hold for all A inPX. This axiom may also be written extQ(H � f) �H =H � (extP f) (see the �gure to the right).
X� ?@@@@@@@@RH � fH � fQX - QYH6 6HfPX - PY� 6���������fXObviously, there is an identity power homomorphism I : P _!P where all morphisms IXare identities. Furthermore, two power homomorphisms G : P _!Q and H : Q _!R may becomposed `pointwise', i.e. (H �G)X = HX �GX. It is easy to show that the outcome is againa power homomorphism H �G : P _!R.A power isomorphism between two constructions P and Q is a family of isomorphismsH = HX : [PX! QX] such that both (HX)X2def P and (H�1X )X2def Q are power homomor-phisms. Hence, two isomorphic constructions are de�ned for the same class of domains.6.2 Some properties of power homomorphismsSince power homomorphisms preserve all primary power operations, it is not surprisingthat they also preserve the derived operations.Proposition 6.1 Let H : P _!Q be a power homomorphism.(1) Let f : [X! Y]. Then H � (mapPf) = (mapQf) �H : [PX! QY] (see the �gure).(2) Let b be in P1 and S in PX. Then H(b � S) = Hb �HS.(3) H1 : [P1! Q1] is a semiring homomorphism.- 17 -



mapQ fQX - QY@@@@@@I �������� �������	 @@@@@@R� �fX -Y6 6H HmapPfPX - PYIn categorical terms, (1) means H is a natural transformation between the functors P and Q.Proof:(1) H � (mapP f) = H � (extP (�P � f)) = (extQ (H � �P � f)) �H= (extQ (�Q � f)) �H = (mapQ f) �H(2) H(b � S) = H(ext (��: S) b) = ext (��: HS) (Hb) = (Hb) � (HS)(3) H1 respects + = �[ , 0 = -0, and 1 = fj�jg by the de�nition of power homomorphisms. Itrespects `�' by (2). 26.3 Linear power homomorphismsIn the following, we want to compare power constructions with the same characteristicsemiring by means of power homomorphisms. We use the notion of R-constructions P witha �xed isomorphism from R to P1 as introduced in section 5.2.De�nition 6.2 Let R be a semiring, and let (P; ') and (P 0; '0) be two R-constructions.A power homomorphism H : P _!Q is called linear i� the morphisms HX : [PX! P 0X]are R-linear.Linearity of the morphisms is not a matter of course. Prop. 6.1 (2) tells H(b�S) = Hb�HSinstead for b in P1. From this, it becomes evident that a power homomorphism is linear i�it acts on R as an identity.Proposition 6.3 Let (P; ') and (P 0; '0) be two R-constructions. A power homomor-phism H : P _!Q is linear i� the composition '0�1 �H1 � ' : [R! R] is the identity.Proof: To be su�ciently distinctive, we denote the product with members of P1 andP01 by `�' in this proof. r �A is then de�ned by 'r �A resp. '0r �A.Let H be a linear power homomorphism. Then for all r in R,'0�1(H1('r)) = '0�1(H1('r � fj�jg)) fj�jg is neutral in P1= '0�1(H1(r � fj�jg)) R-product `�' de�ned by '= '0�1(r �H1fj�jg) H is R-linear= '0�1('0r � fj�jg0) H is power homomorphism= '0�1('0r) = r - 18 -



Conversely,H(r � S) = H('r � S) = H('r) �HS = '0�1(H('r)) �HS = r �HSholds applying the de�nition of `�' in terms of `�'. 2Hence, if R allows non-trivial automorphisms there are non-linear power homomorphismsbesides the linear ones.6.4 Initial and �nal R-constructionsInitial and �nal power constructions are de�ned relative to the characteristic semiring bymeans of linear power homomorphisms. Without the assumption of linearity, their existencecould not be guaranteed.An R-construction P is initial if for all R-constructions Q there is exactly one linear powerhomomorphism P _!Q. Finality is dual. The exact de�nitions however are more complex. Toprevent a construction from being initial simply because it is almost unde�ned, we concentrateon total constructions de�ned for all domains.De�nition 6.4A total R-construction (P; ') is initial if for all total R-constructions (Q; '0) there isexactly one linear power homomorphism H : (P; ') _!(Q; '0).A total R-construction (P; ') is �nal if for all R-constructions (Q; '0) there is exactlyone linear power homomorphism H : (Q; '0) _!(P; ').These de�nitions imply the existence and uniqueness of initial and �nal R-constructionsfor every given semiring domain R, as pointed out in sections 8 and 9. If the de�nitions didnot refer to linear power homomorphisms, there would be no initial and �nal constructionsfor semirings with non-trivial automorphisms.Initial and �nal R-constructions have the usual properties found in algebra:(1) If P is isomorphic to an initial (a �nal) R-construction P 0, then P is also an initial (a�nal) R-construction.(2) For given semiring R, initial and �nal R-constructions are unique up to isomorphism.The proofs of these properties are done by standard algebraic arguments | provided that`isomorphic' is understood as isomorphic by a linear power isomorphism.The main result is the following theorem:Theorem 6.5 For every semiring R, initial and �nal R-constructions exist.In section 8, we demonstrate the initial construction. Section 9 is then devoted to the �nalconstruction. Before introducing the initial construction, we �rst investigate the theoryof R-X-modules because the results of this theory are used when considering the initialconstruction. - 19 -



7 R-X-ModulesBefore introducing the initial and �nal R-constructions for a semiring R, we consider R-X-modules in this section. R-X-modules are R-modules together with a map from X. Powerdomains are R-X-modules by the singleton map. The theory of R-X-modules allows to provea host of theorems that are applied to the theory of power domain constructions in the nextsection.7.1 De�nitionsAn R-X-module is an R-module together with a mapping from X to it.De�nition 7.1 An R-X-module M is a pair M = (M; �) of an R-module domain Mand a morphism � : [X!M ].A morphism f : (M; �) ! (M 0; �0) is R-X-linear i� f : [M ! M 0] is R-linear andf � � = �0, i.e. f (�x) = �0x for all x in X.We already met examples for such R-X-modules and R-X-linear mappings. If H : P _!Qis a linear power homomorphism between two R-constructions, then for every ground domainX, the instance HX is an R-X-linear mapping between the two R-X-modules (PX; �P) and(QX; �Q). If f : [X! PY], then the extension ext f is R-X-linear between the R-X-modules(PX; �) and (PY; f) since ext f � � = f . Thus, the R-X-modules with R-X-linear mappingsprovide a common abstraction of extension and power homomorphisms.In the sequel, we need some more de�nitions.De�nition 7.2 Let M = (M; �) where M = (M; +; 0; �; 1) is an R-module. A subset Sof (the carrier of) M is called an R-X-submodule of M i�(1) �x is in S for all x 2 X, i.e. �[X] � S.(2) 0 is in S.(3) If a and b are in S, then so is a + b.(4) If a is in S, then r � a is in S for all r 2 R.(5) S is a subdomain of M , i.e. S is directed closed in M , i.e. if D is a directed subset ofS, then the limit of D w.r.t.M is in S.By de�nition, S may be assumed to be an R-X-module again, and the natural inclusionmap e : S !M is an R-X-linear morphism.It is easily veri�ed that the intersection of a family of R-X-submodules of a �xed R-X-module is again an R-X-submodule. Hence, the R-X-submodules form a complete lattice,and there is a least R-X-submodule for every given R-X-module M. We call it the coreMc of M. The following theorem is a generalization of a theorem found in [12] for the caseR = f0; 1g. It provides a more explicit description of the core.Theorem 7.3If M = (M; �) is an R-X-module, then its core is given by Mc =M# whereM# = fr1 � �x1 + � � �+ rn � �xn j n 2 N0; ri 2 R; xi 2 Xg- 20 -



and B is the least directed closed superset of B.The size of Mc is bounded by jMcj � 2(jRjjXj).The proof of the theorem is included as an appendix.7.2 Reduced R-X-modulesDe�nition 7.4 An R-X-module is reduced i� it coincides with its core.Equivalently, an R-X-module is reduced i� it does not allow proper R-X-submodules.For every R-X-module M, the core Mc is reduced. Hence, every R-X-module contains areduced R-X-submodule.Reduced R-X-modules enjoy many interesting properties listed in the sequel.Lemma 7.5 Let M = (M; �) be a reduced R-X-module, and M 0 an R-module. IfF;G : [M ! M 0] are two R-linear morphisms with F (�x) � G(�x) for all x 2 X, thenF � G holds.Proof: Let S = fa 2 M j Fa � Gag. S satis�es the properties of Def. 7.2 whenceS =M follows because M admits no proper R-X-submodules. 2By anti-symmetry, one immediately gets:Proposition 7.6 In Lemma 7.5, `�' may be replaced by `=':Let M = (M; �) be a reduced R-X-module, and M 0 an R-module. If F;G : [M ! M 0]are two R-linear morphisms with F � � = G � �, then F = G holds.As a special instance of this proposition, one obtains:Proposition 7.7 If M is a reduced R-X-module, then there is at most one R-X-linearmapping from M to any other R-X-module M0.Finally, we consider existence of a least element.Proposition 7.8 If the semiring R has a least element ?R andX has a least element ?X,then every reduced R-X-module M = (M; �) has a least element, namely ?R � �(?X).Proof: Let S = fa 2M j a � ?R � �(?X)g.(1) Let x 2 X. Then �x = 1 � �x � ?R � �(?X).(2) 0 = 0 � �(?X) � ?R � �(?X).(3) Let a; b 2 S. Then a+ b � ?R � �(?X)+?R � �(?X) = (?R+?R) � �(?X) � ?R � �(?X).(4) For r 2 R and a 2 S, r � a � r � ?R � �(?X) � ?R � �(?X).(5) S is obviously closed w.r.t. limits of directed sets in M .Hence, S satis�es the conditions of Def. 7.2, whence S =M holds. 2- 21 -



7.3 Free R-X-modulesBy Prop. 7.7, there is at most one R-X-linear mapping from every reduced R-X-module.In this section, we consider an even more special class of R-X-modules.De�nition 7.9 An R-X-module F is free i� for every R-X-module M, there is exactlyone R-X-linear morphism from F to M.The existence of free R-X-modules is shown in section 7.4. For algebraic R and X, a moreexplicit construction is provided in section 7.5. In this section, we study the properties of freeR-X-modules. By usual algebraic arguments, all free R-X-modules are isomorphic to eachother. Thus, we sometimes denote the free R-X-module by R�X.Proposition 7.10 Every free R-X-module is reduced.Proof:Let F be a free R-X-module and S an R-X-submodule of F. We have to show S = F.The embedding � : S ! F is R-X-linear since S is an R-X-submodule. Since F is free, thereis an R-X-linear morphism � : [F! S]. The composition � � � is R-X-linear and maps F toitself as the identity does. By freedom, ��� = id holds. Hence, for every y in F, y = � (�y) 2 Sholds. 2If F is a free R-X-module, then for every morphism f : [X ! M ] from X to some R-module M , there is a unique R-X-linear extension f : [F ! (M; f)] to the R-X-module(M; f). Thus, `�' itself is a function from [X!M ] to [F!M ].Theorem 7.11 If F is a free R-X-module, then for every R-module M , the mapping� : [X!M ]! [F!M ] as introduced above is continuous.Proof: `�' is monotonic by Lemma 7.5 telling that f � g implies f � g.Now, we show the continuity of `�'. Let � be the morphism fromX to F. Let D be a directedset of morphisms from X to M , and let f be its limit. We have to show f = Fd2D d. Thefunction on the right hand side is R-linear by continuity of `+' and `�'. It maps �x to fx bycontinuity of application and d (�x) = d x. By uniqueness, it thus equals f . 2In the special case X = 1, R itself is a free R-X-module:Proposition 7.12 (R; �x: 1) is a free R-1-module.Proof: Let M = (M; �) be an R-1-module. Let f : [R!M ] be given by f (r) = r � � �.This mapping is R-linear because of the module axioms. For instance, f (r �r0) = (r �r0) �� � =r � (r0 � � �) = r � f (r0) holds. f is R-1-linear since f ((�x: 1) �) = f (1) = 1 � � � = � �.Let F be an arbitraryR-1-linear map from (R; �x:1) toM. Then F (r) = F (r�1) = r�F (1) =r � F ((�x: 1) �) = r � � � = f (r) holds, i.e. f is unique. 2- 22 -



7.4 Existence of free modulesIn this section, we show the existence of the free R-X-module for arbitrary semiring do-mains R and ground domains X. The proof follows the lines of [12] who proved the existenceof the free commutative idempotent monoid over X. Hoofman used the categorical FreydAdjoint Functor Theorem. We avoid its usage for the sake of a slightly more explicit con-struction. Our proof looks much simpler than that of Hoofman because we apply the notionof R-X-modules.We �rst construct the so-called solution set required by the Adjoint Functor Theorem.Instead of applying this theorem after verifying its remaining preconditions and thus obtainingthe mere existence of the free module, we present a simple explicit construction based on thesolution set.The problem with the class of all R-X-modules is that it is not a set. The problem issolved by providing a set of R-X-modules fMi j i 2 Ig that may be used as representativesfor all R-X-modules.Let c be the cardinal number 2(jRjjXj), and let C be a set of cardinality c. From C, weconstruct the setD = [A�CfAg � (A� A! 2)� (A�A! A)�A� (R� A! A)� (X! A)where 2 = f0; 1g. Next, let I be the set of all tuples (A; �; +; 0; �; f) in D such thatA = (A; �) is a domain, M = (A; +; 0; �) is an R-module domain, and f : X ! A iscontinuous, i.e. (M; f) is an R-X-module. By construction, I contains isomorphic copies ofall R-X-modules up to cardinality c. Indexing I by itself, we obtain a family (Mi)i2I ofR-X-modules.Now let M = (M; f) be an arbitrary R-X-module. Let Mc be the core of M ande : [Mc !M] the natural inclusion. Note that e is R-X-linear.By Th. 7.3, jMcj � 2(jRjjXj) = c holds. Hence, there is an isomorphic copy Mi of Mc inI . Let ' : [Mi!Mc] be the R-X-linear isomorphism between Mi and Mc.Given the `solution set' (Mi)i2I , it is now easy to construct the free module. Let P =Qi2IMi. The operations in P are de�ned as follows:� a � b i� ai � bi for all i in I ,� a+ b = (ai + bi)i2I ,� r � a = (r � ai)i2I for r in R,� �x = (�i x)i2I for x 2 X.It is not di�cult to see that all these functions are continuous, and make P into an R-X-module. The projections �i : [P!Mi] are R-X-linear.Finally, let F be the core of P. Then the inclusion p : F! P is R-X-linear. Summarizing,we get for each R-X-module M the following chain of R-X-linear mappings for some i:- 23 -



F -p P -�i Mi -' Mc -e MThus, we get an R-X-linear map f from F to every R-X-module M. f is unique since F isreduced (Prop. 7.6).7.5 Free modules in the algebraic caseThere seems to be no general explicit description of the free R-X-module. However, anexplicit construction is possible at least in the case of structurally algebraic semiring R andalgebraic domain X.De�nition 7.13 A semiring domain R is structurally algebraic if it is algebraic and itsbase R0 contains 0 and 1 and is closed w.r.t. `+' and `�'.Examples:� Every �nite and every discrete semiring domain R is structurally algebraic since R0 = Rholds in these cases.� N10 = f0 < 1 < 2 < � � � <1g is structurally algebraic since sum and product of �nitenumbers are �nite.� The tropical semiring T is algebraic but not structurally algebraic since1 is the neutralelement of its addition.� The powerset of an in�nite set X with union as addition and intersection as multipli-cation and ordered by inclusion is algebraic but not structurally algebraic since 1 = Xis in�nite.The actual construction is roughly indicated. First, let bX be the set of all (not neces-sarily monotonic) functions from X0 to R0 that yield non-zero results for a �nite number ofarguments only. These functions � stand for �nite R0-linear combinations over X0 where �xis the coe�cient of x. Hence, addition, multiplication by a member of R0, singleton, and ex-tension have natural de�nitions for bX. Here, the closure of R0 w.r.t. the algebraic operationsis needed.Second, bX is equipped with the least pre-order `�' making singleton, addition, and multi-plication monotonic. Extended functions bf may also be proven to be monotonic by showingthat the pre-order � �0 � i� bf� � bf� also makes singleton, addition, and multiplicationmonotonic. The free R-module over X is then the ideal completion of this pre-order ( bX;�).This explicit construction allows to derive the following properties:Theorem 7.14 If R is structurally algebraic and X is algebraic, then R�X is algebraic.Theorem 7.15 Let R be a �nite semiring. If X is �nite or bi�nite, then so is R�X.Theorem 7.16 If R and X are discrete, then so is R�X.It leaves open the followingProblem: What happens if R is algebraic without being structurally algebraic?- 24 -



8 The initial R-constructionIn this section, the existence of the initial R-construction for given semiring R is shown andits properties are studied. The idea to consider initial power constructions dates back to [10].Hoofman [12] showed the existence of the initial construction for semiring f0; 1g. Main [13]then proposed initial constructions for some fancy semirings as indicated in section 5.3. Incontrast to our work, he requires the singleton mapping to be strict without telling exactlywhy. Our singleton mappings are generally non-strict as indicated by Prop. 7.8 and 9.4. Thesingleton maps of mixed and sandwich power domain are also non-strict.For every domain X and every semiring R, there is a free R-X-module R � X. Theconstruction X 7! R�X is the initial R-construction.Theorem 8.1 Let R be a �xed semiring. The power construction P de�ned by PX =R�X is the initial R-construction. The construction is symmetric i� R is commutative.The a priori given external product of the modules PX coincides with the external productderived from the power operations.Proof: We �rst show that P is a power construction. Empty set and union are given bythe module operations: -0 = 0 and A�[B = A+B. Singleton is the morphism � : [X! R�X],i.e. fjxjg = �x. For every f : [X ! PY], the extension ext f is given by the unique R-X-linear map from R �X to (PY; f). Function ext is continuous by Theorem 7.11. We haveto demonstrate that it satis�es the power axioms.The primary axioms of extension are satis�ed by de�nition of ext . The secondary axioms areconsequences of the uniqueness of the extended map.(S1) ext (�a: -0) = �A: -0The function to the right is linear and maps singletons to -0 = 0. The function to theleft behaves equally, whence they are equal.(S2) ext (�x: fx �[ g x) = �A: ext f A �[ ext g ABoth functions are linear, and both map a singleton fjajg to fa �[ ga. Note that commu-tativity of the addition in a module is required to prove the additivity of the function � tothe right because �(A�[B) = fA+fB+gA+gB, whereas �A�[ �B = fA+gA+fB+gB.(S3) ext � = idAgain, both sides are linear and coincide on singletons since both map fjajg to fjajg.(S4) ext g � ext f = ext (ext g � f)Once more, both sides are linear | the left hand side as composition of linear maps.They both map a singleton fjajg to ext g (fa).In case of commutative semiring R, symmetry of the construction is shown by the same kindof reasoning in two steps:(1) ext (�x: r � fx) = �A: r � ext f A(2) ext (�a: ext (�b: a ? b) B) = �A: ext (�b: ext (�a: a ? b) A) B- 25 -



Next, we have to show that the primarily given external product of the R-module PX coin-cides with the derived external product of the power construction. The latter is denoted by`�' for the moment.r �A = ext (��: A) r = ext (��: A) (r � 1) = r � ext (��: A) (��) = r �Ausing the linearity of extended maps.By Prop. 7.12, P1 = R � 1 = R holds, i.e. (P; id) is an R-construction. Let (Q; ') beanother R-construction. We have to demonstrate the existence of a unique linear powerhomomorphism H : P _!Q.For every domain X, QX is an R-module, and there is a morphism �Q : [X ! QX]. SincePX is the free R-X-module, there is a (unique) R-linear morphism H : [PX ! QX] withH � �P = �Q. By linearity, H is additive, i.e. H -0 = -0 and H(A �[ B) = HA �[ HB hold.Next, H � (ext f) = ext (H � f) � H has to be shown for f : [X ! PY]. Since H and allextensions are linear, both sides are linear morphisms from PX to QY. They coincide onsingletons: H (ext f fjxjgP) = H (fx) and ext (H � f) (HfjxjgP) = ext (H � f) fjxjgQ = H(fx)hold. Since PX is free and QY is an R-module, both sides are equal.Uniqueness of H is a simple consequence of the freedom of PX for all X. 2The theory of R-X-modules gives us the following properties of the initial R-construction:Theorem 8.2 Let R be a semiring and let P be the initial R-construction.(1) If R has a least element, then P maps domains with least element into domains withleast element (Prop. 7.8).(2) If R is structurally algebraic, then P maps algebraic domains into algebraic ones(Th. 7.14).(3) If R is �nite, then P maps (bi)�nite domains into (bi)�nite domains (Th. 7.15).(4) If R is discrete, then P maps discrete domains into discrete ones (Th. 7.16).9 The �nal R-construction9.1 The main theoremIn contrast to the initial R-construction, the �nal one may be explicitly constructed. Asindicated in section 4.5, existential quanti�cation leads to a mapping E from PX to [[X !P1] ! P1] for every power construction P. This suggests to de�ne PX as [[X ! R] ! R]if R = P1 is given. The equations in section 4.5 also indicate how to de�ne the poweroperations.One has to prove that these operations satisfy the axioms of section 3, and that thederived semiring P1 is isomorphic to the original semiring R. For proving the axioms, theouter, second order mappings have to be additive, and for proving the isomorphism betweenP1 and R, they even have to be right linear.- 26 -



Functions in [X ! R] may be multiplied by members of R from the right by de�ningf � r = �x: (fx) � r. They also may be added by de�ning f + g = �x: fx+ g x. A second orderfunction F : [[X ! R] ! R] is right linear i� F (f + g) = Ff + Fg and F (f � r) = Ff � rhold. The set of all such functions is denoted by [[X ! R] rlin! R]. Ordered as subsetof [[X ! R] ! R], it becomes a domain because the lub of a directed set of right linearfunctions is right linear again by continuity of application, sum, and external product.Theorem 9.1 The �nal R-construction is given by (P; ') where PX = PRfX = [[X!R] rlin! R] and the isomorphism ' : [R ! P1] is de�ned by ' (r) = �g: r � g�. Its inverseis  (A) = A(��: 1).The basic power operations are de�ned by� -0 = �g: 0� A �[ B = �g: Ag +Bg� fjxjg = �g: gx for x 2 X.� ext f A = �g: A (�a: fag) for f : [X! PY] and A 2 PX.To understand the de�nition of ext , note that a ranges over X. Then a in X and f :[X! PY] imply fa 2 PY = [[Y! R] rlin! R]. g ranges over [Y ! R], whence fag 2 R and�a: fag : [X! R]. Thus, A 2 PX = [[X! R] rlin! R] implies A (� : : :) 2 R.The proof of the theorem proceeds in four steps: First, it is shown that the power opera-tions de�ned above always create right linear maps when applied to such maps. Second, thevalidity of the power axioms is shown by �-conversions. Third, an isomorphism between P1and R is established. Fourth, the power construction PRf is demonstrated to be �nal.The proof of the right linearity of the results of the operations is done by straight-forwardequational reasoning. It is omitted here. The remaining three steps are handled in the nextthree sections.9.2 Proof step 2: The power axiomsIn this section, we prove the validity of the power axioms for the new construction.By the de�nition A �[ B = �g: Ag + Bg, the operation `�[ ' trivially is commutative,associative, and has neutral element -0 = �g: 0. The axioms of extension are less easy toprove. In this paper, we concentrate on (P3) that is simple, (S2) where additivity of thesecond order function is needed, and (S4) which is the most di�cult. The other ones areshown similarly.Def.: ext f A = �p: A (�a: fap)(P3) ext f fjxjg = �p: fjxjg (�a: fap) = �p: (�a: fap) x = �p: fxp = fx(S2) ext (f �[ g)A = �p: A (�a: (f �[ g) a p) = �p: A (�a: (fa �[ ga) p)= �p: A (�a: fap+ gap) using additivity of A here= �p: A (�a: fap) + A (�a: gap) = ext f A �[ ext gA- 27 -



(S4) The claim is ext g � ext f = ext (ext g � f), or ext g (ext f A) = ext (�x: ext g (fx))Aext g (ext f A) = �p: (ext f A) (�b: gbp)= �p: (�q: A (�a: faq)) (�b: gbp)= �p: A (�a: f a (�b: gbp))ext (�x: ext g (fx))A = �p: A (�a: (�x: ext g (fx)) a p)= �p: A (�a: (ext g (fa)) p)= �p: A (�a: (�q: (fa) (�b: gbq)) p)= �p: A (�a: f a (�b: gbp))9.3 Proof step 3: The characteristic semiringIn this section, we show the power domain P1 and the original semiring R to be isomor-phic. To this end, we �rst consider how the semiring operations in P1 are de�ned.� P1 = [[1! R] rlin! R]� 0 = -0 = �p: 0� A+ B = A �[ B = �p: Ap+ Bp� 1 = fj�jg = �p: p �� A �B = ext (��: B) A = �p: A (�a: (��: B) a p)= �p: A (�a: B p) = �p: A (��: B p)For the last equality, note that a ranges over 1.There is one obvious choice for a mapping  : [P1 ! R], namely  A = A (��: 1). Thismapping is a semiring homomorphism:�  (0) = (�p: 0) (��: 1) = 0�  (A+B) = (�p: Ap+ Bp) (��: 1) =  A+  B�  (1) = (�p: p �) (��: 1) = (��: 1) � = 1�  (A �B) = (�p: A (��: Bp)) (��: 1)= A (��: B (��: 1))= A (��:  B) = A (��: 1 �  B) use right linearity of A now= A (��: 1) �  B =  A �  BAs announced previously, right linearity of the second order functions in PX is needed here.With left linearity, the result would be  (A �B) =  B � A instead.The mapping  is shown to be an isomorphism by specifying its inverse. Let ' : [R! P1]be de�ned by 'r = �p: r � p �. The second order mapping 'r is right linear in p because'r (p+ p0) = r � (p+ p0) � = r � (p �+ p0�) = r � p �+ r � p0� = 'r (p) + 'r (p0)'r (p � a) = r � (p � a) � = r � (p � � a) = (r � p �) � a = 'r (p) � a- 28 -



' is the inverse of  since ('r) = (�p: r � p �) (��: 1) = r � (��: 1) � = r � 1 = r' ( A) = �p:  A � p �= �p: A (��: 1) � p � and by right linearity of A= �p: A (��: 1 � p �)= �p: A (��: p �) = �p: Ap = A9.4 Proof step 4: FinalityLet (Q; �) be an arbitrary R-construction and let (P; ') be the R-construction of Th. 9.1.We have to construct a linear power homomorphism H : Q _!P and then show it is unique.H is given by existential quanti�cation E : [QX! [[X! R] rlin! R]] as de�ned in section 5.2.Existential quanti�cation in Q would map functions in [X! Q1] into elements of Q1. Itcan be used to de�ne H if semiring elements can be translated into elements of Q1 and viceversa by means of � and ��1. Hence we de�ne for A in QXHA = �p: ��1 (extQ (� � p)A)Here, p ranges over [X ! R], whence � � p : [X ! Q1]. Thus, (extQ (� � p)A) is in Q1,whence its value by ��1 is in R. Hence, H : [QX! [[X! R]! R]].Adopting this de�nition of H , we have to show that HA is right linear, that H is a linearpower homomorphism, and �nally that H is unique. We omit the proof of right linearityhere immediately going on to the power homomorphism proof. Here, empty set and unionare also omitted.� H fjxjgQ = �p: ��1 (ext (� � p) fjxjgQ) (P3)= �p: ��1 (� (p x)) = �p: p x = fjxjgP� H (ext f A) = �p: ��1 (ext (� � p) (ext f A))(S4)= �p: ��1 (ext (�x: ext (� � p) (fx))A)= �p: ��1 (ext (�x: � (��1 (ext (� � p) (fx))))A)= �p: ��1 (ext (�x: � (H (fx) p))A)= �p: HA (�x:H (fx) p)= �p: HA (�x: (H � f) x p)= extP (H � f) (HA)Now we know H is a power homomorphism. To show its linearity, we have to prove (H1 (�r)) = r for all r 2 R by Prop. 6.3 where  = �S: S (��: 1) is the isomorphismfrom P1 to R. (H1 (�r)) = (�p: ��1 (extQ (� � p) (�r))) (��: 1)= ��1 (extQ (� � (��: 1)) (�r))= ��1 (extQ (��: fj�jgQ) (�r)) since � (1) = fj�jgQ(S3)= ��1 (�r) = r - 29 -



The last property to be shown is that H is the only linear power homomorphism from Qto P. Let G be another linear power homomorphism. Then  �G1 � � = idR holds.HA = �p: ��1 (extQ (� � p)A)= �p:  (G1 (extQ (� � p)A)) since ��1 =  �G1= �p:  (extP (G1 � � � p) (GA)) because G is a power homomorphism= �p: (extP ( �1 � p) (GA)) (��: 1) since G1 � � =  �1, and  S = S (��: 1)= �p: (GA) (�x: ( �1 � p) x (��: 1)) by de�nition of extP= �p: (GA) (�x:  ( �1 (p x))) since S(��: 1) =  S= �p: GA (�x: p x) = �p: GAp = GANow, the theorem is completely proved.9.5 Derived operationsThe de�nition of the �nal R-construction provides realizations for the principal poweroperations in terms of higher order functions. The derived operations may also be expressedin functional form.� map f A = ext (� � f)A = �p: A (�a: (� � f) a p)= �p: A (�a: fjfajg p) = �p: A (�a: p (fa)) = �p: A (p � f)� As indicated in section 5.2, the external product is de�ned for elements of R by meansof '.r �A = ext (��: A) ('r) = �p: ('r) (�a: (��: A) a p)= �p: (�q: r � q �) (�a: Ap) = �p: r � (�a: Ap) � = �p: r �Ap9.6 Further propertiesThis section is a collection of some simple properties of the �nal construction.Proposition 9.2 If R is discrete, then PRf X is discrete for all domains X.Proof: PRfX is [[X! R] rlin! R] ordered pointwise, i.e. A � B i� Ap � Bp in R for allp : [X! R]. 2Proposition 9.3 If R is �nite, then PRfX is �nite or bi�nite whenever X is.Proof: If R and X are �nite, then so is [[X ! R] rlin! R]. According to section 2, PRfthen maps bi�nite domains into bi�nite domains since it is a locally continuous functor. 2Problem: If R and X are bi�nite (R not necessarily being �nite), is PRf X bi�nite?Problem: If R and X are algebraic, is PRfX algebraic?Proposition 9.4 If R and X have least elements ?R and ?X, then PRf X has a leastelement, namely ?R � fj?Xjg. - 30 -



Proof: We have to show Ap � (?R � fj?Xjg) p for all A : [[X ! R] rlin! R] and allp : [X ! R].Ap = A (�x: p x) � A (�x: p (?X))= A (�x: 1 � p (?X)) rlin= A (�x: 1) � p (?X)� ?R � p (?X) = ?R � fj?Xjg p = (?R � fj?Xjg) p 2Problem: Is PRf symmetric whenever R is commutative?Simple equational reasoning does not help here.10 Known power constructionsIn this section, we briey consider how the known power constructions �t into the generalframework. Most proofs are omitted since this topic will be subject of a di�erent paper andmay also be found in [8].10.1 Lower power constructionsLet L = f0 < 1g with 1 + 1 = 1 be the lower semiring. L-modules are just thosecommutative monoids (M; +; 0) with a+ a = a and 0 � a for all a in M . One easily veri�esthat in such monoids, a + b is the least upper bound of a and b. Hence, L-modules are justcomplete domains with sum being least upper bound and 0 being ?.Lower power constructions are the power constructions with characteristic semiring L.Theorem 10.1 Initial and �nal lower power construction are isomorphic. They are ex-plicitly given by(1) LX = fC � X j C is Scott closedg ordered by inclusion `�',(2) Fi2I Ai = cl Si2I Ai where `cl ' denotes Scott closure,(3) -0 = ;,(4) A �[ B = A [B,(5) fjxjg = #x,(6) for arbitrary L-modules M and morphisms f : [X!M ], the unique linear extensionf : [LX!M ] is given by fC = F f [C].We do not include the proof of this theorem here because it is a bit out of the scope of thispaper and uses some topological techniques not introduced here.10.2 Upper power constructionsLet U = f1 < 0g with 1 + 1 = 1 be the upper semiring. U-modules are just thosecommutative monoids (M; +; 0) with a+ a = a and a � 0 for all a in M . One easily veri�esthat in such monoids, a + b is the greatest lower bound of a and b. Hence, U-modules arejust domains with a continuous binary greatest lower bound and a top element.- 31 -



Although U is just dual to L, the situation is much more complex here. The reason isthat in L-modules, binary lub and directed lub well cooperate and imply the existence of alllubs and all glbs. In U-modules however, binary lubs and in�nite glbs need not exist. Theadditional complexity might be the reason that the following theorem is much weaker thanTh. 10.1.Theorem 10.2 For continuous ground domain X, the initial upper power domain U iXand the �nal upper power domain UfX coincide. They are explicitly given by(1) UX = fK � X j K is a Scott compact upper setg ordered by inverse inclusion `�',(2) Fi2I Ai = Ti2I Ai for directed families (Ai)i2I ,(3) -0 = ;,(4) A �[ B = A [B,(5) fjxjg = "x,(6) ext f A = Sa2A fa = S f [A].The initiality is indicated without proof in [10]. The �nality of the construction in termsof compact sets is shown in [17] for sober domains | a much larger class of domains thanthe continuous ones. (Smyth naturally did not know our notion of �nality at that time. Heindicated a bijective correspondence between compact upper sets and `open �lters' provedin [11]. These open �lters in turn bijectively correspond to our second order predicates[[X! U] rlin! U].)Unfortunately, the author does not know whether U iX = UfX holds for all domains X.Indeed, there is some evidence that it does not.3 If so, the upper power domain does notexist | an ever lasting source of confusion.10.3 Convex power constructionsLet C = f0; 1g with discrete order and 1+ 1 = 1 be the convex semiring. C-modules arejust idempotent commutative monoids. Plotkin's power construction is known to be initialfor this semiring as indicated in [10]. It much di�ers from the corresponding �nal constructionCf . If X is a domain with a least element ?, then [X! C] has only two elements: �x: 0 and�x: 1. A linear second order function has to map �x: 0 to 0. Thus, CfX = [[X! C] rlin! C]has two elements, no matter how big X is. Hence, Cf is quite useless.Besides the initial and the �nal one, we know of nine further C-constructions enumerated in[8].10.4 Set domain constructionsAs indicated in section 5.3, a power construction with a reasonable logic should have theBooleans as characteristic semiring. There are several semirings with carrier B = f?; 0; 1g3For topologists: U iX and UfX would di�er for bounded complete, non-sober ground domains X. I do notknow whether such domains exist. - 32 -



with ? � 0; 1. In all of them, multiplication is given by parallel conjunction. Hence, wechoose the semiring with addition being parallel disjunction. Power constructions with thischaracteristic semiring are called set domain constructions following [9]. They admit espe-cially nice logical operations. Mixed power domain and sandwich power domain | de�nedfor algebraic ground domains by Gunter and Buneman | provide two di�erent set domainconstructions.The mixed power domain is free for the mix theory as Gunter [5, 6] and I independentlyfound out. Mix algebras are commutative idempotent monoids enriched by an additionalunary operation `?'.4 In the following de�nition, we give | in contrast to Gunter | aminimal set of axioms, i.e. for each of the four axioms, there is a commutative idempotentmonoid satisfying all axioms except the given one.De�nition 10.3 (Mix algebras)A mix algebra (P; +; 0; �?) is a commutative idempotent monoid domain (P; +; 0) withan additional continuous operation �? : P! P satisfying the following 4 axioms(A1) A? � 0 (A2) A? � A(A3) A+ A? � A (A4) (A+B)? � A? + B?A morphism f between two mix algebras is a mix homomorphism i� it is additive andsatis�es f(A?) = (fA)?.Mix algebras are nothing else than B-modules; A? is ? �A. The axioms of mix theory easilyfollow from the module axioms:(I) A +A = 1 �A+ 1 �A = (1 + 1) �A = 1 �A = A(A1) A? = ? �A � 0 �A = 0(A2) A? = ? �A � 1 �A = A(A3) A +A? = 1 �A+? �A = (1 +?) �A = 1 �A = A(A4) (A+ B)? = ? � (A+ B) = ? �A+ ? �B = A? +B?The mix theory as de�ned above allows to derive some theorems which hold in all mixalgebras. Among those, there is (A3) and (A4) with equality. We now present the mostimportant of these theorems with their proofs which end up in a characterization of mixhomomorphisms.(T1) A+B? � A since A+ B? A1� A + 0 N= A(T2) A+A? = A by (A3) and (T1)(T3) 0? = 0 since 0 T2= 0 + 0? N= 0?(T4) A?? = A? since A?? A2� A? T2= A? +A?? T1� A??(T5) A? = A i� A � 0Proof: `)' A lhs= A? A1� 0 `(' A? A2� A T2= A+ A? rhs� 0 +A? N= A?4denoted by 2 by Gunter - 33 -



(T6) X � 0 and X � A i� X � A? i.e. A? is the greatest lower bound of 0 and A.Proof: `)' X � 0 implies X = X? by (T5). X � A implies X? � A? by monotonicityof `?'. Together, X � A? follows. `(' by (A1) and (A2).(T7) (A+B)? = A? + B?Proof: `�' is (A4). `�' is deduced by (T6) from A? + B? � 0 (by (A1) and (N)) andA? + B? � A+B (by (A2)).(T8) The three statements A � A+ B and A? � B? and A? � B are equivalent.Proof : (1)) (2) : A? 1� (A+ B)? T7= A? + B? T1� B?(2)) (3) : A? 2� B? A2� B(3)) (1) : A T2= A +A? 3� A+ B(T9) X � 0 and X � A and A+X � A i� X = A?Proof: `(' is immediate by (A1), (A2), and (A3).`)': X � 0 and X � A imply X � A? by (T6). A +X � A implies A? � X by (T8).(T10) Every mix algebra is a B-module.Proof: We de�ne 0 �A = 0, 1 �A = A, and ?�A = A?. By (A1) and (A2), this operationis monotonic in its B-argument, whence it is continuous.r � 0 = 0: (T3)r � (A+ B) = r �A+ r �B: (T7)0 �A = 0: immediate(r+ s) �A = r �A+ s �A: by neutrality if r = 0 or s = 0, by idempotence if r = s,and by (T2) if r = 1 and s = ? or vice versa.1 �A = A: immediater � (s �A) = (r � s) �A: the only di�cult case r = s = ? is handled by (T4).Gunter de�ned mix algebras by an axiom system consisting of (T7), (T4), (T2), (A2),and (T1). Because (T1) implies (A1) by choosing A = 0 and (T2) implies (A3) and (T7)implies (A4), his mix theory is equivalent with ours.(T9) is a particularly interesting theorem. It implies that the operation `?' is uniquelydetermined in a given mix algebra, i.e. for every commutative idempotent monoid, there isat most one choice for the operation `?' to turn it into a mix algebra. Another importantconsequence is the following:Theorem 10.4An additive morphism between two mix algebras is automatically a mix homomorphism,and an additive morphism between two B-modules is automatically linear.Proof: Let f : X ! Y be a continuous additive map between the two mix algebras Xand Y. Then for all A 2 X, A? � 0 and A? � A and A + A? � A imply f(A?) � 0 andf(A?) � fA and fA+ f(A?) � fA respectively. By (T9), f(A?) = (fA)? follows. 2Finally, one can show that the mixed power domain is initial for algebraic ground domain:- 34 -



Theorem 10.5 For every algebraic domain X, the mixed power domain over X and theinitial set domain over X coincide.A proof may be found in [5].In contrast to the mixed power domain, the sandwich power domain is �nal:Theorem 10.6 For every algebraic domain X, the sandwich power domain over X andthe �nal set domain [[X! B] rlin! B] are isomorphic.This theorem may be proven by combining the results about lower and upper power domain.A more clumsy, direct proof may be found in [7].11 ConclusionThe algebraic framework introduced in this paper was developed to �nd out the commonfeatures of the known explicit constructions of Plotkin [14], Smyth [16, 17], Buneman et al.[2], and Gunter [5, 6]. It turned out to be general enough to cover also the proposals in [10, 12]concerning certain types of free monoids, and in [13] concerning free semiring modules.The new notion of power homomorphisms immediately implies the notions of initialityand �nality of power constructions. Whereas initiality is closely related to free modules,�nality brings up a new aspect. The explicit description of �nal constructions in terms ofsecond order `predicates' indicates that such constructions may easily be implemented in afunctional language that only has to provide the semiring addition as special feature (for thesandwich power domain for instance, this is `parallel or').The number of di�erent power constructions satisfying the axioms of section 3 is enormous.For every semiring, there is an initial and a �nal construction that seem to coincide in rarecases only. Besides these two extremes, there might be a variety of other constructions withthe same characteristic semiring. We found for instance nine further C-constructions besidesthe initial and the �nal one. One might guess that the variety of di�erent constructionsincreases with the complexity of the characteristic semiring.The spectrum of power constructions with given characteristic semiring as well as thedomain-theoretic properties of the initial and �nal construction are not yet thoroughly inves-tigated (see the host of open problems indicated in this paper). Reasons might be the lack ofexamples and some inherent complexity of the theory. The �ve explicit constructions lower,upper, convex, mixed, and sandwich power domain have characteristic semirings of at mostthree elements, and even the seemingly simple case of the upper semiring is not completelyunderstood (at least by the author).A The core of an R-X-moduleThis appendix is concerned with the proof of Theorem 7.3 which characterizes the cores ofR-X-modules. The proof is not included in the main text because it uses topological methodsinstead of equational reasoning. As Theorem 7.3 is a generalization of some theorems in [12],many of the following auxiliary propositions may be found there. They are included here forthe sake of completeness. - 35 -



A.1 Directed closureA subset S of a domain X is directed closed i� the suprema (w.r.t. X) of all directedsubsets of S belong to S. Since arbitrary intersections of directed closed subsets of X aredirected closed, there is a least directed closed superset A for every subset A of X. We showsome properties of this set operator in the sequel.Proposition A.1 If f : X ! Y is a continuous function between two domains, thenf [A] � f [A] holds for all subsets A of X.Proof: Let B = f�1[f [A]] = fx 2 X j fx 2 f [A]g. For all a in A, fa 2 f [A] � f [A]holds, whence A � B. If D is a directed subset of B, then f [D] is a directed subset of f [A].f(FD) = F f [D] holds by continuity of f . Since f [A] is directed closed, it contains F f [D],whence FD is in B.Thus, we have seen that B is a directed closed superset of A. Hence, A is a subset of B,whence f [A] � f [A]. 2Proposition A.2Let X and Y be two domains, and A � X and B � Y. Then A�B = A�B holds.Proof: Let �1 : X �Y ! X and �2 : X �Y ! Y be the two projections. Since theprojections are continuous, Prop. A.1 yields �1[A� B] � �1[A� B] � A and analogously�2[A�B] � B. These inclusions imply A� B � A� B.For the opposite direction, we also employ Prop. A.1. Using �u = �y: (u; y), one obtainsfor arbitrary sets U � X and V � Y the inclusion U � V = Su2U �u[V ] � Su2U �u[V ] �Su2U U � V = U � V . Analogously, one may show U � V � U � V . Combining bothinclusions, one �nally obtains A�B � A�B � A�B = A�B. 2The Proposition above allows to prove two statements about closure properties of sets w.r.t.continuous operations.Proposition A.3 Let X be a domain and A a subset of X.(1) If A is closed w.r.t. a continuous unary operation f : [X! X], i.e. f [A] � A, then Ais also closed w.r.t. f .(2) If A is closed w.r.t. a continuous binary operation g : [X�X! X], i.e. g[A�A] � A,then A is also closed w.r.t. g.Proof:(1) By Prop. A.1, f [A] � f [A] � A holds.(2) By the same statement and Prop. A.2, we obtain g[A�A] = g[A� A] � g[A� A] � A.2Finally, we estimate the size of the directed closure.Proposition A.4 Let A be a subset of a domain X. Then jAj � 2jAj holds.- 36 -



Proof: Let B = fFS j S � A; FS existsg. Then A � B holds since a = Ffag holds forall a 2 A. We show that B is directed closed. If D is a directed subset of B, then for all din D there is a subset Sd of A such that d = FSd. Then FD = Fd2D(FSd) = F (Sd2D Sd).Because Sd2D Sd is a subset of A, FD is a member of B.Since B is a directed closed superset of A, A � B follows, whence jAj � jBj � j2Aj = 2jAj. 2Note that the set B in this proof contained the lubs of all subsets of A that exist, notonly the lubs of the directed subsets of A. One might believe that the set bA of all lubs ofdirected subsets of A equals A. This belief is however wrong; in general, bA does not containthe lubs of directed sets of lubs of directed sets of A.A.2 Proof of Theorem 7.3In this paragraph, the proof of Th. 7.3 is performed by means of some auxiliary propositions.Proposition A.5 Let M be an R-X-module. The setM# = fr1 � �x1 + � � �+ rn � �xn j n 2 N0; ri 2 R; xi 2 Xgsatis�es the properties (1) through (4) of Def. 7.2, i.e. M# contains 0 and all �x, and isclosed w.r.t. addition and multiplication by a factor in R.Proof: Obvious. 2Proposition A.6 jM#j � jRjjXjProof: Because of r � �x+ r0 � �x = (r+ r0) � �x, one can arrange r1 � �x1+ � � �+ rn � �xnsuch that every x in X occurs at most once. Those x that do not occur may be added as0 � x. Thus, jM#j � jX! Rj = jRjjXj. 2Proposition A.7 M# satis�es properties (1) through (5) of Def. 7.2, i.e. it is an R-X-submodule of M.Proof: (1) and (2) hold because of Prop. A.5 and M# � M#. Property (3) for M#means this set is closed w.r.t. the binary continuous operation `+', whence M# is also closedw.r.t. `+' by Prop. A.3 (2).For r 2 R, let pr : [M ! M ] be given by prm = r �m. Property (4) for M# means thisset is closed w.r.t. the unary continuous operation pr, whence M# is also closed w.r.t. pr byProp. A.3 (1) for all r. 2Proposition A.8 Mc =M#Proof: By Prop. A.7, M# is an R-X-submodule of M. Since Mc is the least such set,Mc �M# holds. Conversely, Mc being directed closed and M# �Mc implies M# �Mc.2Proposition A.9 jMcj � 2(jRjjXj) - 37 -



Proof: By Prop. A.6, jM#j � jRjjXj holds, and Prop. A.4 yields jBj � 2jBj. 2AcknowledgementsI am most grateful to Fritz M�uller for his hints to the literature, many fruitful discussions, andsuggestions on a draft version. Helmut Seidl also was always ready for discussions. Carl Gunterprovided valuable hints to improve terminology and notation.References[1] M. Broy. A �xed point approach to applicative multiprogramming. In M. Broy and G. Schmidt,editors, Theoretical Foundations of Programming Methodology. Reidel, 1982.[2] P. Buneman, S.B. Davidson, and A. Watters. A semantics for complex objects and approximatequeries. Internal Report MS-CIS-87-99, University of Pennsylvania, October 1988. Also in: 7thACM Principles of Database Systems.[3] C.A. Gunter. Universal pro�nite domains. Information and Computation, 72:1{30, 1987.[4] C.A. Gunter. A logical interpretation of powerdomains. Internal report without number anddate, University of Pennsylvania, before September 1989.[5] C.A. Gunter. The mixed powerdomain. Internal Report MS-CIS-89-77, Logic & Computation18, University of Pennsylvania, December 1989.[6] C.A. Gunter. Relating total and partial correctness interpretations of non-deterministic programs.In P. Hudak, editor, Principles of Programming Languages (POPL '90), pages 306{319. ACM,1990.[7] R. Heckmann. Power domains and second order predicates. Study Note S.1.6-SN-25.0, Universit�atdes Saarlandes, PROSPECTRA Project, February 1990.[8] R. Heckmann. Power Domain Constructions. PhD thesis, Universit�at des Saarlandes, 1990.[9] R. Heckmann. Set domains. In N. Jones, editor, ESOP '90, pages 177{196. Lecture Notes inComputer Science 432, Springer-Verlag, 1990.[10] M.C.B Hennessy and G.D. Plotkin. Full abstraction for a simple parallel programming language.In J. Becvar, editor, Foundations of Computer Science, pages 108{120.Lecture Notes in ComputerScience 74, Springer-Verlag, 1979.[11] K. Hofmann and M. Mislove. Local compactness and continuous lattices. In Banaschewskiand Ho�mann, editors, Continuous Lattices, Bremen 1979. Lecture Notes in Mathematics 871,Springer-Verlag, 1981.[12] R. Hoofman. Powerdomains. Technical Report RUU-CS-87-23, Rijksuniversiteit Utrecht, Novem-ber 1987.[13] M.G. Main. Free constructions of powerdomains. In A. Melton, editor,Mathematical Foundationsof Programming Semantics, pages 162{183. Lecture Notes in Computer Science 239, Springer-Verlag, 1985.[14] G.D. Plotkin. A powerdomain construction. SIAM Journal on Computing, 5(3):452{487, 1976.[15] M.B. Smyth and G.D. Plotkin. The category-theoretic solution of recursive domain equations.SIAM Journal on Computing, 11:761{783, 1982.[16] M.B. Smyth. Power domains. Journal of Computer and System Sciences, 16:23{36, 1978.[17] M.B. Smyth. Power domains and predicate transformers: A topological view. In J. Diaz, editor,ICALP '83, pages 662{676. Lecture Notes in Computer Science 154, Springer-Verlag, 1983.- 38 -


