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Abstract

The variety of power domain constructions proposed in the literature is put into a
general algebraic framework. Power constructions are considered algebras on a higher
level: for every ground domain, there is a power domain whose algebraic structure is
specified by means of axioms concerning the algebraic properties of the basic operations
empty set, union, singleton, and extension of functions. A host of derived operations
is introduced and investigated algebraically. Every power construction is shown to be
equipped with a characteristic semiring such that the resulting power domains become
semiring modules. Power homomorphisms are introduced as a means to relate different
power constructions. They also allow to define the notion of initial and final constructions
for a fixed characteristic semiring. Such initial and final constructions are shown to exist
for every semiring, and their basic properties are derived. Finally, the known power
constructions are put into the general framework of this paper.

1 Introduction

A power domain construction maps every domain X of some distinguished class of domains
into a so-called power domain over X whose points represent sets of points of the ground
domain. Power domain constructions were originally proposed to model the semantics of non-
deterministic programming languages [14, 16, 10, 13]. Other motivations are the semantic

representation of a set data type [9], or of relational data bases [2, 5].

In 1976, Plotkin [14] proposed the first power domain construction. Because his construc-
tion goes beyond the category of bounded complete algebraic domains, Plotkin proposed the
larger category of SFP-domains that is closed under his construction. A short time later,
Smyth [16] introduced a simpler construction, the upper or Smyth power construction, that
respects bounded completeness. In [17], a third power domain construction occurs, the lower
power domain, that completes the trio of classical power domain constructions.

Starting from problems in data base theory, Buneman et al. [2] proposed to combine
lower and upper power domain to a so-called sandwich power domain. Gunter investigated



the logic of the classical power domains [4]. By extending the logic of Plotkin’s domain in a
natural way, he developed a so-called mixed power domain [5, 6]. Plotkin’s power domain is
a subset of the mixed one, and this in turn is a subset of the sandwich power domain.

We independently found the sandwich and mixed power domains in an isomorphic form as
big and small set domains when developing domain constructions that would give semantics
to an abstract data type of sets in a functional programming language (see [9]).

Given at least five different power domain constructions, the question arises what is the
essence of these constructions, i.e. what are their common features which allow the application
of the notion ‘power domain’. Thus, we look for a theory of power domain constructions that
covers the existing ones and provides answers to the following questions:

(1) What are power domain constructions?
(2) How are different power domain constructions related to each other?
(3) Are there more than the five constructions enumerated above?

(4) If so, how are these five constructions distinguished among all the others?

In addition, a general theory of power constructions provides — if it is to be useful — general
theorems that are applicable to all specific power domain constructions.

Gunter presents in [6] the semantics of a non-deterministic language in terms of a generic
power domain construction using the three basic operators of singleton, binary union, and
extending set-valued functions from points to sets. These generic semantics may then be
instanciated by choosing a concrete construction instead of the generic one. The concrete
construction only has to provide the necessary basic operations.

Thus, we define a power domain construction by axioms concerning the existence of some
basic operations. In addition, we specify some axioms that should be satisfied by the basic
operations. One might worry about the actual choice of these axioms, but we think that our
choice is quite natural. This opinion is strengthened by the fact that our definition leads
to a rich theory, covers the known power constructions, and allows to characterize them
algebraically.

After introducing some notions and notations, we present the basic operations and their
axioms in section 3. In section 4, we indicate a variety of consequences of these axioms.
Main proposed in [13] to define power domains as free modules over semirings. In section 5,
we show that our power constructions are equipped with a characteristic semiring, and the
resulting power domains are (not necessarily free) modules w.r.t. this semiring.

Power homomorphisms are introduced in section 6 as a means to relate different power
constructions. They also allow to define the notion of initial and final constructions for a given
characteristic semiring. In sections 8 and 9, we prove that such initial and final constructions
exist for every semiring, and we derive their basic properties. Since the concept of a semiring is
very general, we thus obtain a host of power domain constructions. The concluding section 10
then puts the five known power constructions mentioned above into the general framework
of this paper.



2 Notions and notations

Following the programme outlined above, the paper mainly uses algebraic techniques,
e.g. equational reasoning. Only a minimum of domain theory is needed; it is collected in this
section.

A poset (partially ordered set) (P, <) is a set P together with a reflexive, antisymmetric,
and transitive relation ‘<’. Most often, we identify the poset P = (P, <) with its carrier P.
We refer to the standard notions of upper and lower bounds, bounded subsets, least upper
bound (lub) denoted by ‘| |’, greatest lower bound (glb), directed set, directed complete poset
(domain), monotonic and continuous function.! Hence, a domain is just a directed complete
poset. It need not possess a least element.

A domain is bounded complete if every bounded subset has a lub, and it is complete if
all subsets have lubs. A domain is discrete if x < y implies * = y. There is a one-to-one
correspondence between discrete domains and (unordered) sets.

The product of two sets A and B is denoted by A x B, and similarly, the product of
two domains X and Y is written X X Y. The set of all functions from a set A to a set
B is denoted by A — B, whereas the domain of continuous functions from domain X to
domain Y is written [X — Y]. Consequently, f: A — B means f is just a function, whereas
f:[X — Y] means f is continuous. Continuous functions are also called morphisms.

A point a in a domain X is way-below a point b, written a < b, iff for all directed sets
D C X with b < || D, there is an element d in D such that ¢ < d. The domain is continuous
if for every point z, the set {a | a < 2} is directed and has lub z.

A point @ in a domain X is isolated (or: finite) iff it is way-below itself. The set of all
isolated points of X is called X°. A domain X is algebraic iff every point of X is the lub of a
directed set of isolated points. The set X° of all isolated points of X is called the base. Every
algebraic domain is continuous.

Bifinite or profinite domains [3] are the limits of w-chains of finite domains. Every
bounded complete algebraic domain is bifinite, and every bifinite domain is algebraic. The
function space of two bifinite domains is bifinite again, whereas the function space of two

algebraic domains need not be algebraic.

Following [15], a functor in the category of domains and continuous functions is locally
continuous if its functional part acts continuously on the function spaces. Such functors are
continuous. Hence they map bifinite domains to bifinite domains if they map finite domains
to finite domains.

3 Specification of power constructions

3.1 Constructions

A power construction is something like a function which applied to a domain X yields
a new domain, the power domain over X. It is not really a function since there is no set of
all domains. There may be total constructions that are applicable to all domains, as well as
partial constructions applicable to a special class of domains only.

1 . .
w.r.t. directed sets, not ascending sequences.



Definition 3.1 A (domain) construction F : X — FX attaches a domain FX to every
domain X belonging to a distinguished class def F. F is a total construction if def F is
the class of all domains, otherwise a partial one.

A power (domain) construction P is a domain construction satisfying the axioms pre-
sented in the next paragraphs. PX is called the power domain over the ground domain
X. The elements of (the carrier of) PX are called formal sets.

If a power construction P is defined for a class C = def P, then the power domains PX

are not required to be in C again.

Often, a power domain cannot be realized concretely as a set of subsets of the ground
domain. Hence the notion of formal sets in contrast to actual sets, i.e. the ordinary subsets
of the ground domain. Formal set operations will be notationally distinguished from actual

set operations by means of additional bars, e.g. & vs. U.

In the following, the symbol P denotes a generic partial power construction defined for a
class D = def P of domains. We immediately require the class D to contain the one-point-
domain 1 because the power domain P1 plays an important algebraic role.

3.2 Empty set and finite union

As a first requirement, we want the power domain PX to contain a formal empty set and
to provide formal set union. Both the existence of an empty set and the axioms for union

may be subject to discussions.

Nomne of the original power domain constructions contained the empty set. However, they
were sometimes extended by the empty set in later developments. For our work, the empty

set is important and cannot be dispensed with.

Mathematical set theory suggests that union be commutative, associative, and idempo-
tent. The last requirement turns out to be the least important one. For the sake of generality,
we omit it as far as possible. Thus, the following results apply for ‘multi-power’ domain con-

structions as well.

For a (generalized) power construction P, all power domains PX have to be equipped
with a commutative and associative operation Y : [PX x PX — PX]. In addition, there has
to be a point 0 in PX which is the neutral element of union ‘&’. If union is idempotent, it

is a real power construction, and otherwise a multi-power construction.

3.3 Monoid domains

To have generally applicable notions, we define the algebra of domains with empty set

and union in a more abstract setting.

Definition 3.2 (Monoid domains and additive maps)
A monoid domain (or simply monoid) (M, +, 0) is a domain M together with an asso-
ciative operation 4 : [M x M — M] and an element 0 of (the carrier of) M which is the
neutral element of ‘4.
The monoid is commutative iff ‘4’ is.
A map f:[X — Y] between two monoids is additive iff it is a monoid homomorphism,

ie. f(0x) =0y and f(a+b) = fa+ fb hold.



Many authors, including myself in previous papers, call the additive maps linear. However,
the term ‘linear’ is more appropriate for the module homomorphisms introduced in section 5.1.
In many common cases, including the usual power constructions, additivity and linearity
coincide.

3.4 Singleton sets

Returning to the power construction, we next require a morphism which maps elements
into singleton sets. We denote it by ¢ = {.[} : [X — PX], z — {z[}.

By means of the operations 0 and Y, we may extend {.|} to finite sequences of ground
domain points:
oy - {leaf B -Gz} ifn>0
R 0 ifn=0
Because of commutativity and associativity, one is free to permute the n arguments of
{lz1, ..., x,[}. If union is idempotent, one additionally might delete and add multiple occur-

rences of elements. Thus {.[} becomes a mapping from finite actual sets to formal sets in this

case.

3.5 Function extension

So far, we required the existence of singletons, empty set, and binary union. Singleton
and union are not yet interrelated by axioms, and there are no axioms yet relating power
domains over different ground domains. Both relationships are established by the extension
functional. It takes a set-valued function defined on points of a ground domain and extends
it to formal sets.

Definition 3.3 Let X be a domain in D and Z an arbitrary domain. A function F :
[PX — Z] is an extension of a function f : [X — Z] iff F{z[} = fz holds for all z in X,
or equivalently iff F'or = f.

For every two domains X and Y in D, ezt is a morphism mapping morphisms from X
to PY into morphisms from PX to PY. For every f : [X — PY], the extended function
f = extf should be an additive extension of f. These axioms imply f{z1, ..., z,[} =
fzi1 8 -8 fa, for n > 0.

N

PX

PY



We call the ext axioms indicated above primary axioms because their relevance is im-
mediate. In addition, we require some ‘secondary axioms’ which will be stated below as
(St). (S1) and (S2) specify additivity in the functional argument. In the next section, power
constructions are shown to be functors by means of (S3) and (54).

e lor all domains X, Y in D, there is a morphism ezt = = : [[X — PY]| — [PX — PY]]
with

(P1) fo=9

(P2) f(Aw B)=(fA) 8 (fB)

(P3) [zl = fa o four=Ff

Together, (P1) through (P3) mean f is an additive extension of f.

(S1) ext(Az.0) A = 0 or shortly ext @ = 8 where 8 denotes the constant function Az. 8.

(S2) ext(Nz. fa B gr)A=(ext fA) Y (extgA).
Raising ‘&’ to functions, one may shortly write f & g = f Y ¢.

(S3) ext(Nz. {z[}) A=A or: 7=id

(S4) For every two morphisms f: [X — PY] and g :[Y — PZ],

ext g (ext f A) = ext (Aa.extg(fa)) A

holds for all A in PX, or: gof=gof
! g
PX PY PZ
L ! L f
X Y

Note that we do not require f to be the only morphism satisfying (P1) through (P3) for
given f. However, an important class of power constructions will have this property. For
these constructions, (S1) through (S4) become provable (see section 8). That is why we call
them secondary axioms.

3.6 Examples

Sets may be conceived as discrete domains, and all functions between discrete domains
are continuous. Hence, ordinary power set formation is a partial power domain construction
defined for discrete domains.



Pset X = PX = {A | A C X} ordered discretely for discrete domains X,
o 0 =10,

e AU B=AUB,

{lzl = {«},

o ecxt fA=U,eq fa.

Union is obviously commutative, associative, and the empty set is its neutral element. The
axioms for extension read as follows:

(P1) Usep fa =10 (P2) Uecaun fe = Uaea fa U Uyep fb
(P3) Usegay fr = fa

(51) Usea®=10 (52)  Usea(faUga) = Usea fa U Uyeaga
(53) Usea{a} =4 (54)  W{gb 10 € Usen fa} = UseaUnesa 90

All these equations hold, i.e. P, ¢ is a power construction.
ext f is not the only additive extension of f if X is infinite. Another additive extension of

fiX —P,Y is FA= Usea fa if Ais finite

Y otherwise
An extension functional defined in this manner would however violate axiom (S3).

The empty set and all singletons are finite, and finite unions of finite sets are finite. Hence,
there is another power construction for sets:

Prn X ={A C X | Ais finite}

whose operations are the restrictions of the operations above. In this construction, every
function f:X — Pg, Y has a unique additive extension.

3.7 Summary
A power construction is a tuple (D, P, 0, &Y, ¢, ) where

e D is a class of domains;

¢ P maps domains belonging to class D into domains;

e 0 = (QX)XED with 0Ox . PX

o U = (HX)XED with Yy [PXXPX%PX]

e 1+ = (tx)xeD with ¢y : [X — PX]

e = (exth)XyGD with extxy: [[X — PY] — [PX — PY]]

satisfying the axioms (domain indices are dropped!)
(C) AYB=BY A
(A) A9 (B (C)=(AYgB)YC

(N) pyA=A4A-06=4



Pl) fe=28

(
(P2)  J(Au B)=(JA) e (]B)
(

P3) Toi=f

(S1) Mz.6=AX.0

(S2) fdg=fdyg with ‘4d’ raised to functions
(S3) 7=1id

(S4) gof=7gof

4 Derived operations in a power construction

The operations as specified above allow to derive many other operations with useful
algebraic properties. We first consider some set operations including function mapping (4.1),
big union (4.2), and Cartesian product (4.3). Function mapping turns the power construction
into a locally continuous functor.

In section 4.4, we concentrate on the power domain P1 over the one-point-domain 1 and
show that it incorporates the inherent logic of the power construction in its operations. In
section 4.5, existential quantification £ is introduced. Given a formal set and a predicate, £
intuitively tells whether some member of the set satisfies the predicate. In section 9, £ will

be used to define power domain constructions in terms of second order predicates.

Elements of a power domain PX may be multiplied by logical values, i.e. members of
P1 (see section 4.6). Intuitively, multiplication of A by the logical value b results in the
conditional if b then A else ). In case X = 1, this operation induces a binary operation

within P1. This operation may be interpreted as conjunction (section 4.7).

4.1 Mapping of functions over sets

Given a morphism f : [X — Y], it can be composed with the singleton operation to
obtain to f : [X — PY]. The resulting set-valued function can be extended to set arguments.
Thus, we obtain

map =" [[X = Y] = [PX — PY]] f=to/.

The primary and some secondary axioms of extension may be translated into corresponding
properties of map.

(P1Y fo =8 i

- . : PX PY
(P2) f(AY B)=(fA) & (fB)
(P3) for=1of  or Jal = { /=) . )
(53)" id B s
(S4) Gof=gof X Y



Proof:

(P1) Fo=1af(0)=0 by (PL)
P2y 1mmed1ately by (P2)

(

(P3) for=tofor=1vof by (P3)

(S3) id=1oid=1=1id by (S3)

(S4) go f = ogOLof(é)LogOLof(];:)))Logof:g?f ]

The properties (P1)’ through (P3)” imply f{|x1, cesxall = {Ifer, ..o, faull. The last
two properties show that P becomes a functor by means of map. Since map is continuous
when considered a second order function, this functor is locally continuous, whence every
power construction sends bifinite domains to bifinite domains if it sends finite domains to
finite domains (see section 2).

4.2 Big union

If X is in D such that PX is back in D again, the identity
id : [PX — PX] may be extended to a morphism U =
id : [P(PX) — PX]. The axioms (P1) through (P3) of P(PX)

extension imply
(HyUe=9 U
(2) U(AY B)=UABQ UB

— id
(3) U{Ish =5 ox

PX
whence U {5y, ..., 9% =549 -85, Thus, Uis a

formal big union of formal sets of formal sets.

4.3 Double extension

Let X, Y, and Z be three domains in D, and let x : [X x Y — PZ] be a binary operation
written in infix notation. By double extension, one obtains

A% B = ext (Aa.ext (A\b.axb) B) A and A% B = ext (Ab. ext (Aa.axb) A) B

The results are two morphisms *, * : [PX x PY — PZ].

A power construction is symmetric iff A * B = A% B holds for all X,Y,and Z in D,
Ain PX, B in PY, and x : [X X Y — PZ]. Power constructions are not automatically
symmetric. Later, we shall meet examples for this.

Our two sample power constructions for discrete domains — set of arbitrary subsets and
set of finite subsets — are both symmetric because of

UUa*b:UUa*b

a€A beB beB a€A



For two singletons, {lal} * {b[} = {la}} * {b]} = a x b may be shown using (P3) twice.

Because of (P1) and (P2), ‘%’ is obviously additive in its first argument:
0xB=0 (A Y A)*xB=(AxB)Y (4, % B)

For additivity in the second argument, (S1) and (S2) have to be employed in addition because

B appears in the functional argument of the outer occurrence of ext. Thus, we get
A%0=0 A% (B Y By)=(AxBy) Y (A% By)

‘% has the same properties; the proofs are however exchanged.

For formal finite sets, one then obtains

Jor o anl * fyrs ooyl = oo 2l * o ynl) =
faixy; |1 <i<n, 1<j<mf}
using an obvious generalization of ZF notation to formal sets.

Cartesian product of formal sets is a special instance of double extension. If X and Y are
in D such that X x Y is also in D, then

AX B = ext (Aa. ext (Ab. {(a,b)}) B) A and
AX B = et (Ab. ext (Aa. {(a,b)]}) A) B

are formal Cartesian products.

If the class D where the power construction is defined is closed w.r.t. Cartesian product,
then symmetry may be defined in terms of formal Cartesian products because of the following
proposition:

Proposition 4.1 Let X and Y be in D such that X x Y also is in D. Then for all Z in
Dand «: [X xY — PZ], A% B = ext (x) (A xb) and A% B = ext (x) (A x b) hold.

Proof:
ext (%) (A>_<> B) = ext (%) (ext (Aa.ext (Ab.{|(a,b)[}) B) A)
ot (Aa. ext (%) (ext (Ab. {(a,b)]}) B)) A
ot (Aa. ext (Ab. eat (%) {(a,B)]}) B) A
B eat (Aa. ext (Ab.axb) B) A
The statement about “x” and ‘X’ is proved analogously. a

Corollary 4.2 Let P be a power construction such that D = def P is closed w.r.t.
product, i.e. X, Y in D implies X X Y in D. Then P is symmetric iff for all X, Y in D,
Ain PX,and B in PY, A X B = A x B holds.

- 10 -



4.4 The logic of power constructions

Each power construction is equipped with an inherent logic. In this section, we present
the domain of logical values together with disjunction and existential quantification. The
corresponding conjunction is defined in section 4.7.

The domain of logical values is obtained by interpreting the power domain P1 where
1 = {o}. It has at least two elements: 0 and {¢[}, and is equipped with the binary operation
‘Y’. We interpret 0 as ‘false’ denoted by 0, {o[} as ‘true’ denoted by 1, and ‘Y’ as formal
disjunction ‘4+’. From the power axioms, one gets the following properties:

e ‘1’ is commutative and associative.
e 0t+ta=a+0=a forall ain P1.

o In case of a real power construction, one additionally has a + ¢ = a for all a in P1.

Table of values for a generalized power construction: for a real power construction:
+10 1 + 10 1
010 1 010 1
{1 7 111 1

Further statements about P1 beyond the ones above are not possible for generic power
constructions. In particular, one does not know whether there are further logical values
besides 1 and 0, and ¢ + 1 = 1 does not generally hold, even for real power constructions.
There is no information about the relative order of 0 and 1; 0 might be below 1, above 1, or
incomparable to 1.

The two power set constructions — set of arbitrary subsets and set of finite subsets —
both have the same logic: P1 is {0, {¢}} or {0, 1} with ordinary disjunction.

4.5 Existential quantification

Extension ext: [[X — PY] — [PX — PY]] is polymorphic over the domains X and Y.
In this section, we consider the special case Y = 1; section 4.6 is concerned with X = 1.

Extension to the one-point domain ez : [X — P1] — [PX — P1]]? may be logically

interpreted along the lines of the previous section. It has the following properties:
(P1) exp6=0

ex
(P2) exp(AY B)=(expA)+ (expDB) PX ’ P1
(P3) exp{lalt =pa

(S1) ex (Az.0) A =0 ! P

(S2) ex (Az.pr+qa)A=(expA)+ (exqA)

(S4) exp(ext fA)=ex (Na.exp(fa))A X

whence ex f{|lay, ..., 2,[} = foy +---+ fz,. Thus, ex means existential quantification. It

takes a predicate p : [X — P1] and a formal set A and tells whether some member of A

2This morphism is called ez to distinguish it from the fully polymorphic ext.

- 11 -



satisfies p. (S4) then informally reads: There is z in |J,c4 fa satisfying p iff there is a in A
such that there is x in fa satisfying p.

Existential quantification may also be used to translate formal sets into second order
predicates. For this end, we exchange the order of arguments of ez by uncurrying, twisting,
and then currying again. The outcome is a morphism & : [PX — [[X — P1] — P1]] mapping
formal sets into second order predicates. The properties of ez presented above translate easily

into properties of £:
(P1) £0=Ap.0

(P2) E(A Y B)=\p.(EAp)+ (EBp)

(P3) £z} = Ap.p2

)
) €
)
(S4) & (ext fA) = Ap. € A(Na. € (fa) p)

These results suggest to define a power construction for given domain P1 by (a slight variant
of) PX = [[X — P1] — P1]. This method to obtain power constructions will be presented
and explored in section 9.

4.6 Multiplication by a logical value

In this section, we consider extension of a morphism with domain 1, i.e. the instance
zt : [[1 — PX] — [P1 — PX]]. The function space [1 — PX] is isomorphic to PX. Thus,
we get a morphism [PX — [P1 — PX]]. Uncurrying and exchanging arguments leads to
the ‘product’ - : [P1 x PX — PX]. The definition is b -5 = ext (Ao. 5)b. We call this
product external since its left operand is not a member of PX. The axioms of ext imply the

characteristic properties of the product.

Proposition 4.3

(P1) 0-5=0

(P2) (a+b)-S=(a-5)Y(b-95)

(P3:) 1.-8§=5

(S1) b-6=60

(S2:)  b-(S1 9 52)=(b-51) 9 (b-52)

(S4-)  ext f(b-S5)=0b-(ext f5)

(Sda-) (a-b)-S=a-(b-95)

(SY-) If Pis symmetric, then ezt (Az.b- fz)S =0b-(ext f9)

Algebraists will notice that these properties essentially are the axioms of left modules. This
topic will be further explored in section 5.1.

Proof:
(PL) 0-5 = ext(Mo.5)0 = 8
(P2) (a+b = ext (/\<> S)(a 9 b) ete.
(P3-) 1-5 = ext(Xo.5){e |} = (Ao.8)o =S5
(S1)  b-9 ( .0)b =9
(S2-) b ( Sy) = ext (/\<> S1 8 52)b ete.

- 12 -



(S4-)  ext f(b-95) ext f (ext(Xo. 5)b)

(S4): = ext (Ao. ext f((Ao. 5)0)) b
= ext (Ao.ext f5)b
= b-(ext f5)
(S4a-) (a-b)-S5 = ext(Ao.5)(a-b)
(54-): = a-(ext(Xo. 5)b)
= a- (b . S)
(SY:) ext(Aa.b-fz)S = ext(Aa.ext(Ao. fz)b)S
by symmetry: = ext(Xo. ext (Azx. fz)S5)b
= b-(ext f5) a

Interpreted logically, the product b- .5 resembles the conditional ‘if b then S else 0°. At least
for the cases b = 1 and b = 0, product and conditional coincide because of 1 -5 = 5 and

0-5=086.

4.7 Conjunction

Up to now, the logical domain P1 was only equipped with constants 0 and 1 and a
disjunction ‘+’. We now interpret the external product on P1 as conjunction since a - b
resembles ‘if @ then b else 0’. The algebraic properties of conjunction - : [P1 x P1 — P1] are
given by the next proposition:

Proposition 4.4

e 0-0=0b-0=0
(a1+a2)-b:(a1-b)+(a2-b)
a-(b1+b2):(a-b1)+(a-b2)
Neutral element: 1-b=56-1=10

Distributivities:

e Associativity: (a-b)-c=a-(b-c)

o If the construction P is symmetric, then ¢’ is commutative.

Proof:
e 0: immediate by (P1-) and (S1-)
Distributivities: (P2-) and (52-)
o 1: 1-b=>holds by (P3:). b-1 = ext(Xo. {lo[}) b= b holds by (53).

Associativity is just (Sda-).

e Commutativity: a-b = ext (Ao.b)a = ext(No.b-1)a = using (SY-) o
b-ext(Ao.l)a=b-(a-1)=b-a

The axioms of generic power constructions do not allow to derive more algebraic properties
for conjunction. In particular, idempotence of conjunction, the opposite distributivities, and
the laws of absorption do not generally hold. On the other side, the existing laws are powerful
enough to obtain the following table of values: - |0 1

— o
— o

0
0

- 13 -



5 Power constructions considered algebraically

5.1 Semirings and modules

The host of algebraic properties of power constructions may be described in terms of

well-known algebraic structures.

Definition 5.1 (Semiring)
A semiring domain (R, 4+, 0, -, 1) is a domain R with continuous operations such that
(R, 4, 0)is a commutative monoid, (R, -, 1) is a monoid, and multiplication *-”is additive

in both arguments, i.e.
a-0=0-a=0 a-(b14+b2)=(a-b1)+ (a-by) (a1 4 az)-b=(ay-b)+ (az-b)

The semiring is commutative iff its multiplication is, and it is idempotent ifl its addition
is, i.e. @ + a = a holds.
A semiring homomorphism h : [R — R'] between two semirings is a mapping that pre-

serves the semiring operations:
hia+b)=ha+hbd h(0)=10 h(a-b)=ha-hb h(l)y=1

The power domain P1 is such a semiring with 0 = 0, a+b = a Y b, 1 = {of}, and
a-b=ext(Ao.b)a as shown in the previous sections.

Semirings are generalizations of both rings and distributive lattices. These in turn are
generalizations of fields and Boolean algebras. Hence, both the notations (R, +, 0, -, 1) as
used in this paper and a more logical notation (R, V, F, A, T) seem to be adequate.

When semiring domains are considered which are lattices, there is a high risk to confuse
the order ‘<’ of the domain and the lattice order ‘C’ defined by a + b = b. Generally, there is
no relation between these two orders. In special cases only, they are equal or just opposite.

Definition 5.2 (Modules)
Let R = (R, +,0, -, 1) be a semiring domain and M = (M, +, 0) be a commutative
monoid domain. (R, M, -) is a module iff

t[RX M — M]

a-0p = 0p a-(B1+ By)=(a-B1)+ (a-By)
Op-A=0np (a1 +az)-B= (a1 -B)+ (ay-B)
rn-A=A a-(b-C)y=(a-b)-C

We also say ‘M is an R-module’.
Let My and M3 be two R-modules. A morphism f:[M; — M;] is linear iff

f(A+B)=fA+fB and f(r-A)=r-fA

Particularly prominent modules are those over a field; they are called vector spaces. The

notion of linearity is drawn from there.

The most important results of the previous sections may be summarized to
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Theorem 5.3 Let P be a power construction and let

b=u: [PX x PX — PX|
0=0: PX
- =Aa, S).ext(Mo.5)a: [P1xPX — PX]
1= {of: P1

Then P1 with these operations is a semiring domain, and PX is a P1l-module for all
domains X. For f : [X — PY], the extension f : [PX — PY]is linear, and for = f
holds.

The semiring P1 is called the characteristic semiring of the power construction P. Dif-
ferent power constructions may have the same characteristic semiring. For instance, the
construction of the set of all subsets and the construction of the set of finite subsets for the

class of discrete domains both have characteristic semiring {0, 1} with 1 + 1 = 1.

Conversely, one may wonder whether there is a power construction for every given semi-
ring. The answer is yes; in sections 8 and 9, two distinguished constructions with given
semiring are presented.

5.2 R-constructions

It is generally useful not to stick to the fact that the characteristic semiring be exactly
P1. It is better to be more flexible and let the characteristic semiring be some isomorphic
copy of P1. In this case, it is important to fix an isomorphism.

Definition 5.4 Let R be a semiring domain. An R-construction is a pair (P, ¢) of a
power construction P and a semiring isomorphism ¢ : [R — P1].

If R allows non-trivial automorphisms, then there are several different isomorphisms be-
tween P1 and R. Hence, we fix an isomorphism in the definition. The importance of this fixing
will be seen in the subsequent sections. Nevertheless, we shall mostly use the sloppy notation
“P is an R-construction’ without explicitly mentioning the fixed isomorphism ¢ : [R — P1].

Various derived power operations involved the power domain P1 in their functionality.

1. they may be turned into operations involving

By means of the isomorphisms ¢ and ¢~
R instead. For the sake of clarity, we mark the original operations by an asterisk in the

following, and denote the original products by “x’.

[R x PX — PX] r-A=prxA
er: [[X — R] — [PX — R]] exp=¢loex*(pop)
£: [PX—[[X— R]— R EAp =71 (E"A(pop))

These new operations enjoy the same algebraic properties as the original operations. The
proofs may be performed by simple equational reasoning. In the sequel, we shall mostly use
the new operations.
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5.3 Examples for characteristic semirings

In this section, we informally present some examples for power constructions and their
characteristic semirings.

e The lower power construction has characteristic semiring {0 < 1} where 1 + 1 = 1.
In this logic, 0 is unstable because it may become 1 while the computation proceeds.
Thus, 0 actually means ‘don’t know’ since only positive answers are reliable.

e The upper power construction has the dual semiring {1 < 0}. Here, 1 is unstable and

may change to 0 in the course of a computation. Only negative answers are reliable.

e The convex or Plotkin power construction has semiring {0, 1} with 1+ 1 = 1. The
elements are not comparable, whence computations with logical result cannot proceed.
They have immediately to decide whether the result is 1 or 0, and cannot change their
‘opinion’ afterwards.

The constructions of the set of all subsets and of the set of finite subsets have the same
characteristic semiring as Plotkin’s construction. Indeed, the construction of finite
subsets is just a special instance of Plotkin’s.

The three examples above show the importance of the empty set in our algebraic the-
ory. Without empty set resp. 0, all three semirings would collapse to {1} and could not be
distinguished.

e A power construction with a more reasonable logic should have the Boolean domain
B = {—,0, 1} as semiring. Such constructions are called set domain constructions
in [9]. The interpretation of — is ‘I do not (yet) know’. Computations with logical

results start in this state which may change to 0 or 1 if the computation proceeds.

The sandwich power domain [2] or big set domain [9] and the mixed power domain [5, 6]
or small set domain [9] both have characteristic semiring B with parallel conjunction
and disjunction.

¢ Multi-power domains containing formal multi-sets should have the natural numbers as
their semiring. There are many different ways how to arrange the naturals to form a
semiring domain. They may be ordered ascending, descending, or discretely; special
elements — or co may be added etc.

The multi-power domain of [1] has semiring {0, 1 < 2 < --- < oo}, i.e. 0is incomparable

as in Plotkin’s construction whereas the remaining naturals form an ascending chain.

e In [13], discrete probabilistic non-determinism is modeled by a power construction with
characteristic semiring R{” — the non-negative reals including infinity ordered as usual
with ordinary addition and multiplication.

e In [13] again, oracle non-determinism is modeled by a construction whose semiring is
the power set of a fixed set. The power set is ordered by inclusion ‘C’, addition is union,
and multiplication is intersection.

e A third construction in [13] models ephemeral non-determinism. Its semiring is the
so-called tropical semiring T = ({0 < 1 <2< --- < 0}, M, 00, 4, 0), i.e. addition in

T is minimum, and multiplication in T is arithmetic addition.
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6 Power homomorphisms

6.1 Definition

Homomorphisms between algebraic structures are mappings
preserving all operations of these structures. Power construc-

tions may be considered algebraic structures on a higher level. X
Thus, it is also possible and useful to define corresponding ho-
momorphisms.

A power homomorphism H : P—-Q between two power con- L
structions P and Q with def P C def Q is a ‘family’ of mor-

phisms H = (Hx)Xcaerp : [PX — QX] commuting over all Hof

power operations, i.e. 0,4

e The empty set in PX is mapped to the empty set in QX:
HO=0.

|

e The image of a union is the union of the images: PX

H(AY B)=(HA) Y (HB).

PY

e Singletons in PX are mapped to singletons in QX:
Hilzlp = {lzllo, or: Houwp =10 ‘ f

o Let f:[X — PY]. Then Ho f : [X — QY], and
exto (Ho f)(HA)= H(extp f A) has to hold for all A in X
PX. This axiom may also be written extgo(H o f)o H =
H o (extp f) (see the figure to the right).

Obviously, there is an identity power homomorphism [ : PP where all morphisms Iy
are identities. Furthermore, two power homomorphisms G : P=Q and H : Q=R may be
composed ‘pointwise’, i.e. (H oG)x = Hx o Gx. It is easy to show that the outcome is again

a power homomorphism H o G : PR,

A power isomorphism between two constructions P and @Q is a family of isomorphisms
H = Hx : [PX — QX] such that both (Hx)xeqer p and (H)_(l)Xedef o are power homomor-
phisms. Hence, two isomorphic constructions are defined for the same class of domains.

6.2 Some properties of power homomorphisms

Since power homomorphisms preserve all primary power operations, it is not surprising

that they also preserve the derived operations.

Proposition 6.1 Let H : P=>Q be a power homomorphism.
(1) Let f:[X — Y]. Then H o (mappf) = (mapof)o H : [PX — QY] (see the figure).
(2) Let b bein P1 and S in PX. Then H(b-S)=Hb-HS.

(3) Hy :[P1 — Q1] is a semiring homomorphism.
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mapg f

QX QY
[2 [2
f
H X Y H
[2 [2
mapp f
PX PY

In categorical terms, (1) means H is a natural transformation between the functors P and Q.

Proof:
(1) Ho(mapp f) = Hol(extp (tpof)) = (extg(Howpo f))oH
= (extg(tgof))o H = (mapg f)oH
(2) H(b-5)= H(ext(Xo.5)b) = ext (Ao. HS)(Hb)=(Hb)-(HS)
(3) Hy respects + = &, 0= 0, and 1 = {o[} by the definition of power homomorphisms. It
respects *" by (2). O

6.3 Linear power homomorphisms

In the following, we want to compare power constructions with the same characteristic
semiring by means of power homomorphisms. We use the notion of R-constructions P with
a fixed isomorphism from R to P1 as introduced in section 5.2.

Definition 6.2 Let R be a semiring, and let (P, ¢) and (P’, ¢’) be two R-constructions.
A power homomorphism H : P—Q is called linear iff the morphisms Hy : [PX — P'X]
are R-linear.

Linearity of the morphisms is not a matter of course. Prop. 6.1 (2) tells H(b-5) = Hb-H S
instead for b in P1. From this, it becomes evident that a power homomorphism is linear iff
it acts on R as an identity.

Proposition 6.3 Let (P, ¢) and (P’, ') be two R-constructions. A power homomor-
phism H : P—=Q is linear iff the composition ¢’ o Hq 0 ¢ : [R — R] is the identity.

Proof: To be sufficiently distinctive, we denote the product with members of P1 and
P’1 by ‘+”in this proof. r - A is then defined by ¢r + A resp. ¢'r x A.

Let H be a linear power homomorphism. Then for all » in R,

N Hi(gr)) = & (Hi(pr# {o]}) (o] is neutral in P1
= ¢ (Hai(r-{e]) R-product - defined by ¢
= ¢ '(r He{ol}) H is R-linear
= ¢ 1( o' {lo |}) H is power homomorphism

¢ (') =
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Conversely,
H(r-S)=H(pr+S8)=H(or)« HS = ¢' '(H(pr))-HS =r-HS
holds applying the definition of ‘-7 in terms of “x’. a

Hence, if R allows non-trivial automorphisms there are non-linear power homomorphisms
besides the linear ones.

6.4 Initial and final R-constructions

Initial and final power constructions are defined relative to the characteristic semiring by
means of linear power homomorphisms. Without the assumption of linearity, their existence
could not be guaranteed.

An R-construction P is initial if for all R-constructions Q there is exactly one linear power
homomorphism P Q. Finality is dual. The exact definitions however are more complex. To

prevent a construction from being initial simply because it is almost undefined, we concentrate
on total constructions defined for all domains.

Definition 6.4
A total R-construction (P, ¢) is initial if for all total R-constructions (Q, ¢') there is
exactly one linear power homomorphism H : (P, ¢)=(Q, ¢).

A total R-construction (P, ¢) is final if for all R-constructions (Q, ¢’) there is exactly
one linear power homomorphism H : (Q, ¢')=(P, ¢).

These definitions imply the existence and uniqueness of initial and final R-constructions
for every given semiring domain R, as pointed out in sections 8 and 9. If the definitions did
not refer to linear power homomorphisms, there would be no initial and final constructions
for semirings with non-trivial automorphisms.

Initial and final R-constructions have the usual properties found in algebra:

(1) If P is isomorphic to an initial (a final) R-construction P’, then P is also an initial (a
final) R-construction.

(2) For given semiring R, initial and final R-constructions are unique up to isomorphism.

The proofs of these properties are done by standard algebraic arguments — provided that
‘isomorphic’ is understood as isomorphic by a linear power isomorphism.

The main result is the following theorem:
Theorem 6.5 For every semiring R, initial and final R-constructions exist.

In section 8, we demonstrate the initial construction. Section 9 is then devoted to the final
construction. Before introducing the initial construction, we first investigate the theory
of R-X-modules because the results of this theory are used when considering the initial
construction.
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7 R-X-Modules

Before introducing the initial and final R-constructions for a semiring R, we consider R-
X-modules in this section. R-X-modules are R-modules together with a map from X. Power
domains are R-X-modules by the singleton map. The theory of R-X-modules allows to prove
a host of theorems that are applied to the theory of power domain constructions in the next
section.

7.1 Definitions
An R-X-module is an R-module together with a mapping from X to it.

Definition 7.1 An R-X-module M is a pair M = (M, n) of an R-module domain M
and a morphism 7 : [X — M].
A morphism f : (M, n) — (M', n') is R-X-linear iff f : [M — M’'] is R-linear and
fon=n'ie f(nz)=n'z foral z in X.

We already met examples for such R-X-modules and R-X-linear mappings. If H : P=Q
is a linear power homomorphism between two R-constructions, then for every ground domain
X, the instance Hx is an R-X-linear mapping between the two R-X-modules (PX, ¢tp) and
(OX, 1g). If f:[X — PY], then the extension ezt f is R-X-linear between the R-X-modules
(PX, ) and (PY, f) since ext for = f. Thus, the R-X-modules with R-X-linear mappings

provide a common abstraction of extension and power homomorphisms.

In the sequel, we need some more definitions.

Definition 7.2 Let M = (M, ) where M = (M, +, 0, -, 1) is an R-module. A subset §
of (the carrier of ) M is called an R-X-submodule of M iff

(1) pzisin S for all 2 € X, i.e. n[X] C 5.

(2) 0isin S.

(3) If @ and b are in 5, then so is a + b.

(4) f @ isin S, then r-aisin S for all r € R.

(5) S is a subdomain of M, i.e. S is directed closed in M, i.e. if D is a directed subset of

S, then the limit of D w.r.t. M isin 5.

By definition, 5 may be assumed to be an R-X-module again, and the natural inclusion
map e : .5 — M is an R-X-linear morphism.

It is easily verified that the intersection of a family of R-X-submodules of a fixed R-X-
module is again an R-X-submodule. Hence, the R-X-submodules form a complete lattice,
and there is a least R-X-submodule for every given R-X-module M. We call it the core
Me¢ of M. The following theorem is a generalization of a theorem found in [12] for the case

R =10, 1}. It provides a more explicit description of the core.

Theorem 7.3
If M = (M, n)is an R-X-module, then its core is given by M® = M# where

M# = {ry-na1+ -+ 7,2 | n € No, 77 € R, 2 € X)
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and B is the least directed closed superset of B.
The size of M€ is bounded by |M*¢| < 2(IRIXT),

The proof of the theorem is included as an appendix.

7.2 Reduced R-X-modules

Definition 7.4 An R-X-module is reduced iff it coincides with its core.

Equivalently, an R-X-module is reduced iff it does not allow proper R-X-submodules.

For every R-X-module M, the core M€ is reduced. Hence, every R-X-module contains a
reduced R-X-submodule.

Reduced R-X-modules enjoy many interesting properties listed in the sequel.

Lemma 7.5 Let M = (M, n) be a reduced R-X-module, and M’ an R-module. If
F,G : [M — M'] are two R-linear morphisms with F(nz) < G(nz) for all @ € X, then
F < G holds.

Proof: Let S ={a € M | Fa < Ga}. S satisfies the properties of Def. 7.2 whence
S = M follows because M admits no proper R-X-submodules. a

By anti-symmetry, one immediately gets:

Proposition 7.6 In Lemma 7.5, ‘<’ may be replaced by ‘="
Let M = (M, n) be a reduced R-X-module, and M’ an R-module. If F,G : [M — M’]
are two R-linear morphisms with F on = G on, then F = G holds.

As a special instance of this proposition, one obtains:

Proposition 7.7 If M is a reduced R-X-module, then there is at most one R-X-linear
mapping from M to any other R-X-module M’.

Finally, we consider existence of a least element.

Proposition 7.8 If the semiring R has a least element —r and X has a least element —x,
then every reduced R-X-module M = (M, 5) has a least element, namely —p - n(—x).

Proof: Let S={aeM|a>—-r-n-x)}

(1) Let 2 € X. Then nz =1-n2 > —p - n(—x)-

(2) 0=0-n(-x) = —r - 9(=%)-

(3) Let a,be 5. Then a+b > —g-n(—x)+—r-1(=x) = (=r+—r)-1(—x) 2 —r-1(=%):
(4) Forre Randae S,r-a>r-—p-n(—x)> —r - 1(—%)-

(5) S is obviously closed w.r.t. limits of directed sets in M.

Hence, 5 satisfies the conditions of Def. 7.2, whence S = M holds. a
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7.3 Free R-X-modules

By Prop. 7.7, there is at most one R-X-linear mapping from every reduced R-X-module.
In this section, we consider an even more special class of R-X-modules.

Definition 7.9 An R-X-module F is free iff for every R-X-module M, there is exactly
one R-X-linear morphism from F to M.

The existence of free R-X-modules is shown in section 7.4. For algebraic R and X, a more
explicit construction is provided in section 7.5. In this section, we study the properties of free
R-X-modules. By usual algebraic arguments, all free R-X-modules are isomorphic to each
other. Thus, we sometimes denote the free R-X-module by R & X.

Proposition 7.10 Every free R-X-module is reduced.

Proof:
Let F be a free R-X-module and S an R-X-submodule of F. We have to show § = F.

The embedding € : 5 — F is R-X-linear since 5 is an R-X-submodule. Since F is free, there
is an R-X-linear morphism ¢ : [F — S]. The composition € o { is R-X-linear and maps F to

itself as the identity does. By freedom, eo( = id holds. Hence, forevery yin F, y = ¢((y) € 9
holds. a

If F is a free R-X-module, then for every morphism f : [X — M] from X to some R-
module M, there is a unique R-X-linear extension f : [F — (M, f)] to the R-X-module
(M, f). Thus, ‘™ itself is a function from [X — M] to [F — M].

Theorem 7.11 If Fis a free R-X-module, then for every R-module M, the mapping
T [X — M] — [F — M] as introduced above is continuous.

Proof: ‘7 is monotonic by Lemma 7.5 telling that f < ¢ implies f < 7.

Now, we show the continuity of ‘™. Let 5 be the morphism from X to F. Let D be a directed
set of morphisms from X to M, and let f be its limit. We have to show f = Llsep d. The
function on the right hand side is R-linear by continuity of ‘+’ and ‘. It maps nz to fz by
continuity of application and d (nz) = d x. By uniqueness, it thus equals f. a

In the special case X = 1, R itself is a free R-X-module:

Proposition 7.12 (R, Az.1)is a free R-1-module.

Proof: Let M = (M, 1) be an R-1-module. Let f:[R — M] be given by f(r)=1r-no.
This mapping is R-linear because of the module axioms. For instance, f(r-7') = (r-7')-no =
r-(r'-no)=r-f(r) holds. fis R-1-linear since f((Az.1)o) = f(1)=1-n0=no.

Let F' be an arbitrary R-1-linear map from (R, Az.1)to M. Then F'(r) = F (r-1)=r-F (1) =
r-F((Az.1)o) =r-no= f(r)holds, i.e. fis unique.

a
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7.4 Existence of free modules

In this section, we show the existence of the free R-X-module for arbitrary semiring do-
mains R and ground domains X. The proof follows the lines of [12] who proved the existence
of the free commutative idempotent monoid over X. Hoofman used the categorical Freyd
Adjoint Functor Theorem. We avoid its usage for the sake of a slightly more explicit con-

struction. Our proof looks much simpler than that of Hoofman because we apply the notion
of R-X-modules.

We first construct the so-called solution set required by the Adjoint Functor Theorem.
Instead of applying this theorem after verifying its remaining preconditions and thus obtaining
the mere existence of the free module, we present a simple explicit construction based on the
solution set.

The problem with the class of all R-X-modules is that it is not a set. The problem is
solved by providing a set of R-X-modules {M; | i € I} that may be used as representatives
for all R-X-modules.

|R|IX1)

Let ¢ be the cardinal number 2( , and let €' be a set of cardinality ¢. From C', we

construct the set

D= [J{A}x (AXxA—=2)x(AxA—=A)x AX (Rx A— A)x (X — A)
Acc

where 2 = {0, 1}. Next, let I be the set of all tuples (A, <, +,0, -, f) in D such that
A = (A, <)is a domain, M = (A, +,0, -) is an R-module domain, and f : X — A is
continuous, i.e. (M, f)is an R-X-module. By construction, I contains isomorphic copies of
all R-X-modules up to cardinality ¢. Indexing I by itself, we obtain a family (M,);e; of
R-X-modules.

Now let M = (M, f) be an arbitrary R-X-module. Let M¢® be the core of M and
e : [M¢ — M] the natural inclusion. Note that e is R-X-linear.

By Th. 7.3, |[M°¢| < 2(|R||X|) = ¢ holds. Hence, there is an isomorphic copy M; of M€ in

I. Let ¢ : [M; — M¢] be the R-X-linear isomorphism between M; and M°.

Given the ‘solution set” (M;);ez, it is now easy to construct the free module. Let P =
[I;er M;. The operations in P are defined as follows:

o a<biffa; <b; foralliin I,
o atb=(a;+bi)er,

o 7-a=(r-a;)e forrin R,
o nz = (n;2)eq for x € X.

It is not difficult to see that all these functions are continuous, and make P into an R-X-
module. The projections 7; : [P — M;] are R-X-linear.

Finally, let F be the core of P. Then the inclusion p : F — P is R-X-linear. Summarizing,
we get for each R-X-module M the following chain of R-X-linear mappings for some ¢:
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p & ¥ €
F P M; M-¢ M

Thus, we get an R-X-linear map f from F to every R-X-module M. f is unique since F is
reduced (Prop. 7.6).

7.5 Free modules in the algebraic case

There seems to be no general explicit description of the free R-X-module. However, an
explicit construction is possible at least in the case of structurally algebraic semiring R and
algebraic domain X.

Definition 7.13 A semiring domain R is structurally algebraic if it is algebraic and its
base R® contains 0 and 1 and is closed w.r.t. ‘+” and .

Examples:

o Every finite and every discrete semiring domain R is structurally algebraic since R = R
holds in these cases.

e Ni* ={0<1<2<---< o0} is structurally algebraic since sum and product of finite

numbers are finite.

e The tropical semiring T is algebraic but not structurally algebraic since oo is the neutral

element of its addition.

e The powerset of an infinite set X with union as addition and intersection as multipli-
cation and ordered by inclusion is algebraic but not structurally algebraic since 1 = X

is infinite.

The actual construction is roughly indicated. First, let X be the set of all (not neces-
sarily monotonic) functions from X to R? that yield non-zero results for a finite number of
arguments only. These functions a stand for finite R%-linear combinations over X° where ax
is the coefficient of z. Hence, addition, multiplication by a member of R, singleton, and ex-
tension have natural definitions for X. Here, the closure of R® w.r.t. the algebraic operations

is needed.

Second, X is equipped with the least pre-order ‘<’ making singleton, addition, and multi-
plication monotonic. Extended functions f may also be proven to be monotonic by showing
that the pre-order a <’ 3 iff fa < fﬁ also makes singleton, addition, and multiplication
monotonic. The free R-module over X is then the ideal completion of this pre-order ()A(, <).

This explicit construction allows to derive the following properties:

Theorem 7.14 If R is structurally algebraic and X is algebraic, then R® X is algebraic.
Theorem 7.15 Let R be a finite semiring. If X is finite or bifinite, then so is R ® X.
Theorem 7.16 If R and X are discrete, then sois R ® X.

It leaves open the following

Problem: What happens if R is algebraic without being structurally algebraic?
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8 The initial R-construction

In this section, the existence of the initial R-construction for given semiring R is shown and
its properties are studied. The idea to consider initial power constructions dates back to [10].
Hoofman [12] showed the existence of the initial construction for semiring {0, 1}. Main [13]
then proposed initial constructions for some fancy semirings as indicated in section 5.3. In
contrast to our work, he requires the singleton mapping to be strict without telling exactly
why. Our singleton mappings are generally non-strict as indicated by Prop. 7.8 and 9.4. The
singleton maps of mixed and sandwich power domain are also non-strict.

For every domain X and every semiring R, there is a free R-X-module R © X. The
construction X — R ® X is the initial R-construction.

Theorem 8.1 Let R be a fixed semiring. The power construction P defined by PX =
R » X is the initial R-construction. The construction is symmetric iff R is commutative.
The a priori given external product of the modules PX coincides with the external product
derived from the power operations.

Proof: We first show that P is a power construction. Empty set and union are given by
the module operations: 6 = 0 and A8 B = A+ B. Singleton is the morphism 7 : [ X — R®X],
ie. {{z|} = nz. For every f :[X — PY], the extension ezt f is given by the unique R-X-
linear map from R ® X to (PY, f). Function ezt is continuous by Theorem 7.11. We have
to demonstrate that it satisfies the power axioms.

The primary axioms of extension are satisfied by definition of ext. The secondary axioms are
consequences of the uniqueness of the extended map.

(S1) ext (Aa.0) = AA. 0

The function to the right is linear and maps singletons to 8 = 0. The function to the
left behaves equally, whence they are equal.

(S2) ext(Az. fr Y ga)=ANA. ext fA Y extgA

Both functions are linear, and both map a singleton {ja[} to fa Y ga. Note that commu-
tativity of the addition in a module is required to prove the additivity of the function p to

the right because p(AY B) = fA+ fB+gA+gB, whereas pAUY pB = fA+gA+ fB+gB.
(S3) ext L = id

Again, both sides are linear and coincide on singletons since both map {|al} to {|al}.
(S4) extgoext f = ext(extgo f)

Once more, both sides are linear — the left hand side as composition of linear maps.
They both map a singleton {a[} to ext g (fa).

In case of commutative semiring R, symmetry of the construction is shown by the same kind
of reasoning in two steps:

(1) ext(Az.r- fa) = MNA.r-ext fA
(2) ext (Aa. ext (Ab.axb) B) = MA.ext(Ab. ext (Aa.axb) A) B
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Next, we have to show that the primarily given external product of the R-module PX coin-
cides with the derived external product of the power construction. The latter is denoted by
‘x” for the moment.

rxA = ext(Ao. A)r = ext(Ao. A)(r-1) = r-ext(Mo. A)(no) = r- A

using the linearity of extended maps.

By Prop. 7.12, P1 = R ® 1 = R holds, i.e. (P, id) is an R-construction. Let (Q, ¢) be
another R-construction. We have to demonstrate the existence of a unique linear power
homomorphism H : P-Q.

For every domain X, @X is an R-module, and there is a morphism ¢o : [X — QX]. Since
PX is the free R-X-module, there is a (unique) R-linear morphism H : [PX — OX] with
H oup = 1g. By linearity, H is additive, i.e. HO =0 and H(A Y B)= HA Y HB hold.

Next, H o (ext f) = ext (H o f) o H has to be shown for f : [X — PY]. Since H and all
extensions are linear, both sides are linear morphisms from PX to QY. They coincide on

singletons: H (ext f{zl}p) = H (fz) and ext (H o f)(H{|z[}p) = ext (H o f){zlfo = H(fx)
hold. Since PX is free and QY is an R-module, both sides are equal.

Uniqueness of H is a simple consequence of the freedom of PX for all X. a

The theory of R-X-modules gives us the following properties of the initial R-construction:

Theorem 8.2 Let R be a semiring and let P be the initial R-construction.

(1) If R has a least element, then P maps domains with least element into domains with
least element (Prop. 7.8).

(2) If R is structurally algebraic, then P maps algebraic domains into algebraic ones

(Th. 7.14).
(3) If R is finite, then P maps (bi)finite domains into (bi)finite domains (Th. 7.15).
(4) If R is discrete, then P maps discrete domains into discrete ones (Th. 7.16).

9 The final R-construction

9.1 The main theorem

In contrast to the initial R-construction, the final one may be explicitly constructed. As
indicated in section 4.5, existential quantification leads to a mapping & from PX to [[X —
P1] — P1] for every power construction P. This suggests to define PX as [[X — R] — R]
if R = P1 is given. The equations in section 4.5 also indicate how to define the power
operations.

One has to prove that these operations satisfy the axioms of section 3, and that the
derived semiring P1 is isomorphic to the original semiring R. For proving the axioms, the
outer, second order mappings have to be additive, and for proving the isomorphism between
P1 and R, they even have to be right linear.
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Functions in [X — R] may be multiplied by members of R from the right by defining
f-r=Az.(fz)-r. They also may be added by defining f+ g = Az. fr + gz. A second order
function F' : [[X — R] — R]is right linear iff F(f4+g) = Ff+ Fgand F(f-r)=Ff-r
hold. The set of all such functions is denoted by [[X — R] Ty R]. Ordered as subset
of [[X — R] — R], it becomes a domain because the lub of a directed set of right linear

functions is right linear again by continuity of application, sum, and external product.

Theorem 9.1 The final R-construction is given by (P, ¢) where PX = P?X =[[X =

R] Ty R] and the isomorphism ¢ : [R — P1] is defined by ¢ (r) = Ag.r - go. Its inverse
is ¥ (A) = A(Xo. 1).

The basic power operations are defined by
e 0 =2Ag.0
e AY B=MAg.Ag+ By
{lz[} = Ag. gz for z € X.
ext fA=Ag. A(Xa. fag) for f:[X — PY]and A € PX.

To understand the definition of ext, note that a ranges over X. Then @ in X and f :
[X — PY] imply fa € PY =[[Y — R] rhip R]. g ranges over [Y — R], whence fag € R and
Aa. fag : [ X — R]. Thus, A € PX = [[X — R] hip R] implies A(X...) € R.

The proof of the theorem proceeds in four steps: First, it is shown that the power opera-
tions defined above always create right linear maps when applied to such maps. Second, the
validity of the power axioms is shown by A-conversions. Third, an isomorphism between P1

and R is established. Fourth, the power construction 77? is demonstrated to be final.

The proof of the right linearity of the results of the operations is done by straight-forward
equational reasoning. It is omitted here. The remaining three steps are handled in the next

three sections.

9.2 Proof step 2: The power axioms

In this section, we prove the validity of the power axioms for the new construction.

By the definition A & B = Ag. Ag + Bg, the operation ‘Y’ trivially is commutative,
associative, and has neutral element & = Ag.0. The axioms of extension are less easy to
prove. In this paper, we concentrate on (P3) that is simple, (S2) where additivity of the
second order function is needed, and (S4) which is the most difficult. The other ones are

shown similarly.

Def.:  ext f A= Ap. A(Aa. fap)

(P3)  eat f{zf} = Ap.{z} (Aa. fap) = Ap.(Aa. fap)z = Ap. fap = fa
($2)  ext(fU @A = Ap.A(a.(f Y g)ap) = Ap. A(Aa.(fa ¥ ga)p)

Ap. A (Aa. fap + gap) using additivity of A here
Ap. A(Aa. fap)+ A(Na.gap) = ext fAY extgA
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(S4) The claim is ext go ext f = ext (extgo f), or extg(ext fA) = ext(Aa.extg(fx))A

ext g(ext f A) = Ap.(ext f A)(\b. gbp)
= Ap.(Aq. A(Aa. faq)) (Ab. gbp)
= Ap. A(Xa. fa(A\b. gbp))

ext (Az.extg(fz))A = Ap. A(Xa.(Az.extg(fz))ap)
= Ap.A(Xa.(extg(fa))p)
= Ap. A(Aa. (Aq. (fa) (Ab.gbg)) p)
= Ap. A(Xa. fa(A\b. gbp))

PN

9.3 Proof step 3: The characteristic semiring

In this section, we show the power domain P1 and the original semiring R to be isomor-
phic. To this end, we first consider how the semiring operations in 1 are defined.

e Pl =[1—R"™ R

° 0 =0 = Ap.0

. A+ B = AY B = Ap.Ap+ Bp
. 1 = A{off = Ap.po

. A-B = ext(Ao.B)A = Ap. A(Aa.(Xo. B)ap)
= Ap.A(Xa.Bp) = Ap. A(Xo. B p)

For the last equality, note that a ranges over 1.

There is one obvious choice for a mapping © : [P1 — R], namely A = A (Xo. 1). This
mapping is a semiring homomorphism:

. P (0) = (Ap.0) (Ao 1) = 0

. Y (A+B) = (Ap.Ap+ Bp)(Xe. 1) = vA+ B

. P (1) = (Ap.po)(Xo.1) = (Ao 1)o =1

. Y (A-B) = (Ap. A(Xo. Bp))(Xo.1)
= A(Xo. B (Ao 1))
= A(Xo.¥B) = A(Xo.1-9¥B) use right linearity of A now
= A(M.1)-¥B = YA-YB

As announced previously, right linearity of the second order functions in PX is needed here.

With left linearity, the result would be 1 (A - B) = 1B - A instead.

The mapping v is shown to be an isomorphism by specifying its inverse. Let ¢ : [R — P1]
be defined by @r = Ap.r - po. The second order mapping ¢r is right linear in p because

er(p+p) = r-(p+p)o = r-(potpo) = r-potr-po = or(p)+er(p)
er(p-a) = r-(p-a)o = r-(po-a) = (r-po)-a = ¢r(p)-a
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o is the inverse of 1 since

P(er) = (Ap.r-po)(Ae.l) = r-(Ao.l)o =71-1 =7
p(pA) = Ap.pA-po
= Ap.A(Xo.1)-po and by right linearity of A

= Ap.A(Xo.1-po)
= Ap.A(Xo.po) = Ap.Ap = A

9.4 Proof step 4: Finality

Let (Q, p) be an arbitrary R-construction and let (P, ¢) be the R-construction of Th. 9.1.
We have to construct a linear power homomorphism H : Q=P and then show it is unique.
H is given by existential quantification £ : [OX — [[X — R] Thp R]] as defined in section 5.2.

Existential quantification in Q@ would map functions in [X — Q1] into elements of Q1. It
can be used to define H if semiring elements can be translated into elements of Q1 and vice
versa by means of p and p~!. Hence we define for 4 in QX

HA=Xp.p~" (extg(pop)A)

Here, p ranges over [X — R], whence pop : [X — Q1]. Thus, (extgo(pop)A)isin OI,
whence its value by p~!is in R. Hence, H : [QX — [[X — R] — R]].

Adopting this definition of H, we have to show that H A is right linear, that H is a linear
power homomorphism, and finally that H is unique. We omit the proof of right linearity
here immediately going on to the power homomorphism proof. Here, empty set and union
are also omitted.

o H{alo = Ap.p " (eat(pop){eho) E App (p(pa)) = Ap.pa = {ap

. H(ext fA) = Ap.p~t(ext(pop)(extfA))
() Ap.p~t (ext (Aa. ext (pop) (fz))A)
= App (eat (A p (o (est (p o p) () A)
= g (ent (e p (H (f2)p)) A)
= Ap.HA(Mz.H(fz)p)
= Ap.HA(Mz.(Ho f)zp)

= extp(Hof)(HA)

Now we know H is a power homomorphism. To show its linearity, we have to prove
¥ (Hy(pr)) = r for all » € R by Prop. 6.3 where ¢»p = AS. §(Ao. 1) is the isomorphism
from P1 to R.

U(Hy(pr) = (Ap.p~!(extg(pop)(pr)))(ro.1)
= (eato (po (ho. 1)) (pr)
= pHewtg (Ao {ofto) (pr)) since p (1) = {lofto
(53) 1 _
=" p(pr) =1

- 929 .



The last property to be shown is that H is the only linear power homomorphism from Q
to P. Let G be another linear power homomorphism. Then 1 o G o p = idp holds.

HA = Ap.p~'(estg(pop)A)
= Ap. ¥ (Gy(extg(pop)A)) since p~! = oGy
= Ap.(extp (Gropop)(GA)) because ¢ is a power homomorphism

= Ap.(extp (v op)(GA)) (No. 1) since Grop=1"1 and 5 = §(No. 1)
= Ap.(GA)(Az. (¥v™top)az(Xo. 1)) by definition of extp

= Ap.(GA) Az Y (v~ (pa))) since S(Ao. 1) =S5
= Ap.GA(Az.pz) = A\p.GAp = GA

Now, the theorem is completely proved.

9.5 Derived operations

The definition of the final R-construction provides realizations for the principal power
operations in terms of higher order functions. The derived operations may also be expressed

in functional form.

o map fA = ext(rof)A = Ap. A(Xa.(vo f)ap)
Ap. A(Xa Al falt p) = Ap. A(Aa.p(fa)) = Ap.A(po f)

¢ Asindicated in section 5.2, the external product is defined for elements of R by means

of .

r-A ext (Ao. A) (pr) = Ap.(¢r) (Aa.(Xo. A)ap)

= Ap.(Aq.7-qo)(Aa. Ap) = Ap.7-(Aa.Ap)o = Ap.r- Ap

9.6 Further properties

This section is a collection of some simple properties of the final construction.

Proposition 9.2 If R is discrete, then P?X is discrete for all domains X.

Proof: P?X is [[X — R] hip R] ordered pointwise, i.e. A < B iff Ap < Bp in R for all
p:[X — R]. 0

Proposition 9.3 If R is finite, then P?X is finite or bifinite whenever X is.

Proof: If R and X are finite, then so is [[X — R] Thp R]. According to section 2, 77?
then maps bifinite domains into bifinite domains since it is a locally continuous functor. O

Problem: If R and X are bifinite (R not necessarily being finite), is P?X bifinite?
Problem: If R and X are algebraic, is P?X algebraic?

Proposition 9.4 If R and X have least elements —p and —x, then P?X has a least
element, namely —p - {|—x|[}-
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Proof: We have to show Ap > (—p-{—-x[})p for all A : [[X — R] Ty R] and all
p:[X — R].

Ap = A(dz.pz) > A(/\?-P(_X))
= AQ21-p(-x)) 2 A1) -p(-x)
> —r-p(=x) = —r-A{-xbpr = (=r-{-x[)»p O

Problem: Is 77? symmetric whenever R is commutative?

Simple equational reasoning does not help here.

10 Known power constructions

In this section, we briefly consider how the known power constructions fit into the general
framework. Most proofs are omitted since this topic will be subject of a different paper and
may also be found in [8].

10.1 Lower power constructions

Let L = {0 < 1} with 1 + 1 = 1 be the lower semiring. L-modules are just those
commutative monoids (M, +, 0) with e + ¢ = @ and 0 < a for all @ in M. One easily verifies
that in such monoids, a + b is the least upper bound of ¢ and b. Hence, L-modules are just
complete domains with sum being least upper bound and 0 being —.

Lower power constructions are the power constructions with characteristic semiring L.

Theorem 10.1 Initial and final lower power construction are isomorphic. They are ex-
plicitly given by

(1) LX ={C C X | C is Scott closed} ordered by inclusion ‘C’,

(2) User Ai = el Ujer Ai where ‘cl” denotes Scott closure,

(3) 6 =0,

(4) Ag B=AUB,

(5) b = L,

(6) for arbitrary L-modules M and morphisms f : [X — M], the unique linear extension

f:LX — M]is given by fC = || f[C].
We do not include the proof of this theorem here because it is a bit out of the scope of this
paper and uses some topological techniques not introduced here.
10.2 Upper power constructions

Let U = {1 < 0} with 1+ 1 = 1 be the upper semiring. U-modules are just those
commutative monoids (M, +, 0) with e + ¢ = @ and @ < 0 for all @ in M. One easily verifies
that in such monoids, a 4+ b is the greatest lower bound of @ and b. Hence, U-modules are
just domains with a continuous binary greatest lower bound and a top element.
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Although U is just dual to L, the situation is much more complex here. The reason is
that in L-modules, binary lub and directed lub well cooperate and imply the existence of all
lubs and all glbs. In U-modules however, binary lubs and infinite glbs need not exist. The
additional complexity might be the reason that the following theorem is much weaker than
Th. 10.1.

Theorem 10.2 For continuous ground domain X, the initial upper power domain ;X
and the final upper power domain ¢/ ;X coincide. They are explicitly given by

(1) UX = {K C X | K is a Scott compact upper set} ordered by inverse inclusion ‘2’
(2) Lier Ai = Nier Ai for directed families (A;)er,

(3) 8 =0,

(4) Ag B=AUB,

(5) Jabt = 12,

(6) cot £ A = Uyen fa = UJIAL

The initiality is indicated without proof in [10]. The finality of the construction in terms
of compact sets is shown in [17] for sober domains — a much larger class of domains than
the continuous ones. (Smyth naturally did not know our notion of finality at that time. He
indicated a bijective correspondence between compact upper sets and ‘open filters’ proved
in [11]. These open filters in turn bijectively correspond to our second order predicates
X — u] vy

Unfortunately, the author does not know whether ¢/;X = ;X holds for all domains X.
Indeed, there is some evidence that it does not.® If so, the upper power domain does not
exist — an ever lasting source of confusion.

10.3 Convex power constructions

Let C =0, 1} with discrete order and 14 1 = 1 be the convex semiring. C-modules are
just idempotent commutative monoids. Plotkin’s power construction is known to be initial

for this semiring as indicated in [10]. It much differs from the corresponding final construction
Cy.
If X is a domain with a least element —, then [X — C] has only two elements: Az.0 and

Az. 1. A linear second order function has to map Az.0 to 0. Thus, C;X = [[X — C] Ty C]
has two elements, no matter how big X is. Hence, Cy is quite useless.

Besides the initial and the final one, we know of nine further C-constructions enumerated in
[8].
10.4 Set domain constructions

As indicated in section 5.3, a power construction with a reasonable logic should have the
Booleans as characteristic semiring. There are several semirings with carrier B = {—, 0, 1}

®For topologists: U;X and U ;X would differ for bounded complete, non-sober ground domains X. I do not
know whether such domains exist.
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with — < 0,1. In all of them, multiplication is given by parallel conjunction. Hence, we
choose the semiring with addition being parallel disjunction. Power constructions with this
characteristic semiring are called set domain constructions following [9]. They admit espe-
cially nice logical operations. Mixed power domain and sandwich power domain — defined
for algebraic ground domains by Gunter and Buneman — provide two different set domain
constructions.

The mixed power domain is free for the miz theory as Gunter [5, 6] and I independently
found out. Mix algebras are commutative idempotent monoids enriched by an additional
unary operation ‘?”.* In the following definition, we give — in contrast to Gunter — a
minimal set of axioms, i.e. for each of the four axioms, there is a commutative idempotent
monoid satisfying all axioms except the given one.

Definition 10.3 (Mix algebras)
A miz algebra (P, +, 0, _7) is a commutative idempotent monoid domain (P, 4+, 0) with

an additional continuous operation _? : P — P satisfying the following 4 axioms

(A1) A7 <0 (42) A7<A
(A3) A+ A?> A (A4) (A+ B)? < A7+ B?

A morphism f between two mix algebras is a mix homomorphism iff it is additive and

satisfies f(A?) = (fA)?.

Mix algebras are nothing else than B-modules; A? is — - A. The axioms of mix theory easily
follow from the module axioms:

(I) A4+A=1-A41-A=(1+1)-A=1-A4=4
(A1) A?7=—--A<0-A=0

(A2) A7=—-—-A<1-A=A4

(A3) A4+ A7T=1-A4—-—-A=(1+-)-A=1-A=4
(A4) (A+B)!=--(A+B)=—-A+—--B=A14+B?

The mix theory as defined above allows to derive some theorems which hold in all mix
algebras. Among those, there is (A3) and (A4) with equality. We now present the most
important of these theorems with their proofs which end up in a characterization of mix
homomorphisms.

Al
(T1) A+ B2 <A since A+ B7 < A+0Z2 A
(T2) A+ A?=A by (A3) and (T1)
(T3) 07=0 since 0 £ 0+ 07 207

_ A2y T1
(T4) A?? = A7 since A7 < A? = AT + A7 < AM?

(T5) A7=A iff A<0

( R lhs Al ( R A2 T2 rhs N
Proof: ‘=" A= A7 <0 ‘AT < A=A+A7 < 0+A7T= A7

*denoted by O by Gunter
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(T6) X <0and X <A iff X < A? ie. A?is the greatest lower bound of 0 and A.
Proof: ‘=’ X < 0implies X = X7? by (T5). X < A implies X? < A? by monotonicity
of ‘7. Together, X < A? follows. ‘<’ by (Al) and (A2).

(T7) (A+ B)? = AT+ B?
Proof: ‘<’is (A4). ‘>’ is deduced by (T6) from A? + B? <0 (by (Al) and (N)) and
A?+ B? < A+ B (by (A2)).

(T8) The three statements A < A+ B and A? < B? and A? < B are equivalent.
Proof: (1)=1(2): A? < (A4 B)?= A?+ B? < B?

1< g < B
3
3)=>(1): AZA+A7<A+B

E
U
@
N
w | A=

(T9) X <0and X <Aand A+ X > A iff X = A?
Proof: ‘<’ is immediate by (A1), (A2), and (A3).
‘= X <0and X < Aimply X < A? by (T6). A+ X > Aimplies A? < X by (T8).

(T10) Every mix algebra is a B-module.
Proof: We define0-A=0,1-A= A,and —- A = A?. By (Al) and (A2), this operation

is monotonic in its B-argument, whence it is continuous.

r-0=0: (T3)

r-(A+B)=r-A+r-B: (T7)

0-A4=0: immediate

(r+s)-A=r-A+s-A: by neutrality if » = 0 or s = 0, by idempotence if r = s,
and by (T2)if r = 1 and s = — or vice versa.

1-4=A4: immediate

re(s-A)=(r-s)- A: the only difficult case r = s = — is handled by (T4).

Gunter defined mix algebras by an axiom system consisting of (T7), (T4), (T2), (A2),
and (T1). Because (T1) implies (Al) by choosing A = 0 and (T2) implies (A3) and (T7)
implies (A4), his mix theory is equivalent with ours.

(T9) is a particularly interesting theorem. It implies that the operation ‘7’ is uniquely
determined in a given mix algebra, i.e. for every commutative idempotent monoid, there is
at most one choice for the operation ‘?° to turn it into a mix algebra. Another important

consequence is the following:

Theorem 10.4
An additive morphism between two mix algebras is automatically a mix homomorphism,
and an additive morphism between two B-modules is automatically linear.

Proof: Let f: X — Y be a continuous additive map between the two mix algebras X
and Y. Then for all A € X, A7 < 0 and A7 < A and A+ A? > A imply f(A?) < 0 and
fA?) < fA and fA + f(A?) > fA respectively. By (T19), f(A?) = (fA)? follows. O

Finally, one can show that the mixed power domain is initial for algebraic ground domain:
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Theorem 10.5 For every algebraic domain X, the mixed power domain over X and the

initial set domain over X coincide.

A proof may be found in [5].

In contrast to the mixed power domain, the sandwich power domain is final:

Theorem 10.6 For every algebraic domain X, the sandwich power domain over X and
the final set domain [[X — B] rhp B] are isomorphic.
This theorem may be proven by combining the results about lower and upper power domain.

A more clumsy, direct proof may be found in [7].

11 Conclusion

The algebraic framework introduced in this paper was developed to find out the common
features of the known explicit constructions of Plotkin [14], Smyth [16, 17], Buneman et al.
[2], and Gunter [5, 6]. It turned out to be general enough to cover also the proposals in [10, 12]
concerning certain types of free monoids, and in [13] concerning free semiring modules.

The new notion of power homomorphisms immediately implies the notions of initiality
and finality of power constructions. Whereas initiality is closely related to free modules,
finality brings up a new aspect. The explicit description of final constructions in terms of
second order ‘predicates’ indicates that such constructions may easily be implemented in a
functional language that only has to provide the semiring addition as special feature (for the

sandwich power domain for instance, this is ‘parallel or’).

The number of different power constructions satisfying the axioms of section 3 is enormous.
For every semiring, there is an initial and a final construction that seem to coincide in rare
cases only. Besides these two extremes, there might be a variety of other constructions with
the same characteristic semiring. We found for instance nine further C-constructions besides
the initial and the final one. One might guess that the variety of different constructions

increases with the complexity of the characteristic semiring.

The spectrum of power constructions with given characteristic semiring as well as the
domain-theoretic properties of the initial and final construction are not yet thoroughly inves-
tigated (see the host of open problems indicated in this paper). Reasons might be the lack of
examples and some inherent complexity of the theory. The five explicit constructions lower,
upper, convex, mixed, and sandwich power domain have characteristic semirings of at most
three elements, and even the seemingly simple case of the upper semiring is not completely
understood (at least by the author).

A The core of an R-X-module

This appendix is concerned with the proof of Theorem 7.3 which characterizes the cores of
R-X-modules. The proofis not included in the main text because it uses topological methods
instead of equational reasoning. As Theorem 7.3 is a generalization of some theorems in [12],
many of the following auxiliary propositions may be found there. They are included here for

the sake of completeness.
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A.1 Directed closure

A subset S of a domain X is directed closed iff the suprema (w.r.t. X) of all directed
subsets of 5 belong to S. Since arbitrary intersections of directed closed subsets of X are
directed closed, there is a least directed closed superset A for every subset A of X. We show
some properties of this set operator in the sequel.

Proposition A.1 If f:X — Y is a continuous function between two domains, then

fIA] € f[A] holds for all subsets A of X.
Proof: Let B = f7f[A]] = {z € X | fo € fl[A]}. For all @ in A, fa € f[A] C f[4]
holds, whence A C B. If D is a directed subset of B, then f[D] is a directed subset of f[A].
f(UD) = f[P] holds by continuity of f. Since f[A] is directed closed, it contains | | f[D],
whence | | D is in B.

Thus, we have seen that B is a directed closed superset of A. Hence, A is a subset of B,

whence f[A] C f[A]. O

Proposition A.2
Let X and Y be two domains, and A C X and B C Y. Then A x B = A x B holds.

Proof: Let 1y : X XY — X and 73 : X X Y — Y be the two projections. Since the
projections are continuous, Prop. A.1 yields m[A x B] C m[A x B] C A and analogously
m3[A x B] C B. These inclusions imply A x B C A x B.

For the opposite direction, we also employ Prop. A.1. Using o, = Ay. (u, y), one obtains
for arbitrary sets U C X and V C Y the inclusion U x V = Uwerr o [V] C Uuer aulV] €
Uwer U x V. = U x V. Analogously, one may show U xV C UxYV. Combining both
inclusions, one finally obtains A x B C Ax BC Ax B=AXx B. a

The Proposition above allows to prove two statements about closure properties of sets w.r.t.
continuous operations.

Proposition A.3 Let X be a domain and A a subset of X.

(1) If A is closed w.r.t. a continuous unary operation f :[X — X],i.e. f[A] C A, then A
is also closed w.r.t. f.

(2) If Ais closed w.r.t. a continuous binary operation ¢ : [X x X — X], i.e. g[A X A] C A,
then A is also closed w.r.t. ¢.

Proof:
(1) By Prop. A.1, f[A] C f[A] C A holds.
(2) By the same statement and Prop. A.2, we obtain g[A x A] = g[A x A] C g[A x A] C A.O

Finally, we estimate the size of the directed closure.

Proposition A.4 Let A be a subset of a domain X. Then [A] < 24l holds.
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Proof: Let B={[]5|5 CA, ]9 exists}. Then A C B holds since a = | |[{a} holds for
all @ € A. We show that B is directed closed. If D is a directed subset of B, then for all d
in D there is a subset S of A such that d = | |Sq. Then | |D = | |;cp(Ld5¢) = LI (Ugep Sa)-
Because (Jycp Sq is a subset of A, | | D is a member of B.

Since B is a directed closed superset of A, 4 C B follows, whence |A4] < |B| < [24] = 2141, O

Note that the set B in this proof contained the lubs of all subsets of A that exist, not
only the lubs of the directed subsets of A. One might believe that the set A of all lubs of
directed subsets of A equals A. This belief is however wrong; in general, A does not contain
the lubs of directed sets of lubs of directed sets of A.

A.2 Proof of Theorem 7.3

In this paragraph, the proof of Th. 7.3 is performed by means of some auxiliary propositions.
Proposition A.5 Let M be an R-X-module. The set
M#* = {ry gy + 471, | n € No, 75 € R, 2; € X}

satisfies the properties (1) through (4) of Def. 7.2, i.e. M# contains 0 and all 5z, and is

closed w.r.t. addition and multiplication by a factor in R.
Proof: Obvious. a
Proposition A.6 |M#| < |R|IXI
Proof: Because of r-na + 1" -na = (r+ ') - na, one can arrange ry - nay + -+ rp, N,
such that every z in X occurs at most once. Those z that do not occur may be added as

0- 2. Thus, [M#| < |X — R| = |R|XI. O

Proposition A.7 M# satisfies properties (1) through (5) of Def. 7.2, i.e. it is an R-X-
submodule of M.

Proof: (1) and (2) hold because of Prop. A.5 and M# C M#. Property (3) for M#
means this set is closed w.r.t. the binary continuous operation ‘+’, whence M# is also closed

w.r.t. ‘+7 by Prop. A.3 (2).

For r € R, let p, : [M — M] be given by p, m = r-m. Property (4) for M# means this
set is closed w.r.t. the unary continuous operation p,, whence M# is also closed w.r.t. p, by
Prop. A.3 (1) for all r. o
Proposition A.8 M° = M#

Proof: By Prop. A.7, M# is an R-X-submodule of M. Since M¢ is the least such set,
M¢ C M# holds. Conversely, M¢ being directed closed and M# C M¢ implies M# C M¢.O

Proposition A.9 |M¢| < 2(|R||X|)
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Proof: By Prop. A.6, [M#| < |R|X| holds, and Prop. A.4 yields |B| < 2!Bl. 0
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