
Under consideration for publication in J. Functional Programming 1Container Types CategoricallyPaul HoogendijkPhilips Research LaboratoriesProf. Holstlaan 4, 5656 AA EindhovenThe NetherlandsOege de MoorProgramming Research Group, Oxford UniversityWolfson Building, Parks Road, Oxford OX1 3QD, UKAbstractA program derivation is said to be polytypic if some of its parameters are data types.Often these data types are container types, whose elements store data. Polytypic programderivations necessitate a general, non-inductive de�nition of `container (data) type'. Herewe propose such a de�nition: a container type is a relator that has membership. It is shownhow this de�nition implies various other properties that are shared by all container types.In particular, all container types have a unique strength, and all natural transformationsbetween container types are strong.Capsule ReviewProgress in a scienti�c dicipline is readily equated with an increase in the volume ofknowledge, but the true milestones are formed by the introduction of solid, precise andusable de�nitions.Here you will �nd the �rst generic (`polytypic') de�nition of the notion of `containertype', a de�nition that is remarkably simple and suitable for formal generic proofs (asis amply illustrated in the paper). Among the startling results is the proof that any laxnatural transformation between two container types is strong.1 IntroductionWhat is a container type? It is easy to list a number of examples: pairs, lists,bags, �nite sets, possibly in�nite sets. . . but such a list of examples hardly makesa de�nition. The obvious formalisation is a de�nition that builds up the class ofcontainer types inductively; such an inductive de�nition, however, leads to cumber-some proofs if we want to prove a property of all container types. Here we aim togive a non-inductive characterisation, de�ning a container type as a mathematicalobject that has certain properties.Why is such a de�nition desirable? In recent years it has become apparent thatsigni�cant advances in formal program development are possible if both speci�-cations and programs are parametrised by container types (and sometimes moregeneral types as well). For example, one can reason about a program that �nds a



2 Paul Hoogendijk and Oege de Moorminimum element of a data structure, without actually committing oneself to lists,arrays, trees, bags or sets. Such type parametric programs and their derivationsare said to be polytypic. To carry out polytypic program derivations we need toappeal to properties that are shared by all container types. This paper does notgo into examples of polytypic program derivation, and the reader is referred to e.g.(Backhouse et al., 1993; Bird et al., 1996; Doornbos, 1996; Hoogendijk & Back-house, 1997; Jeuring, 1995; Meertens, 1996) for such examples and a more in-depthmotivation of polytypism. In particular, (Bird et al., 1996; Bird & De Moor, 1996)go into applications that motivated the theory presented here.Because our interest is in a de�nition that is useful in speci�cation, the classof container types considered here may be somewhat too liberal for those whoseprimary interest is in executable code. For example, possibly in�nite sets are anessential ingredient of any speci�cation formalism, but they rarely feature as a datatype in executable programs.The structure of the paper is as follows. First, we brie
y introduce those elementsof category theory that are necessary for our purposes, as well as the relationalcalculus. We shall occasionally make reference to more advanced aspects of categorytheory, but we have taken pains to make the paper as self-contained as possible.Next, we accumulate a number of informal requirements of container types: thisculminates in a technical de�nition. Brie
y, we shall argue that container types arefunctors. Motivated by a need to deal with nondeterminism, we subsequently notethat container types are a special kind of functor called relators. We then examinethe notion of membership tests; not all relators support this notion, and we de�ne acontainer type as a relator that has membership. Of course one should not only beable to inspect data structures; one also needs ways of creating them. This leads toan investigation of fans, and it turns out that any relator with membership also has aunique fan. Next we compare our work with the de�nition of strong functors, whichis the leading notion of what data types `really are' among category theorists. Weshow that any relator that has membership is strong, and that much of the tediousconditions involved in reasoning about strength are vacuously satis�ed. The resultsabout fans and strength give some credence to our claim that container types canbe de�ned as relators that have membership.2 Preliminaries2.1 CategoriesA category is a universe of typed speci�cations: it consists of objects (types) andarrows (speci�cations or programs). Each arrow h has a target type A and a sourcetype B . We write h : A B to indicate this type information. For each object Athere is a distinguished arrow idA : A A. Arrows can be composed, subject tosome typing rules. That is, when f : A B and g : B  C , their composite isf � g : A C . Composition is associative and has identity element id . We shall useC and D to denote arbitrary categories.The canonical example of a category is Fun, where the objects are sets and the



Container Types Categorically 3arrows are total functions. Another example is Rel , where the objects are also sets,but where the arrows are binary relations, i.e. sets of pairs, composed in the usualmanner. The category Fun is often named Set in the literature.All our examples are drawn from Fun and Rel , but the de�nitions work in moregeneral categories, including certain models of programming languages. For thosewith a background in category theory, we remark that all our proofs go through ina logos that satis�es the axiom of subextensionality.An isomorphism is an arrow i : A B that has an inverse i�1 : B A such thati � i�1 = idA and i�1 � i = idB . We say that the objects A and B are isomorphic. InFun, the isomorphisms are bijective functions, and these are also the isomorphismsin Rel . 2.2 Functors and natural transformationsFunctors. A functor is a structure-preserving mapping between categories. That is,a functor to C from D is a mapping F that maps objects of D to objects of C andarrows of D to arrows of C, preserving the type information. If h : A B , thenF h : F A F B . Furthermore, it is required that functors preserve identities andcomposition:F idA = idFA and F (h � k) = F h � F k :We write F : C  D to indicate that F is a functor to C from D.An example of a functor Fun  Fun is list . It maps a set A to the set listA isthe set of lists over A:listA = f[a1; a2; : : : ; an ] jai 2 Ag:On arrows, list applies a function to all elements of a list:list h [a1; a2; : : : ; an ] = [ha1; ha2; : : : ; han ]:Another example of a functor is J : Rel Fun. It leaves objects unchanged, andit maps each function to the corresponding set of pairs.In the opposite direction of J , we have the existential image functor E : Fun Rel . It takes a set to the collection of all its subsets, and a relation is mapped toits existential image:E R x = f a j 9b 2 x : aRb g:Functors can be composed by de�ning (F � G)h = F (G h). For instance, thecomposite P = E � J : Fun  Fun is the powerset functor that applies a functionto all elements of a set.Natural transformations. A natural transformation is a mapping between functors.That is, given two functors F and G of type C  D, a natural transformation� : F  G is a collection of arrows�A : F A G A for each object A of D.



4 Paul Hoogendijk and Oege de MoorFurthermore, this collection of arrows should satisfy the equationF h � �B = �A �G h for each h : A B in D.We shall usually omit the index of the components of a natural transformation.For example, consider the operation setify that turns a list of elements into thecorresponding set. This is a natural transformation P  list .2.3 Finite productsA terminal object of a category C is an object 1 such that for each object A thereexists exactly one arrow 1 A. That unique arrow is written !A, and it is pro-nounced `pling'. The index of !A is omitted whenever it is clear from the context.The de�nition of ! can be stated as the equivalence:h =! � h : 1 A; for all hIn Fun, any singleton set is a terminal object. More generally, it can be shown thatany two terminal objects are isomorphic. When we speak of the terminal object, wemean that a canonical representative has been chosen from the class of all terminalobjects. The empty set is the terminal object of Rel .Given two objects A and B , their product is an object A�B together with twoarrows outl : A A�B and outr : B A�B . The product is characterised by thefollowing property: for each pair of arrows f : A C and g : B  C there existsan arrow hf ; gi : A� B  C such thath = hf ; gi � outl � h = f and outr � h = g ;for all h : A� B  C . Again, this de�nes products up to isomorphism.In Fun, the set A�B is the cartesian product of A and B , and hf ; gi a = (f a; g a).The same construction does not de�ne a product in Rel because h;;Ri = ; for anyR.Products satisfy the expected isomorphisms, such asrid : A A� 1and associativityassl : (A� B)� C  A� (B � C ):2.4 Allegories and relation algebraWhile Rel is in many respects similar to Fun, it has some additional structure thatis useful to our purposes. In particular, relations of the same type can be comparedby inclusion, R � S , and composition is monotonic with respect to inclusion.The largest relation of type A B is written � : A B . The smallest relationof type A B is the empty set, written ; : A B .The intersection of two relations R and S of the same type is denoted R\S . Note



Container Types Categorically 5that composition does not distribute over intersection; in general, we only have theinclusion(R \ S ) � T � (R � T ) \ (S � T ):Every relation R : A B has a converse R� : B  A, obtained by 
ipping thepairs in R. Note that the converse operation leaves identities unchanged, but thatit reverses composition:id� = id and (R � S )� = S� �R�:A useful fact relating composition and converse is the so-called modular law(R � S ) \ T � (R \ (T � S�)) � S ;which, in predicate calculus, shows how intersection distributes over existentialquanti�cation:(9b : aRb ^ bSc) ^ aTc ) 9b : (aRb ^ (9c0 : aTc0 ^ bSc0) ^ bSc):Note that we obtain the symmetric law(R � S ) \ T � R � (S \ R� � T )by applying converse to the formulation above.Given two relations that share the same target, say R : A B and S : A C ,the division of R by S is a relation of type B C , characterised by the equivalenceX � RnS � R � X � S ; for all X : B  C .In words, RnS is the largest relation X such that R �X � S . For this reason, RnSis sometimes called the weakest prespeci�cation (Hoare & He, 1986a; Hoare & He,1986b). As a predicate, RnS can be writtenb(RnS )c � (8a : aRb : aSc):Some useful facts about division that we shall use in the sequel areS � Rn(R � S )Rn� = �(RnS ) � T = Rn(S � T ):2.5 Special relationsA relation R : A B is said to be total each element in the source is related to atleast one element in the target. In a formula:R� �R � id :A relation R : A B is said to be single-valued if each element in the source isrelated to at most one element in the target. In a formula:R � R� � id :



6 Paul Hoogendijk and Oege de MoorA function is a relation that is both total and single-valued. Functions are impor-tant because they satisfy all sorts of useful identities and equivalences that arenot generally valid. We shall denote functions by lower case identi�ers so theseequivalences are easy to spot. For example, here is the so-called shunting rule forfunctions:f �R � S � R � f � � S :Inclusion of functions is the same as equality, that isf � g � f = g :Every arrow in Rel can be factored in terms of functions. That is, for each arrowR : A B there exist f : A  C and g : B  C such that R = f � g�. Thisfact is very useful in generalising operations on functions to relations. For example,to generalise the functor list : Fun  Fun to a functor Rel  Rel , we can de�neF R = F f � (F g)�. We shall have more to say about generalising functors of Funto functors of Rel below.In the special case of functions, the modular law that we quoted above can bestrengthened from an inclusion to an equation:(h �R � k�) \ S = h � (R \ (h� � S � k)) � k�:Below we shall refer to this fact as the modular identity.2.6 Derived operators on relationsA core
exive relation is a subset of an identity arrow. The domain of a relationR : A B is the subset of B on which R is de�ned, represented as a core
exiveB  B :Dom R = id \ (R� � R):It is easily shown that R is total if and only if Dom R = id . The domain of theintersection of two relations is given byDom (R \ S ) = id \ (R� � S ):Similarly, the domain of a composite relation is always smaller than the domain ofthe right-hand component:Dom (R � S ) � Dom S :The range of a relation R is the domain of the converse of R:Ran R = Dom R�:Each property of Dom has an equivalent for Ran.Besides core
exives, one can also represent ranges as so-called left-conditions. Arelation C is said to be a left-condition ifC : A 1



Container Types Categorically 7Any relation can be mapped to a left-condition throughCond R = R � !�:The connection with range is made explicit in the equationsRan(Cond R) = Ran R and Cond(Ran R) = Cond R:2.7 From functions to relations and backAs we have seen, functions can be characterised as a special kind of relations.Furthermore, every relation can be factored as a pair of functions. This relationshipbetween functions and relations can be generalised beyond set theory. For a so-calledregular category C, it is possible to construct the category of relations Rel(C), thathas the same objects as C. Furthermore the arrows of Rel(C) satisfy the aboveproperties of relations in terms of converse, � and intersection. In particular, thereis an embedding functor J : Rel(C) C so that the image of J consists precisely ofthe functions in Rel(C) (Freyd & �S�cedrov, 1990). Indeed, we have Rel = Rel(Fun),and the image of the inclusion functor J : Rel Fun is the subcategory of functionsin Rel .We remarked earlier that all our arguments go through in an arbitrary logos Cthat satis�es the subextensionality axiom. Such a logos is regular by de�nition,and thus admits the construction of a corresponding category of relations Rel(C).Furthermore (and this is what distinguishes a logos from a regular category), wealso have the division operator in Rel(C).Relators. Having identi�ed this fundamental way of constructing relations fromfunctions and vice versa, the next question to ask is how functors of C generaliseto Rel(C). A minimum healthiness condition on functors of Rel(C) is that they aremonotonic with respect to inclusion of relations: we shall call monotonic functorsof Rel(C) relators. Relators are a special kind of functor on functions:Fact 1(Kawahara, 1973a) Let F be a functor of a regular category C. There exists atmost one relator F 0 of Rel(C) that agrees with F on functions in the sense thatF 0 � J = J � F .We shall consequently use the same identi�er for a functor of C and its gener-alisation to Rel(C). As an example of a functor that is a relator, consider the listfunctor. Its generalisation to relations is given by[a1; a2; : : : ; an ](listR)[b1; b2; : : : ; bm ]�n = m ^ (8i : 0 � i � n : aiRbi):The powerset functor is also a relator, and its action on relations is well-knownfrom the Plotkin powerdomain:x (PR)y � (8a 2 x : (9b 2 y : aRb)) ^ (8b 2 y : (9a 2 x : aRb)):



8 Paul Hoogendijk and Oege de MoorThis example is instructive because the relator P does not preserve intersection ofrelations.Finally, the exponential functor is a relator:f (FromAR)g � 8a : (f a)R(g a):To prove that this de�nition actually preserves composition of relations, one needsthe axiom of choice. This is an indication that our de�nition of relators is somewhattoo strong. A much weaker de�nition is considered in (Mitchell & �S�cedrov, 1993).There exist functors of Fun that do not have a generalisation to Rel . An exampleis the following:F A = � ;; if A = ;f0g; otherwiseOn arrows, F sends arrows whose source is empty to the unique arrow f0g ;; allother arrows are mapped to the identity on f0g.The notion of a relator was �rst introduced by (Kawahara, 1973a); the conceptthen went unnoticed for a long time, until it was reinvented in (Carboni et al., 1991).Almost simultaneously, Backhouse and his colleagues started to write a series ofpapers that demonstrate the relevance of relators to computing (Backhouse et al.,1991). Backhouse has the additional requirement that a relator preserves converse;this does in fact follow from monotonicity:Fact 2If F is a relator, then F (R�) = (FR)�.Lax natural transformations. What happens to natural transformations of typeF  G if F and G are generalised from Fun Fun to Rel  Rel? As an example,consider again the operation setify that turns a list into a set. Above we saw thatthis is a natural transformation P  list when P and list are read as functorsFun Fun:P h � setify = setify � list h:Note, however, that the above equation for setify is not true when the function his replaced by an arbitrary relation R: we only have the inclusionPR � setify � setify � listR:So while setify is a natural transformation in Fun, it is not natural when consideredas a collection of arrows in Rel . This is a very common phenomenon, and we shallsay that � is a lax natural transformation of type F  - G whenFR � � � � �GR;for all R. In fact, writing J for the inclusion of C into Rel(C), we haveFact 3For any collection � of arrows � : FA GA, we have � : F � J  G � J if and onlyif � : F  - G .



Container Types Categorically 92.8 Lifting products from C to Rel(C)Let us now return to the discussion of �nite products. As we have already remarked,the constructions in Fun do not lift to categorical products in Rel . In this paragraphwe collect some properties of the operations that result from the lifting. The key ideais that ! is very closely related to �, and h ; i is very closely related to intersection.Recall that there is precisely one function ! : 1 A (pronounced `pling'). It followsthat this function is the largest relation of its type. For let R : 1 A. This relationR can be factorised as a pair of functions: R = ! � h�. NowR = ! � h� = ! � h � h� � !One may conclude that� = !� � !:This already hints at the possibility that a condition in terms of � might also bephrased in terms of !.We shall also need a number of further operations for manipulating binary prod-ucts. The most important of these is the split operation, de�ned byhR;S i = (outl� �R) \ (outr� � S ):An important fact about split, which we shall use repeatedly, ishR;S i� � hU ;V i = (R� � U ) \ (S� � V ):This hints at the possibility that a property in terms of intersection might also bephrased in terms of split.The split hR;S i is a function whenever R and S are functions. The productrelator is de�ned byR � S = hR � outl ;S � outri;and we have, for example, the product absorption rule(R � S ) � hU ;V i = hR � U ;S � V i;as well as the naturality propertiesoutl � (R � id) = R � outl and outr � (id � S ) = S � outr :If one is willing to accept inclusions instead of equalities, the above two equationscan be generalised tooutl � (R � S ) � R � outl and outr � (R � S ) � S � outr :The properties of products in a relational setting have been thoroughly explored bynumerous researchers; the most comprehensive account we know of can be foundin (Aarts et al., 1992). To get some practice in pushing all these new operatorsaround, and for future reference, we �rst prove two little lemmas.Lemma 4



10 Paul Hoogendijk and Oege de MoorFor all R and S , we have(FR � F S ) � hF outl ;F outri = hF outl ;F outri � F (R � S ):ProofThe containment (�) is easy, and details are omitted. For the other inclusion, theproof is in two stages. First,(FR � id) � hF outl ;F outri= fproduct absorptionghFR � F outl ;F outri= fF relator, naturality of outlghF outl � F (R � id);F outri� fmodular law: hR � S ;T i � hR;T � S�i � SghF outl ;F outr � F (R� � id)i � F (R � id)� fF relator, naturality of outrghF outl ;F outri � F (R � id)By symmetry, we also have(id � F S ) � hF outl ;F outri � hF outl ;F outri � F (id � S ):Therefore, (FR � F S ) � hF outl ;F outri= fproduct relatorg(id � F S ) � (FR � id) � hF outl ;F outri� faboveg(id � F S ) � hF outl ;F outri � F (R � id)� faboveghF outl ;F outri � F (id � S ) � F (R � id)= fF and product relatorsghF outl ;F outri � F (R � S )Note the slightly curious structure of the above proof, where (F R�F S ) is �rstdecomposed into id�F S and F R�id . We have no good heuristic for justifying thisdecision at present; the unexpected nature of the proof does however explain whywe originally thought this fact needed the side condition that F preserves intersec-tions of binary relations. It was a pleasant discovery that no such side condition isnecessary. An important consequence isLemma 5



Container Types Categorically 11For all R and S , we havehFR;F S i = hF outl ;F outri � F hR;S i:Proof hF outl ;F outri � F hR;S i= fproduct absorption: hR;S i = (R � S ) � hid ; idi, F relatorghF outl ;F outri � F (R � S ) � F hid ; idi= fLemma 4g(FR � F S ) � hF outl ;F outri � F hid ; idi= fF relator, outl � hid ; idi = id = outr � hid ; idig(FR � F S ) � hid ; idi= fproduct absorptionghFR;F S iProofs of other facts cited in this section are all elementary, and can be found in(Bird & De Moor, 1996).3 A de�nition of container typesWe now proceed to present our de�nition of container types. If F is a containertype, then an F -structure x : F A, for some type A, can be thought of as having`slots' which are `�lled' with values of type A, and we say then that x `contains'these values, or that these values are `members' of x . The following questions aremeaningful. Does x contain a member having some given property? In particular:does some given a : A occur as a member of x? Do all members of x have somegiven property?Some container types are `shapely' (Jay, 1995). For such types it is meaningfulto ask whether x : F A and y : F B have the same `shape', and if they do there isa canonical one-to-one correspondence (bijection) between their slots. If x , y and zhave the same shape, the correspondence between x and z is given by composingthe correspondences between x and y , and y and z . If x and y have the same shapeand all pairs of members in corresponding slots are related by a given relationR : A B , we say that x and y are F R-related.It is (informally) clear that F preserves identities and composition, commuteswith converse, and is monotonic with respect to relation inclusion, while functionsemerge as a special case (see the picture below):



12 Paul Hoogendijk and Oege de Moorxaa 0 a 00�������
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LLLL```````````̀F R             F S```````````R``````````̀R``````````̀R            S           S           SWe conclude that the container type F is in fact a relator. Note that this con-clusion does not refer to `shapes' and `corresponding slots'. The approach, now, isto do the same more generally: gather properties which hold for all shapely types,but which can be formulated without reference to shapes and correspondences (no-tions not meaningful for e.g. the power set type), and then postulate them for allcontainer types, shapely or not.Here are two such properties:� If x is F R-related to y then each member of x is R-related to some memberof y [for shapely types, the corresponding one].� If each member of x is R-related to at least one value, then x is F R-related tosome value [for shapely types, the value y of the same shape as x , such thateach slot of y is �lled with a value b such that aRb, where a is the contentsof the corresponding slot of x ].To formalise the �rst item, write a"x for \a is a member of the F -structure x". Wethen havex (F R)y ) (8a : a"x : (9b : b"y : aRb)); (1)or, abstracting from x and y ,F R � "n(R � "):This holds for all R, which (by the de�nitions of (n) and ( -)) means that" : id  - F :Using (F R)� = F (R�), we also get from (1):x (F R)y ) (8b : b"y : (9a : a"x : aRb)): (2)Formalising the second item in the two bullet points above gives:(8a : a"x : (9b : aRb)) ) (9y : x (F R)y): (3)We now explore the formal consequences of this formalisation. De�ne aRbb0 �



Container Types Categorically 13aRb ^ b0 = b. Then(8a : a"x : aRb)� fsince aRb � (9b0 : aRbb0)g(8a : a"x : (9b0 : aRbb0))) fImplication (3)g(9y : x (F Rb)y : x (F Rb)y)) fsince Rb � R, Implication (2)g(9y : x (F R)y : (8b0 : b0"y : (9a : a"x : aRbb0)))) fsince (9a : a"x : aRbb0)) (9a : a"x : b = b0)) b = b0g(9y : x (F R)y : (8b0 : b0"y : b0 = b))) fImplication (1)g(9y : (8a : a"x : (9b0 : b0"y : aRb0)) ^ (8b0 : b0"y : b0 = b))) fpredicate calculusg(9y : (8a : a"x : (9b0 : b0"y : aRb0 ^ b0 = b)))) fpredicate calculusg(9y : (8a : a"x : aRb))� fHeideggerg(8a : a"x : aRb)This proves by circular implication that(8a : a"x : aRb)) � (9y : x (F R)y : (8b0 : b0"y : b0 = b)) ;or, abstracting from x and b,"nR = F R � "nid : (4)We take this equation as a de�nition: a collection of arrows " is said to be a mem-bership relation for F if it satis�es the above equation for all R. Below it is proventhat there exists at most one such ". (The symbol " was chosen on account of itsmild similarity to 2).Summarising the above discussion, we propose the following de�nition of a con-tainer type:A type constructor F is a container type if it is a relator that has membership.In the remainder of this paper we explore the consequences of that de�nition. Asan aside, we remark that the de�nition of membership implies the two propertiesthat were used to motivate it.4 Elementary properties of membershipTo prove uniqueness of membership, we assume the identi�cation axiom, whichsays that the largest lax natural transformation of type id  - id is id itself. The



14 Paul Hoogendijk and Oege de Mooridenti�cation axiom is satis�ed in any reasonable model of a programming language,as it follows from subextensionality. (Subextensionality says that two functions fand g are equal if f � p = g � p for all single-valued relations p of type A 1.) Wedo not know whether the identi�cation axiom is equivalent to subextensionality.Fact 6Suppose that " is a membership relation for F . Then " is a lax natural transforma-tion of type id  - F .The membership relation on lists is given bya"[a0; a1; : : : ; an ] � (9i : a = ai ):The membership relation for the powerset functor is simply set membership 2. Themembership relation for the exponential functor FromB tests for existence in therange of a functiona"f � (9b : a = f b):One might wonder whether every relator has membership, and indeed we origi-nally believed that the membership relation could be constructed as the largest laxnatural transformation of type id  - F . However, Peter Freyd provided us with anexample that this construction does not necessarily satisfy the required property:Fact 7(Freyd) There exists a relator that does not have membership.It is however true that if membership exists, it is the largest lax natural trans-formation of its type. More generally,Fact 8Let F and F 0 be relators with membership relations " and "0 respectively. Then thelargest lax natural transformation of type F  - F 0 is "n"0.It is interesting to interpret this result in set theory. It says that a lax naturaltransformation � : F  - G can never invent new values: if x�y , the set of elementsof x is a subset of the elements of y . This captures one aspect of what it means foran operator to be polymorphic, but the converse is not true: one can have � � "n"0,with � not a lax natural transformation.Finally, we remark that the class of relators that have membership is closed undercomposition of functors. In particular, all regular functors (built from products,sums, composition, and least �xed points) have membership, and are thus containertypes.In the subsection below proofs of the above three facts are spelled out. Readerswho �rst wish to get a general overview of our results can skip to the next sectionwithout loss of continuity.



Container Types Categorically 154.1 ProofsWe start by giving an equivalent de�nition of membership which is sometimes moreconvenient in proofs than the o�cial version given above. It does however containanother bound variable, and therefore the o�cial de�nition is perhaps easier todigest on �rst encounter.Lemma 9A collection of arrows " is a membership relation for F i� for all R and S we have"n(R � S ) = FR � "nS :ProofThe follows-from direction is trivial: take S = id . For implies, we argue"n(R � S )= f" membershipgF (R � S ) � "nid= fF relatorgFR � F S � "nid= f" membershipgFR � "nSNote that neither the original de�nition of membership nor the preceding lemmamake reference to the fact that membership is a lax natural transformation. Thereason is, of course, that naturality can be deduced from the de�nition of member-ship:Restatement of Fact 6. If " is a membership relation for F , then " : id  - F .Proof " � FR � R � "� fdivisiongFR � "n(R � ")� f" membership, Lemma 9gFR � FR � "n"� fsince id � "n"gtrue



16 Paul Hoogendijk and Oege de MoorWhile exploring naturality of membership, we might as well mention that therelation "nid in the original de�nition of membership is also natural, in the oppositedirection of " itself. Although the proof of this fact is nearly trivial, it is stillworthwhile to record it separately for future reference.Lemma 10Suppose that " is a membership relation for F . Then "nid is a lax natural trans-formation of type F  - id .Proof "nid �R� fdivisiong"nR= fmembershipgFR � "nidNow we are in a position to prove the fundamental result that asserts uniquenessof membership. We take the elegance of the proof as evidence that the de�nitionsgiven here are right: one certainly would not wish the de�nition of `container type'to lead to intricate and cumbersome proofs.Fact 11If " is a membership relation for F , then " is the largest lax natural transformationof type id  - F .ProofLet " be a membership relation for F . By Lemma 6, " : id  - F . Let � be anotherlax natural transformation of type id  - F . Then�� fdivisiong� � "n"= fmembershipg� � F" � "nid� fsince � : id  - Fg" � � � "nid� fclaim: see belowg"The claim is that � � "nid � id . This does in fact follow from the identi�cationaxiom, which says that id is the largest lax natural transformation of type id  -id . We have � � "nid : id  - id because � : id  - F , and Lemma 10 says that"nid : F  - id .



Container Types Categorically 17Finally, as an application of the little theory developed above, we prove a resultabout largest lax natural transformations between an arbitrary pair of relators thathave membership. It also happens that a special case of this result is useful in thesection on fans below.Restatement of Fact 8. Let F and F 0 be relators with membership relations " and"0 respectively. Then "n"0 is the largest lax natural transformation of type F  - F 0.ProofFirst note that "n"0 : F  - F 0, for it is the composition of two lax natural transfor-mations (Fact 6 and Lemma 10):"n"0 = F"0 � "nid :To prove that "n"0 contains any other lax natural transformation of type F  - F 0,let � : F  - F 0. We have� � "n"0� fdivisiong" � � � "0( fLemma 11g" � � : id  - F 0� fsince " : id  - F and � : F  - F 0gtrueWhile these initial results are encouraging, there remains the question whetherwe could not have avoided the peculiar de�nition of membership, by simply de�ningthe membership relation for F as the largest lax natural transformation id  - F . Itis easily checked that in Rel such a largest lax natural transformation exists for anyF , since the union of a collection of lax natural transformations is again lax natural.We aim to show, therefore, that there exist relators that do not have membershipin our sense, hence we show that the largest lax natural transformation id  - F isnot necessarily a membership relation.Restatement of Fact 7. There exists a relator that does not have membership.As a �rst step towards constructing such an example, observe that a containertype constructor ought to preserve intersection of subsets: for any collection Xof subsets of a set C , the set of F -structures over TX should be precisely theintersection TfFA0 jA0 2 X g. Indeed, it is easily veri�ed that this condition holdsfor the examples (lists, powersets and exponentials) considered so far.We can formalise the above intuition as follows: [the restriction to Rel is necessaryto guarantee existence of arbitrary intersections]Lemma 12



18 Paul Hoogendijk and Oege de MoorLet F be a relator of Rel that has membership. Then F preserves arbitrary inter-sections of core
exives.ProofIt is possible to give a direct proof of this lemma, but such a proof is clumsy. Instead,we prefer to use the fact that the right (or upper) adjoint in a Galois connectionpreserves intersections; readers who are not familiar with Galois connections arereferred to (Gierz et al., 1980). Below it is shown that F is a right adjoint: let Cand D be core
exives of an object A. We haveD � FC� forder-isomorphism between core
exives and left-conditionsgD �� � F C ��� fdivision: "n� = �gD �� � F C � "n�� fmembershipgD �� � "n(C ��)� fdivisiong" �D � � � C ��� frange: R �� = Ran(R) ��, order-isomorphismgRan(" � D) � CThis last result suggests a strategy for proving that not every relator has a mem-bership relation. It su�ces to �nd a relator F , an object A and a collection X ofcore
exives of A such that F does not preserve the intersection of X . Since anyrelator preserves �nite intersections of core
exives, the collection X will have to bein�nite.A truly convincing example would satisfy a number of additional requirements.First, F should be a functor of Fun, for that is the model of primary interest. Sec-ond, F should preserve binary intersections of relations: this is a property of manycontainer types, albeit not of the power set relator. Readers who are intimatelyfamiliar with category theory will realise that these requirements can be stated abit more concisely: we want a functor F on Fun that preserves pullbacks, plus anobject A and a collection X of subobjects of A such that F does not preserve theintersection of X . This formulation in categorical terms has the advantage thatit does not mention relations. Although we were able to phrase our requirementsin this style, at the time we were unable to construct an example ourselves. Thequestion was �nally answered by Peter Freyd, and we now proceed to sketch hisconstruction.First consider the functor G = FromN , where N is the set of natural numbers.For any set A, one can think of GA as the set of in�nite sequences over A. As wehave already seen, G is a relator. For any A, we can de�ne an equivalence relation



Container Types Categorically 19R on GA bysRt � (9m : (8i : m � i : s i = t i)):In words, two sequences s and t are related by R when they are `eventually equal'.It is easily checked that R is indeed an equivalence relation. De�ne FA to be theset of equivalence classes in GA, and let qA : FA GA be the function that sendsa sequence to the corresponding equivalence class.We can make F into a functor by de�ning its action on functions byF h = qA �Gh � qB�; for h : A B :There are quite a number of things to verify now: we should check that F h isindeed a function, that F preserves composition and identities, and that F is arelator which preserves binary intersections. These veri�cations are however rathertedious, and we omit details.It remains to construct an object A, together with a collection X of subsets of Aso that F does not preserve the intersection of X . We take for A the set of naturalnumbers itself, and X is de�ned byX = ffi jm < ig jm 2 N g:Technically speaking the components of X should be subsets of the identity relation,but we sweep the distinction between such relational subsets and ordinary subsetsunder the carpet. Note that the intersection of X is empty, and that F (TX ) is alsothe empty set. However, for each C 2 X , F C contains qN id . So the intersectionTfFC jC 2 X g is nonempty. Freyd's counterexample is therefore complete. As weshall see below, his construction is useful in refuting other conjectures in the theoryof container types. 5 Container types have fansNot only do we wish to inspect the contents of data structures; we should alsobe able to create them. Therefore, any type constructor F comes equipped witha family of relations that captures the idea of creating F -structures. There arevarious formalisations of such families in the literature, notably strengths and copymaps. We shall consider these in the next section, but �rst we explore an intuitivelysimpler notion of data structure creation.A fan is a nondeterministic mapping that, when given a seed value a, creates anF -structure all of whose elements are equal to a. Formally, a fan is a lax naturaltransformation of type � : F  - id such that the function �R : (FR � �) preserves�nite intersections (� : A B is the largest relation of its type):F� � � = � and F (R \ S ) � � = (FR � �) \ (F S � �):This de�nition of fans originated with (Backhouse et al., 1993), where they werecalled generators. Remarkably, membership guarantees the existence of unique fans:Fact 13If F has membership, then � = "nid is the unique fan for F .



20 Paul Hoogendijk and Oege de MoorThe converse is not true: as Freyd's example shows, it is possible for a relatorto have a fan, but no membership. It follows that there is no need to revise ourcurrent de�nition of a container type: we stick to the view that it is a relator thathas membership. Again the proofs in the next subsection can be skipped withoutloss of continuity. 5.1 ProofThe proof strategy will be as follows. First we show that any two fans are eitherincomparable (under �), or they are equal. Then we note that "nid is the largestfan for F . Together these two lemmas give the desired result, namely that "nid isthe unique fan for F .To prove the �rst lemma, we shall need an auxiliary technical result, which statesthat two F -structures of the same shape, both of which have been created with thesame fan, are equal. (To be precise, this is what the lemma below says when wetake R = �, and S = T = id .) The proof is admittedly somewhat unattractive,but we see no other way.Lemma 14Let � be a fan for F . Then, for all R, S and T , we have(FR) \ (F S � � � �� � FT ) � F (R \ (S � T )):ProofIn the proof below, we shall use the fact that for any relation R, there exist functionsf and g so that R = f � g�. We shall also need the properties of the range operatorRan, as discussed in Section 2.6. With these facts in hand, we calculate as follows:F (f � g�) \ (F S � � � �� � F T )= fmodular identity, F relatorgF f � (id \ (F (f � � S ) � � � �� � F (T � g))) � Fg�= frange of intersectiongF f �Ran(F (f � � S ) � � \ F (T � g)� � �) � Fg�= f� is a fangF f �Ran(F ((f � � S ) \ (T � g)�) � �) � Fg�� fsince Ran(X � Y ) � RanX gF f �Ran(F ((f � � S ) \ (T � g)�)) � Fg�= frelators preserve rangegF f � F (Ran((f � � S ) \ (T � g)�)) � Fg�= frange of intersectiongF f � F (id \ (f � � S � T � g)) � Fg�= fmodular identity, F relatorgF ((f � g�) \ (S � T ))



Container Types Categorically 21The above result, though somewhat tricky to prove itself, facilitates a nice proofthat fans are either incomparable or equal:Lemma 15Let � and � both be fans of F . If � � �, then � = �.ProofIn the proof below, � stands for the largest relation of appropriate type. We argue�= fintersectiong� \ �= fsince � is a fang� \ (F� � �)� fmodular law (also known as Dedekind's rule)g(� � �� \ F�) � �� fgiven: � � �g(� � �� \ F�) � �� fLemma 14g�The above results do not make use of membership. When a relator has member-ship, there is an obvious candidate for the fan, namely the relation "nid . Given theimportance of this relation in the de�nition of membership, it should be no surprisethat "nid is of independent interest.Fact 16Let F be a relator whose membership relation is ". Then � = "nid is a fan for F .The proof of this fact is trivial, for �X : Y nX preserves intersections for all Y , inparticular when Y = ". Finally, we can put all the above results together to obtainthat a relator with membership has precisely one fan.Restatement of Fact 13. Let F be a relator that has membership. Then � = "nidis the unique fan for F .ProofWe have just proved that � is indeed a fan. Furthermore, by Fact 8, it is the largestlax natural transformation of its type. Therefore any other fan is included in it, andLemma 15 gives the desired result.



22 Paul Hoogendijk and Oege de Moor6 Container types have strengthAbove we already alluded to work of others which also (at least implicitly) aimedto pin down the notion of container types (as well as more general data types).Because the details are rather more technical than those in preceding sections, we�rst outline the main ideas and results.The related work concentrates on ways of creating data structures; it is not con-cerned with relators or membership. Functors that have a certain data structurecreation mechanism are said to be strong (Moggi, 1991; Cockett & Spencer, 1992).Because little interesting can be said about strong functors in connection to arbi-trary natural transformations, natural transformations are required to satisfy anadditional condition; such natural transformations are also called strong. The mainresult of this section says that relators that have membership are necessarily strong.Furthermore, any natural transformation (between relators that have membership)is strong. So all conditions related to strength come for free if we have a relator thathas membership; but there are strong relators that do not have membership. Theconclusion is that our current proposal for the de�nition of a container type, namelya relator that has membership, re�nes earlier attempts in the literature. Readerswho are not familiar with category theory may wish to review our introduction to�nite products in Section 2.8 before proceeding.Let F be a functor. A strength of F is a collection of functions � : F (A� B) FA� B that is natural in the following senseF (h � k) � � = � � (F h � k) for all functions h and k .Furthermore, there are two conditions to ensure that � interacts properly withproducts:F rid � � = rid and F assl � � = � � (� � id) � assl :A functor that has a strength is said to be strong. It is possible for a functor tohave several di�erent strengths; every functor of Fun is strong.It is worth thinking about the strengths of our three example relators. Usinga so-called list comprehension (a common device in functional programming) thestrength of the list functor is given by�(x ; b) = [(a; b) ja  x ]:Similarly, the strength of the powerset functor is�(x ; b) = f(a; b) ja 2 x g:Finally the strength of the exponential functor is�(f ; c) = �b : (f b; c):Some readers may be puzzled by our introduction of strength as a data structurecreation mechanism, as it may not be immediate what is being created here. Perhapsthe terminology becomes more perspicuous when one programs the so-called copy



Container Types Categorically 23map in terms of strength. For a functor F , the copy map is a collection of arrowsc : FA F 1�A, de�ned byc = F lid � �;where lid : A (1�A) is the obvious isomorphism. The intention of this de�nitionis that c takes a shape (a value of type F 1) and a seed value (of type A) andthat it returns an F -structure of the same shape all of whose elements are equalto the seed value. Clearly copy maps are closely related to the notion of fans; weshall however not further elaborate the connection. Copy maps are equivalent tostrengths for a certain class of functors (to the categorically wise: functors thatpreserve pullbacks): one can de�ne copy maps independently, and then prove thatthere exists a one-to-one correspondence between copy maps and strengths. Theinterested reader is referred to (Jay, 1994).Another useful operation that can be programmed in terms of strength is themap transformation. Let F be a functor of Fun that has strength �. We can thende�ne map : (FA F B) (A B) bymapf x = (F app) (�(x ; f ));where app(a; f ) = f a. One could say that map internalises the action of F asa collection of arrows within Fun. The above construction of map generalises toany category that has exponentials. Again map can be de�ned as an alternativeto strengths: the strengths of F are in one-to-one correspondence with its maptransformations. Details can be found in Kock's in
uential paper (Kock, 1972).Using Kock's correspondence we get immediately that all functors of Fun are strong.In particular, the functor F in Freyd's counterexample is strong, and thus we havean example of a strong functor that does not have membership.The correspondence between strengths, copy maps, and map transformationshopefully convinces the reader of the importance of its rather technical de�nition.We now proceed to detail the connection with fans. As we shall see, there is aone-to-one correspondence between fans and a special kind of strength.Let F be a relator that has strength �. The strength � is said to be relational ifit satis�es the naturality conditionF (R � id) � � = � � (FR � id):Note that the inclusion � is almost immediate from the de�nition of �; the ad-ditional requirement is therefore that we also have �. It can be shown that if Fpreserves binary intersections of relations, then any strength of F is relational. Wehave been unable to prove that for arbitrary F , but we have also been unable to �nda strength that is not relational. This is disappointing, and the matter obviouslyneeds to be resolved, but in any case we can make progress:Fact 17Let F be a relator. Then the relational strengths of F are in one-to-one correspon-dence with the fans of F .



24 Paul Hoogendijk and Oege de MoorThis result does not use division or the identi�cation axiom. In particular, it doesnot require that F has membership. However, if one does make these additionalassumptions, one obtainsFact 18Let F be a relator that has membership. Then F has a unique strength, and thatstrength is relational.We have not found a comparable result about uniqueness of strengths in theliterature. It is unlikely that any interesting improvements can be made withoutassuming the identi�cation axiom (or subextensionality, which implies identi�ca-tion): without it, even the identity functor need not have a unique strength! (Tothe categorically wise: consider the topos of G-sets SetG , where G is a non-trivialabelian group.) The condition that F has membership cannot be omitted in theabove result, for there are relators that have neither membership nor strength: anexample is F (R;S ) = (S ;R) on Rel2.As indicated in the brief overview at the beginning of this section, the theoryof strong functors requires that natural transformations behave consistently withrespect to strength. Let F and G be relators with strengths � and � respectively.A lax natural transformation � : F  - G is said to be strong if� � (� � id) = � � �:For the unique strength constructed from membership, this condition is alwayssatis�ed:Fact 19Let F and G be relators that have membership. Then any lax natural transforma-tion F  - G is strong.This saves considerable proof e�ort when working with strength, and the resultmight have applications in the work on computational monads, which has recentlyattracted a lot of attention in the functional programming community. It is preciselythis type of saving in tedious calculations that we hope to gain by identifyingproperties that are common to all container types. As in the case of fans, strengthdoes not require further re�nement of our de�nition of container types as relatorsthat have membership.The proofs of the results in this subsection require some excruciating symbolmanipulation: such intricate yet tedious proofs are a common feature of argumentsinvolving strength. As our results show, most of these manipulations can be entirelyavoided when our de�nition of container types is adopted. Readers who have a tastefor symbol pushing are invited to read the next subsection, or indeed to reconstructit for themselves; others might wish to jump to the conclusions.6.1 ProofsTo establish the connection between fans, strength, and membership we shall needan alternative (but equivalent) de�nition of fans that is in terms of products instead



Container Types Categorically 25of intersections. As indicated in Section 2.8, we can do this by exploiting the closerelationship between � and !, and between h ; i and intersection.Recall the original de�nition of fans: a lax natural transformation � : F  - id isa fan if the mapping �R : FR � � preserves �nite intersections. Given the intimateconnection between intersections and products, the following fact will come as nosurprise:Fact 20Let F be a relator, and let � be a lax natural transformation of type id  - F .De�ne � = ��. Then � is a fan for F i�(� : 1 F1) = ! , and(� : A� B  F (A� B)) = h� � F outl ; � � F outri:ProofFirst assume that � is a fan for F . We aim to show that � satis�es the two aboveequations: � : 1 F1= fidentity arrowg� � F id= fsince (id : 1 1) = �g� � F�= fconverse, de�nition of �g(F� � �)�= fsince � is a fang��= fsince �� = � =!g!For the second equation, we reason:h� � F outl ; � � F outri= fde�nition of splitgoutl� � � � F outl \ outr� � � � F outr= fde�nition of �, converseg(� � outl)� � F outl \ (� � outr)� � F outr= fnaturality of �g(F outl � �)� � F outl \ (F outr � �)� � F outr= fconverse, F relatorg(F (outl� � outl) � � \ F (outr� � outr) � �)�= f� is a fang



26 Paul Hoogendijk and Oege de Moor(F (outl� � outl \ outr� � outr) � �)�= fsince outl� � outl \ outr� � outr = idg��= fde�nition of �g�This completes the proof that the old de�nition of fan implies the new one. Nowassume that � satis�es the two equations given above. It is our task to show that� is a fan. For the �rst equation:F� � �= fsince � = !� � !, F relatorgF !� � F ! � �= f� : F  - idgF !� � � � != fconverse, F relator, de�nition of �g(� � F !)� � != fgiven: � � F ! =!g!� � != fsince � = !� � !g�The proof that �R : FR � � also preserves binary intersections goes as follows:(abbreviate z = hF outl ;F outri)F (R \ S ) � � = FR � � \ F S � �� fsince R � U \ S �V = hR�;S�i� � hU ;V i, F relatorgF hR�;S�i� � F hid ; idi � � = hFR�;F S�i� � h�; �i� f� : F  - id , and hid ; idi function, Lemma 5gF hR�;S�i� � � � hid ; idi = F hR�;S�i� � z� � h�; �i( fsince h�; �i = (�� �) � hid ; idig� = z� � �� �� f� = ��, converseg� = �� � � z� fmeaning of z , product absorption, properties of �gtrueIt is now fairly easy to set up the correspondence between fans and relationalstrengths, as there is almost a one-to-one correspondence between the requiredproperties. First, we show how to construct a strength from a fan.



Container Types Categorically 27Fact 21Let F be a relator. Assume that � is a fan for F . De�ne � = ��. Then� = hF outl ; � � F outri�is a relational strength of F . Furthermore, we have� = F lid � � � outr�;where lid : A (1�A) is the obvious isomorphism.ProofThat � is lax natural and satis�es the additional naturality property of a relationalstrength follows from Lemma 4, and� = hF outl ;F outri� � (id � �):The two equationsF rid � � = rid and F assl � � = � � (� � id) � asslfollow from Fact 20; details are omitted. To show that � is a function, we need toshow both totality and single-valuedness. For totality, we shall show that Dom � =id , where DomX = id \ X � � X = Ran(X �):Dom �= fde�nition of �, Dom(R) = Ran(R�), range of splitgid \ outl� � F (outl � outr�) � � � outr= fsince � = outl � outr�gid \ outl� � F� � � � outr= f� fangid \ outl� � � � outr= fboth outl and outr are totalgid \�= fintersectiongidTo prove that � is single-valued, we reason as follows,� � ��= fde�nitions of �, split and intersectiongF (outl� � outl) \ F outr� � � � �� � F outr� fLemma 14gF (outl� � outl \ outr� � outr)= fsince outl� � outl \ outr� � outr = idgid



28 Paul Hoogendijk and Oege de MoorIt remains to show that � can be recovered from �:F lid � � � outr�= fde�nition of �gF lid � hF outl ; � � F outri� � outr�= fconverse, split cancellation (F outl total)gF lid � F outr� � ��= fF relator, lid � outr� = id , �� = � g�Fortunately, the transition from relational strengths to fans is much easier toverify, because the de�nition of fans is simpler, and so there is less to check. Infact, we omit the proof, because it is a mostly mechanical exercise. We have thuscompleted our discussion of the correspondence between fans and strengths:Restatement of Fact 17. Let F be a relator. Then the relational strengths of F arein one-to-one correspondence with the fans of F .Together with Fact 13, this result proves that a relator with membership has aunique relational strength, but we can in fact do slightly better than that. Let Fbe a relator with membership relation ". CallhF outl ; ("nid)� � F outri�=F outl� � outl \ "n(outr� � outr):the canonical strength � of F . To prove that the canonical strength is the onlystrength, it su�ces to prove that � � � for all strengths � of F since strengthsare functions. By shunting of functions, it follows that � � � is equivalent to theconjunctionF outl � � = outl and outr � " � � � outr :We shall prove these two equations as separate lemmas.Lemma 22Let F be a functor with strength �. Then F outl � � = outl .Proof F outl � �= fnaturality of outlgF outl � F (id � !) � �= fnaturality of �gF outl � � � (id � !)= fsince (outl : A A� 1) = rid ; � strengthg



Container Types Categorically 29outl � (id � !)= fnaturality of outlgoutlLemma 23Let F be a relator with membership relation ", and let � be a strength of F . Thenoutr � " � � � outr .ProofDe�ne GR = id � R. Then outr is the membership relation of G , and thereforethe largest lax natural transformation id  - G . The composition outr � " � � is a laxnatural transformation of the same type.It seems �tting that we end our exploration of uniqueness of strength with sucha delightful little proof. We believe that the theory of largest lax natural trans-formations put forward here simpli�es many polytypic arguments, especially onesthat would otherwise require an appeal to extensionality (pointwise reasoning).Indeed, we �rst tried to prove the results of this paper by pointwise means, andalthough we mostly succeeded at the time, the proofs were rather impenetrable.The achievements so far are summed up in:Restatement of Fact 18. If F is a relator that has membership, then it has a uniquestrength, and that strength is relational.In what follows, we shall denote the unique strength of F by �F , and its uniquefan by �F . Now it only remains to show that all lax natural transformations arestrong, in the sense that�F � (�� id) = � � �G ;for each � : F  - G . We do so by proving an inclusion for each direction of theequation:Lemma 24Let F and G be relators that have membership, and let � be a lax natural trans-formation of type F  - G . Then�F � (�� id) � � � �G :Proof � � �G= fcanonical strength of Gg� � hGoutl ; �G� �Goutri�� fconverse, split: hX ;Y i � Z � hX � Z ;Y � Z ighGoutl � ��; �G� �Goutr � ��i�



30 Paul Hoogendijk and Oege de Moor� fconverse, � : F  - Ggh�� � F outl ; �G� � �� � F outri�� f� � �G : F  - id , and �F largest of this typegh�� � F outl ; �F � � F outri�= fconverse, product absorptionghF outl ; �F � � F outri� � (�� id)= fcanonical strength of Fg�F � (�� id)Lemma 25Let F and G be relators that have membership, and let � be a lax natural trans-formation of type F  - G . Then�F � (�� id) � � � �G :ProofFirst we note that, because � is a function, the proof obligation is equivalent to(�� id) � �G� � �F � � �or, equivalently,�G � (�� � id) � �� � �F :This inequation can be proved as follows:�G � (�� � id)= fcanonical strength of GghGoutl ; �G� �Goutri� � (�� � id)= fconverse, product absorptiongh� �Goutl ; �G� �Goutri�� f� : F  - GghF outl � �; �G� �Goutri�� fconverse, modular law: hR � S ;T i � hR;T � S�i � Sg�� � hF outl ; �G� �Goutr � ��i�� fconverse, � : F  - Gg�� � hF outl ; �G� � �� � F outri�� f� � �G : F  - id , and �F largest of this typeg�� � hF outl ; �F � � F outri�= fcanonical strength of Fg� � �F



Container Types Categorically 31We can now concludeRestatement of Fact 19. Let F and G be relators that have membership. Then anylax natural transformation F  - G is strong.We �nd this fact quite remarkable, as it shows that all conditions regarding strongfunctors in the literature are vacuously satis�ed. In particular, we obtain that anymonad (on a on a container type) is strong. Tuijnman (Tuijnman, 1996) studiesstrength in the context of program derivation. It seems likely that at least someof his proofs can be simpli�ed using the results presented here, but we have notinvestigated this in any detail. 7 ConclusionsTo sum up, we propose the followingDe�nition A container type is a relator that has membership.The validity of this de�nition hinges on the assumption that any calculus of spec-i�cations and programs can be embedded in a logos that satis�es the identi�cationaxiom. That it is a logos means that we can freely use �rst-order predicate calculusto reason about speci�cations; that it satis�es the identi�cation axiom means thatpolymorphism is well-behaved (does a decent model of polymorphic �-calculus al-low total functions of type 8a : a  a apart from the identity function?). [As wehave said, the identi�cation axiom follows from the more usual axiom of subex-tensionality, but we do not know whether the two axioms are equivalent.] We feel,therefore, that these conditions on the category are healthiness conditions on thesemantic model of the calculus.We note that synthetic domain theory is precisely concerned with the construc-tion of models of programming languages that satisfy our assumptions (Hyland,1992). In this context we should own up to an embarassment, namely that in cer-tain categories (topoi), the exponential functor is a relator only if the internal axiomof choice is satis�ed. This indicates that our de�nition of relator may need modi�-cation for those who accept only constructivist reasoning about their speci�cations.A weaker de�nition of relators may be found in (Mitchell & �S�cedrov, 1993). It ismainly because of this problem with the exponentional functor that our de�nitionworks for container types only, and not for arbitrary data types.Another shortcoming of this paper is that we have dealt only with data typesthat have a single kind of element: to deal with more general data types one needsto consider functors between powers of C, rather than just endofunctors of C (whichis what we have done here). The details of such a treatment are however rathertechnical (Hoogendijk, 1996).It is of course quite likely that we have missed out a number of operations thatare common to all container types; it remains to be seen whether these can be codedin terms of membership. The results on fans and strength give us some con�dencethat this is indeed the case.



32 Paul Hoogendijk and Oege de MoorAt the start of this paper we mentioned that this theory was developed for thepurpose of program speci�cation and derivation: detailed examples of its use can befound in earlier publications by ourselves (in particular Chapters 6 and 7 of (Birdet al., 1996), as well as (Bird & De Moor, 1996)). There are other approaches tothe generic treatment of data types that are more geared towards programminglanguage design. Drawing on the categorical view of types as functors, Cocket andFukushima designed the programming language Charity (Cockett & Fukushima,1991). This was followed by the design of an extension of Haskell, called PolyP(Jeuring & Jansson, 1996). The designers of PolyP explicitly set out to implementthe programs we derived through the theory of membership in (Bird & De Moor,1996). A yet more recent development is the design of Functorial ML (Bell�e et al.,1996). The work on Functorial ML has a sophisticated categorical semantics basedon the idea of a shapely functor. Shapely functors (Jay, 1995) give equal weight tothe contents and the structure of a composite value. As we have pointed out, notevery container type in our sense is shapely. A rather nice reworking of these resultshas recently been proposed by (Hinze, 1999). A formal connection between thecalculus of relational speci�cations, and implementations in Functorial ML wouldclearly be of great value.Of course all the machinery we have used in this paper is well-established in thecategory theory community. The calculus of relations itself has a rich history, goingback to (De Morgan, 1860; Peirce, 1870; Schr�oder, 1895). The subject as we know ittoday was mostly shaped by Tarski and his students in a series of articles, startingwith (Tarski, 1941). An overview of the origins of the relational calculus can befound in (Maddux, 1991; Pratt, 1992). During the 1960s several authors started toexplore relations in a categorical setting (Brinkmann, 1969; Mac Lane, 1961; Puppe,1962). This resulted in a concensus that regular categories are the appropriatesetting for studying relations in general (Grillet, 1970; Kawahara, 1973b). The latterpaper also has the result about relators that forms the lynchpin of the presentpaper. The study of categories of relations has since received much more attention,see for instance (Carboni et al., 1984; Carboni & Street, 1986; Carboni & Walters,1987; Carboni et al., 1991). The de�nitive introduction to this area of categorytheory is the text book by Freyd and �S�cedrov (Freyd & �S�cedrov, 1990). The mainadvantage of the categorical viewpoint of relations is that one can freely movebetween functions and relations, choosing whichever is most convenient for the proofin hand. We have not capitalised much on this advantage, because it requires theintroduction of some extra categorical machinery (pullbacks, image factorisation,strong epimorphisms), making the paper less self-contained. As Freyd's exampleillustrates, however, the freedom a�orded by such extra machinery can lead to newresults that are very hard to uncover otherwise.AcknowledgementsWe would like to thank Peter Freyd for supplying the example of a functor of Funthat does not have membership, and for general discussion and encouragement.Roland Backhouse suggested that we should take a closer look at the notion of
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