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Abstract time using various static methods which are specific to the particular

Lazy allocationis a model for allocating objects on the execution stg¥Re Of object whose allocation is being optimized. Unfortunately,
of a high-level language which does not create dangling referenf$€ techniques are limited, complex and expensive. We present a
Our model provides safe transportation into the heap for objects #dinique which acts more likeaacheor avirtual memory in the

may survive the deallocation of the surrounding stack frame. S e that no attempt is made to predict usage at compile time, but the
for objects that do not survive the deallocation of the surrounding s e is determined at run time. In other words, the system learns
frame is reclaimed without additional effort when the stack is poppagPut the usage of objects "on-the-fly". N _
Lazy allocation thus performs a first-level garbage collection, andfife major contribution of this paper is the recognition that a wide
the language supports garbage collection of the heap, then our nwsdigity of stack-allocation optimizations are all instances of the same
can reduce the amortized cost of allocation in such a heap by filtevidderlying mechanismdazy allocation Using this insight, we can

out the short-lived objects that can be more efficiently managedimplify hardware architecture and language implementations by
LIFO order. A run-time mechanism calleelsult expectatiorfurther factoring the problem into two abstraction layers—language
filters out unneeded results from functions called only for their effe¢@plementation using generic storage allocation, and the
In a shared-memory multi-processor environment, this filteritigplementation of generic storage allocation using lazy allocation.
reduces contention for the allocation and management of gldafety is also enhanced by the elimination of "dangling references"
memory. due to objects escaping a stack-allocated scope. While lazy allocation

Our model performs simple local operations, and is therefore suitafjgddy provides for stack-allocation of arguments and temporaries, a

for an interpreter or a hardware implementation. Its overheadsPf@drammer can extract even better performance by utilizing

functional data are associated only withsignmentsmaking lazy continuation-passing style" to stack-allocate function results.
allocation attractive fomostly functionabrogramming styles. Many2, Stack Allocation is an Implementation Issue, not a Language
existing stack allocation optimizations can be seen as instances ofg$ig:
generic model, in which some portion of these local operations haNg stack allocation of variables and contexts in higher-level compiled
been optimized away through static analysis techniques. languages such as C, Pascal and Ada has been a fact of life for so
Important applications of our model include the efficient allocationrofiny years since its introduction in Algol-60 that most programmers
temporary data structures that are passed as arguments to anonyodals assume that stack allocation idamguage rather than an
procedures which may or may not use these data structures in a stapkementationissue. Stack allocation cannot be a language issue,
like fashion. The most important of these objects are functiohalever, since the most direct mapping of the nested lexical variable
arguments funarg9, which require some run-time allocation tecopes in these languages igtrae, not a stack. Rather, stack
preserve the local environment. Since a funarg is sometimes retuatiedation was a conscious decision on the part of these language
as a first-class value, its lifetime can survive the stack frame in whdeligners to provide thenplementation efficiencyf a stack as a

it was created. Arguments which are evaluated in a lazy fashitimage allocation mechanism even though this choice substantially
(Schemedelaysor "suspensions") are similarly handled. Variableempromised language elegance. We have also since learned that
length argument "lists" themselves can be allocated in this fashstack allocation of variables and contexts severely limits the
allowing these objects to become "first-class". Finally, lazy allocatmxpressiveness of a programming language. Indeed, many of the
correctly handles the allocation of a Scheme control stack, allonaniyances in programming languages after Algol-60 can be
Scheme continuations to become first-class values. characterized as attempts to ameliorate the restrictions of stack
1. Introduction allocation. For example, most of the functionality of Simula-67 could

y L . L . have been achieved in Algol-60 through the dropping of the stack
Stack allocation of objects in higher level programming languageg)|jgcation requirement along with the syntactic restrictions on
desired because it is elegant, efficient, and can handle the dure arguments and returned values
majority of short-lived object allocations. Traditional higher-lev . o .
languages such as Algol, Pascal and Ada have preferred to per stack allocation of Algol-60 provided a major advance over
all automaticstorage management by using a stack, while non-stgeklran's static allocation. Functions could be arbitrarily nested, and

rsion became possible. So long as the basic values being

allocation remains the responsibility of the programmer. However, 'feY! lated b d individual ch k all ;
limitations of stack allocation are semantically confining, becausB'@npulated were numbers and individual characters, stack allocation

strict last-in, first-out, (LIFO) allocation/deallocation ordering does ri?{bf;"ed remarkably expressive. With the advent of dynamic strings of
allow for important classes of program behavior such as that racters and larger dynamic objects such as arrays, stack allocation
returning a functional argument as a result. Therefore, rted to break down. PL/l used pointers and explicit
programmer is forced to use complex and error-prone techniqu Iggation/deallocation to avoid tr]e limits of stack allocation.
simulate this behavior himself, even though the abstract programrmHgstantial lﬁlrgumer:jts in _thgl 197|0 s raged about the allocation of
language may be capable of expressing the behavior more eleg ton-calling and variable-allocation contexts—"retention
and directly using, for example, functional arguments as resJffor-stack allocation) versus "deletion” (normal stack allocation)
Modern higher level languages such as Lisp, Smalltalk, Mesa, Modtitg! Y71l [Fischer72]. Non-stack-allocation has become steadily
3, ML, and Eiffel, seek to escape these LIFO restrictions to gaillig€ important as the sophistication and complexity of programs have
expressive power while retaining elegance and simplicity in {jereased. For example, in modern "object-oriented" programming
language. Insofar as they succeed, they can greatly imp le, most objects are heap-allocated rather than stack-allocated.
engineering productivity and software quality. Unfortunately, heap-allocation is substantially less efficient than stack-

A cost must be paid for this flexibility through the increased useaﬂgca’[{on. As a result, programmers constantly seek to utilize stack
heap allocation for objects in the language. Yet the vast majorinpgication whenever possible. This change requires much work,
objects obey a straight-forward last-in, first-out (LIFO) allocaticfc@use the source code changes required to change from one sort of
semantics, and could profitably utilize stack allocation.  One wo@f{Pcation to another are substantial, even when the logic of the
therefore like to provide stack allocation for these objects, wHif@9ram has not changed. Most importantly, the programmer is

reserving the more expensive heap allocation for those objects 'f#ffired to use heap-allocation for entire classes of objects, even
require it. In other words, one would like an implementation whi#j€n the vast majority of these objects can be safely stack-allocated.

retains the efficiency of stack allocation for most objects, ah@S results from the difficulty in determining at design or compile time
therefore does not saddle every program with the cost for W{ich of the objects can be safely stack-allocated, because it depends
increased flexibility—whether the program uses that flexibility or noPn @ particular pattern of function calls, which in turn depends on the

) - . L . _Input data.
The problem in providing such an implementation is in determin . .
which objects obey LIFO allocation semantics and which do nbte US€ of different constructs and mechanisms for heap allocated

Much research has been done on determining these objects at co qgts than for stack-allocated objects is therefore less productive for
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the programmer and less efficient at run-time. It is also an invitationeg no object in the heap can point into the stack, and no object in the
disaster, because using stack allocation inappropriately can causacl can point "up" the stack, only "down" the stack.

program to fail in a spectacular manner. The Temporary Restraining Order (TRO) is enforced by checking
We believe that the intertwining of an implementation mechaniemery primitive operation which could possibly violate it. The only
(storage allocation) with a programming language mechanigperation which can violate TRO is the storage of a pointer into a
(variable and function scoping) is confusing to the programmer atatk frame (or the heap) which compares lower than the object
inefficient for the hardware. It is a violation of the design principle mdinted at. In other words, when performing an assignment, we need
providing "levels of abstraction", wherein each level can bely check that the ordering is preserved:

understood in its own terms, and not require a detailed understandiB@ponent(p) :=q;  /* p,q pointers; assert(p >q). ¥/

of every lower level. We therefore describe a mechanism caligdisically, most component assignments in higher level languages

"lazy allocation” which can be used to provide a uniform interface,ff respect the TRO rule, because component assignments are usually
the programmer, while taking advantage of stack-allocation as

2 to initialize components of newer data structures to reference
as possible.

The simplification in language design and implementation permitted?tif" ones The main exceptions to this observation are assigning to
lazy allocation through improved abstraction is important even(lforé) global variables and returning values. By assigning a pointer to
additional run-time efficiency on current hardware is not immediatéfy!obal variable, we are very likely to violate TRO because our lazy
forthcoming. The problem factorization by lazy allocation shouféiocation will allocate everything on the stack. _
allow for more efficient hardware architectures as well as langu&fgce most function returns result in binding a variable in the caller's
implementations, which will eventually translate into improvdthRme, they can have the same effect on returned values as an
price/performance ratios. assignment to a global variable—eviction. In some cases, this eviction
can be avoided by having the caller allocate the space for the returned
3. The Model. . . . result in his own frame, and passing a reference to this space as an
The standard model of a run-time system in a modern high ley@iitional argument. This technique, which we call "caller result
language consists of a traditional executstackformatted into stack gjiocation” has been used since the early 1960's in Fortran, Cobol and
frames each of which represents the execution state of a particpafi compilers. There are two problems with caller result allocation.
invocation of a particular procedure. The model may also includesrat when the called routine attempts to initialize any components of
heap which contains objects that cannot be allocated and deallocgied structure, these assignments may cause eviction of the
in a last-in, first-out (LIFO) manner. Typical languages using t@imponents. Second, caller result allocation only works when the
model are Pascal, C and Ada (without tasks). caller knows the size of the object being returned in advance.
C and PL/I make most storage allocation and pointer managemenithertheless, it can be used to reduce the number of evictions of
responsibility of the programmer. In these languages, he is allowe%ttg ed value§
take the address of an object on the stack and store this pointer in ik N
arbitrary variable. A common instance of creating references to Ig¥8€n @ TRO violation is about to take place, the system executes a
variables is when local variables are passed as arguments to andfaBgporter trap” [Moon84], which evicts the target object of the
procedureby reference Passing large objects by reference is usuddginter from the stack into the heap. The process of relocating this
Cheaper than passing them by Va|ue’ but by_reference argurﬂ \ t can cause recursive transporter_traps, however, W_hen pOIntel’S
passing can lead to a dangling reference if a reference into the ¥ are components of the object being relocated are discovered to
is then stored into a variable having a larger scope, such as a gf#p@|point into the heap. If relocation of the object, installation of
variable. A dangling reference can cause bugs if it is dereferefé§arding addresses, and updating pointer components are all
outside of the stack object's lifetime. Thus, the power to take BB ormed in the correct order, this recursion will terminate. When
address of an object on the stack can lead to efficient programi§§rfecursion terminates, not only has the object causing the first trap
which temporaries are stack-allocated, but this power can 218N relocated out of the stack, but so have all of the objects
produce bugs which are difficult to find. accessible from it. When the original trap has completed, the updated

Our model detects these objects whose references are about to e% %Zsﬂ::ttt?:n used to complete the assignment operation which
from the lifetime of their enclosing stack frame, and relocates th AP . .
objects into the permanent heap. This graduation from temporaryifi¢e forwarding addresses are left for every non-functional object
permanent status we cadlviction Due to the constant threat ofhich is evicted in this manner, references from machine registers
sudden eviction, any access to such an object must be capabf@®ffrom objects still in the stack to the evictee can follow these
detecting this movement so it can find the relocated object at its fiyarding addresses to find the moved object. A functional (read-
address by following a forwarding pointer.1 The mechanisms 9&¥y) object still in the stack does not need a forwarding address

dealing with objects which can be unexpectedly moved are Weltause the stack original is equivalent to the heap Sopgd
known in the context of "on-the-fly”, or "incremental” compactinghntinues to function correctly until the frame is exited, at which point
garbage collectors [Baker78][Lieberman83]. it is abandoned because no live references to it exist. Thus, the
Once we have installed the machinery necessary to deal with objemtsporter traps caused by attempted violations of the TRO rule serve
which can suddenly move, we can contemplate the possibilitytmfelocate the objects so that the TRO rule is preserved, and so that
allocating everythinginitially on the stack. If we implement arthe semantics of the objects themselves are also preserved.

"escape alarm system" to detect escaping references, we can use

these alarms to trap to an eviction routine which will transport evicted

objects into the heap. We call the policy of stack allocation followed

by eviction traps "lazy allocation", because the system is too lazy to

perform the work involved in heap allocation until this work is forced

by the object's usage.

In the lazy allocation model, we have a global heap, a stack formatted

into stack frames, and a small number of machine registers. We j . . : :
the existence of an ordering relation on object addresses W%Ei architectures without special TRO-checking hardware, common

adheres to the following axioms: s like initialization can be easily recognized and optimized.

1. The location address of an object in the global heap compérsctions in expression-oriented languages like Lisp will often return
lower than the location address of an object in the stack. values which are never used when the function is called for its side-
2. The location address of an object in a frame near the stackeffgtts rather than for its returned values—egrjnt . An
compares greater than the location address of an object in a fiigipértant optimization when using lazy allocation is to inform a called
near the base of the stack. function when results are not expected, so that eviction of unneeded
Lazy allocation will enforce the following rule: results is not performed; thieesult expectationoptimization is
Temporary Restraining Order No temporary object in the stack cagliscussed in a later section.

be pointed to by an object whose location address compares IOMﬁart'he language offers an address-comparison operator (e.g. Lisp's

EQ) for functional objects, then forwarding pointers will be required.
1 [Baker93] argues for a more comprehensive and portable treatment of
Forwarding pointers are only required for side-effectable objestsch anobject identitypredicate so that functional objects can be
functional (read-only) objects are copied, but do not require thlocated without requiring the checking or leaving of forwarding
detection or following of forwarding pointers [Baker93]. pointers.
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Let us call a stack which does not violate TR@Ill-ordered By stack, and once an object is relocated to the heap, it will not be
preserving the Temporary Restraining Order, we have the fOHOWtiQQ)cated agair'i_’
theorem: )

Theorem If a frame from a well-ordered stack is popped, and I%us, in the worst case, every object is allocated on the stack, and is

- . f h d7 h d n relocated to the heap. This is a worst case in storage, because
registers contain no references to the popped frame, then no dangiig every object was allocated once on the stack and then relocated
references are created by the pop.

> - . to the heap, the storage on the stack is no longer occupied (until the
Proof by induction The only dangling references could come froffame is popped). It is a worst case in time, because every object is
the registers, further down in the stack, or the heap. By hypothesisalibeated first on the stack and then relocated to the heap, when it
registers have no pointers to the popped frame. There is no higbeid have been allocated directly on the heap in the first place. If the
stack frame, hence no references from the stack above. Dueos$bof moving an object exceeds the cost of building it directly on the
transporter traps, there are no references from down the stack or ffireap, then our model will result in poorer performance than the pure
the heap. Therefore, the only references to the popped framecamgact heap model. (This analysis does not count the added costs of
from the popped frame itself, in which case the entire framecamstantly checking for objects which may have moved, so that their
garbage. QED. forwarding pointers may be followed.)

Since the stack in our model is restrictedrémsientobjects, it is like a The literature indicates, however, that while the worst casey
"flophouse" hotel. Since such an address is not respectable, oneatwes, the most common cases are LIFO allocation of objects. If this
not give it out. In order to put down "roots", one must move to a misr¢he case, then most objects will get allocated on the stack, and will

respectable address in the permanent heap. become inaccessible before the stack frame is pogpéd;. a result,

4. Complexity most of these objects will never be evicted from the heap. Those
Stack allocation has recently come under attack as being slower @ggcts which are evicted will require somewhat more effort to get
garbage-collected heap allocation under certain circumstaribes relocated to the heap, but in these cases we do not begrudge the
[Appel87a). Since many of the benefits of lazy allocation are losefditional effort because 1) these objects are still accessible, and 2)
this instance, we must first demonstrate that stack allocation retaingéthave saved so much time as a result of stack allocating the vast
advantage under most conditions. majority of objects, that we can afford to be more generous in these

As [Baker78a] and [Appel87a] demonstrate, the cost of hd&jy instances. ) . _
allocation can be reduced to approximately the same as sfatk programmer himself usually has a very good idea about which
allocation. This reduction is achieved by increasing real memory éitecated objects are likely to have stack-like extents, and which
(relative to the program) so that the number of garbage collectiopiects are not. If he knows that a particular object is almost certain to
(which are really heap copies) is reduced. With enough memory,céigse a well-ordering trap, he can allocate it directly on the heap
amortized cost of garbage collection (heap copying) approaches rémsgelf, and save the system the time and expense of figuring this out
so that the cost of allocation (incrementing a pointer) becomesfafdtself. The programmer can indicate this information either in the
dominant cost. Since the cost of stack allocation/deallocation is f##m of a declarative "hint", or by calling an allocation routine with a
the incrementation/decrementation of a pointer, the costs of heapdifferent name. In either case, the percentage of objects which can
stack allocation become similar. be successfully reclaimed by lazy allocation will be greatly increased.

This reduction in execution time is only achieved, however, througBya using “continuation-passing style"—discussed later—the
tremendous increase in the size of real memory. Using the moderagrammer can extend the lifetime on the stack of values returned
either [Baker78a] or [Appel87a], the allocation time becomiem functions, and thereby gain efficiency not easily obtained
independent of the memory size only when the fraction of space tiBeggh more traditional optimizations. We conjecture that the
is negligible—i.e., at least an order of magnitude smaller! Even witajority of objects reclaimed early by "ephemeral” or "generational”
the exponential reduction in memory prices over the last 30 yeg#sbage collectors are extremely temporary objects which could be
CPU prices have fallen even faster, resulting in an ever-increashge efficiently stack-allocated using continuation-passing style and
fraction of system costs tied up in memory. These trends indicate lé¥at allocation.

the use of garbage collection to simulate stack allocation is a wastea@f allocation utilizes forwarding pointers to correctly preserve
resources. Stack allocation, on the other hand, operates with the saijisct identity”. Since we have assumed that the heap already utilizes
efficiency (for those objects having LIFO behavior) whether memagywarding pointers in its management, lazy stack allocation will exact
is nearly empty or nearly full. Therefore, the "space-time product” figr additional penalty. Brooks's forwarding scheme [Brooks84] can be
stack allocation is better than that for garbage collection whenever gl to advantage, since its overhead on a cached architecture is
utilization of memory is greater than a small fraction. rather small. As we discuss later, functional objects require no
The growing popularity of "generational garbage collectorfgrwarding pointers, in which case all overhead is concentrated into
[Lieberman83] [Unger84] [Appel89] is an indication that the efficieAssignment operations.

use of real memory is relatively important in most applications. Laa@yreal architectures, there may be additional savings from our model
allocation can be viewed as a variation on generational garbgge will not show up in raw instruction counts. Modern architectures
collection in which individual objects are generations, and tenuringhéwe smaller, faster memory banks whigtthethe most heavily used

the heap is immediate. memory locations. Between the effects of caching and paging, the
Because lazy allocation copies objects, it is an interesting exercisgnertized cost of cached memory references can be tyotorders
compare the complexity of our model with that of a straight-forwartimagnitude faster than the cost of non-cached memory references
copying garbage collector such as Cheney's [Cheney70]. We fhd@eppi90]. Since our model attempts to keep everything on the stack
shown in [Baker78a] that the amortized cost of allocation in a sysgsmong as possible, it is likely to have more local behavior than a

with a copying garbage collector is linearly proportional to the amoyqe| which allocates obijects directly on the héaff.the hardware
of space being allocated; the constant of proportionality is a ory system knows that this is a stack, additional optimizations can

complex expression depending upon the occupancy factor of the ade, 'such as not writing back popped stack frames to the backing
amount of storage under management. Since we must usually initigfigg,

an object being allocated, and this initialization process is usu h timizati ible with del is the inlini f th
linearly proportional to the size of the object being allocated, the nfg3ptN€r optimization possible with our model Is the Inlining ot the
we can hope for from our lazy stack model is a better constangigcation routine itself. In this case, the initializing information is
proportionality than in the uniform heap-allocation model. copied directly into the appropriate locations. For example, a Lisp-like

. . A z:=CONS(x,y) is just "tl:=x;t2:=y;z:=addr(t1)", where t1,t2 are
Allocating an object on the stack is virtually the same process_as

allocating an object in a compact heap because it involves only a ) ) ) ) )
movement of the free space pointer. Deallocation of a stack frame/¥§ here assume that there is no sharing of functional objects, since
essentially free, since the stack frame need not be scanned. \§Mftion unshares them due to the lack of forwarding pointers. This
ordering violations can occur, however, resulting in the relocatiordgsumption is generally true, but if functional objects are to be highly
objects from the stack. The total size of the relocated objects duriffaged. then forwarding pointers should be checked and left as if they
recursive transportation trap cannot exceed the current size ofM@e non-functional objects.

6These statistics can be improved through tesult expectation
optimization, discussed later.

7[Stanley87] reports a phenomenally large reference locality for
stack caches, as opposed to other data references.

Copyright © 1988,1990,1991 Nimble Computer Corporation 3



ACM Sigplan Notice27,3 (March 1992),24-34.

adjacent locationknown to the compilerand the compiler canbe heap-allocated. Only in this way can dangling references be
therefore optimize out the incrementation of the allocation pointer.atided.

a system without a |lazy allocation routine, one would need additiqnly allocation can solve the problem of allowing functional
register shuffling, followed by storage to an unknown location fguments to be first-class, while keeping stack allocation for the vast
memory, even when the allocation routine itself was inlined. Su ority of these objects that do not escape the lifetime of their
routine would be slower than our lazy allocation—perhaps as slow@ators. In the case of Lisp languages like Common Lisp and
an out-of-line procedure. Scheme, the environment stack is kept separate from the control stack,
A new generation of shared-memory “symmetric multiprocessirsg'that lazy allocation "almost" works without any change. A problem
(SMP) machines is starting to be utilized for tasks requiring flexilsich occurs in any language which offers both functional arguments
allocated storage. On such machines a global storage allocatimhside-effects, however, is making sure that the object being side-
routine must be protected by a lock to avoid inconsistency and this &féicted is “the" object, rather than a copy of it. In particular, when
can become a performance bottleneck. If the allocation responsibilitg creates multiple funargs which share the same free variable, and
is split up so that each processor has its own allocator, this bottleneskéasor both of the funargs side-effect this variable, it is important that
removed. Lazy allocation elegantly achieves such a split, becdhbseside-effect be visible to all of the funargs. The usual solution to
each processor already has its own stack, and lazy allocation thigyproblem is to allocate a unique assignable "cell" in the heap for
reduce the allocation demand enough so that permanent allocatians such variable, which is then bound as the "value" of the variable;

can be made using a global, shared allocator without undue conterﬁ)@gnzss] calls this transformatioassignment conversic§1 When

5. Applications multiple funargs are created which reference this variable, then each
A. Malloc/New will then reference the same cell. The Common Lisp example below
) exhibits this situation.

The most straight-forward application of lazy allocation is a version Qf , . P

C'smalloc or Pascal/Ada'sew which allocates the object within the ﬂﬁar(%gg(y 2 Create cell x nitialized to 3.
current stack frame—expanding it if necessary. In other words, C'S(et- ((exx)” : Get the current value of x (= 3).
malloc becomes equivalent to the oldloca . With lazy ey (y)) ;x<-4

allocation, one never calls the heaalloc /new directly, but leaves (ez (2))) ; New current value of x (= 4).

it to the eviction trap to call these routines. Since ephemeral objects (list ex ey €2))) )

will be deallocated automatically when the enclosing stack frame ig(lambdaO(Seth) X) ; Funarg with free var. x.
exited,free (dispose ) needn't do anything when handed a pointer (Isaanlkl)da0x)))  Funarg with free var. x.

into the stack. However, for a small cost, some error checking canfe( ) . L . .
gained by marking the stack object as free, so that any acceddniprtunately, assignment conversion is very expensive, because it

attempted eviction will cause an error trap instead. causesveryvariable to be bound to such a heap-allocated cell, unless
) it can be statically shown that either 1) the cell is never assigned to
B. Functional Arguments after initialization, or 2) the cell is never shared among funargs

The correct implementation of functional/procedural argumefitsanz86] [Kranz88]. Using lazy allocation, however, we can
(“funargs" [Moses70]) in higher level languages is quite complicatedeaply allocate an assignable cell for every variable in the same
The creators of the DoD standard Ada language were so fearfudtatk frame as the variable itself, and this cell will only be relocated to
these constructs, that they were summarily banned from the lang %tack when it tries to escape from that stack frame's Iifeoﬁme.

STEELMAN78, Requirement 5D]. In transmittin : b
%unctional/procedural c:11rgument. not ]only must a pointer %o fus, lazy allllocatlﬁn can be kllesed {Ior bothhthe_ fur;1arg environment
executable instructions be passed, but also a pointer to the environy 'g'ii g‘nss V;ﬁ ofatshé gllgggtl%mas fgr ?5nsa'rgsso otcfutr 'gnttﬁergto;gkcgrﬂn;?re]
of the function. This is because a function defined at a lexical |
other than the topmost level may refer to local variables of ano er relocated to th? heap. .
function. These variables are not local to the function being pasiedhe case of non-Lisp languages, where the environment stack and
and they are referred to as "free” variables. the control stack are usually merged, we must be more careful. The

) : implest solution would be to utilize lazy allocation on the stack frames
Some languages such as C finesse the free variable problem b\? rélhqfselves, which would work because any frame relocated into the
allowing functions to be defined at other than the topmost lexical le would leave a forwarding address for any other obiect which
In this case, all free variables are global, and since global varia : g addre y /
- . p ed to it. Unfortunately, the eviction of one stack frame has the
can be statically allocated, their addresses can be embedded in sired effect of immediately evicting all of the stack frames nearer
instruction stream so that an additional environment pointer need

: : h ta the bottom of the stack as well. When using such a policy, the top
P:st?iizzﬁdlhomgsgrexpresswe power is lost in the language bys frame's eviction causes the entire stack to be relocated into the

) heap. While there may be occasions where this massive relocation is
More powerful languages such as Algol, PL/I, Pascal and Lisp alg¥ired (see the later section on Scheme continuations), this policy is
the definition of functions and procedures within inner lexicgdyally overkill for funargs.
contexts, and therefore must package up pointers to both the cod : ) . ) : :
2 : : ter solution for implementing first-class funargs in non-Lis
{/r\}?]'len\ﬂ_ror_\melnt when paSS||r(1g ha funfctlon_/protl:/eduredas alm argu uages would be to ?nore clogely follow the Lisgp example. ?A
lle this Involves more work, these functional/procedural argum arg environment need only retain the bindings of the variables free

are strictly more powerful than C-style functional arguments. Tt h h : .
. A : : e function being passed, so the funarg environment could be a
functional arguments are capable of simulating arbitrary d ple vector of these variable values. Of course, the same

structures—at least within their lifetimes—and therefore the w ignable cell” indirection must be made for free variables in non-

peeclfifzgry to allocate a new structure for their |mp|ementat|on|_i languages that we demonstrated above for Lisp. Since lazy
a ' . _allocation allows both the assignable cells and these environment
Algol, PL/l and Pascal have carefully restricted the use of functiopgttors to be (initially) stack-allocated, we get excellent performance

arguments to make sure that they can never escape the lifetime qfrifi€a funarg is returned or stored into a global variable and becomes
stack frame in which they were created. As a result of thgpg.-class.

restrictions, functional arguments can be safely allocated on the stack. .

Therefore, these objects are not “first-class".” Part of the reasorf-fok-azy Argument Evaluation

these language restrictions has to do with dangling references. Udzy evaluation of the arguments of a function call is the deferral of
functional argument refers to objects on the stack, and the statkdsevaluation of the argument expression until the argument is
popped to the point where these objects are no longer valid, thactaally "used". Lazy evaluation of arguments can be more
dangling reference will be created which can cause nasty bugs. expressive and efficient than so-called "applicative" evaluation if an

The restrictions on the use of functional arguments in Algol, PL/l and
Pascal are rather arbitrary and constrain the expressive power Oé the
programming language, although not so much as the restrictions oPhék Sandewall circulated a memo describing the same technique in
C language. Several modern languages like Common Lisp @974 [Sandewall74]; Greenblatt utilized this idea in the MIT Lisp
Scheme offer "first-class" functional arguments, which can K@achine [Greenblatt74].

returned from functions and stored in data structures. However,ghe ) ) . .

efficiency impact of this freedom is normally quite severe. Not onln @ machine with a cache, the variable and its cell should be
must thé functional arguments themselves now be allocated oni"tfii@lly located in the same cache line, so that the additional

heap, but much of the normal variable-binding environment must instirection through the variable reference to the cell will execute as
quickly as possible.
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argument is never used, because the argument expression will n@ator. This clean model depended upon a uniform size for all
be evaluated. objects, and was therefore abandoned in C. Until the development of

Lazy evaluation appeared in Algol-60 under the guise of "call-BNIX varargs and then ANSktdargs , there was no portable
name”, and was implemented by means of "thunks" [Randell843y to pass an arbitrary number of arguments to functions, most
Thunks are quite similar to functional arguments, in that they hgg@ecially variants ofrintf . These portable forms offer a kind of
some executable code and an environment in which to execute $#@am" access to the argument "list", and the receiver of the variable

code. In fact, the semantics of Schentiéday expressions are@rgument "list” sequentially reads this stream, and provides the type
given in terms of functional arguments [IEEE-Scheme90]. information necessary to decode it. These streams provide only data,

As a result of the simple implementation of lazy argument evalua(?t%rq no pointers t(_) _the_se arguments are aIIovs_/gd. .
using functional arguments, lazy allocation will work for |a;’gggstdargs facility is currently the only facility that provides stack
evaluation in the same way that it works for functional argumeritdocation of variable-sized quantities of storage in ANSI-C; ANSI-C

Most "lazy" arguments will be evaluated before their defining stdéknighly tuned to allow only fixed-size stack frames whose size is

frame is exited, and those that have not, will most likely neveripgwn by the compileﬂ-.l With the demise oélloca , which
evaluated. However, those that do escape from their defining staglcated variable-sized objects on the stack, ANSI-C's restriction
frame will be evicted to the heap, where they will evaluate correctlydfainst taking the address of such an argument is particularly
the need arises. obnoxious, because some applicationsaldbca could have been

The possibility of escaping Scherdelays suggests an optimization(painfully) simulated using variable-sizetbargs

that may sometimes be beneficial. Ifielay is about to escape, on@soth stdargs andvarargs are ugly and non-modular, and
may want to arrange for its immediate ("strict”) evaluation. If thRroduce notions not used elsewhere in C. Because C wants to charge
delay is functional, then the time of its evaluation cannot affect # costs for variable-length argument lists to those functions which use

value, yet this value may occupy less space thardélay itself them, these forms must not interfere with the passing of fixed-length
(zero if the value is an "immediate" quantity such as a floating point

number), thus improving heap utilization and performance. We @igument lists in registers (the norm on RISC architecu}rgs).
the evaluation order resulting from this optimization "downward laBgcause the simplest implementation of a stream is the incrementing of
evaluation”, due to its similarity to "downward funargs"—i.e., thodePointer variable through a memory structure, the first step in most

functional arguments that obey stack ordering. implementations ofva_start  is to store all of the register-passed
e arguments into memory, and then utilize simple pointer-stepping for all
D. Argument "Lists arguments. Indeed, given the fact that the argument-reading stream

Programming language designers have long been tantalized byminebe passed on to additional functions, it is difficult to conceive of a
similarities between parameter lists and structured values ("records€banpiler smart enough to implemestdargs /varargs in any
"structures"). For example, Ada utilizes nearly the same syntaxdifver way. The inability to create a pointer tetdargs argument
declarations of both, and nearly the same syntax for function callsiarttierefore unreasonably restrictive, since it almost certainly resides
record "aggregates" [Ada83]. Lisp semantics presume the existémcaddressible memory. Presumably, the no-pointers restriction is
of a Lisp list of arguments [McCarthy65]. Yet nearly all languageeant to protect the user from the particularities of storage allocation
designers are forced to back down from unifying these two conceptihe storage needed for the variable-length argument list, which may
due to the unacceptable loss of efficiency that would result. Maliegallocated bywa_start and deallocated bya_end . Such
parameter lists into true first-class objects would force them topbetection is out of character for C, since no such protections exist for
heap-allocated, with the concomitant problems of determining wiogimer stack and heap-allocated objects. Most implementations allocate
and how to deallocate them. the storage needed fara_start  on the main C stack (using a

Lazy allocation offers the language designer the ability to unify recégdsion of the now-bannedlloca ), however, in which case the
structures and parameter lists without the loss of efficiency. E end is extraneous. Allocating storage fea_start ~ in any
function and procedure can be elegantly defined as accepting jusOBi place is almost certain to run afoullohgjmp , which must
parameter—a record structure. A function/procedure call constrife@h decode the stack and execute end for each stack frame

an argument object on the stack by creating a new instance ofiyglving stdargs  for which va_start ~ was executed, but
structure initialized with the individual argument components. VA_end was not.

pointer to this argument object is then passed to the functiomAofazy allocation mechanism could dramatically simplify the
procedure, where a "destructuring pattern match" of the argumesttisargs  device of ANSI-C. A new, first-class polymorphic
made using the parameter record definition as a pattern. Elegéstceam" data structure could be defined which could be opened and
and power are obtained in two ways: the capabilities of recoedd sequentially from a variable-length argument list. Since this data
structures are made available to argument objects, and the capabditiesture would exist either in the stack frame storage of either the
of argument objects (e.g., pattern-matclusstructuring are made calling or the called subprogram, no restrictions on taking addresses

. .10 PR ould be needed. If any pointers survived, the targeted objects would
g}/a(l)l?r?eler tgrg;i%?{e?] t(-)ggaescsgisrig Even more Jgfacmsttrlﬂgtasr etge_gagnsf utomatically moved into the heap. Reading such a stream would

evaluation becomes lazy component initialization [Friedman76]. stre;ncwe (aaFt)r.‘.’)nCpagfn({esrgegmv?\?gj'Siwgnoihtge..r’g::,.ogfthﬁ] (Iels;.tr;;rz;ny

In the most common case, argument objects are immEd_iasﬁ'lMuding objects it referred to) would be relocated to the heap.
destructured, and do not escape the lifetime of the called function or

procedure, and therefore can be deallocated when ftheCommon Lisp &REST Arguments and Scheme ' z"
function/procedure returns. However, should the argument obff@uments

become first-class, it is evicted from the stack, and is thereby retaiftegl semantics of the Lisp language were originally defined by a
when the function/procedure returns. "meta-circular” interpreter which created actual Lisp lists of evaluated
By giving argument objects a (potentially) first-class existence, sgti@uments as part of its evaluation of function application
efficiencies can be obtained. For example, some recurdiMgCarthy65]. While most modern Lisp implementations put
procedures pass on a number of arguments unchanged to succ&@ated arguments onto a stack instead of a list, Common Lisp and
recursions, where they are used only when the recursion termin@aeme retain one vestige of the original Lisp evaluator-&REST

By passing a pointer to a portion of the argument object instead/gtment. Both Lisps allow for the passing of an arbitrary number of
copying these arguments, some effort can be saved. Furthermofégyments to a function, but the called function must somehow be
the number and/or size of these arguments are related to the defPgple of addressing these arguments. Common Lisp uses normal
the recursion, an algorithm that is quadratic in complexity may-be

reduced to linear complexity [Dybvig8s). 1IaNSI-C doesn't strictly require stack allocation (on the main C
E. ANSI-C STDARGs stack) of variable-size argument lists, but any other implementation
The programming language BCPL [Richards74], from which themgst deal with signals arsktjmp /longjmp , which require main-
language descends, passed all arguments uniformly as a vector cHagk-allocation semantics.

stack which could be accessed in exactly the same way as any d®g{;ioysly, arguments passed in registers are required to be stored

10 into memory upon entry to a function, unless the corresponding
So long as these argument objects famectional [Baker93], one parameter is declared with a storage classegfister (which is

can still pass argument objects through RISC architecture regigtetghe default). An optimization not always performed is to store the

rather than memory, because functional objects can be transparardlyment only if the address-of&(") operator is ever applied to the

copied—even to a bank of registers. parameter; this usage can easily be detected by the compiler.
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positional matching for the first several arguments, and hasegister, popping the callee's frame from the stack, and continuing
keyword-matching capability, but functions with a large number efecution at the point in the caller's code where the callee was
relatively homogeneous arguments such as "+" are most elegamiginally called. During the execution of the callee, the suspended
handled using &REST parameter. The semantics of tRREST caller can be considered a kind of functional argument, which, if
parameter are that it is bound to a Lisp list of the arguments remainaitgd, would execute the "rest of the computation”. This "function”
after all required and optional parameters have been bound. Sclesme takes an argument—the value to be returned from the callee.
does not have keyword arguments, but does allow the equivalerfthid "function™s main fault is that if it is called, it will never return.
Common Lisp's& REST parameter which is denoted by putting We designate this theoretical "function" tleentinuationof the
symbol in the last "cdr" position of the parameter "list", which ssispended caller program.

therefore arimproperlist. In a traditional stack implementation, the continuation has more than a
Unfortunately, the creation of first-class Lisp lists for handling thgssssing resemblance to a functional argument. It consists of a pair of
&RESTparameters is quite expensive. Yet to be safe, a true list maktes: the point in the program text where execution will resume, and
be constructed for th&REST parameter, since the called functioan environment—the current stack—in which to interpret lexical
may do anything with this list it likes, including returning it or sideariable occurrences in the program text. If we could somehow
effecting it. For example, LisplsIST function itself has the trivial package this continuation into a "real" functional argument, then we

definition where it simply returns i@RESTargument: could simplify the notion of function calling by always including a
i 13 continuation argument, and no longer including the return "PC" and the
(defun list (&rest args) args) return stack-pointer as integral parts of the function calling sequence.

Since there are many reasons for passing variable numberi édct, the "jump to subroutine” operation of most modern computer
arguments to a function, and only a few of them involve creating a isthitectures can be viewed as an optimization of the sequence "push
it is unfortunate that Lisp forces a list allocation for this commoantinuation argument; jump to the beginning of the called function”.

situation. In the most primitive Scheme model, then, there areebarns from

The Lisp Machines derived from the MIT Lisp Machinsubroutines, onlgalls to continuations. The basic difference between
[Greenblatt74] actually do format their argument lists on the stackatoormal function and a continuation is that calling a normal function
look like Lisp lists so that they can be passe&RE&STarguments and will pushonto the stack, while calling a continuation vgitip from the
traversed using the norm@lARandCDRfunctions. However, thesestack.

argument lists are not first-class Lisp lists, because the lists so cr itional stack implementations of traditional languages work
have the same lifetime as the enclosing stack frame. Therefore, wiliectly, because under normal conditions all continuations created
these&RESTarguments can be passed down the stack, they can n@¥@ihg * the execution of a program have strict LIFO
be stored into the heap, returned past their creation pointg|fication/deallocation behavior. In other words, the continuation
RPLACDed. However, because they are formatted as lists, theyg@fﬂjrn point, stack pointer) does not escape the lifetime of its creator,
be passed to other functions as lists—e.qg., as the last argumeghdotherefore no dangling references are created. In the Scheme
APPLY—and thereby avoid a quadratic explosion of copyighguage, however, since a function callee can gain access to his
[Dybvig8a]. continuation through a special construzali/cc ), this continuation

In our lazy allocation model, howevexl] CONS'ing is first performedcan escape the lifetime of its creator and become a first-class object.
on the stack, so there is no additional penalty for CONRIRGEST (ANSI-C [ANSI-C88] also defines the operatiosetjmp and
arguments. Furthermore, using lazy CONS'RESTIists are truly longjmp , which allow for the "capture" and application of a
first-class lists, since they are created using exactly the saominuation which isotfirst-class.)

mechanism that is used to createy Lisp list. If a system utilizes lazy allocation, then stack frames will remain on
(As an aside, we point out that if Lisp argument lists are tothe stack, so long as LIFO allocation/deallocation behavior is
constructed so that tHeDRpointers always point towards the base observed. If a continuation attempts to escape its creator's lifetime,
the stack, and if each argument is to be inserted when its list celloisever, its stack frame will be evicted from the stack, which will

allocated, then this virtually requires that arguments to a Lisp func%’@ursively cause all lower stack frames to also be evitfbdan
be evaluated imeverseorder of appearance.) implementation of a language which must deal with the possibility of a
G. Tail Recursion stack frame suddenly being moved can be quite inefficient, because

Tail recursion is a Lisp optimization that was elevated in the Schefifglally every access to the stack frame must check for the existence
dialect into a requirement. By requiring that a tail-recursive rout@fe@ forwarding pointer. Functional stack frames—which may still
called to a depth of n is allowed to use only O(1) amourttontrol POINt to assignable local variables—can relax this restriction by

stack, Scheme can simulate iterative control structures in a storggéwing copying without forwardin&.s We can thus obtain a

efficient manner without a distinct iteration construct. Typicgbhavior analogous to that of many current implementations of
implementations_achieve this by reusing the stack frame on a &#heme which copy the entire control stack to the heap when a
recursive call. The introduction of lazy allocation requires a nghtinuation is captured. Of course, assignable local variables cannot

understanding of the meaning of a "tail recursion optimization", sipge copied, but must be relocated in order to retain their shared
any allocation performed during such a loop will increase the size&hantics.

Lhn%osl}ﬁglédfr:ggurghéggtéikbglr;%ereuosgg,inqgﬁe?éizltl%naglsogﬁgtngb  do not contend that lazy allocation solves all problems in the high
" by pace. Line. preta erformance implementation of Scheme continuations, and experience

program ut'|'||_zes additional storage during its execution, and there prove that Scheme continuations are better managed with more

isn't "really” iterative at all. Another interpretation is that the Sche ecialized techniques. Nevertheless, it is interesting that the generic

tail recursion requirement is unreasonable, since a lazy alloc allocation model faithfully captures the behavior of several
implementation utilizing arbitrary storage space may be more effic ting Scheme implementations. without requiring anv special
(within its storage limitations) than a more strict stack frame reu g p ' q g any sp

strategy, and the Scheme requirement makes the progral gllng.

"subvert" the compiler in order to achieve his wish. A defaulltFunction Results and theResult Expectation Optimization

interpretation is that a tail recursion "optimization" disables 1ag% we have pointed out above, lazy allocation is not lazy when it

allocation, and forces allocation directly into the heap. comes to result values. This is because results must be returned "up"
H. Scheme Continuations the stack, usually by assigning them to a temporary value in the caller's
%@Te. This is unfortunate, because the efficient handling of results is

DAY

Scheme is a dialect of Lisp which has a very interesting const important as the efficient handling of arguments. The efficient

called acontinuation A continuation is a functional argument th cation of results. however. is a difficult problem

embodies the "rest of the computation”. When a continuation func gﬂ ults, ' uitp ’

is called with an argument, it does not act like a normal call, but

insteadreturns from a previous expression evaluation. Normallyy . ) .

when a function is called, the arguments are evaluated, an argupes@wer stacks frames will be evicted only if they have not already

list is constructed, the caller is suspended, and control is transferrd§@f evicted; this solves the multiple stack copy problem mentioned in

the callee. The callee creates a new frame on top of the stac .

starts execution. Eventually, the calleeurnswith areturned value 13gack frames in Scheme may have assignable slots even when no

A return is usually implemented by saving the returned value ig@.effects are performed by the programmer; this behavior is a

13 result of the ability of Scheme continuations to be resumed many
In Scheme, this becomédefine (list . z) z). different times.
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The first optimization for reducing result eviction we ca#isult avoid evictions when the amount of wasted space is calculated to be
expectation Since many functions are called "for side-effects" rather, . .19

than "for result value" in expression-oriented languages like Lisp,\f?\%"n acceptable limitd:

caller should notify the function of this expectation so that unneededExtending Result Lifetimes and Multiple Return Values

function results can be thrown away instead of evidt8d.Other There is another method for allocating function results on the stack
functions are called for their result, but only 1 bit of result informati$ffich will not cause immediate eviction. This method depends upon a
is actually used—whether the result mafches a distinguished vARKCe-to-source conversion of a program called "continuation-
(nil in the case of Lisf in the case of C). In such cases, we neR@ssing-style conversion” (CPS conversion). In converting to CPS, a
preserve only the single bit of result information actually neededPggram is turned inside out so that returns and returned values, which
avoid the eviction of large structures which are alréady mogt®! be viewed as implicit calls to continuations, are converted into
garbage. explicit calls on explicit continuations with the values as arguments.
Another optimization for avoiding the heap-allocation of functi h"eetrhgsctig I)()r?r}n%fl a%mrge{r%mig"la%gggg\a;r? grtorglcjiftieo;g? E?argﬁ
results is for the caller to allocate space for the result and pass; ¥" tati ﬁ] prog iderabl tack Si th
space by reference; this technique, which we call "caller redipementation will use consigerably moré Stack space. since there
allocation”, has been used since at least the early 1960's in Fo ﬂ,nﬁ longer any frert]urns, neither are thre]re any stacfk pOﬁS, at least
Cobol and PL/I compilers. Eviction upon callee return is avoided si{a' the very end of the program, and so the amount of stack used can

the callee no longer performs allocation. While this techniquelfssuPstantial. _ _ _
widely used in programming language implementations, it depehfl§ conversion to CPS form has certain benefits, however. Since the
upon the ability of the caller to guess the correct size of the result,4aK is retained until the very end of the program, there is never any
it forces the called routine to use side-effects to communicate its r@@f6ibility of dangling references for stack-allocated objects.
information. When the size cannot be guessed—e.g., in the casdgtefore, the CPS form of the program can execute correctly even
some Ada unconstrained array results—this method fails, and h the original form of the program would have failed due to some
allocation must be used. Heap allocation, however, runs the risRlggk-allocated object leaving the scope of its creator. In other words,
"storage leakage" in non-garbage-collected language implementafidns Style offers a "retention” rather than a "deletion” strategy for stack
if an error or other non-local transfer of control fails to deallocate thgmes [Fischer72].

storage when the stack is contracted. The "continuation-passing style" of programming thus offers new
Another method for avoiding the heap-allocation of function resultdl@xibility to the programmer who wishes to utilize stack-allocation

for the result to be allocated in the stack, but to redefine the callépgnever possible. If he calls a function with a stack-allocated
argument which could then become part of that function's returned

stack frame to include this result before returning to the calfer,, lue, he is likely to get a dangling reference without lazy allocation,
This scheme is similar to caller result allocation, except that the caﬂaercause the eviction of a large structure with lazy” allocation.
conceptually passes the entire "rest-of-the-stack” as the reggliever, he can postpone the eviction for a while by calling that
reference, which is then chopped back to its actual size before bgjRgtion with an explicit continuation which will accept the "returned"
returned. This scheme also works, and has been used in some,4@a and continue executing without popping the stack or causing any
compilers [Sherman80], but can waste arbitrary amounts of space\fgtions.
the tack f h piocess o erated, Consder, o1 exampe,  recUiiEmost il exampl of al s the LIGONSuncton el which
: : : y cates a list cell. If implemented as a true Lisp function in a system
result, and all the intervening space, will become part of the callgL? : .
; A d lazy allocation, the list cell would be allocated on the stack and
stack frame, even though most of this space is no longer used. S . PRl P
. ized with its "car" and "cdr" components. As we have already
one knows the current extent of the stack, one could conceivably h : : SO
M " PRl . ted out, however, returning a value typically causes its eviction
the result back to "close up" the space, but if this process is iterat & th icti it t Theref [thoQGIN Stri
. losion of copying could result [Dybvig88]. Therefo e eviction of its components). erefore, al gINStries
quadratic explosiol pying ybvige ‘be lazy, the effect of returning the newly allocated object causes its
the non-lazy eviction of a result value to the heap just once ca \H - ! - :
more efficient than trying too hard to keep the result on the stack tion to the heap, so o@ONSisn't lazy after all! If we call this
) h - " CONSwith an explicit continuation, however, within which the newly
Unlike previous schemes for redefining the stack frame [Shermang{{jcated list cell is manipulated in a normal fashion, then the cell is not
we suggest that whether the object is relocated to the heap or kephfgdiately evicted, and remains lazy.
part of the caller's stack frame should be the choice otalier as 20
part of his result expectation. In other words, the result expectaBefow is such an implementation of a 1€2@NSn C:
code to be included in every function call consists of at least thgd lazy cons(xy,cont)
: f . .18 int x; list y; void cont(list);
following two b”? of Informatlorr’.L {struct {int car; list cdr;} z; /* The cons cell. */
ResultCode Action z.car=x; z.cdr=y; /* Initialize the lazy cons cell. */
00 — don't return a result (used for non-last position of "progn")cont(&z);} /* Give cont ptr. to cons cell. */
01 — nil/non-nil as result (used for boolean position of "ifThe use of continuation-passing-style allows the programmer himself
10 — evict result if necessary (normal lazy allocation operatido)choose whether allocation will be lazy or not. In this way, he can
11 —don't pop frame (redefine caller's frame to include result) use his greater knowledge of the program behavior to avoid
The result expectation code inherited by a function from its calleHlecessary evictions, but also avoid the creation of large amounts of
used only when the function attempts to return a result (in Lisp, whégipage in the stack.
executes a function in the "tail-call" position); the rest of the timeCibntinuation-passing style has yet another benefit. Unlike normal
computes its own result expectation code (perhaps dependant upometited function-application notation, continuation-passing style can
caller's expectation code) when calling out to other functions. dgal with multiple returned values. For example, a Euclidean division
propagating result expectation codes, the result consumer can inédgorithm "function” can return both a quotient and a remainder. In
the result producer of its wishes regarding the allocation of this resulth a case, the "continuation" function must utilize more than one
A programmer or a compiler can therefore use result expectationsatameter in order to receive all of the results. Common Lisp also
provides a number of forms to handle "multiple values", but does not
utilize continuation-passing style for their implementation. Common
Lisp multiple values are not strictly necessary, as all of the benefits of
multiple values can be achieved through the composing of multiple
values into a Lisp structure which can then be decomposed by the user
of the function. In order to save the time and garbage collection

16Re_su|p expectation is the run-time analogue of a classic compgfuired to compose and decompose these structures, however,
optimization used in expression-oriented languages like Lisp.

17Although values are preserved on the stack, exited stack fraf@Ehe "continuation-passing style" (CPS) of programming, as
are spliced out of the call-chain so thatwind-protect 's in discussed in the next section, can achieve the same allocation behavior
exited frames are not inadvertently executed. as result expectation, but with greater overhead. Furthermore, one

181he mIT Lisp Machine function call instruction uses a similcgrn;r(;,tcuosdeeipsg ?Qsﬁﬂd(fxgc‘{‘gt‘i'gﬂ %”ﬁ,db%ezrg?ér?gf the source—e.g.,

coding (without lazy allocation) for its "destination operan
[Greenblatt74]; however, the callee does not utilize this informatio QDue to the lack of full function closures in C, we would have
avoid allocating useless results! trouble actually using thiEONSn any serious way.
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Common Lisp uses a special mechanism to provide multiple val@spying semantics for functional objects can have some benefits in
We show that the benefits (including stack allocation) of Commmur lazy allocation model. When a functional object is copied, one
Lisp's multiple-value mechanism can be simulated through a new fiteed not necessarily leave a forwarding address, since the original is
" . " . 2 as good as the copy. Since forwarding addresses must be detected and
class mult|p!e-value structure type together with lazy aIIoca%n. followed during execution, the cost of detection and following may be
(defslt’”d r.TI‘_L"t'pée"’a}'“f more than the costs of copying. At the hardware level, the installation
(values nil :read-only ) of forwarding pointers also causes a cache write-back, which adds

(defun values (&rest args additional load to the memory system. Thus, for small or unshared
(make-multiple-value :values args)) functional objects the cost of copying is less than the cost of storing,
(defun multiple-value-call (fn &rest args) checking and following forwarding pointers.
(apply fn Copying semantics can be exponentially less efficient than relocation
(mapcan semantics if substantial substructure sharing occurs, however. A
#('?}mbdﬁ.(?rg) | simple linear Lisp list of length in which the CAR of each list cell is
('(r%ﬁip'f;?\;;ﬁjgi;;3;%)61@ assigned to be the same as its CDR has been called a "blam list"
(list arg))) [McCarthy65] because it explodes into a structure'bfig cells when
args))) it is functionally copied. The only exponential blowup of this type we

To provide the programmer with the retention benefits of CPS withbave observed occurs in Macsyma's representation of the determinant

the requirement of turning his source code inside-out, we definedhen nxn matrix in 003) cells: this structure ex ;
. g ; pands into an
CONTCALLspecial form. The semantics FONTCALLcan be gypression with Of!) terms. On the other hand, the extended size of

defined as follows: a functional data structure is constant and can be computed
(defun contcall (continuation fn &rest args) incrementally as it is constructed. The information needed to make a
(multiple-value-call continuation (apply fn args))) copy/no-copy decision can therefore be gathered cheaply at run-time.

In other wordsCONTCALLapplies the function to the arguments, aRfere are a number of "functional” structures even in imperative
than applies the "continuation” function to this result. Thgq,35es Argument lists and functional arguments are usually side-
implementation ofCONTCALLIs special, however. Whereas .théfft?ct free. In some languages, character strings cannot be modified
stack would normally have been contracted after the execution, piige effects. ANSI C offers theonst qualifier. Scheme
(apply fn args) , itis not, so that the result(s) of this app"cat"\fgntinuation structures, being similar to functional arguments, are side-
is (are) left on the stack for the applicationamintinuation . effect free, although they may have pointers to non-functional objects.
Using CONTCALL we can then define Common Lisp'§je various kinds of numbers in Common Lisp are functional—even
MULTIPLE-VALUE-BIND special form, whose purpose appears jigqe objects like infinite precision integers and structured objects like
be the extraction of multiple values from a function calthout complex floating point numbers. The "multiple values" structures

causing any extraneous heap allocation returned from Common Lisp function calls are also functional, even
(defm?vcg?s”(}ﬁ'“2{?‘2?[25;%‘”% ody) though they are not first-class Common Lisp objects.
“(conteall # (lambaa vars @boty) fn @args)) The functionality of these objects—at least their top level structures—

accounts for many of the other variations on lazy allocation. Thus,
hile MacLisp used lazy allocation for integers and floating point
bers [Steele77], it did not have to leave or check for forwarding
resses because these numeric objects were functional. Similarly,
allocation implementations of functional arguments and

Of course, once we have lazy allocation @d@NTCALL we no
longer need to clutter up the Lisp language with "multiple value,
since the "non-consing"” benefits can already be achieved wit
multiple values. CONTCALLcan also be used for a definition of
;ﬁ;;‘{gacr\‘/éﬁﬁfsndssahci %atzigcsk?et)?taetntgj%a}gatjbsl‘a;”ar?hgoiﬁ?gng%ﬁ finuations do not bother to leave or check for forwarding addresses
of the prograMmer; this is the motivation for {)roposals forb cause there is very little potential sharing, and evictions happen very

"dynamic-let " [Queinnec88], but without causing failure if th& ely, so copying is not a problem.

values escape the scope of the allocation. Due to Common Lisp's insistence upon the use of true Lisp lists for
(defmacro dlet ((var (fn . args)) &body body) &REST arguments, however, one cannot legally use copying
*(contcall #(lambda (,var &rest ignore) ,@body) semantics for these objects, because Common Lisp list cells can be
fn ,@args)) side-effected. As a result, the lazy allocatio®&ESTarguments is

lgss efficient than i&RRESTarguments were based orfunctional

sequence structure instead of non-functional list cells. Scheme's

(defun cdiv (21 22) requirement tha&RESTlists bealwayscopied is just as bad, because
(dlet ((z2bar (conjugate 72)) the majority of such lists are functional and could otherwise be shared
(dlet ((z2norm (ctimes z2 z2bar))) and thereby avoid a quadratic explosion of copying in deeply nested
(dlet ((z1z2bar (ctimes z1 z2bar))) recursions [Dybvig87].

(dlet ((rz2norm (realpart z2normy)))
(complex (/ (realpart z122bar) rz2norm) 6. Future Work — An Incremental Model

(/ (imagpart z1z2bar) rz2normy)))))) The model as described above is not particularly incremental, because
Using continuation-passing style to extend the life of stack-allocafe ansgoater tret)p in fa dbeeply nested st_agkbfr?me could cause han
objects can be used for more substantial applications. For exanipieounde fn'ﬁm er of objects to be .COp'ﬁ elore feg?m"?g t? tde
the storage needed for the intermediate results in a chain of matpeution of the program. One can view the copying effort involve

inlicati ; ; ; [rLeviction as the effort which wateferredby lazy allocation, and has
g;gg'ﬁgfﬁ:;ﬂi gzgok:ﬁeglgﬁﬁéiilglséh;]se;%sgggéfo that only the fl@hﬁdenly come due. While this effort might still be less than the

) amount of effort saved by using lazy allocation, it is time that is not
K. "Functional" Data Structures easily interrupted, and can therefore cause problems in a real-time
So far, our lazy allocation model has utilized strict “"relocatiofystem.
semantics in order to preserve the "object identity” of allocagdnore incremental system would evict objects from a stack frame
objects. In this semantics, there is only one "true" location for epgh before it is popped, and would evict only the "top level" of those
object, but this location can sometimes change. For "functional” @afects.  Unfortunately, this sort of a system leads to great
structures—data structures which cannot be side-effected—we geanplications. In such a system, a stack frame must now be scanned
relax the strict "relocation” semantics and utilize "copying" semantigsfore popping, in order to evict any remaining objects. However,
This is because the behavior of a functional data structureuriike the non-incremental scheme where we could inductively prove
determined by the values of its components, and since they canngidieno pointers to the stack frame exist at the time of popping, the
changed, a copy of the data structure having the same componentiwiimental scheme has no such property. If there are live objects
have the same behavior. (A more thorough treatment of objegtaining in the stack frame, thepsofacto there must be live
identity for functional objects can be found in a companion papeinters. Unfortunately, we do not know where those pointers are, so
[Baker93].) we cannot update them when the objects are moved out of the stack
frame.
The only solution is to follow a technique invented by Bishop
21. [Bishop77] and used by Lieberman and Hewitt [Lieberman83]. We
This multiple-value structure should Benctional [Baker93] to use a separatentry table to keep track of those pointers which violate
achieve the maximum benefits of lazy allocation. a stack's well-ordering. This entry table initially starts out empty, but

Below, we show how to program a complex division routine whi
allocates all intermediate results on the stack.
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when a stack frame is cleared of live objects, some of these objegts/ig [Dybvig88] is apparently the first to have pointed out in print
may continue to point into other stack frames. These pointersthae the consistent copying of a large argument to successive levels of
routed indirectly through the entry table. When the next stack frameecuirsion can convert a linear algorithm into a quadratic one.

to be cleared, the entry table is searched for objects entering the s§€kconcept of lazy allocation was almost discoved by Lieberman and
frame, and those objects are then relocated. In this way, we HaRitt [Lieberman83], since they had all of the necessary machinery.
incrementalize the eviction process. However, the additional concept of "genetic order" [Terashima78]
Our incremental scheme is nearly equivalent to Lieberman asb missing. McDermott discovered a form of lazy allocation
Hewitt'sgenerational garbage collectigin which the global heap andMcDermott80] for implementing the variable-binding environments
each stack frame are separate generations. Unlike Liebermanuaed in a lexically-scoped Lisp interpreter, and he also indicated its
Hewitt, however, who would move a result object through evegmyssible use for managing Scheme continuations. [Morrison82] is
intermediate generation, we move such objects directly to the oldesply lazy allocation applied to the consing performed in [Baker78b]!
generation—the global heap—in order to avoid a quadratic explogMallender89] implements Smalltalk with a scheme based on the same
in copying effort [Dybvig88]. Our policy is similar to Ungat&nuring concepts as "lazy allocation”, but with substantially greater complexity.
policy [Ungar84], which also avoids the copying of long-lived objectsicker Taft [Kownacki87] [Taft91] independently developed for the
through the intermediate generations. The address ordering relafida;9X language the idea of a run-time "scope check”, with a user-
the relocation process and the manipulation of the entry tables indefined copy-to-heap if required; this excellent proposal was
scheme are all identical to that of Lieberman and Hewitt, however.unfortunately later withdrawn.

7. Conclusions and Previous Work Stallman'sphantom stackgStallman80], which were invented to

; ; implement Scheme on the MIT Scheme Chip [Steele79], are an
We have shown how a general model caléey allocationcan simply | teresting alternative to solving the same kinds of stack allocation

and elegantly explain many traditional programming Iangua{%ﬁjlemS as lazy allocation. In phantom stacks, objects are stack-

optimizations aimed at increasing the fraction of storage allocati d in th in | I > The diff
that can be performed on a stack. Lazy allocation requires the a ated in the same manner as in lazy allocation. The difierence
een the two models comes when LIFO order is violated. In lazy

to deal with objects which can be suddenly moved, but once this . : > L
has been paid, lazy allocation can resulf in great simplificationiecation, we evict objects from the stack to the heap, while in.

other parts of a language implementation. Lazy allocation puts mo tom stacks, a new stack is initiated, the old stack is abandoned, in
its overhead burden on assignments, which makes it attractive foPge; Where it becomes a passive set of objects in the heap. Thus,
"mostly functional” programming styles of modern expression-orien allocation and phantom stacks are duals of one another: lazy
languages. Lazy allocation also has benefits in shared-memory cation moves objects from the stack, while phantom stacks moves

processor environments where the potential bottleneck of a gl g stack from the objects. [Hieb90] rediscovered phantom stacks and

allocator is shielded by lazy stack allocation from the bulk of %'%’ﬁ;maenoﬁnaa%ﬁex%géspggéis%?pmp”ate for the execution of

allocation load. .
We have also described a new run-time technique cakedilt Both Prolog [Warren83] androrth [Moore80] make more extensive

expectation which informs called functions of what results ais€ Of S.“ﬁCk.s tTan do tra((jjitionatlj Lisp impllementations, and gain
expected and where they should be put, so that unexpected rexfigiantially in elegance and speed as a resuilt.
need not be heap-allocated. While interesting in its own right, reguliAcknowledgements

expectation works with lazy allocation to reduce the numberygg wish to thank Dan Friedman, Andre van Meulebrouck, Carolyn

evictions of function results from functions called for their effeghicott and the referees for their helpful suggestions and criticisms.
rather than for their result.

The concept of lazy allocation is the result of 10 years of ponde

A " f " : : , A.V. "Nested stack automatadACM 16,3 (July 1969),383-406.
the pO_SSIbIIIty_ of "backing up _Uf‘der Cer.tam circumstances— SI-C. Draft Proposed American National Standard Programming
allocation pointer of the author's real-time garbage collectiofangyage C. ANSI, New York, NY, 1988.
algorithm [Baker78a], in order to improve its amortized performang@pel, Andrew W. "Garbage Collection Can Be Faster Than Stack Allocation".
The single-bit reference count [Wise77] for stack-allocated objectsfo. Proc. Let. 25(1987),275-279.

can be subsumed by address ordering, yielding the current conceppisfl, A.; MacQueen, D.B. "A Standard ML CompilerACM Conf. Funct.
lazy allocation. Prog. & Comp. Arch. Sept. 1987.

D Lo . ArP el, Andrew W.; Ellis, John R.; and Li, Kai. "Real-time concurrent garbage
ue to the ubiquity of the problem, the literature on stack-allocatirighjiection on stock multiprocessors"ACM Prog. Lang. Des. and Impl.
various kinds of objects is so large that we can reference only a Smﬁ]Le 1988,11-20.

fraction. The stack allocation of variable binding environmemtgpel, Andrew W. "Simple Generational Garbage Collection and Fast
encompasses the Algol-60isplay [Randell64], Lisp's binding Allocation". SW Prac. & Exper. 12 (Feb. 1989),171-183.
environment§Greenblatt74], Lisp'shallow binding[Baker78b], Lisp's Baker, Henry G. 'List Processing in Real Time on a Serial Compu@ACM
cactus stack§Bobrow73]. The stack allocation of functional objects2L:4 (April 1978), 280-294.

like numbers is discussed in [Steele77] and [Brooks82]. "Dyna Slr)} 1';?2)'3’56&569';Sha”°w Binding in Lisp 1.5". CACM 217

extent objects” [Queinnec88] have been proposed as part ofgR)@r, Henry G. "Unify and Conquer (Garbage, Updating, Aliasing, ...) in
Eu_Lisp standard. Our lazy allocation completely subsumes dynani@nctional” Languages”. Proc. 1990 ACM Conf. on Lisp and Functional
extent objects, and our trapping for the purpose of eviction is no moPeogr., June 1990,218-226.

expensive than trapping to determine lifetime errors. Baker, Henry G. "Equal Rights for Functional Objects". ACM OOPS

: : : : essenger 4,4 (Oct. 1993), 2-27.
_The deletlon (Stack-a_llocatlon) versus retention (heap-allocatlgﬁﬂ[h' J. g"Shifting§ garbage )collection overhead to compile tim@ACM 20,7
implementation strategies for Algol-like compiled languages has begsyy 1977),513-518.
studied by [Berry71] [Fischer72] [Berry78a] [Berry78b] [Berry78cBartley, D.H., Jensen, J.C. "The Implementation of PC Sche®€M Lisp &
[Blair85] describes amptimistic stack-hegpwhich is approximately Funct. Prog, Aug. 1986, 86-93.
our lazy allocation applied to stack frames; unlike our lazy allocatiBarry, D.M. "Block Structure: Retention vs. DeletionProc. 3rd Sigact Symp.
however, the optimistic stack-heap is not used for user-ailocated dati: of Comp. Shaker Hgts., OH, 1971, .
In other words, these models do not separate the issues of lan D.M., et al "Time Required for Reference Count Management in

implementation (frames) from storage allocation (stack allocation). SCi.egEo?lé??l%gkl—itgi(.:tured Languages, Part Jhtl. J. Computer & Info.

The stack allocation of functional arguments has been studiedBéyy, D.M., et al. "Time Required for Reference Count Management in
[Johnston71], [Steele78], [McDermott80] and many others. Johnstétetention Block-Structured Languages, Part 2htl. J. Computer & Info.
[Johnston71] is said to have used the timy contouwhich is a close Besr%/' 7'[2> &197;5%&918'(1”1&1 A. "Time Required for Garbage Collection in
approximation to O,L" lazily aIIo'catec'I stack frame. . Retention Block-Structured Languages'ntl. J. Computer & Info. Sci. 4
The stack allocation of continuations has been studied by Stegh®78),361-404.
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