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Abstract
Lazy allocation is a model for allocating objects on the execution stack
of a high-level language which does not create dangling references.
Our model provides safe transportation into the heap for objects that
may survive the deallocation of the surrounding stack frame.  Space
for objects that do not survive the deallocation of the surrounding stack
frame is reclaimed without additional effort when the stack is popped.
Lazy allocation thus performs a first-level garbage collection, and if
the language supports garbage collection of the heap, then our model
can reduce the amortized cost of allocation in such a heap by filtering
out the short-lived objects that can be more efficiently managed in
LIFO order.  A run-time mechanism called result expectation further
filters out unneeded results from functions called only for their effects.
In a shared-memory multi-processor environment, this filtering
reduces contention for the allocation and management of global
memory.
Our model performs simple local operations, and is therefore suitable
for an interpreter or a hardware implementation.  Its overheads for
functional data are associated only with assignments, making lazy
allocation attractive for mostly functional programming styles.  Many
existing stack allocation optimizations can be seen as instances of this
generic model, in which some portion of these local operations have
been optimized away through static analysis techniques.
Important applications of our model include the efficient allocation of
temporary data structures that are passed as arguments to anonymous
procedures which may or may not use these data structures in a stack-
like fashion.  The most important of these objects are functional
arguments (funargs), which require some run-time allocation to
preserve the local environment.  Since a funarg is sometimes returned
as a first-class value, its lifetime can survive the stack frame in which
it was created.  Arguments which are evaluated in a lazy fashion
(Scheme delays or "suspensions") are similarly handled.  Variable-
length argument "lists" themselves can be allocated in this fashion,
allowing these objects to become "first-class".  Finally, lazy allocation
correctly handles the allocation of a Scheme control stack, allowing
Scheme continuations to become first-class values.

1.  Introduction.
Stack allocation of objects in higher level programming languages is
desired because it is elegant, efficient, and can handle the great
majority of short-lived object allocations.  Traditional higher-level
languages such as Algol, Pascal and Ada have preferred to perform
all automatic storage management by using a stack, while non-stack
allocation remains the responsibility of the programmer.  However, the
limitations of stack allocation are semantically confining, because a
strict last-in, first-out, (LIFO) allocation/deallocation ordering does not
allow for important classes of program behavior such as that of
returning a functional argument as a result.  Therefore, the
programmer is forced to use complex and error-prone techniques to
simulate this behavior himself, even though the abstract programming
language may be capable of expressing the behavior more elegantly
and directly using, for example, functional arguments as results.
Modern higher level languages such as Lisp, Smalltalk, Mesa, Modula-
3, ML, and Eiffel, seek to escape these LIFO restrictions to gain in
expressive power while retaining elegance and simplicity in the
language.  Insofar as they succeed, they can greatly improve
engineering productivity and software quality.
A cost must be paid for this flexibility through the increased use of
heap allocation for objects in the language.  Yet the vast majority of
objects obey a straight-forward last-in, first-out (LIFO) allocation
semantics, and could profitably utilize stack allocation.  One would
therefore like to provide stack allocation for these objects, while
reserving the more expensive heap allocation for those objects that
require it.  In other words, one would like an implementation which
retains the efficiency of stack allocation for most objects, and
therefore does not saddle every program with the cost for the
increased flexibility—whether the program uses that flexibility or not.
The problem in providing such an implementation is in determining
which objects obey LIFO allocation semantics and which do not.
Much research has been done on determining these objects at compile

time using various static methods which are specific to the particular
type of object whose allocation is being optimized.  Unfortunately,
these techniques are limited, complex and expensive.  We present a
technique which acts more like a cache or a virtual memory, in the
sense that no attempt is made to predict usage at compile time, but the
usage is determined at run time.  In other words, the system learns
about the usage of objects "on-the-fly".
The major contribution of this paper is the recognition that a wide
variety of stack-allocation optimizations are all instances of the same
underlying mechanism—lazy allocation.  Using this insight, we can
simplify hardware architecture and language implementations by
factoring the problem into two abstraction layers—language
implementation using generic storage allocation, and the
implementation of generic storage allocation using lazy allocation.
Safety is also enhanced by the elimination of "dangling references"
due to objects escaping a stack-allocated scope.  While lazy allocation
already provides for stack-allocation of arguments and temporaries, a
programmer can extract even better performance by utilizing
"continuation-passing style" to stack-allocate function results.

2.  Stack Allocation is an Implementation Issue, not a Language
Issue
The stack allocation of variables and contexts in higher-level compiled
languages such as C, Pascal and Ada has been a fact of life for so
many years since its introduction in Algol-60 that most programmers
today assume that stack allocation is a language, rather than an
implementation, issue.  Stack allocation cannot be a language issue,
however, since the most direct mapping of the nested lexical variable
scopes in these languages is a tree, not a stack.  Rather, stack
allocation was a conscious decision on the part of these language
designers to provide the implementation efficiency of a stack as a
storage allocation mechanism even though this choice substantially
compromised language elegance.  We have also since learned that
stack allocation of variables and contexts severely limits the
expressiveness of a programming language.  Indeed, many of the
advances in programming languages after Algol-60 can be
characterized as attempts to ameliorate the restrictions of stack
allocation.  For example, most of the functionality of Simula-67 could
have been achieved in Algol-60 through the dropping of the stack
allocation requirement along with the syntactic restrictions on
procedure arguments and returned values.
The stack allocation of Algol-60 provided a major advance over
Fortran's static allocation.  Functions could be arbitrarily nested, and
recursion became possible.  So long as the basic values being
manipulated were numbers and individual characters, stack allocation
proved remarkably expressive.  With the advent of dynamic strings of
characters and larger dynamic objects such as arrays, stack allocation
started to break down.  PL/I used pointers and explicit
allocation/deallocation to avoid the limits of stack allocation.
Substantial arguments in the 1970's raged about the allocation of
function-calling and variable-allocation contexts—"retention"
(non-stack allocation) versus "deletion" (normal stack allocation)
[Berry71] [Fischer72].  Non-stack-allocation has become steadily
more important as the sophistication and complexity of programs have
increased.  For example, in modern "object-oriented" programming
style, most objects are heap-allocated rather than stack-allocated.
Unfortunately, heap-allocation is substantially less efficient than stack-
allocation.  As a result, programmers constantly seek to utilize stack
allocation whenever possible.  This change requires much work,
because the source code changes required to change from one sort of
allocation to another are substantial, even when the logic of the
program has not changed.  Most importantly, the programmer is
required to use heap-allocation for entire classes of objects, even
when the vast majority of these objects can be safely stack-allocated.
This results from the difficulty in determining at design or compile time
which of the objects can be safely stack-allocated, because it depends
on a particular pattern of function calls, which in turn depends on the
input data.
The use of different constructs and mechanisms for heap allocated
objects than for stack-allocated objects is therefore less productive for
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the programmer and less efficient at run-time.  It is also an invitation to
disaster, because using stack allocation inappropriately can cause a
program to fail in a spectacular manner.
We believe that the intertwining of an implementation mechanism
(storage allocation) with a programming language mechanism
(variable and function scoping) is confusing to the programmer and
inefficient for the hardware.  It is a violation of the design principle of
providing "levels of abstraction", wherein each level can be
understood in its own terms, and not require a detailed understanding
of every lower level.  We therefore describe a mechanism called
"lazy allocation" which can be used to provide a uniform interface to
the programmer, while taking advantage of stack-allocation as much
as possible.
The simplification in language design and implementation permitted by
lazy allocation through improved abstraction is important even if
additional run-time efficiency on current hardware is not immediately
forthcoming.  The problem factorization by lazy allocation should
allow for more efficient hardware architectures as well as language
implementations, which will eventually translate into improved
price/performance ratios.

3.  The Model.
The standard model of a run-time system in a modern high level
language consists of a traditional execution stack formatted into stack
frames, each of which represents the execution state of a particular
invocation of a particular procedure.  The model may also includes a
heap, which contains objects that cannot be allocated and deallocated
in a last-in, first-out (LIFO) manner.  Typical languages using this
model are Pascal, C and Ada (without tasks).
C and PL/I make most storage allocation and pointer management the
responsibility of the programmer.  In these languages, he is allowed to
take the address of an object on the stack and store this pointer into an
arbitrary variable.  A common instance of creating references to local
variables is when local variables are passed as arguments to another
procedure by reference.  Passing large objects by reference is usually
cheaper than passing them by value, but by-reference argument
passing can lead to a dangling reference if a reference into the stack
is then stored into a variable having a larger scope, such as a global
variable.  A dangling reference can cause bugs if it is dereferenced
outside of the stack object's lifetime.  Thus, the power to take the
address of an object on the stack can lead to efficient programs in
which temporaries are stack-allocated, but this power can also
produce bugs which are difficult to find.
Our model detects these objects whose references are about to escape
from the lifetime of their enclosing stack frame, and relocates these
objects into the permanent heap.  This graduation from temporary to
permanent status we call eviction.  Due to the constant threat of
sudden eviction, any access to such an object must be capable of
detecting this movement so it can find the relocated object at its new
address by following a forwarding pointer.1  The mechanisms for
dealing with objects which can be unexpectedly moved are well
known in the context of "on-the-fly", or "incremental" compacting
garbage collectors [Baker78][Lieberman83].
Once we have installed the machinery necessary to deal with objects
which can suddenly move, we can contemplate the possibility of
allocating everything initially on the stack.  If we implement an
"escape alarm system" to detect escaping references, we can use
these alarms to trap to an eviction routine which will transport evicted
objects into the heap.  We call the policy of stack allocation followed
by eviction traps "lazy allocation", because the system is too lazy to
perform the work involved in heap allocation until this work is forced
by the object's usage.
In the lazy allocation model, we have a global heap, a stack formatted
into stack frames, and a small number of machine registers.  We posit
the existence of an ordering relation on object addresses which
adheres to the following axioms:
1.  The location address of an object in the global heap compares
lower than the location address of an object in the stack.
2.  The location address of an object in a frame near the stack top
compares greater than the location address of an object in a frame
near the base of the stack.
Lazy allocation will enforce the following rule:
Temporary Restraining Order — No temporary object in the stack can
be pointed to by an object whose location address compares lower;

1Forwarding pointers are only required for side-effectable objects;
functional (read-only) objects are copied, but do not require the
detection or following of forwarding pointers [Baker93].

i.e., no object in the heap can point into the stack, and no object in the
stack can point "up" the stack, only "down" the stack.
The Temporary Restraining Order (TRO) is enforced by checking
every primitive operation which could possibly violate it.  The only
operation which can violate TRO is the storage of a pointer into a
stack frame (or the heap) which compares lower than the object
pointed at.  In other words, when performing an assignment, we need
only check that the ordering is preserved:

component(p) := q;       /* p,q pointers; assert(p ≥q). */

Statistically, most component assignments in higher level languages
will respect the TRO rule, because component assignments are usually
used to initialize components of newer data structures to reference

older ones.2  The main exceptions to this observation are assigning to
(more) global variables and returning values.  By assigning a pointer to
a global variable, we are very likely to violate TRO because our lazy
allocation will allocate everything on the stack.
Since most function returns result in binding a variable in the caller's
frame, they can have the same effect on returned values as an
assignment to a global variable—eviction.  In some cases, this eviction
can be avoided by having the caller allocate the space for the returned
result in his own frame, and passing a reference to this space as an
additional argument.  This technique, which we call "caller result
allocation" has been used since the early 1960's in Fortran, Cobol and
PL/I compilers.  There are two problems with caller result allocation.
First, when the called routine attempts to initialize any components of
this structure, these assignments may cause eviction of the
components.  Second, caller result allocation only works when the
caller knows the size of the object being returned in advance.
Nevertheless, it can be used to reduce the number of evictions of

returned values.3

When a TRO violation is about to take place, the system executes a
"transporter trap" [Moon84], which evicts the target object of the
pointer from the stack into the heap.  The process of relocating this
object can cause recursive transporter traps, however, when pointers
which are components of the object being relocated are discovered to
also point into the heap.  If relocation of the object, installation of
forwarding addresses, and updating pointer components are all
performed in the correct order, this recursion will terminate.  When
the recursion terminates, not only has the object causing the first trap
been relocated out of the stack, but so have all of the objects
accessible from it.  When the original trap has completed, the updated
address is then used to complete the assignment operation which
caused that trap.
Since forwarding addresses are left for every non-functional object
which is evicted in this manner, references from machine registers
and from objects still in the stack to the evictee can follow these
forwarding addresses to find the moved object.  A functional (read-
only) object still in the stack does not need a forwarding address

because the stack original is equivalent to the heap copy,4 and
continues to function correctly until the frame is exited, at which point
it is abandoned because no live references to it exist.  Thus, the
transporter traps caused by attempted violations of the TRO rule serve
to relocate the objects so that the TRO rule is preserved, and so that
the semantics of the objects themselves are also preserved.

2On architectures without special TRO-checking hardware, common
cases like initialization can be easily recognized and optimized.
3Functions in expression-oriented languages like Lisp will often return
values which are never used when the function is called for its side-
effects rather than for its returned values—e.g., pr in t .  An
important optimization when using lazy allocation is to inform a called
function when results are not expected, so that eviction of unneeded
results is not performed; this result expectation optimization is
discussed in a later section.
4If the language offers an address-comparison operator (e.g. Lisp's
EQ) for functional objects, then forwarding pointers will be required.
[Baker93] argues for a more comprehensive and portable treatment of
such an object identity predicate so that functional objects can be
relocated without requiring the checking or leaving of forwarding
pointers.
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Let us call a stack which does not violate TRO well-ordered.  By
preserving the Temporary Restraining Order, we have the following
theorem:
Theorem.  If a frame from a well-ordered stack is popped, and the
registers contain no references to the popped frame, then no dangling
references are created by the pop.
Proof by induction.  The only dangling references could come from
the registers, further down in the stack, or the heap.  By hypothesis, the
registers have no pointers to the popped frame.  There is no higher
stack frame, hence no references from the stack above.  Due to
transporter traps, there are no references from down the stack or from
the heap.  Therefore, the only references to the popped frame are
from the popped frame itself, in which case the entire frame is
garbage.  QED.
Since the stack in our model is restricted to transient objects, it is like a
"flophouse" hotel.  Since such an address is not respectable, one does
not give it out.  In order to put down "roots", one must move to a more
respectable address in the permanent heap.

4.  Complexity
Stack allocation has recently come under attack as being slower than
garbage-collected heap allocation under certain circumstances
[Appel87a].  Since many of the benefits of lazy allocation are lost in
this instance, we must first demonstrate that stack allocation retains its
advantage under most conditions.
As [Baker78a] and [Appel87a] demonstrate, the cost of heap
allocation can be reduced to approximately the same as stack
allocation.  This reduction is achieved by increasing real memory size
(relative to the program) so that the number of garbage collections
(which are really heap copies) is reduced.  With enough memory, the
amortized cost of garbage collection (heap copying) approaches zero,
so that the cost of allocation (incrementing a pointer) becomes the
dominant cost.  Since the cost of stack allocation/deallocation is also
the incrementation/decrementation of a pointer, the costs of heap and
stack allocation become similar.
This reduction in execution time is only achieved, however, through a
tremendous increase in the size of real memory.  Using the model in
either [Baker78a] or [Appel87a], the allocation time becomes
independent of the memory size only when the fraction of space used
is negligible—i.e., at least an order of magnitude smaller!  Even with
the exponential reduction in memory prices over the last 30 years,
CPU prices have fallen even faster, resulting in an ever-increasing
fraction of system costs tied up in memory.  These trends indicate that
the use of garbage collection to simulate stack allocation is a waste of
resources.  Stack allocation, on the other hand, operates with the same
efficiency (for those objects having LIFO behavior) whether memory
is nearly empty or nearly full.  Therefore, the "space-time product" for
stack allocation is better than that for garbage collection whenever the
utilization of memory is greater than a small fraction.
The growing popularity of "generational garbage collectors"
[Lieberman83] [Unger84] [Appel89] is an indication that the efficient
use of real memory is relatively important in most applications.  Lazy
allocation can be viewed as a variation on generational garbage
collection in which individual objects are generations, and tenuring to
the heap is immediate.
Because lazy allocation copies objects, it is an interesting exercise to
compare the complexity of our model with that of a straight-forward
copying garbage collector such as Cheney's [Cheney70].  We have
shown in [Baker78a] that the amortized cost of allocation in a system
with a copying garbage collector is linearly proportional to the amount
of space being allocated; the constant of proportionality is a more
complex expression depending upon the occupancy factor of the total
amount of storage under management.  Since we must usually initialize
an object being allocated, and this initialization process is usually
linearly proportional to the size of the object being allocated, the most
we can hope for from our lazy stack model is a better constant of
proportionality than in the uniform heap-allocation model.
Allocating an object on the stack is virtually the same process as
allocating an object in a compact heap because it involves only a
movement of the free space pointer.  Deallocation of a stack frame is
essentially free, since the stack frame need not be scanned.  Well-
ordering violations can occur, however, resulting in the relocation of
objects from the stack.  The total size of the relocated objects during a
recursive transportation trap cannot exceed the current size of the

stack, and once an object is relocated to the heap, it will not be

relocated again.5

Thus, in the worst case, every object is allocated on the stack, and is
then relocated to the heap.  This is a worst case in storage, because
since every object was allocated once on the stack and then relocated
to the heap, the storage on the stack is no longer occupied (until the
frame is popped).  It is a worst case in time, because every object is
allocated first on the stack and then relocated to the heap, when it
could have been allocated directly on the heap in the first place.  If the
cost of moving an object exceeds the cost of building it directly on the
heap, then our model will result in poorer performance than the pure
compact heap model.  (This analysis does not count the added costs of
constantly checking for objects which may have moved, so that their
forwarding pointers may be followed.)
The literature indicates, however, that while the worst case may
occur, the most common cases are LIFO allocation of objects.  If this
is the case, then most objects will get allocated on the stack, and will

become inaccessible before the stack frame is popped.6  As a result,
most of these objects will never be evicted from the heap.  Those
objects which are evicted will require somewhat more effort to get
them relocated to the heap, but in these cases we do not begrudge the
additional effort because 1) these objects are still accessible, and 2)
we have saved so much time as a result of stack allocating the vast
majority of objects, that we can afford to be more generous in these
few instances.
The programmer himself usually has a very good idea about which
allocated objects are likely to have stack-like extents, and which
objects are not.  If he knows that a particular object is almost certain to
cause a well-ordering trap, he can allocate it directly on the heap
himself, and save the system the time and expense of figuring this out
for itself.  The programmer can indicate this information either in the
form of a declarative "hint", or by calling an allocation routine with a
different name.  In either case, the percentage of objects which can
be successfully reclaimed by lazy allocation will be greatly increased.
By using "continuation-passing style"—discussed later—the
programmer can extend the lifetime on the stack of values returned
from functions, and thereby gain efficiency not easily obtained
through more traditional optimizations.  We conjecture that the
majority of objects reclaimed early by "ephemeral" or "generational"
garbage collectors are extremely temporary objects which could be
more efficiently stack-allocated using continuation-passing style and
lazy allocation.
Lazy allocation utilizes forwarding pointers to correctly preserve
"object identity".  Since we have assumed that the heap already utilizes
forwarding pointers in its management, lazy stack allocation will exact
no additional penalty.  Brooks's forwarding scheme [Brooks84] can be
used to advantage, since its overhead on a cached architecture is
rather small.  As we discuss later, functional objects require no
forwarding pointers, in which case all overhead is concentrated into
assignment operations.
In real architectures, there may be additional savings from our model
that will not show up in raw instruction counts.  Modern architectures
have smaller, faster memory banks which cache the most heavily used
memory locations.  Between the effects of caching and paging, the
amortized cost of cached memory references can be up to two orders
of magnitude faster than the cost of non-cached memory references
[Jouppi90].  Since our model attempts to keep everything on the stack
as long as possible, it is likely to have more local behavior than a

model which allocates objects directly on the heap.7  If the hardware
memory system knows that this is a stack, additional optimizations can
be made, such as not writing back popped stack frames to the backing
store.
Another optimization possible with our model is the inlining of the
allocation routine itself.  In this case, the initializing information is
copied directly into the appropriate locations.  For example, a Lisp-like
z:=CONS(x,y) is just "t1:=x;t2:=y;z:=addr(t1)", where t1,t2 are

5We here assume that there is no sharing of functional objects, since
eviction unshares them due to the lack of forwarding pointers.  This
assumption is generally true, but if functional objects are to be highly
shared, then forwarding pointers should be checked and left as if they
were non-functional objects.
6These statistics can be improved through the result expectation
optimization, discussed later.
7[Stanley87] reports a phenomenally large reference locality for
stack caches, as opposed to other data references.
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adjacent locations known to the compiler, and the compiler can
therefore optimize out the incrementation of the allocation pointer.  In
a system without a lazy allocation routine, one would need additional
register shuffling, followed by storage to an unknown location of
memory, even when the allocation routine itself was inlined.  Such a
routine would be slower than our lazy allocation—perhaps as slow as
an out-of-line procedure.
A new generation of shared-memory "symmetric multiprocessing"
(SMP) machines is starting to be utilized for tasks requiring flexibly
allocated storage.  On such machines a global storage allocation
routine must be protected by a lock to avoid inconsistency and this lock
can become a performance bottleneck.  If the allocation responsibility
is split up so that each processor has its own allocator, this bottleneck is
removed.  Lazy allocation elegantly achieves such a split, because
each processor already has its own stack, and lazy allocation may
reduce the allocation demand enough so that permanent allocations
can be made using a global, shared allocator without undue contention.

5.  Applications
A.  Malloc/New
The most straight-forward application of lazy allocation is a version of
C's malloc  or Pascal/Ada's new which allocates the object within the
current stack frame—expanding it if necessary.  In other words, C's
mal loc  becomes equivalent to the old al loca .  With lazy
allocation, one never calls the heap malloc /new directly, but leaves
it to the eviction trap to call these routines.  Since ephemeral objects
will be deallocated automatically when the enclosing stack frame is
exited, free  (dispose ) needn't do anything when handed a pointer
into the stack.  However, for a small cost, some error checking can be
gained by marking the stack object as free, so that any access or
attempted eviction will cause an error trap instead.

B.  Functional Arguments
The correct implementation of functional/procedural arguments
("funargs" [Moses70]) in higher level languages is quite complicated.
The creators of the DoD standard Ada language were so fearful of
these constructs, that they were summarily banned from the language
[STEELMAN78, Requirement 5D].  In transmitting a
functional/procedural argument, not only must a pointer to the
executable instructions be passed, but also a pointer to the environment
of the function.  This is because a function defined at a lexical level
other than the topmost level may refer to local variables of another
function.  These variables are not local to the function being passed,
and they are referred to as "free" variables.
Some languages such as C finesse the free variable problem by not
allowing functions to be defined at other than the topmost lexical level.
In this case, all free variables are global, and since global variables
can be statically allocated, their addresses can be embedded into the
instruction stream so that an additional environment pointer need not
be passed.  Much expressive power is lost in the language by this
restriction, however.
More powerful languages such as Algol, PL/I, Pascal and Lisp allow
the definition of functions and procedures within inner lexical
contexts, and therefore must package up pointers to both the code and
the environment when passing a function/procedure as an argument.
While this involves more work, these functional/procedural arguments
are strictly more powerful than C-style functional arguments.  True
functional arguments are capable of simulating arbitrary data
structures—at least within their lifetimes—and therefore the work
necessary to allocate a new structure for their implementation is
required.
Algol, PL/I and Pascal have carefully restricted the use of functional
arguments to make sure that they can never escape the lifetime of the
stack frame in which they were created.  As a result of these
restrictions, functional arguments can be safely allocated on the stack.
Therefore, these objects are not "first-class".  Part of the reason for
these language restrictions has to do with dangling references.  If a
functional argument refers to objects on the stack, and the stack is
popped to the point where these objects are no longer valid, then a
dangling reference will be created which can cause nasty bugs.
The restrictions on the use of functional arguments in Algol, PL/I and
Pascal are rather arbitrary and constrain the expressive power of the
programming language, although not so much as the restrictions of the
C language.  Several modern languages like Common Lisp and
Scheme offer "first-class" functional arguments, which can be
returned from functions and stored in data structures.  However, the
efficiency impact of this freedom is normally quite severe.  Not only
must the functional arguments themselves now be allocated on the
heap, but much of the normal variable-binding environment must also

be heap-allocated.  Only in this way can dangling references be
avoided.
Lazy allocation can solve the problem of allowing functional
arguments to be first-class, while keeping stack allocation for the vast
majority of these objects that do not escape the lifetime of their
creators.  In the case of Lisp languages like Common Lisp and
Scheme, the environment stack is kept separate from the control stack,
so that lazy allocation "almost" works without any change.  A problem
which occurs in any language which offers both functional arguments
and side-effects, however, is making sure that the object being side-
effected is "the" object, rather than a copy of it.  In particular, when
one creates multiple funargs which share the same free variable, and
one or both of the funargs side-effect this variable, it is important that
the side-effect be visible to all of the funargs.  The usual solution to
this problem is to allocate a unique assignable "cell" in the heap for
each such variable, which is then bound as the "value" of the variable;

[Kranz88] calls this transformation assignment conversion.8  When
multiple funargs are created which reference this variable, then each
will then reference the same cell.  The Common Lisp example below
exhibits this situation.

(let* ((x 3))         ; Create cell x initialized to 3.
  ((lambda (y z)
     (let* ((ex x)    ; Get the current value of x (= 3).
            (ey (y))  ; x <- 4
            (ez (z))) ; New current value of x (= 4).
       (list ex ey ez)))
   #'(lambda () (setq x 4) x)  ; Funarg with free var. x.
   #'(lambda () x)))  ; Funarg with free var. x.
=> (3 4 4)

Unfortunately, assignment conversion is very expensive, because it
causes every variable to be bound to such a heap-allocated cell, unless
it can be statically shown that either 1) the cell is never assigned to
after initialization, or 2) the cell is never shared among funargs
[Kranz86] [Kranz88].  Using lazy allocation, however, we can
cheaply allocate an assignable cell for every variable in the same
stack frame as the variable itself, and this cell will only be relocated to

the stack when it tries to escape from that stack frame's lifetime.9
Thus, lazy allocation can be used for both the funarg environment
itself, as well as the assignable cells, so that in the most common
situations all of the allocations for funargs occur on the stack and are
never relocated to the heap.
In the case of non-Lisp languages, where the environment stack and
the control stack are usually merged, we must be more careful.  The
simplest solution would be to utilize lazy allocation on the stack frames
themselves, which would work because any frame relocated into the
heap would leave a forwarding address for any other object which
pointed to it.  Unfortunately, the eviction of one stack frame has the
undesired effect of immediately evicting all of the stack frames nearer
to the bottom of the stack as well.  When using such a policy, the top
stack frame's eviction causes the entire stack to be relocated into the
heap.  While there may be occasions where this massive relocation is
desired (see the later section on Scheme continuations), this policy is
usually overkill for funargs.
A better solution for implementing first-class funargs in non-Lisp
languages would be to more closely follow the Lisp example.  A
funarg environment need only retain the bindings of the variables free
in the function being passed, so the funarg environment could be a
simple vector of these variable values.  Of course, the same
"assignable cell" indirection must be made for free variables in non-
Lisp languages that we demonstrated above for Lisp.  Since lazy
allocation allows both the assignable cells and these environment
vectors to be (initially) stack-allocated, we get excellent performance
until a funarg is returned or stored into a global variable and becomes
first-class.

C.  Lazy Argument Evaluation
Lazy evaluation of the arguments of a function call is the deferral of
the evaluation of the argument expression until the argument is
actually "used".  Lazy evaluation of arguments can be more
expressive and efficient than so-called "applicative" evaluation if an

8Erik Sandewall circulated a memo describing the same technique in
1974 [Sandewall74]; Greenblatt utilized this idea in the MIT Lisp
Machine [Greenblatt74].
9On a machine with a cache, the variable and its cell should be
initially located in the same cache line, so that the additional
indirection through the variable reference to the cell will execute as
quickly as possible.
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argument is never used, because the argument expression will never
be evaluated.
Lazy evaluation appeared in Algol-60 under the guise of "call-by-
name", and was implemented by means of "thunks" [Randell64].
Thunks are quite similar to functional arguments, in that they have
some executable code and an environment in which to execute the
code.  In fact, the semantics of Scheme's delay  expressions are
given in terms of functional arguments [IEEE-Scheme90].
As a result of the simple implementation of lazy argument evaluation
using functional arguments, lazy allocation will work for lazy
evaluation in the same way that it works for functional arguments.
Most "lazy" arguments will be evaluated before their defining stack
frame is exited, and those that have not, will most likely never be
evaluated.  However, those that do escape from their defining stack
frame will be evicted to the heap, where they will evaluate correctly if
the need arises.
The possibility of escaping Scheme delays  suggests an optimization
that may sometimes be beneficial.  If a delay  is about to escape, one
may want to arrange for its immediate ("strict") evaluation.  If the
delay  is functional, then the time of its evaluation cannot affect its
value, yet this value may occupy less space than the delay  itself
(zero if the value is an "immediate" quantity such as a floating point
number), thus improving heap utilization and performance.  We call
the evaluation order resulting from this optimization "downward lazy
evaluation", due to its similarity to "downward funargs"—i.e., those
functional arguments that obey stack ordering.

D.  Argument "Lists"
Programming language designers have long been tantalized by the
similarities between parameter lists and structured values ("records" or
"structures").  For example, Ada utilizes nearly the same syntax for
declarations of both, and nearly the same syntax for function calls and
record "aggregates" [Ada83].  Lisp semantics presume the existence
of a Lisp list of arguments [McCarthy65].  Yet nearly all language
designers are forced to back down from unifying these two concepts
due to the unacceptable loss of efficiency that would result.  Making
parameter lists into true first-class objects would force them to be
heap-allocated, with the concomitant problems of determining when
and how to deallocate them.
Lazy allocation offers the language designer the ability to unify record
structures and parameter lists without the loss of efficiency.  Every
function and procedure can be elegantly defined as accepting just one
parameter—a record structure.  A function/procedure call constructs
an argument object on the stack by creating a new instance of this
structure initialized with the individual argument components.  A
pointer to this argument object is then passed to the function or
procedure, where a "destructuring pattern match" of the argument is
made using the parameter record definition as a pattern.  Elegance
and power are obtained in two ways: the capabilities of record
structures are made available to argument objects, and the capabilities
of argument objects (e.g., pattern-matched destructuring) are made

available to record objects.10  Even more fascinating is the transfer
of other argument-passing ideas to data structures—e.g., lazy
evaluation becomes lazy component initialization [Friedman76].
In the most common case, argument objects are immediately
destructured, and do not escape the lifetime of the called function or
procedure, and therefore can be deallocated when the
function/procedure returns.  However, should the argument object
become first-class, it is evicted from the stack, and is thereby retained
when the function/procedure returns.
By giving argument objects a (potentially) first-class existence, some
efficiencies can be obtained.  For example, some recursive
procedures pass on a number of arguments unchanged to successive
recursions, where they are used only when the recursion terminates.
By passing a pointer to a portion of the argument object instead of
copying these arguments, some effort can be saved.  Furthermore, if
the number and/or size of these arguments are related to the depth of
the recursion, an algorithm that is quadratic in complexity may be
reduced to linear complexity [Dybvig88].

E.  ANSI-C STDARG's
The programming language BCPL [Richards74], from which the C
language descends, passed all arguments uniformly as a vector on the
stack which could be accessed in exactly the same way as any other

10So long as these argument objects are functional [Baker93], one
can still pass argument objects through RISC architecture registers
rather than memory, because functional objects can be transparently
copied—even to a bank of registers.

vector.  This clean model depended upon a uniform size for all
objects, and was therefore abandoned in C.  Until the development of
UNIX varargs  and then ANSI stdargs , there was no portable
way to pass an arbitrary number of arguments to functions, most
especially variants of printf .  These portable forms offer a kind of
"stream" access to the argument "list", and the receiver of the variable
argument "list" sequentially reads this stream, and provides the type
information necessary to decode it.  These streams provide only data,
and no pointers to these arguments are allowed.
The stdargs  facility is currently the only facility that provides stack
allocation of variable-sized quantities of storage in ANSI-C; ANSI-C
is highly tuned to allow only fixed-size stack frames whose size is

known by the compiler.11    With the demise of alloca , which
allocated variable-sized objects on the stack, ANSI-C's restriction
against taking the address of such an argument is particularly
obnoxious, because some applications of alloca  could have been
(painfully) simulated using variable-sized stdargs .
Both stdargs  and varargs  are ugly and non-modular, and
introduce notions not used elsewhere in C.  Because C wants to charge
all costs for variable-length argument lists to those functions which use
them, these forms must not interfere with the passing of fixed-length

argument lists in registers (the norm on RISC architectures).1 2
Because the simplest implementation of a stream is the incrementing of
a pointer variable through a memory structure, the first step in most
implementations of va_start  is to store all of the register-passed
arguments into memory, and then utilize simple pointer-stepping for all
arguments.  Indeed, given the fact that the argument-reading stream
may be passed on to additional functions, it is difficult to conceive of a
compiler smart enough to implement stdargs /varargs  in any
other way.  The inability to create a pointer to a stdargs  argument
is therefore unreasonably restrictive, since it almost certainly resides
in addressible memory.  Presumably, the no-pointers restriction is
meant to protect the user from the particularities of storage allocation
of the storage needed for the variable-length argument list, which may
be allocated by va_start  and deallocated by va_end .  Such
protection is out of character for C, since no such protections exist for
other stack and heap-allocated objects.  Most implementations allocate
the storage needed for va_start  on the main C stack (using a
version of the now-banned alloca ), however, in which case the
va_end  is extraneous.  Allocating storage for va_start  in any
other place is almost certain to run afoul of longjmp , which must
then decode the stack and execute va_end  for each stack frame
involving stdargs  for which va_start  was executed, but
va_end  was not.
A lazy allocation mechanism could dramatically simplify the
stdargs  device of ANSI-C.  A new, first-class polymorphic
"stream" data structure could be defined which could be opened and
read sequentially from a variable-length argument list.  Since this data
structure would exist either in the stack frame storage of either the
calling or the called subprogram, no restrictions on taking addresses
would be needed.  If any pointers survived, the targeted objects would
be automatically moved into the heap.  Reading such a stream would
produce a truncated stream consisting of the rest of the list.  If any
stream ("ap ") pointers survived, then the "rest" of the stream
(including objects it referred to) would be relocated to the heap.

F.  Common Lisp &REST Arguments and Scheme ". z"
Arguments
The semantics of the Lisp language were originally defined by a
"meta-circular" interpreter which created actual Lisp lists of evaluated
arguments as part of its evaluation of function application
[McCarthy65].  While most modern Lisp implementations put
evaluated arguments onto a stack instead of a list, Common Lisp and
Scheme retain one vestige of the original Lisp evaluator—the &REST
argument.  Both Lisps allow for the passing of an arbitrary number of
arguments to a function, but the called function must somehow be
capable of addressing these arguments.  Common Lisp uses normal

11ANSI-C doesn't strictly require stack allocation (on the main C
stack) of variable-size argument lists, but any other implementation
must deal with signals and setjmp /longjmp , which require main-
stack-allocation semantics.
12Curiously, arguments passed in registers are required to be stored
into memory upon entry to a function, unless the corresponding
parameter is declared with a storage class of register  (which is
not the default).  An optimization not always performed is to store the
argument only if the address-of ("&") operator is ever applied to the
parameter; this usage can easily be detected by the compiler.
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positional matching for the first several arguments, and has a
keyword-matching capability, but functions with a large number of
relatively homogeneous arguments such as "+" are most elegantly
handled using a &REST parameter.  The semantics of the &REST
parameter are that it is bound to a Lisp list of the arguments remaining
after all required and optional parameters have been bound.  Scheme
does not have keyword arguments, but does allow the equivalent of
Common Lisp's &REST parameter which is denoted by putting a
symbol in the last "cdr" position of the parameter "list", which is
therefore an improper list.
Unfortunately, the creation of first-class Lisp lists for handling these
&REST parameters is quite expensive.  Yet to be safe, a true list must
be constructed for the &REST parameter, since the called function
may do anything with this list it likes, including returning it or side-
effecting it.  For example, Lisp's LIST  function itself has the trivial
definition where it simply returns its &REST argument:

(defun list (&rest args) args) 13

Since there are many reasons for passing variable numbers of
arguments to a function, and only a few of them involve creating a list,
it is unfortunate that Lisp forces a list allocation for this common
situation.
The Lisp Machines derived from the MIT Lisp Machine
[Greenblatt74] actually do format their argument lists on the stack to
look like Lisp lists so that they can be passed as &REST arguments and
traversed using the normal CAR and CDR functions.  However, these
argument lists are not first-class Lisp lists, because the lists so created
have the same lifetime as the enclosing stack frame.  Therefore, while
these &REST arguments can be passed down the stack, they can never
be stored into the heap, returned past their creation point, or
RPLACD'ed.  However, because they are formatted as lists, they can
be passed to other functions as lists—e.g., as the last argument to
APPLY—and thereby avoid a quadratic explosion of copying
[Dybvig88].
In our lazy allocation model, however, all CONS'ing is first performed
on the stack, so there is no additional penalty for CONS'ing &REST
arguments.  Furthermore, using lazy CONS'ing, &REST lists are truly
first-class lists, since they are created using exactly the same
mechanism that is used to create any Lisp list.
(As an aside, we point out that if Lisp argument lists are to be
constructed so that the CDR pointers always point towards the base of
the stack, and if each argument is to be inserted when its list cell is
allocated, then this virtually requires that arguments to a Lisp function
be evaluated in reverse order of appearance.)

G.  Tail Recursion
Tail recursion is a Lisp optimization that was elevated in the Scheme
dialect into a requirement.  By requiring that a tail-recursive routine
called to a depth of n is allowed to use only O(1) amount of control
stack, Scheme can simulate iterative control structures in a storage-
efficient manner without a distinct iteration construct.  Typical
implementations achieve this by reusing the stack frame on a tail-
recursive call.  The introduction of lazy allocation requires a new
understanding of the meaning of a "tail recursion optimization", since
any allocation performed during such a loop will increase the size of
the stack frame which is being reused, potentially allocating an
unbounded amount of stack space.  One interpretation is that such a
program utilizes additional storage during its execution, and therefore
isn't "really" iterative at all.  Another interpretation is that the Scheme
tail recursion requirement is unreasonable, since a lazy allocation
implementation utilizing arbitrary storage space may be more efficient
(within its storage limitations) than a more strict stack frame reusing
strategy, and the Scheme requirement makes the programmer
"subvert" the compiler in order to achieve his wish.  A default
interpretation is that a tail recursion "optimization" disables lazy
allocation, and forces allocation directly into the heap.

H.  Scheme Continuations
Scheme is a dialect of Lisp which has a very interesting construct
called a continuation.  A continuation is a functional argument that
embodies the "rest of the computation".  When a continuation function
is called with an argument, it does not act like a normal call, but
instead returns from a previous expression evaluation.  Normally,
when a function is called, the arguments are evaluated, an argument
list is constructed, the caller is suspended, and control is transferred to
the callee.  The callee creates a new frame on top of the stack and
starts execution.  Eventually, the callee returns with a returned value.
A return is usually implemented by saving the returned value in a

13In Scheme, this becomes (define (list . z) z).

register, popping the callee's frame from the stack, and continuing
execution at the point in the caller's code where the callee was
originally called.  During the execution of the callee, the suspended
caller can be considered a kind of functional argument, which, if
called, would execute the "rest of the computation".  This "function"
even takes an argument—the value to be returned from the callee.
This "function"'s main fault is that if it is called, it will never return.
We designate this theoretical "function" the continuation of the
suspended caller program.
In a traditional stack implementation, the continuation has more than a
passing resemblance to a functional argument.  It consists of a pair of
values: the point in the program text where execution will resume, and
an environment—the current stack—in which to interpret lexical
variable occurrences in the program text.  If we could somehow
package this continuation into a "real" functional argument, then we
could simplify the notion of function calling by always including a
continuation argument, and no longer including the return "PC" and the
return stack-pointer as integral parts of the function calling sequence.
In fact, the "jump to subroutine" operation of most modern computer
architectures can be viewed as an optimization of the sequence "push
continuation argument; jump to the beginning of the called function".
In the most primitive Scheme model, then, there are no returns from
subroutines, only calls to continuations.  The basic difference between
a normal function and a continuation is that calling a normal function
will push onto the stack, while calling a continuation will pop from the
stack.
Traditional stack implementations of traditional languages work
correctly, because under normal conditions all continuations created
during the execution of a program have strict LIFO
allocation/deallocation behavior.  In other words, the continuation
(return point, stack pointer) does not escape the lifetime of its creator,
and therefore no dangling references are created.  In the Scheme
language, however, since a function callee can gain access to his
continuation through a special construct (call/cc ), this continuation
can escape the lifetime of its creator and become a first-class object.
(ANSI-C [ANSI-C88] also defines the operations setjmp  and
longjmp , which allow for the "capture" and application of a
continuation which is not first-class.)
If a system utilizes lazy allocation, then stack frames will remain on
the stack, so long as LIFO allocation/deallocation behavior is
observed.  If a continuation attempts to escape its creator's lifetime,
however, its stack frame will be evicted from the stack, which will

recursively cause all lower stack frames to also be evicted.14  An
implementation of a language which must deal with the possibility of a
stack frame suddenly being moved can be quite inefficient, because
virtually every access to the stack frame must check for the existence
of a forwarding pointer.  Functional stack frames—which may still
point to assignable local variables—can relax this restriction by

allowing copying without forwarding.15  We can thus obtain a
behavior analogous to that of many current implementations of
Scheme which copy the entire control stack to the heap when a
continuation is captured.  Of course, assignable local variables cannot
be copied, but must be relocated in order to retain their shared
semantics.
We do not contend that lazy allocation solves all problems in the high
performance implementation of Scheme continuations, and experience
may prove that Scheme continuations are better managed with more
specialized techniques.  Nevertheless, it is interesting that the generic
lazy allocation model faithfully captures the behavior of several
existing Scheme implementations, without requiring any special
handling.

I.  Function Results and the Result Expectation Optimization
As we have pointed out above, lazy allocation is not lazy when it
comes to result values.  This is because results must be returned "up"
the stack, usually by assigning them to a temporary value in the caller's
frame.  This is unfortunate, because the efficient handling of results is
as important as the efficient handling of arguments.  The efficient
allocation of results, however, is a difficult problem.

14Lower stacks frames will be evicted only if they have not already
been evicted; this solves the multiple stack copy problem mentioned in
[Hieb90].
15Stack frames in Scheme may have assignable slots even when no
side-effects are performed by the programmer; this behavior is a
result of the ability of Scheme continuations to be resumed many
different times.
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The first optimization for reducing result eviction we call result
expectation.  Since many functions are called "for side-effects" rather
than "for result value" in expression-oriented languages like Lisp, the
caller should notify the function of this expectation so that unneeded

function results can be thrown away instead of evicted.16  Other
functions are called for their result, but only 1 bit of result information
is actually used—whether the result matches a distinguished value
(nil  in the case of Lisp, 0 in the case of C).  In such cases, we need
preserve only the single bit of result information actually needed, to
avoid the eviction of large structures which are already mostly
garbage.
Another optimization for avoiding the heap-allocation of function
results is for the caller to allocate space for the result and pass this
space by reference; this technique, which we call "caller result
allocation", has been used since at least the early 1960's in Fortran,
Cobol and PL/I compilers.  Eviction upon callee return is avoided since
the callee no longer performs allocation.  While this technique is
widely used in programming language implementations, it depends
upon the ability of the caller to guess the correct size of the result, and
it forces the called routine to use side-effects to communicate its result
information.  When the size cannot be guessed—e.g., in the case of
some Ada unconstrained array results—this method fails, and heap-
allocation must be used.  Heap allocation, however, runs the risk of
"storage leakage" in non-garbage-collected language implementations
if an error or other non-local transfer of control fails to deallocate this
storage when the stack is contracted.
Another method for avoiding the heap-allocation of function results is
for the result to be allocated in the stack, but to redefine the caller's

stack frame to include this result before returning to the caller.17
This scheme is similar to caller result allocation, except that the caller
conceptually passes the entire "rest-of-the-stack" as the result
reference, which is then chopped back to its actual size before being
returned.  This scheme also works, and has been used in some Ada
compilers [Sherman80], but can waste arbitrary amounts of space on
the stack if the process is iterated.  Consider, for example, a recursive
program which allocates a result at the bottom of the recursion.  This
result, and all the intervening space, will become part of the caller's
stack frame, even though most of this space is no longer used.  Since
one knows the current extent of the stack, one could conceivably copy
the result back to "close up" the space, but if this process is iterated, a
quadratic explosion of copying could result [Dybvig88].  Therefore,
the non-lazy eviction of a result value to the heap just once can be
more efficient than trying too hard to keep the result on the stack.
Unlike previous schemes for redefining the stack frame [Sherman80],
we suggest that whether the object is relocated to the heap or kept as
part of the caller's stack frame should be the choice of the caller as
part of his result expectation.  In other words, the result expectation
code to be included in every function call consists of at least the

following two bits of information:18

ResultCode     Action
00 — don't return a result  (used for non-last position of "progn")
01 — nil/non-nil as result     (used for boolean position of "if")
10 — evict result if necessary  (normal lazy allocation operation)
11 — don't pop frame    (redefine caller's frame to include result)
The result expectation code inherited by a function from its caller is
used only when the function attempts to return a result (in Lisp, when it
executes a function in the "tail-call" position); the rest of the time, it
computes its own result expectation code (perhaps dependant upon the
caller's expectation code) when calling out to other functions.  By
propagating result expectation codes, the result consumer can inform
the result producer of its wishes regarding the allocation of this result.
A programmer or a compiler can therefore use result expectations to

16Result expectation is the run-time analogue of a classic compiler
optimization used in expression-oriented languages like Lisp.
17Although values are preserved on the stack, exited stack frames
are spliced out of the call-chain so that unwind-protect 's in
exited frames are not inadvertently executed.
18The MIT Lisp Machine function call instruction uses a similar
coding (without lazy allocation) for its "destination operand"
[Greenblatt74]; however, the callee does not utilize this information to
avoid allocating useless results!

avoid evictions when the amount of wasted space is calculated to be

within acceptable limits.19

J.  Extending Result Lifetimes and Multiple Return Values
There is another method for allocating function results on the stack
which will not cause immediate eviction.  This method depends upon a
source-to-source conversion of a program called "continuation-
passing-style conversion" (CPS conversion).  In converting to CPS, a
program is turned inside out so that returns and returned values, which
can be viewed as implicit calls to continuations, are converted into
explicit calls on explicit continuations with the values as arguments.
While the CPS form of a program will execute and produce the same
answer as the original program, its execution on a traditional stack
implementation will use considerably more stack space.  Since there
are no longer any returns, neither are there any stack pops, at least
until the very end of the program, and so the amount of stack used can
be substantial.
The conversion to CPS form has certain benefits, however.  Since the
stack is retained until the very end of the program, there is never any
possibility of dangling references for stack-allocated objects.
Therefore, the CPS form of the program can execute correctly even
when the original form of the program would have failed due to some
stack-allocated object leaving the scope of its creator.  In other words,
CPS style offers a "retention" rather than a "deletion" strategy for stack
frames [Fischer72].
The "continuation-passing style" of programming thus offers new
flexibility to the programmer who wishes to utilize stack-allocation
whenever possible.  If he calls a function with a stack-allocated
argument which could then become part of that function's returned
value, he is likely to get a dangling reference without lazy allocation,
or cause the eviction of a large structure with lazy allocation.
However, he can postpone the eviction for a while by calling that
function with an explicit continuation which will accept the "returned"
value and continue executing without popping the stack or causing any
evictions.
The most trivial example of all is the Lisp CONS function itself which
allocates a list cell.  If implemented as a true Lisp function in a system
using lazy allocation, the list cell would be allocated on the stack and
initialized with its "car" and "cdr" components.  As we have already
pointed out, however, returning a value typically causes its eviction
(and the eviction of its components).  Therefore, although CONS tries
to be lazy, the effect of returning the newly allocated object causes its
eviction to the heap, so our CONS isn't lazy after all!  If we call this
CONS with an explicit continuation, however, within which the newly
allocated list cell is manipulated in a normal fashion, then the cell is not
immediately evicted, and remains lazy.

Below is such an implementation of a lazy CONS in C.20
void lazy_cons(x,y,cont)
  int x; list y; void cont(list);
  {struct {int car; list cdr;} z;    /* The cons cell. */
   z.car=x; z.cdr=y; /* Initialize the lazy cons cell. */
   cont(&z);}          /* Give cont ptr. to cons cell. */

The use of continuation-passing-style allows the programmer himself
to choose whether allocation will be lazy or not.  In this way, he can
use his greater knowledge of the program behavior to avoid
unnecessary evictions, but also avoid the creation of large amounts of
garbage in the stack.
Continuation-passing style has yet another benefit.  Unlike normal
nested function-application notation, continuation-passing style can
deal with multiple returned values.  For example, a Euclidean division
algorithm "function" can return both a quotient and a remainder.  In
such a case, the "continuation" function must utilize more than one
parameter in order to receive all of the results.  Common Lisp also
provides a number of forms to handle "multiple values", but does not
utilize continuation-passing style for their implementation.  Common
Lisp multiple values are not strictly necessary, as all of the benefits of
multiple values can be achieved through the composing of multiple
values into a Lisp structure which can then be decomposed by the user
of the function.  In order to save the time and garbage collection
required to compose and decompose these structures, however,

19The "continuation-passing style" (CPS) of programming, as
discussed in the next section, can achieve the same allocation behavior
as result expectation, but with greater overhead.  Furthermore, one
cannot use CPS on code for which one does not have the source—e.g.,
library code—so result expectation is to be preferred.
20Due to the lack of full function closures in C, we would have
trouble actually using this CONS in any serious way.
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Common Lisp uses a special mechanism to provide multiple values.
We show that the benefits (including stack allocation) of Common
Lisp's multiple-value mechanism can be simulated through a new first-

class "multiple-value" structure type together with lazy allocation.21
(defstruct multiple-value
  (values nil :read-only t))

(defun values (&rest args)
  (make-multiple-value :values args))
(defun multiple-value-call (fn &rest args)
  (apply fn
         (mapcan
           #'(lambda (arg)
               (if (multiple-value-p arg)
                 (multiple-value-values arg)
                 (list arg)))
           args)))

To provide the programmer with the retention benefits of CPS without
the requirement of turning his source code inside-out, we define the
CONTCALL special form.  The semantics of CONTCALL can be
defined as follows:

(defun contcall (continuation fn &rest args)
  (multiple-value-call continuation (apply fn args)))

In other words, CONTCALL applies the function to the arguments, and
than applies the "continuation" function to this result.  The
implementation of CONTCALL is special, however.  Whereas the
stack would normally have been contracted after the execution of
(apply fn args) , it is not, so that the result(s) of this application
is (are) left on the stack for the application of continuation .
Using C O N T C A L L, we can then define Common Lisp's
MULTIPLE-VALUE-BIND  special form, whose purpose appears to
be the extraction of multiple values from a function call without
causing any extraneous heap allocation.

(defmacro multiple-value-bind
          (vars (fn . args) &body body)
  `(contcall #'(lambda ,vars ,@body) ,fn ,@args))

Of course, once we have lazy allocation and CONTCALL, we no
longer need to clutter up the Lisp language with "multiple values",
since the "non-consing" benefits can already be achieved without
multiple values.  CONTCALL can also be used for a definition of a
LET which extends the stack so that the variables are bound to stack-
allocated values.  Such a stack-extending LET is usually the intention
of the programmer; this is the motivation for proposals for a
"dynamic-let " [Queinnec88], but without causing failure if the
values escape the scope of the allocation.

(defmacro dlet ((var (fn . args)) &body body)
  `(contcall #'(lambda (,var &rest ignore) ,@body)
             ,fn ,@args))

Below, we show how to program a complex division routine which
allocates all intermediate results on the stack.

(defun cdiv (z1 z2)
  (dlet ((z2bar (conjugate z2)))
   (dlet ((z2norm (ctimes z2 z2bar)))
    (dlet ((z1z2bar (ctimes z1 z2bar)))
     (dlet ((rz2norm (realpart z2norm)))
      (complex (/ (realpart z1z2bar) rz2norm)
               (/ (imagpart z1z2bar) rz2norm)))))))

Using continuation-passing style to extend the life of stack-allocated
objects can be used for more substantial applications.  For example,
the storage needed for the intermediate results in a chain of matrix
multiplications can be allocated in this fashion, so that only the final
product matrix becomes a first-class heap object.

K.  "Functional" Data Structures
So far, our lazy allocation model has utilized strict "relocation"
semantics in order to preserve the "object identity" of allocated
objects.  In this semantics, there is only one "true" location for each
object, but this location can sometimes change.  For "functional" data
structures—data structures which cannot be side-effected—we can
relax the strict "relocation" semantics and utilize "copying" semantics.
This is because the behavior of a functional data structure is
determined by the values of its components, and since they cannot be
changed, a copy of the data structure having the same components will
have the same behavior.  (A more thorough treatment of object
identity for functional objects can be found in a companion paper
[Baker93].)

21This multiple-value structure should be functional [Baker93] to
achieve the maximum benefits of lazy allocation.

Copying semantics for functional objects can have some benefits in
our lazy allocation model.  When a functional object is copied, one
need not necessarily leave a forwarding address, since the original is
as good as the copy.  Since forwarding addresses must be detected and
followed during execution, the cost of detection and following may be
more than the costs of copying.  At the hardware level, the installation
of forwarding pointers also causes a cache write-back, which adds
additional load to the memory system.  Thus, for small or unshared
functional objects the cost of copying is less than the cost of storing,
checking and following forwarding pointers.
Copying semantics can be exponentially less efficient than relocation
semantics if substantial substructure sharing occurs, however.  A
simple linear Lisp list of length n in which the CAR of each list cell is
assigned to be the same as its CDR has been called a "blam list"
[McCarthy65] because it explodes into a structure of 2n list cells when
it is functionally copied.  The only exponential blowup of this type we
have observed occurs in Macsyma's representation of the determinant

of an nxn  matrix in O(n3) cells; this structure expands into an
expression with O(n!) terms.  On the other hand, the extended size of
a functional data structure is constant and can be computed
incrementally as it is constructed.  The information needed to make a
copy/no-copy decision can therefore be gathered cheaply at run-time.
There are a number of "functional" structures even in imperative
languages.  Argument lists and functional arguments are usually side-
effect free.  In some languages, character strings cannot be modified
by side-effects.  ANSI C offers the const  qualifier.  Scheme
continuation structures, being similar to functional arguments, are side-
effect free, although they may have pointers to non-functional objects.
The various kinds of numbers in Common Lisp are functional—even
large objects like infinite precision integers and structured objects like
complex floating point numbers.  The "multiple values" structures
returned from Common Lisp function calls are also functional, even
though they are not first-class Common Lisp objects.
The functionality of these objects—at least their top level structures—
accounts for many of the other variations on lazy allocation.  Thus,
while MacLisp used lazy allocation for integers and floating point
numbers [Steele77], it did not have to leave or check for forwarding
addresses because these numeric objects were functional.  Similarly,
lazy allocation implementations of functional arguments and
continuations do not bother to leave or check for forwarding addresses
because there is very little potential sharing, and evictions happen very
rarely, so copying is not a problem.
Due to Common Lisp's insistence upon the use of true Lisp lists for
&REST arguments, however, one cannot legally use copying
semantics for these objects, because Common Lisp list cells can be
side-effected.  As a result, the lazy allocation of &REST arguments is
less efficient than if &REST arguments were based on a functional
sequence structure instead of non-functional list cells.  Scheme's
requirement that &REST lists be always copied is just as bad, because
the majority of such lists are functional and could otherwise be shared
and thereby avoid a quadratic explosion of copying in deeply nested
recursions [Dybvig87].

6.  Future Work — An Incremental Model
The model as described above is not particularly incremental, because
a transporter trap in a deeply nested stack frame could cause an
unbounded number of objects to be copied before returning to the
execution of the program.  One can view the copying effort involved
in eviction as the effort which was deferred by lazy allocation, and has
suddenly come due.  While this effort might still be less than the
amount of effort saved by using lazy allocation, it is time that is not
easily interrupted, and can therefore cause problems in a real-time
system.
A more incremental system would evict objects from a stack frame
just before it is popped, and would evict only the "top level" of those
objects.  Unfortunately, this sort of a system leads to great
complications.  In such a system, a stack frame must now be scanned
before popping, in order to evict any remaining objects.  However,
unlike the non-incremental scheme where we could inductively prove
that no pointers to the stack frame exist at the time of popping, the
incremental scheme has no such property.  If there are live objects
remaining in the stack frame, then ipso facto there must be live
pointers.  Unfortunately, we do not know where those pointers are, so
we cannot update them when the objects are moved out of the stack
frame.
The only solution is to follow a technique invented by Bishop
[Bishop77] and used by Lieberman and Hewitt [Lieberman83].  We
use a separate entry table to keep track of those pointers which violate
a stack's well-ordering.  This entry table initially starts out empty, but
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when a stack frame is cleared of live objects, some of these objects
may continue to point into other stack frames.  These pointers are
routed indirectly through the entry table.  When the next stack frame is
to be cleared, the entry table is searched for objects entering the stack
frame, and those objects are then relocated.  In this way, we can
incrementalize the eviction process.
Our incremental scheme is nearly equivalent to Lieberman and
Hewitt's generational garbage collection, in which the global heap and
each stack frame are separate generations.  Unlike Lieberman and
Hewitt, however, who would move a result object through every
intermediate generation, we move such objects directly to the oldest
generation—the global heap—in order to avoid a quadratic explosion
in copying effort [Dybvig88].  Our policy is similar to Ungar's tenuring
policy [Ungar84], which also avoids the copying of long-lived objects
through the intermediate generations.  The address ordering relation,
the relocation process and the manipulation of the entry tables in our
scheme are all identical to that of Lieberman and Hewitt, however.

7.  Conclusions and Previous Work
We have shown how a general model called lazy allocation can simply
and elegantly explain many traditional programming language
optimizations aimed at increasing the fraction of storage allocations
that can be performed on a stack.  Lazy allocation requires the ability
to deal with objects which can be suddenly moved, but once this cost
has been paid, lazy allocation can result in great simplifications in
other parts of a language implementation.  Lazy allocation puts most of
its overhead burden on assignments, which makes it attractive for the
"mostly functional" programming styles of modern expression-oriented
languages.  Lazy allocation also has benefits in shared-memory multi-
processor environments where the potential bottleneck of a global
allocator is shielded by lazy stack allocation from the bulk of the
allocation load.
We have also described a new run-time technique called result
expectation, which informs called functions of what results are
expected and where they should be put, so that unexpected results
need not be heap-allocated.  While interesting in its own right, result
expectation works with lazy allocation to reduce the number of
evictions of function results from functions called for their effect
rather than for their result.
The concept of lazy allocation is the result of 10 years of pondering
the possibility of "backing up"—under certain circumstances—the
allocation pointer of the author's real-time garbage collection
algorithm [Baker78a], in order to improve its amortized performance.
The single-bit reference count [Wise77] for stack-allocated objects
can be subsumed by address ordering, yielding the current concept of
lazy allocation.
Due to the ubiquity of the problem, the literature on stack-allocating
various kinds of objects is so large that we can reference only a small
fraction.  The stack allocation of variable binding environments
encompasses the Algol-60 display [Randell64], Lisp's binding
environments [Greenblatt74], Lisp's shallow binding [Baker78b], Lisp's
cactus stacks [Bobrow73].  The stack allocation of functional objects
like numbers is discussed in [Steele77] and [Brooks82].  "Dynamic
extent objects" [Queinnec88] have been proposed as part of the
Eu_Lisp standard.  Our lazy allocation completely subsumes dynamic
extent objects, and our trapping for the purpose of eviction is no more
expensive than trapping to determine lifetime errors.
The deletion (stack-allocation) versus retention (heap-allocation)
implementation strategies for Algol-like compiled languages has been
studied by [Berry71] [Fischer72] [Berry78a] [Berry78b] [Berry78c].
[Blair85] describes an optimistic stack-heap, which is approximately
our lazy allocation applied to stack frames; unlike our lazy allocation,
however, the optimistic stack-heap is not used for user-allocated data.
In other words, these models do not separate the issues of language
implementation (frames) from storage allocation (stack allocation).
The stack allocation of functional arguments has been studied by
[Johnston71], [Steele78], [McDermott80] and many others.  Johnston
[Johnston71] is said to have used the term lazy contour which is a close
approximation to our lazily allocated stack frame.
The stack allocation of continuations has been studied by Steele
[Steele78], Stallman [Stallman80], Bartley [Bartley86], Clinger
[Clinger88], Danvy [Danvy87], Deutsch and Schiffman [Deutsch84],
Dybvig [Dybvig87], Kranz [Kranz86] [Kranz88], [Moss87], [Hieb90]
and many others.  The straight-forward application of lazy stack
allocation to Dybvig's heap model [Dybvig87] yields a large fraction
of the optimizations he performs by hand; the lazy allocation of
continuations also avoids the multiple stack copies mentioned in
[Hieb90].  Deutsch and Schiffman use the term volatile for lazy stack
frames, and stable for evicted stack frames.

Dybvig [Dybvig88] is apparently the first to have pointed out in print
that the consistent copying of a large argument to successive levels of
recursion can convert a linear algorithm into a quadratic one.
The concept of lazy allocation was almost discoved by Lieberman and
Hewitt [Lieberman83], since they had all of the necessary machinery.
However, the additional concept of "genetic order" [Terashima78]
was missing.  McDermott discovered a form of lazy allocation
[McDermott80] for implementing the variable-binding environments
used in a lexically-scoped Lisp interpreter, and he also indicated its
possible use for managing Scheme continuations.  [Morrison82] is
simply lazy allocation applied to the consing performed in [Baker78b]!
[Mellender89] implements Smalltalk with a scheme based on the same
concepts as "lazy allocation", but with substantially greater complexity.
Tucker Taft [Kownacki87] [Taft91] independently developed for the
Ada-9X language the idea of a run-time "scope check", with a user-
defined copy-to-heap if required; this excellent proposal was
unfortunately later withdrawn.
Stallman's phantom stacks [Stallman80], which were invented to
implement Scheme on the MIT Scheme Chip [Steele79], are an
interesting alternative to solving the same kinds of stack allocation
problems as lazy allocation.  In phantom stacks, objects are stack-
allocated in the same manner as in lazy allocation.  The difference
between the two models comes when LIFO order is violated.  In lazy
allocation, we evict objects from the stack to the heap, while in
phantom stacks, a new stack is initiated, the old stack is abandoned, in
place, where it becomes a passive set of objects in the heap.  Thus,
lazy allocation and phantom stacks are duals of one another: lazy
allocation moves objects from the stack, while phantom stacks moves
the stack from the objects.  [Hieb90] rediscovered phantom stacks and
gives an analysis which is more appropriate for the execution of
Scheme on a modern RISC processor.
Both Prolog [Warren83] and Forth [Moore80] make more extensive
use of stacks than do traditional Lisp implementations, and gain
substantially in elegance and speed as a result.
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