
Error Diagnosis in Sequential Multi-Valued Logic NetworksRolf Drechsler Alenka �Zu�zekInstitute of Computer Science Computer Systems DepartmentAlbert-Ludwigs-University Jo�zef Stefan Institute79110 Freiburg im Breisgau, Germany Jamova 39, 1111 Ljubljana, Sloveniaemail: drechsle@informatik.uni-freiburg.de email: alenka.zuzek@ijs.siAbstractIn this paper we present a model for diagnosisof errors in Sequential Multi-Valued Logic Networks(SMVLN). The method allows not only to detect er-rors in an implementation, but also identi�es the faultlocation. In contrast to many previously presented ap-proaches this model does not consider a speci�c im-plementation. Instead the model assumes tests basedon the transition behavior of the corresponding MVLFinite State Machine (FSM) on the functional level.We present a method for constructing a minimalcost test based on AND/OR graphs using tests withMV outcomes. The model enables encoding over two-valued circuits as well as consideration of SMVLNs.The new approach provides e�cient solution even forlarge MVL FSMs with up to 50000 states. Experimen-tal results for randomly generated FSMs are given thatdemonstrate the e�ciency of our approach.1 IntroductionSeveral circuit design methods for Multi-ValuedLogic (MVL) have been proposed in the past fewyears [3, 6]. These new approaches raise hope in solv-ing problems such as pin limitations and interconnec-tion di�culties in VLSI design. But beside the syn-thesis step several tools are needed for supporting thedesigner. Nowadays, circuit design is becoming moreand more complex. Thus, the error probability alsoincreases. Since time-to-market aspects are increas-ingly important it is desirable to detect errors as earlyas possible, since this reduces the production costs.For this, several veri�cation approaches have been sug-gested (see e.g. [9]). Recently, also �rst methods forMVL Networks (MVLNs) have been discussed [4]. Fur-thermore, it is desirable to not only detect an error,but also to diagnose it, i.e. nowadays VLSI CAD toolsshould support features for error detection and correc-tion.Diagnostic algorithms presented for Boolean net-works so far work mainly on the gate level and thusthe result is �xed to one speci�c design (see e.g. [12]).These approaches have the drawback that for each im-plementation of the function the error diagnosis has tobe performed again, e.g. after resynthesis.In this paper we consider Sequential MVLNs(SMVLN), i.e. MVLNs with memory elements, on ahigher level of abstraction. We model a SMVLN as aFinite State Machine (FSM) and describe the behav-ior by transition relations. Only few approaches fordiagnosis for sequential circuits have been proposed so

far, but the algorithms work on the gate level descrip-tion (see [5]). In contrast, we consider the problem ofdiagnosing faults on the functional level.Recently, a new diagnosis model has been intro-duced in [5] that allows to model binary sequentialcircuits as FSM purely on the functional level. In thispaper we show that this model can be extended toMVL: Given a FSM description of a SMVLN we as-sume with a given probability that the system is \inerror", i.e. the FSM is currently in a wrong state. (No-tice that the approach can be applied to the reset state,but also to each state during normal operation.) Byapplying test vectors it can be checked whether thisassumption was correct. If a faulty state is identi�edit is not only determined that a fault occurred, alsothe faulty transition is identi�ed. The test vectors canbe derived analogously to some classical approaches totest pattern generation for sequential circuits [2].Obviously, a critical point for the model is the con-struction of a \cheap" test, i.e. a test of minimallength. Due to the probablistic assumption we oftenhave to check several di�erent states. Thus, it is desir-able to have a test sequence that checks the more likelyfaults �rst. We give an algorithm for identifying a testsequence of minimal length based on AND/OR graphswith MV outcomes. AND/OR graphs are mainly usedin the area of arti�cial intelligence, but have recentlybeen proposed for CAD problems [8]. In our approachwe do not only use the underlying structure, but alsomake use of the e�cient search algorithms known fromarti�cial intelligence (see e.g. [7, 11]).Thus, algorithms developed for sequential diagnosison the system level [1] can be applied in the model de-scribed here. We give experimental results to demon-strate the e�ciency of our approach. We randomlygenerate FSMs and determine a minimal test with re-spect to our model. In contrast to the two-valuedapproach, where FSMs with only 1000 states couldbe handled, our multi-valued approach can work withFSMs with up to 50000 states.2 Sequential MVL NetworksIn this section we introduce sequential multi-valuedlogic networks.We start with the combinational case: In general, aMulti-Valued Logic Network (MVLN) can be modeledas a directed acyclic graph C = (V;E) with some ad-ditional properties: Each vertex v 2 V is labeled withthe name of a basic cell or with the name of a PrimaryInput (PI) or Primary Output (PO). The collection of



basic cells available is given by a �xed library. Thislibrary contains MIN-, MAX-1, INV- and LITERAL-gates. Of course, basic cells with arbitrary complex-ity, especially with an arbitrary number of inputs, arepossible. There is an edge (u; v) in E from vertex uto v, i� an output pin of the cell associated to u isconnected to an input pin of the cell associated to v.This means that edges contain additional informationto specify the pins of the source and sink node theyare connected to. Vertices have exactly one incomingedge per input pin. Nodes labeled as PI (PO) have noincoming (outcoming) edges.To simulate the circuit, each PI may assume valuesfrom a given totally ordered �nite set P = f0; : : : ; k�1g where k denotes the number of elements of the logic.The complement (INV-gate) of a signal x is de�ned asx = (k� 1)�x. A LITERAL-gate (a; b) (a; b 2 P; 0 �a � b < k) has one input and one output2. For a giveninput x the behavior of such a gate is de�ned by:f(x) = n k � 1 : a � x � b0 : otherwiseIt can then be proven that the set of gates de�nedabove is functionally complete [10].In a second step, we add memory elements that al-low the storage of values from P . The correspond-ing inputs and outputs of these elements are de-noted as Secondary Inputs (SIs) and Secondary Out-puts (SOs) of the circuit. By adding these elementsto the MVLNs as de�ned above we obtain SequentialMVLNs (SMVLNs). The resulting behavior can easilybe modeled as a multi-valued FSM (analogously to thebinary case).We briey review the main notations, that are im-portant for the understanding in the following:De�nition 1 A �nite state machine M is de�ned asa quintuple M = (I; O; S; �; �), where I is the inputset, O is the output set and S is the set of states, � :S�I ! S is the next state function, and � : S�I ! Ois the output function.Since we consider a gate level realization of theFSM, we have I = Pn, O = P l and S = Pm. ndenotes the number of primary inputs, l denotes thenumber of primary outputs andm denotes the numberof memory elements. The functions � and � are com-puted by a MVLN. We use the standard identi�cationof SMVLNs and FSMs in the following, i.e. � describesthe next state behavior and � gives the output values.In the following we do not distinguish between aSMVLN and its corresponding FSM.3 Diagnostic ModelIn this section we describe the diagnostic model tohandle SMVLN. The model is generalization of themodel recently introduced in [5] for two-valued cir-cuits. (Notice that the generalization is not trivialand the use of MVL allows the handling of much largerproblem instances.) To simplify the understanding we�rst briey describe the main idea:1In the binary case Min- and MAX-gates correspond to AND-and OR-gates, respectively.2These LITERAL-gates are also called window literals.

In normal operation the SMVLN should be initial-ized (by a reset signal or a reset sequence). Then start-ing from the initial state s0 dependent on the inputsof the circuit the FSM goes to di�erent states.If everything is operating correctly so far lets as-sume that the system is in state si after e steps. Wenow assume with some probability that the systemmight be in a di�erent state, say sj . For one givenstate si and one state sj it is easy to compute a se-quence of input assignments such that the correctnessis veri�ed evaluating test outcomes.In the following we do not only consider one state sj .Instead we consider a set of states sl (l 2 f0; : : : ;mg)that are the present state in the case of an error. Foreach state there exist tests that check whether thisfault might be possible. Furthermore, for each statea di�erent probability might be considered since de-pending on the correct state other parts in the FSMmay be e�ected, e.g. as a result of state encoding.Beside the de�nition of the model we want to con-sider in the following the problem of �nding an optimaltest sequence, i.e. for all assumed errors the cheap-est (=shortest) test sequence should be obtained thatuniquely identi�es a faulty state. In the rest of thissection we de�ne our model more formally.3.1 Model De�nitionLet M = (I; O; S; �; �) be a FSM as de�ned above.(Notice that the FSM can be considered over Booleanvalues or multiple values.) Similarly to the basic modelfrom [5] we have:� The set of states S = fs0; s1; ::; smg, where sjdenotes the fault-free state and si (0 � i � m)denotes one of m potential faulty states of thesystem; p = fp0; ::; pmg is the set of a priori prob-abilities of the system being in state si. T =ft1; ::; tng is a �nite set of available test vectorsand c = fc1; ::; cng is the set of test costs measuredin terms of length of the test e.g. determined bya test pattern generator.The model for the general FSM is extended by:� The set of possible outcomes of all tests T isR = fr1; ::; rLg. (If the outcomes are used as anencoding over k-value logic, the maximal numberof di�erent outcomes is kl, where l is the numberof outputs.) The test matrix is D = [dij ], wheredij is the outcome from set R of test tj if theFSM is in the state si. (It is possible to extendthe model to include test unreliabilities [1], thatcan interpret Don't Cares.)Based on these de�nitions the identi�cation of an e�-cient test can be formulated as follows:Find a test sequence of minimal average cost that isable to isolate each state using the test set T .A test sequence that unambiguously identi�es eachstate exists i� no two rows of the test matrix are iden-tical and furthermore the number of tests (in the caseof L-ary tests) is n > logL(m+ 1).



4 Construction of Optimal Test byAND/OR GraphsIn this section we give an algorithm for the solutionof the test sequencing problem described above basedon MV AND/OR graphs. For the exact and heuristicsolution we use algorithms from arti�cial intelligence.The algorithms have been implemented for MVAND/OR graphs in a sequential diagnosis system fordiagnosis on the system level (see also [1]). The usercan choose among di�erent algorithms that computethe diagnostic decision trees. These algorithms requiredi�erent amounts of time and space and provide dif-ferent solution quality.It is well known that the construction of the opti-mal decision tree is an NP-hard problem, therefore forlarge SMVLNs it is necessary to explore heuristic ap-proaches for guiding the AND/OR graph search. Theexisting solution approaches can mainly be categorizedinto two di�erent groups:Heuristic algorithms: A class of sub-optimal algo-rithms provides a trade-o� between optimality andcomputational complexity. They perform a local step-by-step optimization using problem-domain knowl-edge. The diagnostic tool described in this paper o�erstwo such algorithms: separation heuristic and infor-mation heuristic [7].Exact algorithms: Also the exact approaches useproblem-domain knowledge in the form of a Heuris-tic Evaluation Function (HEF), to avoid enumeratingthe entire set of potential solution trees. The HEFis an easily computable heuristic estimate h(x) of theoptimal cost-to-go, from any node of ambiguity subsetto the goal nodes of zero ambiguity.The implementation of the optimal AND/OR graphsearch techniques in [1] corresponds to algorithm AO�[11] with extension of multi-outcome tests. The algo-rithm AO� is an ordered best-�rst search algorithm;it expands only the node of the search graph thato�ers the most promising way on the basis of twoheuristics: (i) Hu�man code-based heuristics (HEF1)and (ii) entropy-based heuristics (HEF2). Using these,AO� is guaranteed to �nd an optimal solution. (Fordetalis see [11].) Experiments for randomly generatedFSM in [5] showed that HEF2 is poor in comparison toHEF1. The latter requires fewer nodes and backtracksto compute the optimal diagnostic tree. For this, werestrict ourselves to HEF1 for our experimental studiesin the following.The resulting test sequence can be described by aMV AND/OR decision tree, with OR nodes containingcurrent candidate system states, and by AND nodesdenoting tests for partitioning the set of candidate sys-tem states. The leaves correspond to the individualfailure state with no ambiguity, and the average lengthof the tree represents the expected test cost.Before we have a closer look at larger examples weexplain the MV AND/OR graph construction for asmall SMVLN in detail:Example 1 We consider a randomly generated FSMover 8-valued logic P = f0; ::; 7g. We assume a set ofeight states. A set of �ve tests is available for checkingthe FSM. For simplicity all test lengths equal one and

System Tests Probabilitiesstates t1 t2 t3 t4 t5 pis0 0 0 0 0 0 0:343s1 5 1 2 7 2 0:088s2 0 7 5 3 6 0:071s3 1 6 4 4 2 0:095s4 2 0 5 7 1 0:105s5 6 2 7 1 7 0:119s6 3 2 7 1 5 0:084s7 0 6 0 7 6 0:095Table 1: Test matrix and fault probabilitiesthe output set O = P 1. Thus, we have eight di�erentoutcome for given tests. The a priori probabilities ofthe FSM being in one of the states along with thetest matrix is given in Table 1. In the test matrix ofdimension 8�5 each test is represented by an outcomecolumn vector. E.g. test t5 will have outcome 6 if thesystem is in the state s2 or s6.The optimal solution for the problem from Table1 is obtained by applying the algorithm AO� usingHEF1. The resulting minimal length J� is given by:J� = [p3 + p1] � (c5 + c1) + [p7 + p2] � (c5 + c2) + [p0 +p4 + p6 + p5] � c5 = 1:349.When the diagnostic tree is used, �rst test t5 isapplied. If the result is 1, the system is in s4.
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Figure 1: Optimal diagnostic tree for Example 15 Experimental ResultsIn this section we present experimental results forrandomly generated FSMs. Similar as in [5], the testproblems were generated using a uniform distribution.For simplicity all tests have cost one. (A di�erentchoice of these values gives similar results.) For allexamples the number of tests was chosen around 4�the minimal number of tests required (see Section 3.1).All experiments have been carried out on an HP 9000-J210 workstation with CPU PA-7200 and 160 MByteof main memory. (All runtimes are given in CPU sec-onds, minutes and hours.)In [5] the experiments showed that exact algorithmsusing Boolean values can be reasonably applied onlyfor small examples up to 100 states. We showed thatthe number of backtracks along with the number ofgenerated nodes measures the quality of heuristic eval-uation function used by the exact algorithms. The ex-periments reected that (HEF2) is poor in comparisonto (HEF1). Using heuristic algorithms we were able toconsider FSMs with up to 1000 states.In the following we study the behavior of the heuris-tic algorithm and exact algorithm, with respect to run-time and space complexity.



States Out- Algo- Nodes Back- Cost CPUcomes rithm gen. tracks time100 16 HEF1 124 220 2:14 0:4PQ 136 0 2:38 0:1250 16 HEF1 616 84 2:4423 2:9PQ 358 0 2:7735 0:5500 16 HEF1 1025 297 2:4520 9:1PQ 697 0 2:7380 1:0750 16 HEF1 2057 112 2:8966 15:5PQ 1115 0 3:2705 1:91000 32 HEF1 2400 1144 2:4921 21:4PQ 1351 0 2:7314 3:62500 32 HEF1 7090 225 2:8698 1 : 48:1PQ 3585 0 3:1517 13:15000 32 HEF1 12791 512 2:9812 4 : 47:9PQ 6971 0 3:3819 25:67500 32 HEF1 32546 2938 3:0090 16 : 39:1PQ 10119 0 3:4385 40:410000 64 HEF1 30877 512 2:8787 20 : 57:2PQ 13831 0 3:0752 1 : 54:915000 64 HEF1 41330 513 2:9574 31 : 57:4PQ 20384 0 3:1929 2 : 58:420000 64 HEF1 52784 577 2:9838 1 : 03 : 00:3PQ 26717 0 3:2704 4 : 51:625000 64 HEF1 55775 549 2:9838 1 : 16 : 23:5PQ 32476 0 3:2824 5 : 00:430000 64 HEF1 � � � �PQ 38749 0 3:3317 6 : 43:940000 64 HEF1 � � � �PQ 50478 0 3:3480 11 : 10:350000 64 HEF1 � � � �PQ 63313 0 3:4004 21 : 13:7Table 2: Performance of exact and heuristic algorithmThe results are shown in Table 2. A \-" symbol-izes that the algorithm run out of space computingthe complete diagnostic tree. We applied two di�erentsearch algorithms presented in the previous section foreach example. PQ and HEF1 denote the information-heuristic algorithm and AO� with Hu�man code-basedheuristics, respectively. The second column shows themaximal number of di�erent outcomes of tests. Thefourth column displays the number of nodes generatedby the search algorithms. This directly reects thespace requirements of the two methods. As can beseen the heuristic algorithm uses around a factor oftwo less memory. Therefore it was possible to applythe heuristic method for FSMs with up to 50000 statesfor chosen number of outcomes, while AO� with HEF1run out of space for FSMs larger than 25000 states.The number of backtracks is given in the next col-umn. The process of backtracking is performed onlyby exact algorithms and the consequences is also re-ected in runtimes given in the last column. Note thatthe heuristic method took much less time to computea solution. But the di�erence measured in the qualityof the result of both methods is evident: The aver-age cost of diagnostic tree computed by heuristic al-gorithm exceeded the outcome of the optimal averagecost obtained by exact algorithms up to 15%. (Thedi�erence even increases if the examples are generatedwith larger number of tests.)
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