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Abstract

Many high-level language compilers generate C code and
then invoke a C compiler for code generation. To date, most
of these compilers link the resulting code against a conserva-
tive mark-sweep garbage collector in order to reclaim unused
memory. We introduce a new collector, MCC, based on an
extension of mostly-copying collection.

We analyze the various design decisions made in MCC
and provide a performance comparison to the most widely
used conservative mark-sweep collector (the Boehm-Demers-
Weiser collector). Our results show that a good mostly-
copying collector can outperform a mature highly-optimized
mark-sweep collector when physical memory is large relative
to the live data. A surprising result of our analysis is that
cache behavior can have a greater impact on overall perfor-
mance than either collector time, or allocation code.

1 Overview

For almost any language, there are a handful of compilers
that generate C [1] as a target language. For instance, Java-
to-C compilers include Toba [20], Vortex [11], and Harissa [18];
and ML-to-C compilers include Bigloo [22], SML2C [27], and
TIL/C [28]. The developers of these compilers chose C as a
target language to leverage the optimizations of existing C
compilers and to obtain a relatively portable, easy-to-build
back-end.

However, Java, ML, and many other languages require
garbage collection which C does not directly provide. Be-
cause of the difficulties of combining C with accurate garbage
collection, all of the systems mentioned above (except SML2C)
are designed to work with a conservative garbage collec-
tor, and in fact, use the Boehm-Demers-Weiser, mark-sweep
conservative collector (BDW). BDW is conservative because
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it “guesses” which values are pointers without any annota-
tions. In other respects BDW is similar to a highly tuned,
accurate mark-sweep collector: it potentially suffers the same
fragmentation problems; and relative to copying collectors,
requires more instructions for allocation.

An alternative to conservative mark-sweep, first proposed
by Bartlett [5] and ideally suited to compilers from type
safe languages to C, is mostly-copying collection. Mostly-
copying collection requires that most objects be typed (an-
notated to distinguish pointers from other values) in order to
be effective. Under this assumption, mostly-copying collec-
tion can share the same characteristics as accurate copying
collection: fast allocation and compaction. Mostly-copying
also suffers from the main disadvantage of copying collection

greater space requirements.

In our work with the TIL/C SML-to-C compiler, mostly-
copying collection seemed promising because we have type
information for almost all objects in the heap, and it is
widely thought that copying collection is the right strategy
for ML!. In particular, ML programs tend to allocate a lot
of short-lived data and so fast allocation seemed relatively
important.

Our collector, MCC, extends Bartlett’s original algo-
rithm by allowing typed and untyped objects to coexist in
the heap, and by making only one traversal of the live data.
MCC aims to make allocation fast and achieve good collector
performance, without sacrificing the benefits of compiling to
C.

To evaluate MCC, we measured the performance of eight
small to medium sized ML benchmarks run with both BDW
and MCC. To isolate as many variables as possible, we used
a non-generational version of MCC with a simple collec-
tion policy — collect whenever the heap becomes two-thirds
full. The data show that when given enough space, MCC
collection times are significantly faster than for BDW. Sur-
prisingly, MCC gives only slightly better overall (client +
collector) performance. We assumed that client times for
MCC would always be faster than for BDW, because the
MCC allocation sequence requires fewer instructions, and
fewer load/store instructions. To our surprise, we found that
in many cases, the client was actually slowed under MCC
due to a loss of spatial locality. Contrary to our initial be-
lief, a fast allocation sequence was relatively unimportant
for overall performance.

The main results of this paper are:

!For instance, both SML/NJ [2] and O’Caml [19], two widely-used
ML compilers, use variants of copying collection for at least the most
recently allocated data.



e A new one-pass mostly-copying collector, MCC, that
allows for untyped objects to co-exist in the heap and
to be collected. Previous algorithms have either been
two-pass or have treated untyped objects as residing
outside the heap.

e An analysis of the design decisions made in MCC and
their impact on overall collector performance.

e A comparison between BDW and MCC in the context
of an ML-to-C compiler.

This paper requires familiarity with many garbage collec-
tion concepts that for the sake of brevity have been omitted.
The reader requiring more clarification is referred to Wil-
son’s survey on garbage collection techniques [31] or Richard
Jones’ text [16].

2 Conservative Collection

Conservative garbage collection is the extension of accurate
garbage collection to environments where partial or no type
information is available. In particular, a conservative collec-
tor is not told which values are pointers for some subset of
the heap. We refer to objects without pointer information
as untyped objects.

To discover the live graph, the collector must conserva-
tively determine which values in untyped objects represent
pointers. To make this feasible, conservative collectors re-
quire that programs maintain at least one pointer to every
live object. In particular, programs that hide or manufac-
ture pointers are not supported. We call a value that is
inferred, but not known, to be a pointer a quasi-pointer
(sometimes referred to as an ambiguous pointer [6]).

Misidentification of values as quasi-pointers artificially
increases the size of the live graph, and limits the effec-
tiveness of the collector. Of course correctly distinguishing
pointers from other values is not always possible, and for
some large, long running programs pointer misidentification
may be a significant problem [14]. However, for most pro-
grams it is possible to detect quasi-pointers with great ac-
curacy (usually less than 10% misidentification) and speed
(30 instructions) [16]. This is possible because of architec-
tural constraints that force pointers to be multiples of the
word-size and to reside in specific address ranges [10, 9].

Conservative collectors have traditionally been limited
to collection algorithms that do not update values in the
client’s data. Since quasi-pointers are not known to be
pointers, altering a quasi-pointer to point to a new location,
as would be necessary in copying collection, could change
the client’s behavior. For this reason, most work on conser-
vative collection has focused on mark-sweep algorithms.

However in certain settings much type information is
available. This is typically the case when safe language com-
pilers produce C code. The compiler has exact information
for all objects in the heap, but does not control the stack
layout. In these situations a variant of copying-collection
called mostly-copying collection is possible.

In the following subsections, we examine the algorithms
and implementations of the BDW mark-sweep collector and
the MCC mostly-copying collector in greater detail.

2.1 The Boehm-Demers-Weiser Collector

BDW [10, 8] is a conservative mark-sweep collector avail-
able on a wide variety of platforms. It is used by at least
13 language implementations to date and has been under

development since 19872. BDW is very successful because it
is easy to use (programs need only redirect malloc and free
to the appropriate collector routines) and has performance
comparable to explicit memory management for almost all
programs [33]. For better performance, clients may allocate
pointer-free (atomic) data through a special allocation rou-
tine — GC_malloc_atomic.

Except for quasi-pointer detection, the BDW collection
algorithm is a highly-optimized version of mark-sweep. Some
of its more interesting, and relevant features are:

1. Objects are segregated based on size and whether they
are atomic or not. Separate free lists are maintained
for each kind of object. Each page of the heap holds
objects of a single size. This speeds up quasi-pointer
detection by making it easy to find the beginning of
an object.

2. Inline allocation. Macros for inline allocation are pro-
vided. On a Sparc the allocation code for the fast path
takes 9 instructions.

3. Lazy-sweeping. Instead of sweeping the whole space
after each collection, the collector incrementally sweeps
the space whenever the free list becomes exhausted
until the sweep is complete. Only then is a collection
invoked to refill the free list.

BDW can detect quasi-pointers very effectively. Most
failed pointer tests take about 5 instructions, and a success-
ful quasi-pointer detection takes about 30 instructions [16].
The speed of pointer testing makes completely conservative
collectors such as BDW possible.

2.2 MCC

Mostly-copying collection is an idea originally due to Bartlett
[6]. As discussed above, a collector can only move objects
that are not referenced by quasi-pointers. Consequently, if
the untyped portion of the heap is small, and there are few
quasi-pointers, a collector can move most objects. To imple-
ment this idea efficiently requires one key modification to the
copying collection algorithm. Instead of using contiguous
blocks of memory for to-space and from-space use a linked
list of pages. To “copy” an object that cannot be moved,
the collector links the page on which the object resides into
the to-space list. This is the heart of all mostly-copying
collection algorithms.

MCC is a particular implementation of mostly-copying
collection. We break the discussion of MCC into three parts.
The first part presents an abstract view of the algorithm.
The second part discusses some practical implementation
issues and design decisions. The third part compares MCC'’s
algorithm to related work.

2.2.1 The Algorithm

MCC is a hybrid mark-sweep, copying collector that sup-
ports both typed and untyped objects. All objects include
meta-data for collection purposes. The meta-data include
the size of the object, and two state bits used during garbage
collection. One state bit determines whether the object is
treated via mark-sweep or copying collection. The other
state bit determines whether the object has been visited.
For typed objects, the meta-data also include information
indicating which values in the object are pointers.

?See http://reality.sgi.com/employees/boehmmti/gc.html.



The collector breaks memory into fixed-size pages which
are organized by free lists. When the collector determines
that the number of free pages is below some threshold, it
initiates garbage collection.

The algorithm begins by scanning all sources of quasi-
pointers (including the roots and any untyped objects in the
heap) and pins all objects referenced by these quasi-pointers.
These are exactly the objects that cannot be moved and
that will be treated via mark-sweep collection. Note that
untyped objects may be copied if they are not referenced by
any quasi-pointers.

In the second stage, a hybrid mark-sweep/copying col-
lection begins. The collector maintains two sets of pages: a
set of from-space pages and a set of to-space pages. As in
a copying collector, most live objects are copied from pages
in from-space to pages in to-space. However, live pinned
objects cannot be copied. Hence, the page on which they
reside is promoted to to-space.

The collector maintains both a mark-queue and a Cheney-
queue [32]. When a pinned object is first encountered, it
is placed in the mark-queue, whereas unpinned objects are
forwarded and placed in the Cheney-queue. The algorithm
begins by scanning the roots and placing the objects they
reference in the appropriate queue. Objects are taken off
either queue and processed until both queues are empty.

When the queues become empty, all reachable objects
have been visited, and all pages remaining in from-space
may be reclaimed. The collector then clears the state bits
and sweeps the set of objects on promoted pages that have
not been marked.

The sweep phase is important. In a conservative setting
it is unsound to leave dead objects with dangling pointers on
promoted pages because a dead object may later be found
(incorrectly) by a quasi-pointer. If the object is typed, then
the collector assumes that all of its pointers reference pre-
served objects, which may not be true. Therefore a mecha-
nism is needed to explicitly mark the swept space as invalid.

We separate the algorithm into the following stages:

e Pin. Pin all the objects referred to by quasi-pointers.
e Root. Scan the roots, and begin graph traversal.

e Graph. Perform the graph traversal described above.
e Free. Reclaim the pages left in from-space.

e Sweep. Sweep all the promoted pages, and clear the
state bits for the marked objects.

The phases pin and sweep each touch all pinned objects
once. Graph traversal touches both copied and mark-swept
objects twice — once on the first visit, and the second time
to process the object’s children. Therefore this algorithm
runs in time proportional to O(2n + 2m + p) where n is the
size of the live data, m is the number of pinned objects, and
p is the number of pages reclaimed. In our setting, m tends
to be very small as is the constant associated with p, and
hence collection is typically proportional to the size of the
live data.

2.2.2 Design Details

Our implementation of the above algorithm is designed with
one overarching aim: allocation should be fast. Several stud-
ies in the literature have suggested that allocation costs can
be very significant [13, 12, 15], and are in fact one of the
main advantages of copying collection. We were interested

in determining whether we could reap these same benefits
in a mostly-copying setting.

To achieve fast allocation, clients allocate objects con-
tiguously on a single page until the page is full. Thus MCC
achieves the same amortized cost for allocation as in a copy-
ing collector. Since all types of objects are allocated to-
gether, this decision precludes segregating objects based on
size, and requires the use of a header word on every object
to identify its size, type, and state. Because we wanted to
allow untyped objects within the heap we also chose not to
tag pointers.

Mixing objects of various sizes together complicates quasi-
pointer detection. Once a value is found to point to a partic-
ular page, the collector needs to determine what specific ob-
ject is being referenced. If the objects are segregated based
on size, simple arithmetic suffices. Otherwise, the collector
must scan from the beginning of the page until the appropri-
ate object is found. Consequently, MCC successfully detects
a quasi-pointer in the average case with time proportional to
half the number of objects on a page (about 100 instructions
for 2 KB pages of cons-cells).

MCC allows untyped objects to be scattered throughout
the heap. Therefore, the collector maintains a list of all
untyped objects in the heap so that it can find all quasi-
pointers in the pin stage of the algorithm. An alternative
solution would have been to segregate untyped objects.

Since whenever an object is marked the collector must
promote the whole page, MCC pins all objects when it pro-
motes a page. This avoids unnecessarily copying objects
that are already logically in to-space. After sweeping pro-
moted pages may have unused space. MCC does not reuse
this space in subsequent collections.

MCC correctly deals with large objects, alignment re-
strictions, and pointers from and into the static region. Read-
ers interested in these details should refer to our technical
report [25].

2.2.3 Related Collectors

There are two other mostly-copying collectors that bear a
strong resemblance to MCC. One, due to Bartlett, is used
in a Scheme to C compiler and in its newest variant has mi-
grated to C++ [7]. The other is the Customizable Memory
Manager (CMM) which is also a collector for C++ [3, 4].

Bartlett’s algorithm does two traversals over the live
graph. Conceptually, in the first pass the algorithm identi-
fies all quasi-pointers and all objects that cannot be moved.
It promotes all pages containing such objects to to-space by
linking them into the to-space list. In the second pass, the
collector performs a standard copying collection using the
objects promoted into to-space as roots. Because all roots
are untyped, all objects referred to by roots get promoted.
Therefore, it is correct to only use promoted objects as roots
during the second pass. As an optimization, introduced by
CMM, the collector remembers the live objects from the first
pass so that it does not retain dead objects that happen to
reside on a promoted page.

The algorithm that Bartlett actually uses aggressively
copies elements during the first pass and unrolls copies that
were incorrectly made during the second pass.

CMM is a customizable collector that supports mostly-
copying collector. BDW and CMM have been compared in
the context of C++ [4]. Like Bartlett, CMM implements
a two stage mostly-copying algorithm. In the first stage
all other heaps are examined for quasi-pointers, or pointers
into this heap. All pages containing objects referenced by



Checksum | Performs a checksum on a stream of 16-bit

values.
Knuth- Runs the Knuth-Bendix completion algo-
Bendix rithm on a rewriting system.
Lexgen Generates a lexer for ML.
Life Runs 10,000 generations of the Life simula-
tion [21] for a small self-replicating automata.
Logic Performs some simple theorem-proving using

back-tracking and unification.

Mergesort | Mergesorts a large list repeatedly.

Pia Runs a perspective inversion algorithm to de-
cide the location of an object in a perspective
video image [30].

Groebner Computes a Groebner basis.

Heap Alloc. Live # of  GC Live

(MB) (MB) (KB) GCs (ms) Obj./GC
Checksum 8 979 4/4 262 1 46
KB 16 103 121/1136 15 161 84.732
Lexgen 8 75 213/503 19 28 28,374
Life 8 244 2/14 69 1 501
Logic 8 173 12/30 47 5 2,951
Mergesort 8 328 159/262 98 13 26,919
Pia 8 213 47/111 68 8 6,637
Groebner 32 1018 430/3713 92 210 335,480

Table 1: Brief description of the benchmarks.

quasi-pointers are promoted into to-space. The heap being
collected does not contain any untyped objects.

In the second stage, a copying collection begins using
as roots the stack, static area, and all the objects found
during the first stage. One of the innovations introduced by
CMM was the live map a bitmask associated with each
page that records the objects that are actually live on that
page. Before this development, collectors treated all objects
on promoted pages as roots with false retention in excess of
50% [3].

This algorithm is proportional to the size of the other
heaps, and the live data in the collected heap. Untyped
objects exist in a different heap and are collected via some
other collection strategy. Omne of the drawbacks of CMM'’s
approach is that it cannot break cycles between heaps.

3 Empirical Results

3.1 Comparison of Overall Costs for ML

To compare MCC to BDW, we added a C back end to the
TIL compiler [29, 28] and targeted it to use both collectors.
TIL generates fairly natural C code that uses the C stack
and produces natural C constructs such as while loops.

We compiled eight small to medium sized benchmarks
for ML, using BDW 4.10 and then MCC. The code, except
for allocation, collection, and the array size primitive, is
the same for both versions. We selected benchmarks that
have been used in the literature [17, 26, 24, 23] to compare
the performance of TIL and SML/NJ [2]. Table 1 gives a
brief description of each benchmark®. Since most of these
ran very quickly, we modified the programs slightly to make
them run longer (e.g., by increasing the data set sizes or
number of iterations). We compiled the C code using gcc
-02 on a 256 MB UltraSparc-5 running Solaris 2.6*.

To improve BDW’s performance we inlined almost all
allocations, allocated pointer free objects atomically, config-
ured BDW for large heaps, and disabled interior pointers.

To improve MCC'’s performance we used gcc extensions
to put the allocation pointer in a global register, inlined
almost all allocations, and provided type information for
all objects whose types were statically known. The only
allocations we did not inline were for untyped objects. There

3Groebner was provided to us by Thomas Yan.
*A complete explanation of our methodology is given in Ap-
pendix A

Table 2: Basic information: the canonical heap size (CHS)
used for other measurements, total allocation, least/most
live data after any collection, # of collections (at CHS),
how long each collection took (average), live objects per col-
lection (average).

was only one benchmark (Groebner) with untyped objects
in the heap.

We instrumented both collectors with high-resolution timers
to time overall running times and collection times. Collec-
tion times do not include allocation. We collected timing
information for a variety of heap sizes ranging from 1 MB
up to 64 MB. Both collectors were constrained to stay within
the measured heap size.

Figure 1 shows the empirical results®. At the end of this
section we analyze each benchmark individually to explain
its performance. In the following subsection we summarize
those analyses along three lines: client time, collection time,
and space requirements. Some basic information about each
benchmark is shown in Table 2.

3.1.1 Client Time

The client times vary by as much as 20% between the two
collectors. Although the client code for MCC typically re-
quires fewer instructions because of MCC’s shorter alloca-
tion sequence, MCC’s client times are in many cases worse
than BDW’s. There are four effects that we believe account
for the variation in client times:

e Headers. For programs that predominantly allocate
data of a single size, BDW and MCC will for practical
purposes layout the data identically. If in addition,
the access pattern is similar to the allocation pattern,
MCC has worse cache performance because of the ad-
ditional header word. A common example for ML that
fits this pattern are list elements of two words. Instead
of accessing the data with stride two, a benchmark us-
ing MCC is accessing it with stride three.

To confirm that this was the effect we observed we
added a word to each object allocated by BDW and
measured the client time slowdown. Figure 2 compares
the observed slowdown for MCC to the slowdown for
BDW with the extra word. As expected, for Mergesort
and Groebner, which allocate only list pairs (see Fig-
ure 3), the measured slowdown is similar. Figure 2 is
not a good predictor for the other benchmarks because
multiple object sizes (or atomic data) are involved.

e Size. BDW maintains two free lists for each size of
object omne for pointer-free objects and one for un-
typed objects. For programs that allocate objects of

5The actual numbers for all the experiments are available in Ap-
pendix A.




.-IIII M

I-IIII o]
_IIIII N
_-IIII M
| B | e}
[ ] —

I O e e N

—

N —

1 e —

(b) Knuth-Bendix

(a) Checksum

I_II M

I_II M

(d) Life

(c) Lexgen

LI By
1 ©

I o
1 <

1 N
[] o

.
| | [\

——

Lol
_——
——

N —
[ |

I

1 .

(f) Mergesort

(e) Logic

T — M

'i
!

Ii
32

|
|

i
2

6

1 2 4 8 121

60
40
20

0

I R e <t

1 ©

(h) Groebner

(g) Pia
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Figure 2: Percentage slowdown relative to BDW client times
for MCC client times (light) and BDW with an extra word
on each object (dark).

many different sizes we expect there to be some addi-
tional overhead for BDW because the free list will not
be located in a register thus slowing down allocation.
However the more significant effect is more subtle and
once again has to do with cache behavior.

Typically for BDW, the free list lies sequentially in
memory, but distinct free lists are unrelated. A pro-
gram that allocates a data structure containing ob-
jects of multiple sizes will have those objects scattered
across multiple free lists with BDW. With MCC the
objects will be laid out sequentially. This may lead to
better locality for MCC if the access pattern is simi-
lar to the allocation pattern. This is typically the case
when traversing recursive data structures such as trees
which are encountered in several of these benchmarks.

e Allocation. The allocation sequence for MCC is seven
instructions versus nine instructions for BDW. In addi-
tion MCC'’s allocation sequence requires only a single
memory operation as opposed to four for BDW (see
[25] for details). The advantages of faster allocation
were hard to separate from the much larger cache ef-
fects without doing a cycle-level simulation.

e Arrays. Computing the array size is the only code
other than allocation that is different for the two col-
lectors. MCC requires two additional instructions to
compute the array size. Only one benchmark (Check-
sum) was affected by this difference.

3.1.2 Collection Time

Figure 1 shows that most of the benchmarks spend much
less time in the collector under MCC than under BDW, ex-
cept for the smallest heap sizes. In the few cases that MCC’s
collector times are large relative to BDW's it is because the
benchmark has a very deep stack (Knuth-Bendix), or there
are untyped objects in the heap (Groebner). These factors
are important because for MCC a quasi-pointer detection
takes about 100 instructions whereas for BDW it takes only
30 instructions. At smaller heap sizes MCC performs more
collections, further enhancing the relative cost of stack scan-
ning and hence quasi-pointer detection.

We were not able to determine how useful type informa-
tion was either in reducing the size of the live data or im-
proving collector performance. Because these benchmarks,
except for Checksum, manipulate small values that do not
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Figure 3: Percentage of objects allocated of size 1, 2, 3, and
4+. The dot indicates the percentage of the data that was
pointer-free. (Values less than 5% have been omitted.)

look like pointers we believe the effect on the size of the
graph to be small.

3.1.3 Space

For all the benchmarks MCC requires more space than BDW.
This is a combination of the space needed to copy objects,
the extra overhead of the header word, and space lost to
fragmentation. Because MCC initiates a collection when-
ever the heap becomes two-thirds full, the live data must fit
in one-third of the heap. Since most of these benchmarks
primarily allocate objects of size two (Figure 3) the live data
for MCC is one and a half times larger than the live data for
BDW. BDW can successfully collect the heap, ignoring the
mark stack, whenever the live data fits in the heap. From
these facts it follows that MCC can collect a benchmark as
long as %live < heap. So MCC requires 4% times as much
space as BDW. This is consistent with our empirical results.
Sometimes less space is required because of the mark-stack
for BDW, or differing object sizes. Although fragmentation
could further increase the space requirements for MCC, it
does not play a large role in these benchmarks.

Overall the running times for MCC are comparable with
overall running times for BDW, being anywhere from 25%
faster to 15% slower. In all cases, garbage collection times
for MCC were better than for BDW and got progressively
better as the heap size grew.

3.2 Collector Internals

MCC is a fairly well tuned implementation of our algorithm.
The two optimizations that had the greatest impact were:
specializing the copy loop and object dispatch for objects of
size two, and inlining the inner loop of the collector (about
1000 lines of assembly code).

Figure 4 shows the breakdown of collector time into the
various phases of the collector. Checksum and Life spend
such a large proportion of collection time in stage free be-
cause they have small live sets and allocate a lot of data.
For these two benchmarks copying the live data is cheaper
than traversing the linked list of pages to free each one.

Most of the benchmarks spend a significant proportion
of collector time in root scanning (traversing the registers,
stack, and static area) because quasi-pointer detection is
slow, stacks are fairly deep, and stack frames for the Sparc
are relatively large due to register windows. Mergesort is
an exception because it has a very shallow stack about
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Figure 4: Percentage of collector time (MCC) spent: pinning
objects (pin), scanning roots (root), graph traversal (graph),
freeing pages (free), sweeping (sweep). (Values less than 5%
have been omitted.)

Benchmark Average per Collection
Roots PP Roots/PP  Frag.(KB)

Checksum 35 5 7 8
Knuth-Bendix | 6126 917 7 1358
Lexgen 175 46 4 112
Life 50 7 8 11
Logic 234 47 5 67
Mergesort 36 10 4 7

Pia 325 50 6 78
Groebner 118 304 4 585

Table 3: All data is taken at the canonical heap size (see
Table 2). PP stands for promoted page. The Roots/PP
column was measured for each collection and averaged, and
is not necessarily the same as dividing column one by column
two. Fragmentation measures the amount of unused space
on promoted pages.

11 stack frames. Groebner does not show root scanning
as significant because it has so much live data, and many
untyped objects that are very slow to scan.

The fragmentation column in Table 3 shows the amount
of space on promoted pages that was invalidated by the
sweep phase. Although it would be possible to reuse this
space, MCC does not does so. As the table shows, for most
of these benchmarks MCC wastes less than 100 KB.

We included the roots per promoted page because the
data suggest a technique for speeding quasi-pointer detec-
tion. Since in most cases there are five or more quasi-
pointers (roots) per promoted page, MCC could batch these
quasi-pointer test thus amortizing the cost of scanning the
page over several detections.

3.3 Benchmarks

This section gives a detailed analysis of the individual bench-
marks.

Checksum (Figure 1(a)) allocates many 2 and 3 word ob-
jects and one 4 KB array. Although Checksum allocates
1 GB of data only 46 objects are live. We expect copying
collection to perform well in this setting.

Although collector times are much shorter for MCC than
for BDW, client times are longer. We speculate that this is

a result of cache behavior due to header words for MCC,
and segregating objects based on size for BDW.

Checksum has another peculiarity that may account for
some of the time. Although array sizes for this benchmark
are constant, the compiler is unable to lift the array size
calculation out of many of the loops. For BDW the array
size is stored as the first element of the array, but for MCC
the array size must be extracted from the header word
requiring an extra shift and an and.

MCC'’s collector times may be further enhanced because
Checksum uses bit packing which may lead to some false
quasi-pointer identifications by BDW, thus artificially in-
creasing the size of the live graph.

Knuth-Bendix (Figure 1(b)) allocates many 1, 2, and 3
word objects. Because it uses many exception handlers, the
compiler is unable to take advantage of tail recursion, so
Knuth-Bendix generates a very deep stack (over 4000 stack
frames).

The deep stack causes MCC to spend over half its time
sweeping and scanning the stack. Since MCC uses a slower
algorithm to infer quasi-pointers, and as many as 6000 quasi-
pointers are found per collection, BDW and MCC collection
times are comparable. Collection times for MCC do not
drop uniformly because they are highly dependent on the
depth of the stack when collections occured.

MCC requires four times more space than BDW. This is
surprisingly low considering that 1 MB is lost to fragmenta-
tion at each collection. We surmise that the mark stack for
BDW may be quite large.

Lexgen (Figure 1(c)) allocates only 75 MB. The speedup
in the client time for Lexgen under MCC occurs because of
cache behavior. Lexgen allocates an abstract syntax tree
which contains nodes of many different sizes. Under MCC
these are laid out in memory in the same order they are
allocated. This happens to correspond to the access pattern
of the program. For BDW, each node of a different size is
in a different free list and therefore has no spatial locality.
Other effects, such as the shorter allocation sequence for
MCC may also play a role here.

Life (Figure 1(d)) allocates lists of pairs of integers. The
pairs are allocated atomically for BDW and make up about
35% of the heap.

Client times are comparable under the two collectors al-
though adding a “header” word slowed BDW’s client time by
30%. Client times for MCC are faster because BDW main-
tains multiple free lists — one for atomic objects and one for
untyped objects. Because Life sequentially examines each
pair in the list, MCC gets much better locality despite the
extra header word.

Logic (Figure 1(e)) allocates an abstract syntax tree con-
taining nodes of various sizes. As shown in Figure 2 cache
effects are minimal for this benchmark. The observed 12%
speedup in client times under MCC is a consequence of a
faster allocation sequence and the mix of object sizes which
leads to better cache behavior for MCC than indicated in
the graph.

Collection times are shorter for MCC because Logic has
a shallow stack, and only about 30 KB of live data.



Mergesort (Figure 1(f)) allocates 330 MB of two-word list
elements. At each collection about 160 KB are live. Because
this benchmark only allocates elements of size 2, BDW need
only maintain a single free list.

The client times under MCC are 20% slower because of
locality. Although under both BDW and MCC the lists
are arrayed in memory sequentially, the extra header word
needed by MCC causes the list to consume one and half
times as much memory, thereby reducing the effectiveness of
the cache. The experimental data in Figure 2 confirms that
locality effects are responsible for the observed slowdown.

Pia (Figure 1(g)) allocates many double-precision floating
point values. The remainder of the data (45%) consists of
closures (3 words) and list elements. Despite most of the
data being allocated atomically MCC'’s collection times are
better than BDW'’s in most cases.

The jump in collector time at 4 MB occurs because Pia’s
stack oscillates between a thousand and a hundred stack
frames. Although MCC implements a heuristic to try col-
lecting when the stack is shallow, there is not enough leeway
for the heuristic to take effect until the heap reaches 8 MB.

Client times for MCC are comparable to times for BDW
because locality is not important for this benchmark, and
because the extra code needed to align the floating point
values means that MCC’s allocation routine is not shorter
than BDW’s in this case.

Groebner (Figure 1(h)) allocates only 2 word objects but
has as much as 4 MB of live data (6 MB when we take
header words into account). Groebner uses polymorphism
that the TIL compiler is unable to eliminate at compile time.
Because we do not yet dynamically generate header words,
Groebner has untyped objects in the heap (about 300 per
collection).

Because MCC’s quasi-pointer detection is slow relative
to BDW'’s, collection times are approximately the same un-
der both BDW and MCC. Further work optimizing quasi-
pointer detection may make a significant difference for this
benchmark.

The slowdown in client time for MCC is due to locality
effects as shown in Figure 2.

4  Future Work

The preliminary results presented above suggest several di-
rections future research might take. It would be interesting
to use a cycle-level simulator to pinpoint the performance
effects we have observed, and to investigate the impact of
cache architecture. Larger and longer-running benchmarks
could also help determine whether these cache effects are
important for a larger class of programs.

Further work is needed to fully tune MCC. In particu-
lar more sophisticated quasi-pointer detection schemes are
possible. We are also exploring the possibility of storing the
header words in a separate space. This will slow allocation
and possibly collection, but may recover the cache behavior
lost with the current approach.

Another direction of interest is to look at how the lan-
guage context affects collector performance. For example,
Java implementations use a header word on objects to point
to the class. This header word can also be leveraged by
the collector, thereby avoiding some of our overheads when
compared to BDW.

We speculate that in a concurrent setting, a collector
architecture similar to MCC'’s will be favored because each

thread can allocate objects on a private page without syn-
chronization. Only page allocation and garbage collection
would require synchronization.

An intriguing possibility is that a compiler using accurate
collection may benefit from a conservative collector. Tra-
ditional compilers using accurate collection generate addi-
tional code to establish GC-safe points where type informa-
tion has been collected for all the registers, and stack. A
conservative collector makes less stringent demands on the
client and therefore may be able to recover gracefully when
type information is unavailable, thus making GC-safe points
unnecessary.

5 Conclusion

MCC demonstrates that a prototype mostly-copying collec-
tion can be competitive with a mature conservative mark-
sweep collector. MCC does particularly well when alloca-
tion rates are high and the live data is a small fraction of
the heap. However because it is a copying collector and be-
cause MCC uses header words, it can require significantly
more space than BDW, and have worse cache behavior. In
addition, MCC implements a slow pointer testing routine
which penalizes it further in the presence of a deep stack or
many conservative objects relative to BDW. Despite these
drawbacks, MCC is comparable if not better than BDW
on almost all benchmarks. The study in [15] suggests that
more sophisticated techniques may yield another 20% im-
provement in collector times. And, a few modifications to
our compiler may further decrease the cost of allocation.
These factors lead us to speculate that in the presence of
complete type information in the heap, MCC may someday
be competitive with an accurate copying collector, not just
conservative mark-sweep.
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Pin Root Graph Free Sweep
Checksum 1 28 4 63 4
Knuth-Bendix 0 45 42 1 12
Lexgen 0 7 88 2 3
Life 0 33 18 41 8
Logic 0 36 39 11 14
Mergesort 0 3 91 4 2
Pia 0 36 44 6 14
Groebner 10 0 88 1 1

Table 4: Percentage of collector time spent in each phase.
Data corresponding to Figure 4.

1 2 3 | 4+ | Atomic
Checksum 0 50 | 50 0 0
Knuth-Bendix | 31 38 | 31 0 2
Lexgen 0| 87| 4 8 26
Life 0] 100 0 0 37
Logic 5| 62131 2 0
Mergesort 0(100] O 0 0
Pia 2 80 | 17 1 53
Groebner 0] 100 0 0 1

Table 5: Percentage of objects allocated at each size, and
the percentage of data allocated atomically for BDW. Cor-
responds to the data shown in Figure 3.

A Data & Methodology

We ran all the experiments on a 256 MB UltraSparc-5 run-
ning Solaris 2.6. The machine was lightly used while we ran
our experiments.

We present here the numbers used to obtain the graphs
in the paper with an explanation for each.

The data in Figure 4 was obtained by wrapping timers
around each of the distinct phases of the collector and run-
ning each benchmark at the canonical heap size listed in
Table 2. The actual numbers are shown in Table 4.

The data in Figure 3 were obtained by instrumenting the
allocation macros to record the number of objects allocated
of each size from 1 to 3, and greater than 3 (4+). We also in-
strumented the atomic allocation routines for BDW to count
the number of objects allocated of each size. From this in-
formation we computed the percentage of the data that were
allocated atomically. Table 5 gives the actual numbers.

The data in Figure 2 was obtain by adding an extra
header word to every inlined allocation for BDW. We com-
pared the client times for BDW with and without the header
word and computed the percent slowdown using BDW with-
out the header word as a baseline. All runs were made at
the canonical heap size for each benchmark. Table 6 gives
the actual percentages.

Table 7 contains the timing data corresponding to Fig-
ure 1. These numbers were obtained by running each bench-
mark at each heap size ten times, throwing out the worst
run, and averaging. We used high-resolution timers with
overhead of about one microsecond to take these measure-
ments. In these tables we also include the data for the best
overall running times. In the text we chose to use the av-
erage because at small heap sizes the running time can be
sensitive to the initial state of the stack and registers. When
no data is listed in the table that is because that benchmark
could not be run at that heap size.
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MCC BDW +1
Checksum 23.6 11
Knuth-Bendix | 0.3 2.6
Lexgen -15.0 8.1
Life -0.5 31.6
Logic -12.1 0.6
Mergesort 21.7 20.9
Pia 2.0 5.9
Groebner 16.3 14.4

Table 6: Percent slowdown for BDW with an extra header
word and MCC client times relative to a baseline of BDW.
Corresponds to the data shown in Figure 2.



Client GC Client GC Client GC

B A | B A B A | B A B A | B A
Checksum Knuth-Bendix Lexgen

1 BDW | 15.70 15.77 | 11.72 11.72
MCC | 19.31 19.37 1.67 1.69

2 BDW | 15.70 15.73 | 10.79 10.87 18.50 18.88 1.94 1.95
MCC | 19.27 19.32 1.35 1.35

4 BDW | 15.77 15.75 | 10.32 10.37 | 18.10 18.16 2.29 2.29 | 1894 19.20 1.33 1.34

MCC | 19.33 19.35 1.22 1.24 15.17 15.47 1.06 1.09
8 BDW | 15.66 15.72 | 10.31 10.35 | 18.15 18.19 1.84 1.85 | 19.10 19.34 1.20 1.19
MCC | 19.36 19.43 1.14 1.16 16.16 16.44 0.56 0.59
12 BDW | 15.66 15.70 | 10.34 10.35 | 18.12 18.18 1.80 1.80 | 18.84 19.07 1.18 1.18
MCC | 19.41 19.47 1.12 1.12 16.47 16.73 0.40 0.40

16 BDW | 15.68 15.69 | 10.32 10.37 | 18.15 18.24 1.57 1.56 | 19.00 19.11 1.26 1.26
MCC | 19.45 19.51 1.11 1.11 | 18.25 18.30 2.33 242 | 16.68 16.81 0.34 0.36
24 BDW | 15.68 15.72 | 10.52 10.54 | 18.41 18.45 1.73 1.75 | 18.96 19.00 1.32 1.36
MCC | 19.54 19.60 1.09 1.11 | 18.28 18.34 0.62 0.62 | 16.89 17.07 0.21 0.22
32 BDW | 15.79 15.81 | 10.57 10.64 | 18.59 18.64 1.71 1.72 | 18.96 19.03 1.45 1.47
MCC | 19.60 19.66 1.10 1.09 | 18.40 18.49 1.46 1.45 | 17.00 17.18 0.17 0.17
48 BDW | 15.72 15.79 | 10.88 10.89 | 19.04 19.08 2.01 2.05 | 18.90 19.06 1.71 1.74
MCC | 19.77 19.83 1.08 1.09 | 18.61 18.66 0.50 0.50 | 17.50 17.62 0.10 0.10
64 BDW | 15.73 15.79 | 11.11 11.16 | 19.49 19.57 2.21 2.24 | 18.85 18.96 2.04 2.03
MCC | 20.06 20.14 1.10 1.09 | 18.86 18.93 0.65 0.64 | 17.83 17.95 0.15 0.16

Life Logic Mergesort
1 BDW | 11.22 11.28 2.92 2.93 6.76 6.77 2.54 2.54 5.55 5.55 | 20.04 20.19
MCC | 11.05 11.10 0.58 0.58 5.81 5.84 1.46 1.47
2 BDW | 11.15 11.18 2.73 2.75 6.77 6.80 2.28 2.29 5.51 5.56 7.99 8.10
MCC | 11.05 11.12 0.42 0.42 5.89 5.90 0.76 0.78
4 BDW | 11.22 11.28 2.67 2.66 6.77 6.82 2.19 2.20 5.53 5.53 5.55 5.62
MCC | 11.11 11.16 0.32 0.31 5.88 5.90 0.46 0.46 7.06 7.22 4.67 5.62
8 BDW | 11.20 11.26 2.69 2.70 6.78 6.79 2.21 2.22 5.54 5.53 4.35 4.38
MCC | 11.16 11.21 0.25 0.25 5.96 5.97 0.31 0.31 6.69 6.73 1.43 1.44
12 BDW | 11.32 11.34 2.75 2.76 6.79 6.81 2.26 2.29 5.53 5.53 4.05 4.08
MCC | 11.18 11.24 0.23 0.23 6.01 6.06 0.26 0.26 6.90 6.93 1.54 1.55
16 BDW | 11.23 11.30 2.81 2.81 6.80 6.83 2.33 2.35 5.49 5.53 4.03 4.02
MCC | 11.26 11.27 0.22 0.22 6.08 6.11 0.23 0.23 6.95 6.99 1.43 1.44
24  BDW | 11.21 11.27 2.92 2.95 6.83 6.85 2.46 2.47 5.53 5.54 4.02 4.04
MCC | 11.34 11.40 0.22 0.22 6.18 6.21 0.20 0.20 6.98 7.01 1.04 1.06
32 BDW | 11.38 11.46 3.01 3.01 6.84 6.84 2.58 2.59 5.53 5.61 4.03 4.03
MCC | 11.41 11.47 0.22 0.22 6.30 6.33 0.19 0.19 6.99 7.04 0.80 0.82
48 BDW | 11.24 11.30 3.27 3.31 6.90 6.94 2.83 2.87 5.56 5.59 4.14 4.16
MCC | 11.60 11.62 0.21 0.21 6.54 6.56 0.17 0.17 7.23 7.29 0.65 0.65
64 BDW | 11.27 11.33 3.46 3.49 6.92 6.93 3.05 3.10 5.52 5.54 4.40 4.43
MCC | 11.81 11.88 0.21 0.21 6.83 6.87 0.17 0.18 7.38 7.44 0.51 0.52

Pia Groebner
1 BDW | 11.04 11.09 3.11 3.12
MCC
2 BDW | 10.95 11.04 2.72 2.73
MCC | 11.09 11.14 1.44 1.52
4 BDW | 10.97 11.32 2.58 2.61
MCC 10.96 11.19 2.28 2.27
8 BDW | 10.93 11.00 2.58 2.58
MCC | 11.03 11.21 0.71 0.72
12 BDW | 10.97 11.00 2.64 2.63
MCC | 11.10 11.28 0.59 0.59
16 BDW | 10.96 11.02 2.67 2.67 | 35.38 35.46 | 21.84 21.79
MCC 11.10 11.26 0.43 0.43
24 BDW | 10.97 11.75 2.80 3.03 | 35.29 35.40 | 17.49 17.50
MCC | 11.23 11.36 0.38 0.38 | 41.37 41.40 | 24.65 24.63
32 BDW | 10.96 11.01 2.86 2.88 | 35.31 35.48 | 15.79 15.82
MCC 11.32  11.41 0.27 0.27 | 41.24 41.28 | 18.96 19.14
48 BDW | 10.96 11.06 3.14 3.17 | 35.58 35.65 | 14.61 14.66
MCC | 11.47 11.63 0.25 0.25 | 41.75 41.80 | 12.81 12.97
64 BDW | 11.13 11.18 3.40 3.44 | 35.70 35.81 | 14.04 14.10
MCC | 11.68 11.85 0.24 0.24 | 41.62 41.64 | 10.02 10.11

Table 7: Timing data for the benchmarks as depicted in the text. The column B contains the data for the run with the best
overall time, and column A shows the average as plotted in Figure 1
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