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AbstractMany high-level language compilers generate C code andthen invoke a C compiler for code generation. To date, mostof these compilers link the resulting code against a conserva-tive mark-sweep garbage collector in order to reclaim unusedmemory. We introduce a new collector, MCC, based on anextension of mostly-copying collection.We analyze the various design decisions made in MCCand provide a performance comparison to the most widelyused conservative mark-sweep collector (the Boehm-Demers-Weiser collector). Our results show that a good mostly-copying collector can outperform a mature highly-optimizedmark-sweep collector when physical memory is large relativeto the live data. A surprising result of our analysis is thatcache behavior can have a greater impact on overall perfor-mance than either collector time, or allocation code.1 OverviewFor almost any language, there are a handful of compilersthat generate C [1] as a target language. For instance, Java-to-C compilers include Toba [20], Vortex [11], and Harissa [18];and ML-to-C compilers include Bigloo [22], SML2C [27], andTIL/C [28]. The developers of these compilers chose C as atarget language to leverage the optimizations of existing Ccompilers and to obtain a relatively portable, easy-to-buildback-end.However, Java, ML, and many other languages requiregarbage collection which C does not directly provide. Be-cause of the di�culties of combining C with accurate garbagecollection, all of the systems mentioned above (except SML2C)are designed to work with a conservative garbage collec-tor, and in fact, use the Boehm-Demers-Weiser, mark-sweepconservative collector (BDW). BDW is conservative because�This material is based on work supported in part by the AFOSRgrant F49620-97-1-0013 and ARPA/RADC grant F30602-96-1-0317.Any opinions, �ndings, and conclusions or recommendations ex-pressed in this publication are those of the author and do not reectthe views of these agencies.ySupported by a National Science Foundation GraduateFellowship.

it \guesses" which values are pointers without any annota-tions. In other respects BDW is similar to a highly tuned,accurate mark-sweep collector: it potentially su�ers the samefragmentation problems, and relative to copying collectors,requires more instructions for allocation.An alternative to conservative mark-sweep, �rst proposedby Bartlett [5] and ideally suited to compilers from typesafe languages to C, is mostly-copying collection. Mostly-copying collection requires that most objects be typed (an-notated to distinguish pointers from other values) in order tobe e�ective. Under this assumption, mostly-copying collec-tion can share the same characteristics as accurate copyingcollection: fast allocation and compaction. Mostly-copyingalso su�ers from the main disadvantage of copying collection{ greater space requirements.In our work with the TIL/C SML-to-C compiler, mostly-copying collection seemed promising because we have typeinformation for almost all objects in the heap, and it iswidely thought that copying collection is the right strategyfor ML1. In particular, ML programs tend to allocate a lotof short-lived data and so fast allocation seemed relativelyimportant.Our collector, MCC, extends Bartlett's original algo-rithm by allowing typed and untyped objects to coexist inthe heap, and by making only one traversal of the live data.MCC aims to make allocation fast and achieve good collectorperformance, without sacri�cing the bene�ts of compiling toC. To evaluate MCC, we measured the performance of eightsmall to medium sized ML benchmarks run with both BDWand MCC. To isolate as many variables as possible, we useda non-generational version of MCC with a simple collec-tion policy { collect whenever the heap becomes two-thirdsfull. The data show that when given enough space, MCCcollection times are signi�cantly faster than for BDW. Sur-prisingly, MCC gives only slightly better overall (client +collector) performance. We assumed that client times forMCC would always be faster than for BDW, because theMCC allocation sequence requires fewer instructions, andfewer load/store instructions. To our surprise, we found thatin many cases, the client was actually slowed under MCCdue to a loss of spatial locality. Contrary to our initial be-lief, a fast allocation sequence was relatively unimportantfor overall performance.The main results of this paper are:1For instance, both SML/NJ [2] and O'Caml [19], two widely-usedML compilers, use variants of copying collection for at least the mostrecently allocated data.1



� A new one-pass mostly-copying collector, MCC, thatallows for untyped objects to co-exist in the heap andto be collected. Previous algorithms have either beentwo-pass or have treated untyped objects as residingoutside the heap.� An analysis of the design decisions made in MCC andtheir impact on overall collector performance.� A comparison between BDW and MCC in the contextof an ML-to-C compiler.This paper requires familiarity with many garbage collec-tion concepts that for the sake of brevity have been omitted.The reader requiring more clari�cation is referred to Wil-son's survey on garbage collection techniques [31] or RichardJones' text [16].2 Conservative CollectionConservative garbage collection is the extension of accurategarbage collection to environments where partial or no typeinformation is available. In particular, a conservative collec-tor is not told which values are pointers for some subset ofthe heap. We refer to objects without pointer informationas untyped objects.To discover the live graph, the collector must conserva-tively determine which values in untyped objects representpointers. To make this feasible, conservative collectors re-quire that programs maintain at least one pointer to everylive object. In particular, programs that hide or manufac-ture pointers are not supported. We call a value that isinferred, but not known, to be a pointer a quasi-pointer(sometimes referred to as an ambiguous pointer [6]).Misidenti�cation of values as quasi-pointers arti�ciallyincreases the size of the live graph, and limits the e�ec-tiveness of the collector. Of course correctly distinguishingpointers from other values is not always possible, and forsome large, long running programs pointer misidenti�cationmay be a signi�cant problem [14]. However, for most pro-grams it is possible to detect quasi-pointers with great ac-curacy (usually less than 10% misidenti�cation) and speed(30 instructions) [16]. This is possible because of architec-tural constraints that force pointers to be multiples of theword-size and to reside in speci�c address ranges [10, 9].Conservative collectors have traditionally been limitedto collection algorithms that do not update values in theclient's data. Since quasi-pointers are not known to bepointers, altering a quasi-pointer to point to a new location,as would be necessary in copying collection, could changethe client's behavior. For this reason, most work on conser-vative collection has focused on mark-sweep algorithms.However in certain settings much type information isavailable. This is typically the case when safe language com-pilers produce C code. The compiler has exact informationfor all objects in the heap, but does not control the stacklayout. In these situations a variant of copying-collectioncalled mostly-copying collection is possible.In the following subsections, we examine the algorithmsand implementations of the BDW mark-sweep collector andthe MCC mostly-copying collector in greater detail.2.1 The Boehm-Demers-Weiser CollectorBDW [10, 8] is a conservative mark-sweep collector avail-able on a wide variety of platforms. It is used by at least13 language implementations to date and has been under

development since 19872. BDW is very successful because itis easy to use (programs need only redirect malloc and freeto the appropriate collector routines) and has performancecomparable to explicit memory management for almost allprograms [33]. For better performance, clients may allocatepointer-free (atomic) data through a special allocation rou-tine { GC malloc atomic.Except for quasi-pointer detection, the BDW collectionalgorithm is a highly-optimized version of mark-sweep. Someof its more interesting, and relevant features are:1. Objects are segregated based on size and whether theyare atomic or not. Separate free lists are maintainedfor each kind of object. Each page of the heap holdsobjects of a single size. This speeds up quasi-pointerdetection by making it easy to �nd the beginning ofan object.2. Inline allocation. Macros for inline allocation are pro-vided. On a Sparc the allocation code for the fast pathtakes 9 instructions.3. Lazy-sweeping. Instead of sweeping the whole spaceafter each collection, the collector incrementally sweepsthe space whenever the free list becomes exhausteduntil the sweep is complete. Only then is a collectioninvoked to re�ll the free list.BDW can detect quasi-pointers very e�ectively. Mostfailed pointer tests take about 5 instructions, and a success-ful quasi-pointer detection takes about 30 instructions [16].The speed of pointer testing makes completely conservativecollectors such as BDW possible.2.2 MCCMostly-copying collection is an idea originally due to Bartlett[5]. As discussed above, a collector can only move objectsthat are not referenced by quasi-pointers. Consequently, ifthe untyped portion of the heap is small, and there are fewquasi-pointers, a collector can move most objects. To imple-ment this idea e�ciently requires one key modi�cation to thecopying collection algorithm. Instead of using contiguousblocks of memory for to-space and from-space use a linkedlist of pages. To \copy" an object that cannot be moved,the collector links the page on which the object resides intothe to-space list. This is the heart of all mostly-copyingcollection algorithms.MCC is a particular implementation of mostly-copyingcollection. We break the discussion of MCC into three parts.The �rst part presents an abstract view of the algorithm.The second part discusses some practical implementationissues and design decisions. The third part compares MCC'salgorithm to related work.2.2.1 The AlgorithmMCC is a hybrid mark-sweep, copying collector that sup-ports both typed and untyped objects. All objects includemeta-data for collection purposes. The meta-data includethe size of the object, and two state bits used during garbagecollection. One state bit determines whether the object istreated via mark-sweep or copying collection. The otherstate bit determines whether the object has been visited.For typed objects, the meta-data also include informationindicating which values in the object are pointers.2See http://reality.sgi.com/employees/boehm mti/gc.html.2



The collector breaks memory into �xed-size pages whichare organized by free lists. When the collector determinesthat the number of free pages is below some threshold, itinitiates garbage collection.The algorithm begins by scanning all sources of quasi-pointers (including the roots and any untyped objects in theheap) and pins all objects referenced by these quasi-pointers.These are exactly the objects that cannot be moved andthat will be treated via mark-sweep collection. Note thatuntyped objects may be copied if they are not referenced byany quasi-pointers.In the second stage, a hybrid mark-sweep/copying col-lection begins. The collector maintains two sets of pages: aset of from-space pages and a set of to-space pages. As ina copying collector, most live objects are copied from pagesin from-space to pages in to-space. However, live pinnedobjects cannot be copied. Hence, the page on which theyreside is promoted to to-space.The collector maintains both a mark-queue and a Cheney-queue [32]. When a pinned object is �rst encountered, itis placed in the mark-queue, whereas unpinned objects areforwarded and placed in the Cheney-queue. The algorithmbegins by scanning the roots and placing the objects theyreference in the appropriate queue. Objects are taken o�either queue and processed until both queues are empty.When the queues become empty, all reachable objectshave been visited, and all pages remaining in from-spacemay be reclaimed. The collector then clears the state bitsand sweeps the set of objects on promoted pages that havenot been marked.The sweep phase is important. In a conservative settingit is unsound to leave dead objects with dangling pointers onpromoted pages because a dead object may later be found(incorrectly) by a quasi-pointer. If the object is typed, thenthe collector assumes that all of its pointers reference pre-served objects, which may not be true. Therefore a mecha-nism is needed to explicitly mark the swept space as invalid.We separate the algorithm into the following stages:� Pin. Pin all the objects referred to by quasi-pointers.� Root. Scan the roots, and begin graph traversal.� Graph. Perform the graph traversal described above.� Free. Reclaim the pages left in from-space.� Sweep. Sweep all the promoted pages, and clear thestate bits for the marked objects.The phases pin and sweep each touch all pinned objectsonce. Graph traversal touches both copied and mark-sweptobjects twice { once on the �rst visit, and the second timeto process the object's children. Therefore this algorithmruns in time proportional to O(2n+2m+ p) where n is thesize of the live data, m is the number of pinned objects, andp is the number of pages reclaimed. In our setting, m tendsto be very small as is the constant associated with p, andhence collection is typically proportional to the size of thelive data.2.2.2 Design DetailsOur implementation of the above algorithm is designed withone overarching aim: allocation should be fast. Several stud-ies in the literature have suggested that allocation costs canbe very signi�cant [13, 12, 15], and are in fact one of themain advantages of copying collection. We were interested

in determining whether we could reap these same bene�tsin a mostly-copying setting.To achieve fast allocation, clients allocate objects con-tiguously on a single page until the page is full. Thus MCCachieves the same amortized cost for allocation as in a copy-ing collector. Since all types of objects are allocated to-gether, this decision precludes segregating objects based onsize, and requires the use of a header word on every objectto identify its size, type, and state. Because we wanted toallow untyped objects within the heap we also chose not totag pointers.Mixing objects of various sizes together complicates quasi-pointer detection. Once a value is found to point to a partic-ular page, the collector needs to determine what speci�c ob-ject is being referenced. If the objects are segregated basedon size, simple arithmetic su�ces. Otherwise, the collectormust scan from the beginning of the page until the appropri-ate object is found. Consequently, MCC successfully detectsa quasi-pointer in the average case with time proportional tohalf the number of objects on a page (about 100 instructionsfor 2 KB pages of cons-cells).MCC allows untyped objects to be scattered throughoutthe heap. Therefore, the collector maintains a list of alluntyped objects in the heap so that it can �nd all quasi-pointers in the pin stage of the algorithm. An alternativesolution would have been to segregate untyped objects.Since whenever an object is marked the collector mustpromote the whole page, MCC pins all objects when it pro-motes a page. This avoids unnecessarily copying objectsthat are already logically in to-space. After sweeping pro-moted pages may have unused space. MCC does not reusethis space in subsequent collections.MCC correctly deals with large objects, alignment re-strictions, and pointers from and into the static region. Read-ers interested in these details should refer to our technicalreport [25].2.2.3 Related CollectorsThere are two other mostly-copying collectors that bear astrong resemblance to MCC. One, due to Bartlett, is usedin a Scheme to C compiler and in its newest variant has mi-grated to C++ [7]. The other is the Customizable MemoryManager (CMM) which is also a collector for C++ [3, 4].Bartlett's algorithm does two traversals over the livegraph. Conceptually, in the �rst pass the algorithm identi-�es all quasi-pointers and all objects that cannot be moved.It promotes all pages containing such objects to to-space bylinking them into the to-space list. In the second pass, thecollector performs a standard copying collection using theobjects promoted into to-space as roots. Because all rootsare untyped, all objects referred to by roots get promoted.Therefore, it is correct to only use promoted objects as rootsduring the second pass. As an optimization, introduced byCMM, the collector remembers the live objects from the �rstpass so that it does not retain dead objects that happen toreside on a promoted page.The algorithm that Bartlett actually uses aggressivelycopies elements during the �rst pass and unrolls copies thatwere incorrectly made during the second pass.CMM is a customizable collector that supports mostly-copying collector. BDW and CMM have been compared inthe context of C++ [4]. Like Bartlett, CMM implementsa two stage mostly-copying algorithm. In the �rst stageall other heaps are examined for quasi-pointers, or pointersinto this heap. All pages containing objects referenced by3



Checksum Performs a checksum on a stream of 16-bitvalues.Knuth-Bendix Runs the Knuth-Bendix completion algo-rithm on a rewriting system.Lexgen Generates a lexer for ML.Life Runs 10; 000 generations of the Life simula-tion [21] for a small self-replicating automata.Logic Performs some simple theorem-proving usingback-tracking and uni�cation.Mergesort Mergesorts a large list repeatedly.Pia Runs a perspective inversion algorithm to de-cide the location of an object in a perspectivevideo image [30].Groebner Computes a Groebner basis.Table 1: Brief description of the benchmarks.quasi-pointers are promoted into to-space. The heap beingcollected does not contain any untyped objects.In the second stage, a copying collection begins usingas roots the stack, static area, and all the objects foundduring the �rst stage. One of the innovations introduced byCMM was the live map { a bitmask associated with eachpage that records the objects that are actually live on thatpage. Before this development, collectors treated all objectson promoted pages as roots with false retention in excess of50% [3].This algorithm is proportional to the size of the otherheaps, and the live data in the collected heap. Untypedobjects exist in a di�erent heap and are collected via someother collection strategy. One of the drawbacks of CMM'sapproach is that it cannot break cycles between heaps.3 Empirical Results3.1 Comparison of Overall Costs for MLTo compare MCC to BDW, we added a C back end to theTIL compiler [29, 28] and targeted it to use both collectors.TIL generates fairly natural C code that uses the C stackand produces natural C constructs such as while loops.We compiled eight small to medium sized benchmarksfor ML, using BDW 4.10 and then MCC. The code, exceptfor allocation, collection, and the array size primitive, isthe same for both versions. We selected benchmarks thathave been used in the literature [17, 26, 24, 23] to comparethe performance of TIL and SML/NJ [2]. Table 1 gives abrief description of each benchmark3. Since most of theseran very quickly, we modi�ed the programs slightly to makethem run longer (e.g., by increasing the data set sizes ornumber of iterations). We compiled the C code using gcc-O2 on a 256 MB UltraSparc-5 running Solaris 2.64.To improve BDW's performance we inlined almost allallocations, allocated pointer free objects atomically, con�g-ured BDW for large heaps, and disabled interior pointers.To improve MCC's performance we used gcc extensionsto put the allocation pointer in a global register, inlinedalmost all allocations, and provided type information forall objects whose types were statically known. The onlyallocations we did not inline were for untyped objects. There3Groebner was provided to us by Thomas Yan.4A complete explanation of our methodology is given in Ap-pendix A

Heap Alloc. Live # of GC Live(MB) (MB) (KB) GCs (ms) Obj./GCChecksum 8 979 4/4 262 1 46KB 16 103 121/1136 15 161 84.732Lexgen 8 75 213/503 19 28 28,374Life 8 244 2/14 69 1 501Logic 8 173 12/30 47 5 2,951Mergesort 8 328 159/262 98 13 26,919Pia 8 213 47/111 68 8 6,637Groebner 32 1018 430/3713 92 210 335,480Table 2: Basic information: the canonical heap size (CHS)used for other measurements, total allocation, least/mostlive data after any collection, # of collections (at CHS),how long each collection took (average), live objects per col-lection (average).was only one benchmark (Groebner) with untyped objectsin the heap.We instrumented both collectors with high-resolution timersto time overall running times and collection times. Collec-tion times do not include allocation. We collected timinginformation for a variety of heap sizes ranging from 1 MBup to 64 MB. Both collectors were constrained to stay withinthe measured heap size.Figure 1 shows the empirical results5. At the end of thissection we analyze each benchmark individually to explainits performance. In the following subsection we summarizethose analyses along three lines: client time, collection time,and space requirements. Some basic information about eachbenchmark is shown in Table 2.3.1.1 Client TimeThe client times vary by as much as 20% between the twocollectors. Although the client code for MCC typically re-quires fewer instructions because of MCC's shorter alloca-tion sequence, MCC's client times are in many cases worsethan BDW's. There are four e�ects that we believe accountfor the variation in client times:� Headers. For programs that predominantly allocatedata of a single size, BDW and MCC will for practicalpurposes layout the data identically. If in addition,the access pattern is similar to the allocation pattern,MCC has worse cache performance because of the ad-ditional header word. A common example for ML that�ts this pattern are list elements of two words. Insteadof accessing the data with stride two, a benchmark us-ing MCC is accessing it with stride three.To con�rm that this was the e�ect we observed weadded a word to each object allocated by BDW andmeasured the client time slowdown. Figure 2 comparesthe observed slowdown for MCC to the slowdown forBDW with the extra word. As expected, for Mergesortand Groebner, which allocate only list pairs (see Fig-ure 3), the measured slowdown is similar. Figure 2 isnot a good predictor for the other benchmarks becausemultiple object sizes (or atomic data) are involved.� Size. BDW maintains two free lists for each size ofobject { one for pointer-free objects and one for un-typed objects. For programs that allocate objects of5The actual numbers for all the experiments are available in Ap-pendix A.4
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(h) GroebnerFigure 1: The vertical axis shows wall clock times (seconds) averaged over ten runs as a function of heap size (MB, horizontalaxis). MCC (light) and BDW (dark) client times are shown, in addition to the respective collector times (black). A missingbar indicates that the benchmark could not be run at that heap size.
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GroebnerPiaMergesortLogicLifeLexgenKnuth-BendixChecksum
�10 0 10 20 30Figure 2: Percentage slowdown relative to BDW client timesfor MCC client times (light) and BDW with an extra wordon each object (dark).many di�erent sizes we expect there to be some addi-tional overhead for BDW because the free list will notbe located in a register thus slowing down allocation.However the more signi�cant e�ect is more subtle andonce again has to do with cache behavior.Typically for BDW, the free list lies sequentially inmemory, but distinct free lists are unrelated. A pro-gram that allocates a data structure containing ob-jects of multiple sizes will have those objects scatteredacross multiple free lists with BDW. With MCC theobjects will be laid out sequentially. This may lead tobetter locality for MCC if the access pattern is simi-lar to the allocation pattern. This is typically the casewhen traversing recursive data structures such as treeswhich are encountered in several of these benchmarks.� Allocation. The allocation sequence for MCC is seveninstructions versus nine instructions for BDW. In addi-tion MCC's allocation sequence requires only a singlememory operation as opposed to four for BDW (see[25] for details). The advantages of faster allocationwere hard to separate from the much larger cache ef-fects without doing a cycle-level simulation.� Arrays. Computing the array size is the only codeother than allocation that is di�erent for the two col-lectors. MCC requires two additional instructions tocompute the array size. Only one benchmark (Check-sum) was a�ected by this di�erence.3.1.2 Collection TimeFigure 1 shows that most of the benchmarks spend muchless time in the collector under MCC than under BDW, ex-cept for the smallest heap sizes. In the few cases that MCC'scollector times are large relative to BDW's it is because thebenchmark has a very deep stack (Knuth-Bendix), or thereare untyped objects in the heap (Groebner). These factorsare important because for MCC a quasi-pointer detectiontakes about 100 instructions whereas for BDW it takes only30 instructions. At smaller heap sizes MCC performs morecollections, further enhancing the relative cost of stack scan-ning and hence quasi-pointer detection.We were not able to determine how useful type informa-tion was either in reducing the size of the live data or im-proving collector performance. Because these benchmarks,except for Checksum, manipulate small values that do not

2Groebner 2 3Pia 2Mergesort 1 2 3Logic 2Life 2 4+Lexgen 1 2 3Knuth-Bendix 2 3Checksum
0 0.2 0.4 0.6 0.8 1Figure 3: Percentage of objects allocated of size 1, 2, 3, and4+. The dot indicates the percentage of the data that waspointer-free. (Values less than 5% have been omitted.)look like pointers we believe the e�ect on the size of thegraph to be small.3.1.3 SpaceFor all the benchmarks MCC requires more space than BDW.This is a combination of the space needed to copy objects,the extra overhead of the header word, and space lost tofragmentation. Because MCC initiates a collection when-ever the heap becomes two-thirds full, the live data must �tin one-third of the heap. Since most of these benchmarksprimarily allocate objects of size two (Figure 3) the live datafor MCC is one and a half times larger than the live data forBDW. BDW can successfully collect the heap, ignoring themark stack, whenever the live data �ts in the heap. Fromthese facts it follows that MCC can collect a benchmark aslong as 92 live < heap. So MCC requires 4 12 times as muchspace as BDW. This is consistent with our empirical results.Sometimes less space is required because of the mark-stackfor BDW, or di�ering object sizes. Although fragmentationcould further increase the space requirements for MCC, itdoes not play a large role in these benchmarks.Overall the running times for MCC are comparable withoverall running times for BDW, being anywhere from 25%faster to 15% slower. In all cases, garbage collection timesfor MCC were better than for BDW and got progressivelybetter as the heap size grew.3.2 Collector InternalsMCC is a fairly well tuned implementation of our algorithm.The two optimizations that had the greatest impact were:specializing the copy loop and object dispatch for objects ofsize two, and inlining the inner loop of the collector (about1000 lines of assembly code).Figure 4 shows the breakdown of collector time into thevarious phases of the collector. Checksum and Life spendsuch a large proportion of collection time in stage free be-cause they have small live sets and allocate a lot of data.For these two benchmarks copying the live data is cheaperthan traversing the linked list of pages to free each one.Most of the benchmarks spend a signi�cant proportionof collector time in root scanning (traversing the registers,stack, and static area) because quasi-pointer detection isslow, stacks are fairly deep, and stack frames for the Sparcare relatively large due to register windows. Mergesort isan exception because it has a very shallow stack { about6



pin graphGroebner root graph free sweepPia graphMergesort root graph free sweepLogic root graph free sweepLife root graphLexgen root graph sweepKnuth-Bendix root freeChecksum
0 0.2 0.4 0.6 0.8 1Figure 4: Percentage of collector time (MCC) spent: pinningobjects (pin), scanning roots (root), graph traversal (graph),freeing pages (free), sweeping (sweep). (Values less than 5%have been omitted.)Benchmark Average per CollectionRoots PP Roots/PP Frag.(KB)Checksum 35 5 7 8Knuth-Bendix 6126 917 7 1358Lexgen 175 46 4 112Life 50 7 8 11Logic 234 47 5 67Mergesort 36 10 4 7Pia 325 50 6 78Groebner 118 304 .4 585Table 3: All data is taken at the canonical heap size (seeTable 2). PP stands for promoted page. The Roots/PPcolumn was measured for each collection and averaged, andis not necessarily the same as dividing column one by columntwo. Fragmentation measures the amount of unused spaceon promoted pages.11 stack frames. Groebner does not show root scanningas signi�cant because it has so much live data, and manyuntyped objects that are very slow to scan.The fragmentation column in Table 3 shows the amountof space on promoted pages that was invalidated by thesweep phase. Although it would be possible to reuse thisspace, MCC does not does so. As the table shows, for mostof these benchmarks MCC wastes less than 100 KB.We included the roots per promoted page because thedata suggest a technique for speeding quasi-pointer detec-tion. Since in most cases there are �ve or more quasi-pointers (roots) per promoted page, MCC could batch thesequasi-pointer test thus amortizing the cost of scanning thepage over several detections.3.3 BenchmarksThis section gives a detailed analysis of the individual bench-marks.Checksum (Figure 1(a)) allocates many 2 and 3 word ob-jects and one 4 KB array. Although Checksum allocates1 GB of data only 46 objects are live. We expect copyingcollection to perform well in this setting.Although collector times are much shorter for MCC thanfor BDW, client times are longer. We speculate that this is

a result of cache behavior due to header words for MCC,and segregating objects based on size for BDW.Checksum has another peculiarity that may account forsome of the time. Although array sizes for this benchmarkare constant, the compiler is unable to lift the array sizecalculation out of many of the loops. For BDW the arraysize is stored as the �rst element of the array, but for MCCthe array size must be extracted from the header word {requiring an extra shift and an and.MCC's collector times may be further enhanced becauseChecksum uses bit packing which may lead to some falsequasi-pointer identi�cations by BDW, thus arti�cially in-creasing the size of the live graph.Knuth-Bendix (Figure 1(b)) allocates many 1, 2, and 3word objects. Because it uses many exception handlers, thecompiler is unable to take advantage of tail recursion, soKnuth-Bendix generates a very deep stack (over 4000 stackframes).The deep stack causes MCC to spend over half its timesweeping and scanning the stack. Since MCC uses a sloweralgorithm to infer quasi-pointers, and as many as 6000 quasi-pointers are found per collection, BDW and MCC collectiontimes are comparable. Collection times for MCC do notdrop uniformly because they are highly dependent on thedepth of the stack when collections occured.MCC requires four times more space than BDW. This issurprisingly low considering that 1 MB is lost to fragmenta-tion at each collection. We surmise that the mark stack forBDW may be quite large.Lexgen (Figure 1(c)) allocates only 75 MB. The speedupin the client time for Lexgen under MCC occurs because ofcache behavior. Lexgen allocates an abstract syntax treewhich contains nodes of many di�erent sizes. Under MCCthese are laid out in memory in the same order they areallocated. This happens to correspond to the access patternof the program. For BDW, each node of a di�erent size isin a di�erent free list and therefore has no spatial locality.Other e�ects, such as the shorter allocation sequence forMCC may also play a role here.Life (Figure 1(d)) allocates lists of pairs of integers. Thepairs are allocated atomically for BDW and make up about35% of the heap.Client times are comparable under the two collectors al-though adding a \header" word slowed BDW's client time by30%. Client times for MCC are faster because BDW main-tains multiple free lists { one for atomic objects and one foruntyped objects. Because Life sequentially examines eachpair in the list, MCC gets much better locality despite theextra header word.Logic (Figure 1(e)) allocates an abstract syntax tree con-taining nodes of various sizes. As shown in Figure 2 cachee�ects are minimal for this benchmark. The observed 12%speedup in client times under MCC is a consequence of afaster allocation sequence and the mix of object sizes whichleads to better cache behavior for MCC than indicated inthe graph.Collection times are shorter for MCC because Logic hasa shallow stack, and only about 30 KB of live data.
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Mergesort (Figure 1(f)) allocates 330 MB of two-word listelements. At each collection about 160 KB are live. Becausethis benchmark only allocates elements of size 2, BDW needonly maintain a single free list.The client times under MCC are 20% slower because oflocality. Although under both BDW and MCC the listsare arrayed in memory sequentially, the extra header wordneeded by MCC causes the list to consume one and halftimes as much memory, thereby reducing the e�ectiveness ofthe cache. The experimental data in Figure 2 con�rms thatlocality e�ects are responsible for the observed slowdown.Pia (Figure 1(g)) allocates many double-precision oatingpoint values. The remainder of the data (45%) consists ofclosures (3 words) and list elements. Despite most of thedata being allocated atomically MCC's collection times arebetter than BDW's in most cases.The jump in collector time at 4 MB occurs because Pia'sstack oscillates between a thousand and a hundred stackframes. Although MCC implements a heuristic to try col-lecting when the stack is shallow, there is not enough leewayfor the heuristic to take e�ect until the heap reaches 8 MB.Client times for MCC are comparable to times for BDWbecause locality is not important for this benchmark, andbecause the extra code needed to align the oating pointvalues means that MCC's allocation routine is not shorterthan BDW's in this case.Groebner (Figure 1(h)) allocates only 2 word objects buthas as much as 4 MB of live data (6 MB when we takeheader words into account). Groebner uses polymorphismthat the TIL compiler is unable to eliminate at compile time.Because we do not yet dynamically generate header words,Groebner has untyped objects in the heap (about 300 percollection).Because MCC's quasi-pointer detection is slow relativeto BDW's, collection times are approximately the same un-der both BDW and MCC. Further work optimizing quasi-pointer detection may make a signi�cant di�erence for thisbenchmark.The slowdown in client time for MCC is due to localitye�ects as shown in Figure 2.4 Future WorkThe preliminary results presented above suggest several di-rections future research might take. It would be interestingto use a cycle-level simulator to pinpoint the performancee�ects we have observed, and to investigate the impact ofcache architecture. Larger and longer-running benchmarkscould also help determine whether these cache e�ects areimportant for a larger class of programs.Further work is needed to fully tune MCC. In particu-lar more sophisticated quasi-pointer detection schemes arepossible. We are also exploring the possibility of storing theheader words in a separate space. This will slow allocationand possibly collection, but may recover the cache behaviorlost with the current approach.Another direction of interest is to look at how the lan-guage context a�ects collector performance. For example,Java implementations use a header word on objects to pointto the class. This header word can also be leveraged bythe collector, thereby avoiding some of our overheads whencompared to BDW.We speculate that in a concurrent setting, a collectorarchitecture similar to MCC's will be favored because each

thread can allocate objects on a private page without syn-chronization. Only page allocation and garbage collectionwould require synchronization.An intriguing possibility is that a compiler using accuratecollection may bene�t from a conservative collector. Tra-ditional compilers using accurate collection generate addi-tional code to establish GC-safe points where type informa-tion has been collected for all the registers, and stack. Aconservative collector makes less stringent demands on theclient and therefore may be able to recover gracefully whentype information is unavailable, thus making GC-safe pointsunnecessary.5 ConclusionMCC demonstrates that a prototype mostly-copying collec-tion can be competitive with a mature conservative mark-sweep collector. MCC does particularly well when alloca-tion rates are high and the live data is a small fraction ofthe heap. However because it is a copying collector and be-cause MCC uses header words, it can require signi�cantlymore space than BDW, and have worse cache behavior. Inaddition, MCC implements a slow pointer testing routinewhich penalizes it further in the presence of a deep stack ormany conservative objects relative to BDW. Despite thesedrawbacks, MCC is comparable if not better than BDWon almost all benchmarks. The study in [15] suggests thatmore sophisticated techniques may yield another 20% im-provement in collector times. And, a few modi�cations toour compiler may further decrease the cost of allocation.These factors lead us to speculate that in the presence ofcomplete type information in the heap, MCC may somedaybe competitive with an accurate copying collector, not justconservative mark-sweep.6 AcknowledgmentsWe extend our thanks to the many people who have pro-vided valuable comments and suggestions: Giusseppe At-tardi, Joel F. Bartlett, Hans J. Boehm, Chris Hawblitzel,Simon Peyton Jones, David Walker, Stephanie Weirich, andSteve Zdancewic.References[1] American National Standards Institute, 1430 Broad-way, New York, NY 10018, USA. American NationalStandard Programming Language C, ANSI X3.159-1989, Dec. 14 1989.[2] A. W. Appel and D. B. MacQueen. Standard ML ofNew Jersey. In M. Wirsing, editor, Third InternationalSymposium on Programming Language Implementationand Logic Programming, pages 1{13, New York, Aug.1991. Springer-Verlag. Volume 528 of Lecture Notes inComputer Science.[3] G. Attardi and T. Flagella. A customizable memorymanagement framework. In USENIX Association, ed-itor, Proceedings of the 1994 USENIX C++ Confer-ence: April 11{14, 1994, Cambridge, MA, pages 123{142, Berkeley, CA, USA, Apr. 1994. USENIX.[4] G. Attardi, T. Flagella, and P. Iglio. Performance tun-ing in a customizable collector. In H. Baker, editor, Pro-ceedings of International Workshop on Memory Man-8
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Pin Root Graph Free SweepChecksum 1 28 4 63 4Knuth-Bendix 0 45 42 1 12Lexgen 0 7 88 2 3Life 0 33 18 41 8Logic 0 36 39 11 14Mergesort 0 3 91 4 2Pia 0 36 44 6 14Groebner 10 0 88 1 1Table 4: Percentage of collector time spent in each phase.Data corresponding to Figure 4.1 2 3 4+ AtomicChecksum 0 50 50 0 0Knuth-Bendix 31 38 31 0 2Lexgen 0 87 4 8 26Life 0 100 0 0 37Logic 5 62 31 2 0Mergesort 0 100 0 0 0Pia 2 80 17 1 53Groebner 0 100 0 0 1Table 5: Percentage of objects allocated at each size, andthe percentage of data allocated atomically for BDW. Cor-responds to the data shown in Figure 3.A Data & MethodologyWe ran all the experiments on a 256 MB UltraSparc-5 run-ning Solaris 2.6. The machine was lightly used while we ranour experiments.We present here the numbers used to obtain the graphsin the paper with an explanation for each.The data in Figure 4 was obtained by wrapping timersaround each of the distinct phases of the collector and run-ning each benchmark at the canonical heap size listed inTable 2. The actual numbers are shown in Table 4.The data in Figure 3 were obtained by instrumenting theallocation macros to record the number of objects allocatedof each size from 1 to 3, and greater than 3 (4+). We also in-strumented the atomic allocation routines for BDW to countthe number of objects allocated of each size. From this in-formation we computed the percentage of the data that wereallocated atomically. Table 5 gives the actual numbers.The data in Figure 2 was obtain by adding an extraheader word to every inlined allocation for BDW. We com-pared the client times for BDW with and without the headerword and computed the percent slowdown using BDW with-out the header word as a baseline. All runs were made atthe canonical heap size for each benchmark. Table 6 givesthe actual percentages.Table 7 contains the timing data corresponding to Fig-ure 1. These numbers were obtained by running each bench-mark at each heap size ten times, throwing out the worstrun, and averaging. We used high-resolution timers withoverhead of about one microsecond to take these measure-ments. In these tables we also include the data for the bestoverall running times. In the text we chose to use the av-erage because at small heap sizes the running time can besensitive to the initial state of the stack and registers. Whenno data is listed in the table that is because that benchmarkcould not be run at that heap size.

MCC BDW + 1Checksum 23.6 11Knuth-Bendix 0.3 2.6Lexgen -15.0 8.1Life -0.5 31.6Logic -12.1 0.6Mergesort 21.7 20.9Pia 2.0 5.9Groebner 16.3 14.4Table 6: Percent slowdown for BDW with an extra headerword and MCC client times relative to a baseline of BDW.Corresponds to the data shown in Figure 2.
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Client GC Client GC Client GCB A B A B A B A B A B AChecksum Knuth-Bendix Lexgen1 BDW 15.70 15.77 11.72 11.72MCC 19.31 19.37 1.67 1.692 BDW 15.70 15.73 10.79 10.87 18.50 18.88 1.94 1.95MCC 19.27 19.32 1.35 1.354 BDW 15.77 15.75 10.32 10.37 18.10 18.16 2.29 2.29 18.94 19.20 1.33 1.34MCC 19.33 19.35 1.22 1.24 15.17 15.47 1.06 1.098 BDW 15.66 15.72 10.31 10.35 18.15 18.19 1.84 1.85 19.10 19.34 1.20 1.19MCC 19.36 19.43 1.14 1.16 16.16 16.44 0.56 0.5912 BDW 15.66 15.70 10.34 10.35 18.12 18.18 1.80 1.80 18.84 19.07 1.18 1.18MCC 19.41 19.47 1.12 1.12 16.47 16.73 0.40 0.4016 BDW 15.68 15.69 10.32 10.37 18.15 18.24 1.57 1.56 19.00 19.11 1.26 1.26MCC 19.45 19.51 1.11 1.11 18.25 18.30 2.33 2.42 16.68 16.81 0.34 0.3624 BDW 15.68 15.72 10.52 10.54 18.41 18.45 1.73 1.75 18.96 19.00 1.32 1.36MCC 19.54 19.60 1.09 1.11 18.28 18.34 0.62 0.62 16.89 17.07 0.21 0.2232 BDW 15.79 15.81 10.57 10.64 18.59 18.64 1.71 1.72 18.96 19.03 1.45 1.47MCC 19.60 19.66 1.10 1.09 18.40 18.49 1.46 1.45 17.00 17.18 0.17 0.1748 BDW 15.72 15.79 10.88 10.89 19.04 19.08 2.01 2.05 18.90 19.06 1.71 1.74MCC 19.77 19.83 1.08 1.09 18.61 18.66 0.50 0.50 17.50 17.62 0.10 0.1064 BDW 15.73 15.79 11.11 11.16 19.49 19.57 2.21 2.24 18.85 18.96 2.04 2.03MCC 20.06 20.14 1.10 1.09 18.86 18.93 0.65 0.64 17.83 17.95 0.15 0.16Life Logic Mergesort1 BDW 11.22 11.28 2.92 2.93 6.76 6.77 2.54 2.54 5.55 5.55 20.04 20.19MCC 11.05 11.10 0.58 0.58 5.81 5.84 1.46 1.472 BDW 11.15 11.18 2.73 2.75 6.77 6.80 2.28 2.29 5.51 5.56 7.99 8.10MCC 11.05 11.12 0.42 0.42 5.89 5.90 0.76 0.784 BDW 11.22 11.28 2.67 2.66 6.77 6.82 2.19 2.20 5.53 5.53 5.55 5.62MCC 11.11 11.16 0.32 0.31 5.88 5.90 0.46 0.46 7.06 7.22 4.67 5.628 BDW 11.20 11.26 2.69 2.70 6.78 6.79 2.21 2.22 5.54 5.53 4.35 4.38MCC 11.16 11.21 0.25 0.25 5.96 5.97 0.31 0.31 6.69 6.73 1.43 1.4412 BDW 11.32 11.34 2.75 2.76 6.79 6.81 2.26 2.29 5.53 5.53 4.05 4.08MCC 11.18 11.24 0.23 0.23 6.01 6.06 0.26 0.26 6.90 6.93 1.54 1.5516 BDW 11.23 11.30 2.81 2.81 6.80 6.83 2.33 2.35 5.49 5.53 4.03 4.02MCC 11.26 11.27 0.22 0.22 6.08 6.11 0.23 0.23 6.95 6.99 1.43 1.4424 BDW 11.21 11.27 2.92 2.95 6.83 6.85 2.46 2.47 5.53 5.54 4.02 4.04MCC 11.34 11.40 0.22 0.22 6.18 6.21 0.20 0.20 6.98 7.01 1.04 1.0632 BDW 11.38 11.46 3.01 3.01 6.84 6.84 2.58 2.59 5.53 5.61 4.03 4.03MCC 11.41 11.47 0.22 0.22 6.30 6.33 0.19 0.19 6.99 7.04 0.80 0.8248 BDW 11.24 11.30 3.27 3.31 6.90 6.94 2.83 2.87 5.56 5.59 4.14 4.16MCC 11.60 11.62 0.21 0.21 6.54 6.56 0.17 0.17 7.23 7.29 0.65 0.6564 BDW 11.27 11.33 3.46 3.49 6.92 6.93 3.05 3.10 5.52 5.54 4.40 4.43MCC 11.81 11.88 0.21 0.21 6.83 6.87 0.17 0.18 7.38 7.44 0.51 0.52Pia Groebner1 BDW 11.04 11.09 3.11 3.12MCC2 BDW 10.95 11.04 2.72 2.73MCC 11.09 11.14 1.44 1.524 BDW 10.97 11.32 2.58 2.61MCC 10.96 11.19 2.28 2.278 BDW 10.93 11.00 2.58 2.58MCC 11.03 11.21 0.71 0.7212 BDW 10.97 11.00 2.64 2.63MCC 11.10 11.28 0.59 0.5916 BDW 10.96 11.02 2.67 2.67 35.38 35.46 21.84 21.79MCC 11.10 11.26 0.43 0.4324 BDW 10.97 11.75 2.80 3.03 35.29 35.40 17.49 17.50MCC 11.23 11.36 0.38 0.38 41.37 41.40 24.65 24.6332 BDW 10.96 11.01 2.86 2.88 35.31 35.48 15.79 15.82MCC 11.32 11.41 0.27 0.27 41.24 41.28 18.96 19.1448 BDW 10.96 11.06 3.14 3.17 35.58 35.65 14.61 14.66MCC 11.47 11.63 0.25 0.25 41.75 41.80 12.81 12.9764 BDW 11.13 11.18 3.40 3.44 35.70 35.81 14.04 14.10MCC 11.68 11.85 0.24 0.24 41.62 41.64 10.02 10.11Table 7: Timing data for the benchmarks as depicted in the text. The column B contains the data for the run with the bestoverall time, and column A shows the average as plotted in Figure 111


