
Structuring functional programs by using monadsDavor Obradovic, University of PennsylvaniaMay 1998AbstractThe notion of monads originates from the categorytheory. It became popular in the programming lan-guages community after Moggi proposed a way to usemonads to structure denotational semantics. Wadlerand others showed how this can be e�ectively used asa methodology for building interpreters.Monads are capable of capturing individual languagefeatures in a modular way. This paper evaluatestwo modular approaches for building monadic inter-preters - Steele's pseudomonads and Liang, Hudak& Jones's monad transformers. We also considerthe the problem of feature interaction in the monadtransformers setting.1 Monads: Introduction andMotivationIs there a practical use for category theory? Cer-tainly - the programming language theory is a goodexample. Many categorical concepts led to impor-tant discoveries about programming languages andvice-versa, many ideas from the category theory weremotivated by the programming languages research.Monads probably �t in both groups.Category theorists invented monads in the 1960'sto express certain properties of universal algebra.Two decades later people started studying pro-gramming language aspects of monads. Among thebiggest contributors to this promising idea were Eu-genio Moggi [6] and Philip Wadler [7]. The originalidea was to use monads for presenting the deno-tational semantics of complex languages. Monadsseemed to be able to capture a variety of commonly

found language properties. At the same time theycan be used as a clean and extensible technique forimplementing these features in interpreters. The keyfeature is that monads provide us with a convenientnotion of a computation. Using this, we can enrichour computational model by distinguishing betweenthe values and the computations. For example, twoprograms (computations) that calculate the sameanswer, but generate di�erent screen outputs shouldcertainly be considered di�erent. This is hard toachieve in a setting where computations are viewedstatically, as pure functions. Using monads, wecan precisely specify the desired level of distinctionbetween computations.This balances the tradeo� between impure andpure functional languages from the language im-plementor's point of view. On one hand, purelanguages, such as Haskell, bene�t from the powerof equational reasonong. On the other hand,many desired features seemed to be very hard toimplement without using impure constructs, suchas arrays, references and certainly I/O. Monadsprovided solutions that combined the best of bothapproaches. We should note that monads are notspecial programming language constructs - they aresimply an example of a good data abstraction. Aparticularly good data abstraction! Hence, we shouldrather say that a program is written in monadicstyle, than that it uses monads. This is preciselyone of the big advantages of monads; apart fromthe support for higher order functions, they don'timpose almost any restrictions to the underlyingprogramming language environment. Monadic styleis just a simple methodology that turned out tobe surprisingly general in a variety of situations.1

It can capture individual properties while keepingthe abstraction level appropriately high, thus sav-ing us from too much concern about technical details.1.1 What is a monad?As mentioned earlier, the concept of monads wascoined in the category theory and later adopted bycomputer scientists. This section describes mon-ads from the functional programming and categoricalstandpoint. We will use the standard Haskell nota-tion (with some additions in the chapter 4) through-out the paper. The reason is that Haskell, as a purelyfunctional programming language, is very close to theactual mathematical language commonly used by thesemanticists. This makes the formal reasonong aboutour interpreters easier.A functional programmer thinks of a monad as atriple (M, unitM, bindM), where M is a type con-structor, unitM and bindM are polymorphic functionsunitM :: a -> M abindM :: M a -> (a -> M b) -> M b,and the following laws are satis�ed:� Left unit:(unitM a) `bindM` k = k a� Right unit:m `bindM` unitM = m� Associativity:m `bindM` (\a->((k a) `bindM` h)) == (m `bindM` (\a-> k a)) `bindM` hfor everym :: M ak :: a -> M bh :: b -> M c.

Notice the Haskell syntax for the in�x version ofbindM which is `bindM` and for a lambda abstrac-tion �x:e which is written as \x -> e.Intuitively, we can think of a type M a as the type ofcomputations resulting in a value of type a. unitMembeds values into computations, such that if v::ais a value, then unit v is the computation that doesnothing except yields the value v. Similarly, if m::M ais a computation and k::a -> M b is a function, thenm `bindM` k is a computation that performs m, ap-plies k to the resulting value and then performs thecomputation returned by k. The word \then" is veryimportant here, since `bindM` will indeed be used tocontrol the order of evaluation.For a given monad M, we can also de�ne the followingpolymor�c functions:joinM :: M (M a) -> M amapM :: (a -> b) -> (M a -> M b)withjoinM m = m `bindM` idmapM f m = m `bindM` (\a -> unitM (f a)).It is easy to see that with the appropriate types thefollowing holds in every monad M:(1) joinM . joinM = joinM . (mapM joinM)(2) joinM . unitM = id(3) joinM . (mapM unitM) = id.The symbol '.' is here used to denote the functionalcomposition.As far as category theorists are concerned, a monadover a category C is a triple (T; u; j), where T : C ! Cis a functor, u : IdC ! T and j : T 2 ! T are natu-ral transformations and the following diagrams com-mute: T 3A jTA�! T 2ATjA # # jAT 2A jA�! TATA uTA�! T 2A TuA � TAid & # jA . idTA2

The two de�nitions are (as expected) isomorphic in acertain sense. We can regard C as the category whoseobjects are our types and arrows are functions withstandard functional composition and identity. Thefunctor T acts on objects (types) as the type con-structor M and on arrows (functions) as mapM. Poly-morphic functions unitM and joinM correspond tothe natural transformations u and j respectively. Fi-nally, the �rst commutative diagram corresponds tothe derived rule (1), while the second one correspondsto (2) and (3).1.2 Some simple monadsLet's see a couple of simple examples. The simplestone is the identity monad I:type I a = aunitI a = aa `bindI` k = k aThe type constructor I is the identity and so is thefunction unitI. bindI is just the ordinary functionalapplication. This monad, as the extreme case, ex-actly identi�es values with computations.A more interesting example where this is not thecase is the list monad L. Haskell syntax for thetype of lists whose elements are of the type a is[a]. We also assume the existance of the standardlist functions map :: (a -> b) -> ([a] -> [b])that maps a given function over a list andjoin :: [[a]] -> [a] that \attens" a list of listsinto a single list. The list monad is given bytype L a = [a]unitL x = [x]l 'bindL` f = join (map f l).Notice that the monadic functions mapL and joinLare really the standard map and join list functions,just as we would normally expect.Another similar example is the tree monad:type Tree a = Leaf a| Node (Tree a) (Tree a)

unitTree x = Leaf xbindTree (Leaf x) = \f -> f xbindTree (Node t1 t2) =\f -> Node (t1 `bindTree` f)(t2 `bindTree` f)Type Tree a is the type of regular binary trees whoseleaves hold values of type a. bind-ing the functionf to a tree results in a new tree obtained from theoriginal one by \appending" to each leaf a new tree.This new tree is obtained by applying f to the valuestored in the leaf.2 Monadic InterpretersWe are now ready for some more interesting exam-ples. In this section we will see how monads can beused to implement a simple interpreter for lambdacalculus, as suggested by Philip Wadler in [8].Wadler demonstrated the exibility of this idea byshowing how to build a couple of quick variations ofthe interpreter.The interpreter deals with terms and values. Termsconsist of variables, integer constants, additions,lambda abstractions and applications. A value iseither Wrong (indicating an error), a number, or afunction. When implementing an interpreter, the keyidea is to interpret a function of type a -> b in ourtarget language as a function of type a -> M a inour meta-language (Haskell). Nice thing is that wecan do that independetly of the actual monad M. De-scription of M, which includes details about how arecomputations exactly represented and carried out, iscompletely separated.Given any M, we can think of unitM as the identityfunction and bindM as the application in that par-ticular monad. The whole communication betweenthe monad and the interpreter is done through thosetwo operations. Here is the actual code for the inter-preter:type Name = Stringdata Term = Var Name| Con Int3

| Add Term Term| Lam Name Term| App Term Termdata Value = Wrong| Num Int| Fun (Value -> M Value)type Environment = [(Name, Value)]showval :: Value -> Stringshowval Wrong = "<wrong>"showval (Num i) = showint ishowval (Fun f) = "<function>"interp :: Term -> Environment -> M Valueinterp (Var x) e = lookup x einterp (Con i) e = unitM (Num i)interm (Add u v) e =interp u e `bindM` (\a ->interp v e `bindM` (\b -> add a b))interp (Lam x v) e =unitM (Fun (\a -> interp v ((x,a):e)))interp (App t u) e =interp t e `bindM` (\f ->interp u e `bindM` (\a -> apply f a))lookup :: Name -> Environment -> M Valuelookup x [] = unitM Wronglookup x ((y,b):e) = if x==ythen unitM belse lookup x eadd :: Value -> Value -> M Valueadd (Num i) (Num j) = unitM (Num (i+j))add a b = unitM Wrongapply :: Value -> Value -> M Valueapply (Fun k) a = k aapply f a = unitM Wrongtest :: Term -> Stringtest t = showM (interp t [])Notice that in the rule for application both the func-tion and the argument are evaluated, so this is a

call-by-value interpreter. As we'll shortly see, asmall modi�cation would implement the call-by-namestrategy. But let's �rst give some meaning to theabove interpreter.2.1 Ordinary interpreterSubstitute the identity monad I from 1.2 for M in theabove interpreter while de�ningshowI = showval.If we try to test it by evaluating test term0, whereterm0 =App (Lam "x" (Add (Var"x")(Var"x")))(Add (Con 10)(Con 11))conveniently written as term0 = (�x:x+x)(10+11),we get 42 as the result, as expected.2.2 Error messagesError reporting can be added to the interpreter byde�ning the following monad:data E a = Suc a | Err StringunitE a = Suc a(Suc a) `bindE` k = k a(Err s) `bindE` k = Err ssrrorE s = Err sshowE (Suc a) = "Success: " ++ showval ashowE (Err s) = "Error: " ++ sAs before, we have to replace the monad M by Ein the interpreter. Notice how an error, as soon asdiscovered, percolates to the top level via bindE func-tion. To introduce error messages, we simply replaceevery occurence of unitE Wrong by the appropriatecall to errorE:lookup x [] =errorE ("unbound variable: " ++ x)add a b =errorE ("should be numbers: " ++showval a ++ "," ++ showval b)4

apply f a =errorE ("should be a function: " ++showval f)Evaluating test (App (Con 1) (Con 2)) returns"Error: should be function: 1".2.3 OutputWe can modify our interpreter to include the outputfeatures. The following monad, when included in theinterpreter, accumulates the output during the eval-uation in the order it occurs.type O a = (String,a)unitO a = ("", a)m `bindO` k = let (r,a) = m(s,b) = k ain (r++s, b)showO (s,a) = "Output: " ++ s ++" Value: " ++ showval aWe pair each value with the output generated forthat value. unitO simply returns a value withoutany output, while bindO does the application andconcatenates the generated outputs. Notice how`bindO` enforces the correct order of generating out-put strings. r will be generally evaluated before s,because of the dependency introduced by a.This just describes how the output is propagated.To generate the output, we introduce a new functionoutO. We also need to extend the language of termsand the interpretation function:outO :: Value -> O ()outO a = (showval a ++ "; ", ())data Term = ... | Out Terminterp (Out u) e =interp u e `bindO` (\a ->outO a `bindO` (\() -> unitO a))Interpreting (Out u) returns the value of u as theresult and sends it o� to the output, emptying the

output bu�er at the same time. An interesting detailto notice is that bindO indeed behaves similarly tothe sequencing operator in the imperative languages(usually denoted by a semicolon). For the above func-tion body, one would write the following similar im-perative code:a := interp (u,e);out (a);return (a);bind will typically behave like a sequencer in monadswith states.2.4 NondeterminismIf we want to model nondeterminism, the results aregoing to be lists of values, rather than single values.The way to do that is, of course, to use the list monadL from 1.2 together withshowL m = showlist (map showval m).The function showlist translates a list of strings intoa single string. Now we include this monad in theinterpreter together with the following updates:zeroL = []l `plusL` m = l ++ mdata Term = ... | Fail | Amb Term Terminterp Fail e = zeroLinterp (Amb u v) e =interp u e `plusL` interp v eTerms can now be \ambiguous", so (Amb u v) resultsin the list of all the values that are results of u or v.For example, evaluatingtest(App (Lam "x" (Add (Var"x")(Var"x")))(Amb (Con 2)(Con 3)))yields "[4,6]".5

2.5 Call-by-nameWhen using the call-by-value evaluation strat-egy, functions are applied only to evaluated ar-guments, so the type of functional values isFun (Value -> M Value). In the call-by-nameinterpreter, arguments are passed unevaluated tofunctions, so functional values will be representedwith the type Fun (M Value -> M Value). All thechanges are shown below. The apply function basi-cally looks the same, but it has a di�erent type.data Value = Wrong| Num Int| Fun (M Value -> M Value)type Environment = [(Name, M Value)]interp (App t u) e =interp t e `bindM` (\f ->apply f (interp u e))lookup x ((y,n):e) = if x==ythen nelse lookup x eapply :: Value -> M Value -> M ValueVariables will now be bound to "computations",rather than their �nal values, hence the change in theenvironment type. The lookup function now does nothave to "wrap" its result in monadic type anymore,since the result is already "wrapped". Finally, thechange in the application rule reects the fact thatthe argument u is passed unevaluated to the evalu-ated function.We can combine call-by-name evaluation with all thepreviously described enhancements. For example,nondeterministic version of the call-by-name inter-preter would evaluate the old exampletest(App (Lam "x" (Add (Var"x")(Var"x")))(Amb (Con 2)(Con 3)))to "[4,5,5,6]", rahter than "[4,6]" what we hadbefore.

2.6 OverviewFollowing the same general idea, we can easily extendour interpreter to deal with continuations, references,call-by-need evaluation and beyond. This sounds al-most too good to be true. Let's briey summarizethe main points and problems in Wadler's approach:� This approach bene�ts from a reasonably goodseparation between the interpreter and the un-derlying monad.� Uniformity of the monadic approach makes theimplementation clean, simple and easy to under-stand.� The type information becomes more valuable.Some vital properties are visible just by look-ing at the types (recall the call-by-name modi�-cation and the di�erence in types of functionalvalues). Now, for instance, we can easily local-ize the parts of a program that have side-e�ectsfrom those that don't. Usage of di�erent statefulmonads in Haskell is more closely studied in [2]and [4].� The problem of interaction between multiplemonadic features in a single interpreter is not ad-dressed - how does one gradually build a monadthat captures multiple features?� Finally, e�ciency of a monadic implementationmight be a drawback. Monadic implementationsof many common features may require heavy useof higher-order functions (references and contin-uations being typical examples). Certain com-mon monads hopefully could be optimized andperhaps even be provided as language primitives.3 Composing MonadsGuy Steele really liked Wadler's work! But somethings were not good enough. First, Steele wantedto be able to incrementally add new features to theexisting interpreter by precisely specifying how theywork together. In [3] he showed how to constructmonadic building blocks that one can stack together6

(almost like Legos) to obtain monads. In the previouschapter we saw that Wadler's interpreter, althoughexible, usually requires some modi�cations of datastructures to be done by hand for each new feature.Steele proposed a way to make this process more au-tomatic.The main idea was to use pseudomonads. A pseu-domonad behaves like a monad with a \hole". Whena monad is composed with a pseudomonad in a cer-tain sound way, the result is a new monad. It canthen be repeatedly composed with more pseudomon-ads, thus enriching the interpreter. The interpreteragain deals with terms and values. They now exist onmultiple levels, since we have multiple levels of mon-ads. Terms and values are hierarchically connectedwith projections and form towers of data types. Thenext chapter describes monads and pseudomonads inSteele's environment.3.1 Monads and pseudomonadsGuy Steele introduces \monads" and pseudomonadsthrough the \Haskell" code that supports them (thereason for quotation will be clear shortly). Noticethat names Monad and Pseudomonad are used for bothtype constructors and data constructors.type Unitfn p q = p -> qtype Bindfn p q = q -> (p -> q) -> qtype Pseudobindfn p q =Monad q r -> q -> (p -> r) -> rdata Monad p q =Monad (Unitfn p q) (Bindfn p q)data Pseudomonad p q =Pseudomonad (Unitfn p q) (Pseudobinfn p q)unit :: Monad p q -> Unitfn p qunit (Monad u b) = ubind :: Monad p q -> Bindfn p qbind (Monad u b) = bpseudounit :: Pseudomonad p q ->

Unitfn p qpseudounit (Pseudomonad u pb) = upseudobind :: Pseudomonad p q ->Pseudobindfn p qpseudobind (Pseudomonad u pb) = pbWadler de�nes a monad in Haskell as a triple(M, unitM, bindM) containing one type constructorand two polymorphic functions. Steele, on theother hand, de�nes monads as 4-tuples (p,q,u,b)containig two types and two (not necessarily poly-morphic) functions. Intuitively, Steele would liketo treat type q as type M p. But Wadler's func-tion bindM :: M a -> (a -> M b) -> M bis still strictly more polymorphic thanb :: q -> (p -> q) -> q. These two de�nitionsneither match exactly, nor there is an isomorphismthat would establish a natural 1-to-1 correspondencebetween the two abstract data types. Each monad(M, unitM, bindM) corresponds to (but is notcompletely described by) a family of Steele's monadsof the form (p, M p, u, b). Wadler's monads arepolymorphic, since they deal with type constructors,while Steele's monads appear to be their specialinstances.For example, we can de�ne identity monads of thetype Monad p p for each type p withidmonad :: Monad p pidmonad = Monad (\x -> x) (\z k -> k z)Pseudomonads are essentially monadsparametrized by monads. A pseudomonad en-capsulates two types (p and q) and operationspseudounit and pseudobind. pseudounit has therole of a unit function for ordinary monads, whilepseudobind is a kind of bind parametrized by amonad. It is convenient to keep the in�x notationby de�ning operators <<, # and >> in Haskell in sucha way that we can write x <<m>> f for bind m x fand x <<m#p>> f for pseudobind p m x f. Pseu-domonads, just like monads, are required to havecertain natural properties:� Left unit:7

unit p a <<m#p>> f = f a� Right unit:x <<m#p>> (h . unit p) = h x� Associativity:x <<m#p>> (\a-> f a <<m#p>> g) =(x <<idmonad#p>> \a-> f a)<<m#p>> gNow we have to specify how do we actually composemonads with pseudomonads. It is done by using theoperator &.m&p = Monad(unit m . pseudounit m)(\z k -> z <<m>> (\w -> w <<m#p>> k))If m is a monad and p is a pseudomonad, then m&pmight be a new monad. Left and right unit monadlaws are guaranteed to hold, but associativity needsto be checked separately. Monads generally do notcompose!But there is another, perhaps more serious prob-lem in the given Haskell code. The de�nition ofthe Pseudobind type has a free type variable r andhence is not legal in the language! Steele's mo-tivation for such declaration comes from the factthat we don't a-priori have the complete type in-formation about monads that we eventually wantto compose with a given pseudomonad. Ideally,we would like to treat the type variable r existen-tially. That is a reasonable requirement, althoughnot quite compatible with the current Haskell typesystem. Probably the easiest way around this prob-lem is to include a type variable r in the declarationas type Pseudobindfn p q r = ..., but Steele re-jects this as a cumbersome solution. He instead usesa preprocessor called the program simpli�er which cir-cumvents certain language restrictions and producesa correct Haskell program.As expected, the type of the composition operator is

& :: Monad q r -> Pseudomonad p q ->Monad p r.It is important not to confuse the operators # and&. Expressions m#p and m&p do not bear any spe-cial resemblance apart from the fact that # is usedin the de�nition of &. In fact, they even havethe di�erent types. For f :: p -> r, the expres-sion x <<m#p>> f makes sense for x :: q, whereasx <<m&p>> f requires x :: r.As one would normally expect, we can compose pseu-domonads in a natural way, thus obtaining morepseudomonads. If pa and pb are pseudomonads, thentheir composition pb&pa satis�esm&(pb&pa) = (m&pb)&pa.3.2 Building an interpreterAn interpreter is a mapping from terms to values.When adding a new feature, both of those types gen-erally need to be modi�ed. Following that idea, GuySteele introduces the notion of building blocks. Abuilding block is a function that takes an interpreterfrom terms of type t to values of type v and pro-duces a new interpreter that maps terms of type t'to values of type v'. It does so by using two liftingpseudomonads, one of the type Pseudomonad t t'and the other of the type Pseudomonad v v'.Multiple composition of buliding blocks generatestwo \towers" of data types - one for the terms andone for the values. Complete interpreter on each levelis given by the corresponding package. A package isa set (or rather a list) of routines and/or data thatimplemet certain �xed set of vital functions for the in-terpreter. In our case, a package can contain routinesof the following eight kinds:� ParseR - parsing� InterpR - interpreting� ShowvalR - printing� ComplainR - error reporting� MakenumR - constructing number values� MakefunR - constructing function values8

� ApplyR - applying functions� NameR - a string that names the interpreterWe immediately see inexibility of such approach.The above set of routines is not nearly exhaustivefor the kinds of interpreters we would like to consider.That is certainly a disadvantage of this approach. Orrather, that is the price we have to pay for makingthings a bit more automatic. We can certainly ben-e�t from the fact that we don't have to change thedata structures by hand, but at the same time weare limited to constructing only interpreters of cer-tain kinds.Another \meta-objection" is about treating a parseras a fundamental component of a package. Parser iscompletely irrelevant to the monadic implementationof the interpreter. Steele should have probably beenless concerned with technical issues such as parsing,since it makes some parts of Haskell code in his pa-per [3] very tedious to read.Each package carries the type information about thecurrent types of terms and values (t and v), top typesof terms and values (t'' and v'') and types of val-ues stored in the environment (ve). Below are thedatatype de�nitions a package.data Routine t v t'' v'' ve =ParseR (String -> [(t'', String)])| InterpR (t -> [(String, ve)] -> v'')| ShowvalR (v -> String)| ComplainR (String -> v'')| MakenumR (Int -> v'')| MakefunR ((v'' -> v'') -> ve)| ApplyR (v'' -> v'' -> v'')| Name Stringdata Package t v t'' v'' ve =Package [Routine t v t'' v'' ve]Notice that the interpreter accepts a term of thecurrent type, but produces a value of the top type.This is actually a value of the current type projectedto the top of the value type tower via the unit func-

tion. T 00 interpr top�! V 00" "� � � � � �" "T2 interpr P2�! V2" "T1 interpr P1�! V1" "T0 interpr P0�! V0...mT2 :: Pseudomonad T1 T2mT1 :: Pseudomonad T0 T1...mV2 :: Pseudomonad V1 V2mV1 :: Pseudomonad V0 V1...P2 :: Package T2 V2 T 00 V 00 VEP1 :: Package T1 V1 T 00 V 00 VEP0 :: Package T0 V0 T 00 V 00 VEWe also assume the existence of functions interpr,parser, complainr, etc. that when given a package,extract the corresponding component from it.3.3 Base of the towerHere we describe how to construct a simple base in-terpreter on which all the other type towers can beerected. The only term it interprets is Bogon (pro-jected to the top of the term tower) and the onlyresulting value is Wrong (projected to the top of thevalue tower).data TermZ = Bogondata ValueZ = Wrong9

interpreter tmt tmv top = Package[ParseR parseZ, InterpR interpZ,ShowvalR showvalZ, ComplainR complainZ,NameR nameZ]whereparseZ s = [(unit tmt Bogon, s)]interpZ Bogon _ =complainr top "invalid expression"compalinZ s = unit tmv WrongshowvalZ Wrong = "<wrong>"nameZ = "interpreter"The function interpreter takes three parametersand produces a package. Such function is called aprepackege. The parameters are top monad for termstmt, top monad for values tmv and the top packagetop. tmt and tmv are used for projecting terms andvalues to the top of the towers. top is here usedfor reporting errors, since we have to report them atthe top level. To complete a prepackage, we need togive it some suitable parameters. Here we are build-ing the base level, so top and bottom levels are thesame. Therefore, the identity monad will a be goodcandidate for both tmt and tmv. Where do we getthe top package from? Well, we are just working onconstructing one. Hence, we can use a little lazy trick- de�ne the top cyclically in terms of itself.complete prepkg = topwhere top = prepkg idmonad idmonad toptype Term = TermZtype Value = ValueZinterp_pkg = complete interpreterThe complete function \ties a knot" at the topand returns the top package. This will typically beused in all further re�nements of the interpreter. Wewill �rst stack all the pseudomonads (by stackingthe corresponding building blocks) thus obtaining aprepackage. Then we can simply apply the completefunction to �nish the construction and yield the toppackage.Steele seemed to have problems with recursive def-initions in Haskell, such as the above one. This is

another point where the program simpli�er had tointervene.3.4 The �rst oorThis section describes how can one extend an inter-preter by adding another building block. We describean example of the numbers building block.The term type is extended with constant constructorand addition, while the value type is extended withnumerical values.data TermN t'' t =Con Int | Add t'' t'' | OtherTN tdata ValueN v'' v = Num Int | OtherVN vmTN = Pseudomonad(\x -> OtherTN x) mTNbind wheremTNbind m (Con x) f = unit m (Con x)mTNbind m (Add x y) f = unit m (Add x y)mTNbind m (OtherTN x) f = f xmVN = Pseudomonad(\x -> OtherVN x) mVNbind wheremVNbind m = qxfoo whereqxfoo (Num x) f = unit m (Num x)qxfoo (OtherVN x) f = f xnumbers oldprepkg tmt tmv top =update oldpkg [<list of new routines>]whereoldpkg = oldprepkg(tmt & mTN) (tmv & mVN) topparseN ...interpN (Con x) _ = unit tmv (Num x)interpN (Add x y) env =interpr top x env <<tmv>> (\u ->interpr top y env <<tmv>> (\v ->case (u,v) of(Num j,Num k) -> unit tmv(Num(j+k))(_, _) -> complainr top ("should be numbers: " ++showval top (unit tmv u) ++ ", "++ showval top (unit tmv v))))10

interpN (OtherTN x) env =interpr oldprepkg x envshowvalN (Num x) = show xshowvalN (OtherVN x) = showvalr oldpkg xmakenumN x = unit tmv (Num x)nameN = ...The numbers function is an example of a buildingblock. It takes an old prepackage and produces anew prepackage. In our case, the old prepackage isinterpreter. To get the new package, we need tocomplete the resulting new prepackage. We can do itby using the function complete. It will compose thepseudomonads mTN and mVN with the identity monad,leave top to be the �xpoint (the \knot") as before andreturn the �nal package. The code for that istype Term = TermN Term TermZtype Value = ValueN Value ValueZinterp_pkg = complete(numbers interpreter).We can perform multiple extensions in a similar fash-ion. At every stage, the interpreter will typically beevaluated by an expression of the formcomplete (bn(...(b2(b1 interpreter))...)),where b1, b2, ..., bn are some building blocks. Wesee that the building blocks composition is generallynot commutative, much like the functional compo-sition. An interesting problem would be to �nd theoptimal order of building blocks for a given set of fea-tures. More general, what kinds of issues are involvedin comparing two building-blocks-based implementa-tions of the same set of features?3.5 The program simpli�erThe program simpli�er in Guy Steele's environmenthas a multiple function:� Inlining of certain functional de�nitions� �-reductions and �-conversions of terms in a waythat keeps them simple and readable

� Substitution and simpli�cation of the explicitlyprovided type declarations Term and Value� Circumvention of some of the problems that theoriginal type checker had with suggested decla-rationsMost of the transformations done by the programsimpli�er are sound. They are usually based on sim-ple equational reasoning and any Haskell compilercan perform them if it �nds them useful. But someof the transformations attempt to \correct" certainparts of Steele's code that failed to produce the de-sired e�ects or were even rejected as erroneous by thecompiler! Introducing such transformations is not agood idea for at least two reasons:� They are potentially unsound.� Even if they are sound, such rules are not stan-dard in the language, so everyone who attemptsto use such tool needs to know exactly how theywork. This can be an obstacle for the wide ad-doption of the approach.Nevertheless, we do bene�t from the program simpli-�er - it makes our implementation work!3.6 OverviewHere we give an overview of the basic pros andcons of the Steele's approach for building monadicinterpreters.Pros:� Making monads extensible through the use ofpseudomonads.� Dealing with multiple upgrades in a modularfashion.Cons:� Nonstandard de�nition of a monad, not clearlyrelated to the \standard" de�nition.� Fixed set of possible routines that a package cancontain.11

� Using lists of routines for representing packages.This can be ine�cient, especially if we extendthe notion of a package.� Tight dependence on the program simpli�erwhose actions are not clearly de�ned.4 Monad TransformersPhilip Wadler described a general monadic methodol-ogy for building programming language interpreters.His technique, although very promising, isn't mod-ular in its nature. He builds one monad for eachinterpreter from the scratch. This works well in cer-tain simple cases, but the job of creating a goodmonad becomes harder as the number of desired fea-tures grows. The question is how to divide this jobinto multiple steps? Previous chapter described GuySteele's attempt to solve this problem by introducingpseudomonads that can be chained together to formmore complex monads. This approach wasn't verygeneral and its implementation faced various prob-lems due to certain language restrictions of Haskell.One of the biggest problems was the type system.This chapter describes a work of Shieng Liang, PaulHudak and Mark Jones [5] which tries to remedySteele's problems. They used the Gofer language en-vironment, which is an enhanced variant of Haskell.Their key notion is that of a monad transformerwhich generalizes pseudomonads. This idea is essen-tially simpler and more general than the Steele's idea.They also treat the problem of lifting operations fromlower layers to higher layers of monad transformersin a natural way.4.1 The Gofer environmentIn this section we give a brief introduction to theGofer constructor class system through a couple ofillustrative examples. The idea behind constructorclasses is similar to the idea of modules (e.g. struc-tures in SML). We want to be able to generically ex-press some common features of types or type con-structors. Consider, for instance, the map functionin Haskell

map :: (a -> b) -> [a] -> [b]which maps a function over a list. We may be inter-ested in a similar function for mapping over trees.data Tree a = Leaf a| Node (Tree a) (Tree a)map :: (a -> b) -> Tree a -> Tree bmap f (Leaf x) = Leaf (f x)map f (Node l r) = Node(map f l)(map f r)More general, we may want to do that for arbi-trary number of type constructors. For that purpose,Gofer provides a way to de�ne signatures for typeand constructor classes and their instances.class Functor t wheremap :: (a -> b) -> t a -> t binstance Functor List wheremap f [] = []map f (x:xs) = f x : map f xsinstance Functor Tree wheremap f (Leaf x) = Leaf (f x)map f (Node l r) =Node (map f l) (map f r)It is very natural to de�ne a constructor class formonads. Functions map and join are automaticallyderived from unit and bind as described in 1.1.class Monad m whereunit :: a -> m abind :: m a -> (a -> m b) -> m bmap :: (a -> b) -> m a -> m bjoin :: m (m a) -> m amap f m = m `bind` (\a -> unit (f a))join z = z `bind` idGofer allows us to elegantly de�ne terms and valuesas extensible union types. Steele had to use his pro-gram simpli�er for that job (i.e. to \atten" the datatypes from multiple levels into a single union type).This consequently eliminates most of the Steele's typ-ing problems. Traditionally, disjoint union of types isconstructed through the OR operator as shown below.12

data OR a b = L a | R bL and R are injections of \subtypes" into a \super-type". Conversely, a value of the \supertype" canbe projected to one of the \subtypes" using patternmatching. Generally, we can de�ne the subtyping re-lation by specifying the injection and the projection.class SubType sub sup whereinj :: sub -> supproj :: sup -> Maybe supdata Maybe a = Just a | Nothinginstance SubType a (OR a b) whereinj = Lprj (L x) = Just xprj _ = NothingNow we can express the subtyping relation that canreach through all the levels of OR nesting.instance SubType a b =>SubType a (OR c b) whereinj = R . injprj (R a) = prj aprj _ = NothingFor example, if we declaretype Value = OR Int (OR Fun ()),the type checker will automatically infer that Int andFun are both subtypes of Value.4.2 Interpreters in Gofer - basicsThere are three main components to the interpreteras seen by Liang, Hudak and Jones: type Term, typeValue and monad InterpM. Following the Wadler'sidea, InterpM encodes computations. We call itthe interpreter monad of �nal answers. Those threecomponents are independent and their \richness" de-pends on the complexity of the interpreter we wantto build. Interpreting function maps terms to com-putations of values.interp :: Term -> InterpM Value

We can now de�ne a class InterpC of term types thatcan be interpreted.class InterpC t whereinterp :: t -> InterpM ValueGofer can automatically build instances of that classfor unions of term types.instance (InterpC t1, InterpC t2) =>InterpC (OR t1 t2) whereinterp (L t) = interp tinterp (R t) = interp t4.3 Monad transformersWadler's idea about building a single monad for aninterpreter becomes hard for realization when wewant to implement several structurally di�erent fea-tures, because we need to specify how each featureinteracts with each other. The idea behind monadtransformers is to capture features individually in anincremental way - build each next feature on the topof what we already have. This will, however, requiresome additional work in order to lift everything tothe common top level.A monad transformer is a type constructor t suchthat if m is a monad, so is t m. We want to be able toembed m - computations into t m - computations, sowe need a lift operator which is a member functionof the class of monad transformers.class (Monad m, Monad (t m)) =>MonadT t m wherelift :: m a -> t m aWe want this embedding to be natural in the sensethat it doesn't change the nature of the existing com-putations. Formally, we require that every monadtransformer satis�es the following two laws:� lift . unitM = unitTM� lift (m `bindM` k) =(lift m) `bindTM` (lift . k)Here unitM and bindM refer to the monad m, whileunitTM and bindTM refer to the monad t m.13

4.4 Error monad transformerHere we give an example of a very simple monadtransformer and an interpreter based on it. Themonad transformer ErrorT transforms a monad intoan error monad. There are three typical steps inde�ning a monad transformer. First we de�ne thetype constructor:data Error a = Ok a | Error Stringtype ErrorT m a = m (Error a)Gofer system deduces that m in the above declara-tion is a type constructor. The next step is to de�nethe transformation of monads through the introducedtype constructor.instance Monad m => Monad (ErrorT m) whereunit = unit . Okm `bind` k =m `bind` \a ->case a of(Ok x) -> k x(Error msg) -> unit (Error msg)The last step is to establish that ErrorT is a monadtransformer by de�ning the lifting operator.instance (Monad m, Monad (ErrorT m)) =>MonadT ErrorT m wherelift = map OkSince Ok :: a -> Error a, the map functionof m will satisfy map Ok :: m a -> m (Error a),which shows that the de�ned lift has the appro-priate type. It is easy to check that such lift in-deed naturally embeds computations into computa-tions with errors. If we want to play some more, wecan de�ne a special class of error monads which arecapable of encoding erroneous computations via thespecial member function err. We also establish thefact that for every monad m, monad ErrorT m is anerror monad.class Monad m => ErrMonad m whereerr :: String -> m ainstance Monad m =>ErrMonad (ErrorT m) whereerr = unit . Error

The unit function from the above de�nition is fromthe monad m.We are now ready to construct the interpreter fora small arithmetic language, following the metodol-ogy described in 4.2. Our interpreter monad will bethe \error-transformation" of the identity monad I.The �nal interpreter is simply an instance of the classInterpC.type Term = TermAtype Value = OR Int ()type I a = atype InterpM a = ErrorT I adata TermA = Num Int| Add Term Terminstance InterpC TermA whereinterp (Num x) = unitInj xinterp (Add x y) =interp x `bindPrj` \i->interp y `bindPry` \j->unitInj ((i+j)::Int)unitInj = unit . injm `bindPrj` k =m `bind` \a ->case (prj a) ofJust x -> k xNothing -> err "type error"err :: String -> InterpM aThe above interpreter is somewhat arti�cial, since itis impossible to introduce an error. Indeed, everyexpression of the type TermA can be evaluated intoa number. However, if we change the declaration ofTerm into something liketype Term = OR TermA (),we would obviously have the possibility of errors.4.5 Environment monad transformerSuppose we want to extend our arithmetic interpreterto deal with functions. We need to extend our Term14

type and de�ne appropriate operations that deal withfunctional computations. Our terms can now be func-tional or arithmetic expressions (including the com-binations).type Term = OR TermF TermAtype TermF = Var Name| LambdaN Name Term| LambdaV Name Term| App Term Termtype Name = StringLambdaN and LambdaV perform respectively call-by-name and call-by-value abstractions. We also assumethe existence of the follwing functions for handlingthe environment:lookupEnv :: Name -> Env ->Maybe (InterpM Value)extendEnv :: (Name, InterpM Value) ->Env -> EnvHow do we carry out computations in environments?Generally, we can transform every monad into an en-vironment monad through the use of the environmentmonad transformer. If r is the type of environmentsand m is a monad, thentype EnvT r m a = r -> m ais the type of m-computations in environments. Thecorresponding monad transformation is given below.instance Monad m => Monad (EnvT r m) whereunit a = \r -> unit am `bind` k = \r -> m r `bind` \a -> k a rThe unit computation ignores the environment andreturns the unit computation in m. To evaluatem `bind` k in the environment r, simply evaluatem in the environment r yielding the result a and thenevaluate k a in the same environment r.Lifting is easy, lift m is simply a constant functionthat ignores the environment.instance (Monad m, Monad (EnvT r m)) =>MonadT (EnvT r) m wherelift m = \r -> m

As before, we de�ne the class of environment monads.They can preform computations in environments us-ing inEnv and read the current environment usingrdEnv. We will see how is this used in the next ex-ample.class Monad m => EnvMonad env m whereinEnv :: env -> m a -> m ardEnv :: m envinstance Monad m =>EnvMonad (EnvT r m) whereinEnv r m = _ -> m rrdEnv = \r -> unit rNow let's get back to our functional interpreter. We�rst de�ne the Value type and then an instance ofthe InterpC class. We also have to make sure thatour InterpM is an environment error monad. We canensure that by using both ErrorT and EnvT monadtransformers.type Value = OR Int (OR Fun ())type Fun = InterpM Value -> InterpM Valueinstance InterpC TermF whereinterp (Var v) = rdEnv `bind` \env ->case lookupEnv v env ofJust val -> valNothing ->err("unbound variable: " ++ v)interp (LambdaN s t) =rdEnv `bind` \env ->unitInj(\arg->inEnv(extendEnv(s,arg) env)(interp t))interp (LambdaV s t) =rdEnv `bind` \env ->unitInj(\arg -> arg `bind` \v ->inEnv (extendEnv(s,unit v) env)(interp t))interp (App e1 e2) =interp e1 `bindPrj` \f ->rdEnv `bind` \env ->15

f(inEnv env (interp e2))Interpreting a variable amounts to looking up itsvalue in the environment. Both call-by-name andcall-by-value abstractions return a function injectedinto the Value type and then embedded into themonad. The di�erence is that as soon as we applythe call-by-value version, it immediately reduces itsargument, while the call-by-name version stores theunevaluated argument in the environment.4.6 State monad transformerState monad transformer adds state to a monad.Suppose that we want to introduce states of type s.Consider then the following typetype StateT s m a = s -> m (s,a).We can view it as the type of stateful computations inm that result in a value of type a. A function of thattype takes an old state as an argument and returnsan m-computation of the new state and the result.We can use this as a base for our state transformer.As before, we �rst de�ne the corresponding monadictransformation.instance Monad m =>Monad (StateT s m) whereunit x = \s -> unit (s,x)m `bind` k = \s0 ->(m s0) `bind` \(s1,a) -> k a s1Unit computation of x simply returns x withoutchanging the state. To evaluate m `bind` k in thestate s0, we �rst evaluate m in the state s0 yieldingresult a and the new state s1. Then we evaluate k ain the state s1.Finally, we complete the de�nition of the state trans-former by introducing the lift operator. Notice thatlifted computations don't change the state, which iswhat we expect, since lifting shouldn't change thenature of \old" computations.instance (Monad m, Monad (StateT s m)) =>MonadT (StateT s) m wherelift m = \s -> m `bind` \x -> unit(s,x)

Naturally, state monads will be able to update thestate. Our update member function will return theold state as a result and at the same time change theold state by applying an argument to it.class Monad m => StateMonad s m whereupdate :: (s -> s) -> m sinstance Monad m =>StateMonad s (StateT s m) whereupdate f = \s -> unit (f s, s)Notice that update id simply reads the currentstate. We can use the state monad transformer toimplement the support for references. Locations willbe represented as integers. Internal representation ofthe storage space is irrelevant. It is, however, impor-tant that we have the following functions available:allocLoc :: InterpM LoclookupLoc :: Loc -> InterpM ValueupdateLoc :: (Loc, InterpM Value) ->InterpM ()type Loc = IntOur terms should be extended with reference con-structs.data TermR = Ref Term| Deref Term| Assign Term Termdata Term = OR TermA(OR TermF(OR TermR))The semantics is obvious. To interpret Ref x, we �rstevaluate x, then allocate a new cell and store the re-sult in it. The location of the new cell is returnedas a result. Dereferencing simply does a lookup. As-signment updates the value stored at a given locationand returns that new value as a result.instance InterpC TermR whereinterp (Ref x) =interp x `bind` \val ->allocLoc `bind` \loc ->updateLoc (loc, unit val) 'bind' _->16

unitInj locinterp (Deref x) =interp x `bindPrj` \loc ->lookupLoc locinterp (Assign lhs rhs) =interp lhs `bindPrj` \loc ->interp rhs `bind` \val ->updateLoc (loc, unit val) `bind` _->unit valNotice how the use of bindPrj checks whether agiven computation computes a location and at thesame time extracts the \raw" location number fromit.4.7 Lifting operationsIn the preceding examples we saw that the natureof certain monads requires them to come equippedwith some additional monadic operations besidesunit and bind. For example, error monads haveerr :: String -> m a, environment monads haveinEnv :: Env -> m a -> m a and state monadshave update :: (s -> s) -> m s. What happensto those operations once we apply a monad trans-former to our monad? They don't exist at the toplevel anymore. That seems to break the modularityof the original idea. What's the solution? Well, liftall the operations to the common top level! Unfortu-nately, the way to do that may sometimes be not soobvious and certainly not doable automatically. Let'sstate the problem precisely.Suppose that for a given monad m, the set of typesof (possibly monadic) operations is given by the fol-lowing grammar:� ::= A (type constants)j a (type variables)j � ! � (function types)j (�; �) (product types)j m� (monad types).For a given monad transformer t, we inductively de-�ne the mapping det that maps each type to its cor-

responding lifted type across the transformer t.dAet = Adaet = ad�1 ! �2et = d�1et ! d�2etd(�1; �2)et = (d�1et; d�2et)dm �et = t m d�etThe problem of �nding a natural lifting through themonad transformer t consists of �nding for each type� an operator L� :: � ! d�etsuch that the following conditions are met:1. LA = id2. La = id3. 8f: (L�1!�2f) � L�1 = L�2 � fThis is shown on the following commuting dia-gram: d�1et L�1!�2f�! d�2etL�1 " " L�2�1 f�! �24. L(�1;�2) = �(a; b): (L�1a;L�2b)5. Lm � = lift � (map L�):The above conditions ensure the naturality of lift-ing. Naturality is a-priori guaranteed just for liftingof pure computations, because of the requirementson the lift function. Here we see that the onlyproblematic case is lifting in functional types. Liang,Hudak and Jones, besides giving a couple of exam-ples, don't give any additional insight about how onemight try to �nd such natural lifting. They deal withthis problem in an ad-hoc manner. Here we proposea simple scheme that provides a way to �nd liftingoperators systematically.The idea is to try to �nd for each � a pseudoinverseof L� , i.e. an operatorU� :: d�et ! �17

such that U� � L� = id: (1)The operator U� projects or unlifts lifted operations.Such U can help us build L and vice-versa. But �rstwe have to realize such inversion on the basic levels.Formally, we look for a pseudoinverseunlift :: t m � ! m �of the lifting operatorlift :: m � ! t m �:Hence, we are looking for a function unlift such thatunlift � lift = id: (2)Intuitively speaking, such operator will exist in allthe cases where lift injectively embeds computa-tions into the next layer.Suppose we have such an operator. We can then con-struct L� and U� that satisfy (1) inductively for everytype � : LA = idUA = idLa = idUa = idL�1!�2 = �f: L�2 � f � U�1U�1!�2 = �f 0: U�2 � f � L�1L(�1;�2) = �(a; b): (L�1a;L�2b)U(�1;�2) = �(a; b): (U�1a;U�2b)Lm � = lift � (map L�)Um � = (map U�) � unliftAn easy inductive proof shows that (1) indeed holds.To show that the naturality conditions hold, we justneed to verify it for the case of functional lifting, sinceother cases are trivial. Indeed, from the above de�-nition we get(L�1!�2f) � L�1 = L�2 � f � U�1 � L�1 = L�2 � f;since U�1 � L�1 = id.Here we give a couple examples. In the case of theenvironment transformer, we had

lift m = \r -> m.If r0 is any (�xed) environment, we can de�ne a pseu-doinverse byunlift l = l r0.Obviously, unlift (lift m) = m.In the case of the state monad transformer,we hadlift m = \s -> m `bind` \x -> unit(s,x).Again, if s0 is an arbitrary state, we can de�ne apseudoinverse byunlift l = (l s0) `bind` \(s,x) -> unit(x).Indeed, we get(unlift.lift)(m) == unlift (\s -> m `bind` \x -> unit(s,x)) == (m `bind` \x -> unit(s0,x)) `bind`\(s,x) -> unit(x) = /associativity/ == m `bind`\x -> unit(s0,x) `bind` \(s,x) -> unit(x) == m `bind` \x -> unit(x) == m `bind` unit = m.4.8 OverviewAmong the three approaches discussed in this paper,monad transformers seem to capture most of whatwas originally wished for in the most elegant way.Here are some of the main accomplishments:� We can say that the Gofer type system with itsconstructor classes was de�nitely a hit. The keybene�t comes from the usage of extensible uniontypes that eliminates the need for Steele's towersof data types. Moreover, automatic inference ofclass instances and class methods (injections andprojections, for instance) simpli�es the the codeand thus makes it less prone to errors.� Monad transformers have the modularity ofSteele's pseudomonads, but the code is smallerand more e�cient. For example, in the case ofmonad transformers, we don't have to deal with18

lists of routines (packages) at every level. In-stead, we need to naturally lift the monadic op-erations across the monad transformers. Thisactually helps us develop a better understand-ing of the nature of operations we want to lift.� What about generality? Monad transformerscertainly generalize pseudomonads. Moreover,unlike in Steele's case, implementor is not lim-ited with the �xed set of operations that a pack-age can contain.� Liang, Hudak and Jones spent less time on tech-nical details (such as parsing). They concen-trated on the essential ideas.However, there are also some problems with this ap-proach:� Finding a natural lifting. The number of poten-tial liftings grows quadratically with the numberof monad transformers. No systematic proce-dure is presented, and even the simple schemadescribed at the end of section 4.7 depends on�nding a pseudoinverse unlift of the lift op-erator.� When a sequence of monad transformers is ap-plied to build an interpreter monad, the orderin which we apply them matters a lot (ratherthan just the set of transformers). It is a non-trivial task to determine which order will yieldthe most e�cient code or be the simplest one forimplementing.� Nonstandard environment. The Gofer, eventhough undoubtedly useful for this application,is not (yet) considered as a major Haskell stan-dard. The author of this paper faced some se-rious noncompatibility problems while trying torun some examples.5 Conclusions and related workAs shown in this paper, monads provide a very gen-eral framework for modelling programming languagefeatures. The core idea is to use a monad to de�ne the

notion of a computation. In the classical �-calculus,we identi�y types of values and types of computa-tions. By doing this, we fail to capture some inter-esting computational aspects, such as various kindsof states and control over the evaluator.Monads can be used as an implementation tecnique,but also as a way to structure the language descrip-tion. As Moggi pointed out in [6], traditional de-notational semantics lacks modularity - it does notprovide a general mechanism for looking at variouslanguage aspects separately. Monad transformers [5]can be used to achieve this in a monad setting. More-over, they provide a good way of understanding thelanguage features and their interaction and can evenbe used in the documentation of the language design.Philip Wadler [8] described how monads can be usedto build interpreters. The idea is to construct onemonad for each interpreter. This approach points tothe right direction, but is not quite practical, since itdoes not scale - we have to rebuild our monad fromstart for each new feature added.Guy Steele [3] tried to �x that by introducing a wayto compose monads. For that purpose he used pseu-domonads which are essentially \higher-order" mon-ads (i.e. monads parametrized by monads). He devel-oped a method of creating interpreter building blocks,each of which can implement a separate feature. Suchblocks can then be glued together into a single inter-preter. His approach failed in several aspects. First,he used a nonstandard notion of monads. Second, hestruggled with some limitations of the Haskell typesystem which are circumvented through the use ofhis program simpli�er. Actions of the program sim-pli�er are not clearly de�ned which makes his systemnonstandard, hard to use and possibly erroneous. Fi-nally, he sacri�ced generality in order to make theprocess of upgrading the interpreter more automatic.A further improvement came from S. Liang, P. Hu-dak and M. Jones [5] who also attacked the prob-lem of monad compositionality, but with a betterweapon - monad transformers. Monad transformersgeneralize pseudomonads and give a generally sim-ple mechanism for building monads through mul-tiple layers. Gofer's type system with constructorclasses [1] proved to be very useful for this purpose.This approach, however, faced the problem of lifting19

of monadic operations to the top level. Only the cor-rectness criteria for natural lifting is given, but theauthors didn't provide any guideline about �nding anactual lifting in a general case.Di�erent aspects of monads were studied by manyother authors.Jones and Wadler [2] showed how imperative featurescan be monadically imported to Haskell by design-ing a model which enables invocation of C-functions.This is a rather interesting combination, but its real-ization requires support for unboxed types which aresomewhat unnatural in lazy programming languages.Launchbury and Jones [4] closely studied applicationsof state transformers for encapsulating diferent kindsof stateful computations in Haskell.One may be wondering if there are any computationalaspects at all that can not be modeled by monads?.Seems like the answer is (surprisingly?) yes! PhilipWadler [9] found that types of the certain kinds ofcontinuations are too general to be interpreted in amonad. This looks like a good area for further re-search - perhaps we need some kind of generalizedmonads?In general, we can conclude that monads are yetanother witness to the close relationship betweenprogramming languages and category theory. It isimportant to investigate this connection throughly,since it may reveal some valuable discoveries in bothareas. To what extent will this continue to happenin the future - remains to be seen.References[1] Mark P. Jones. A system of constructor classes:Overloading and implicit higher-order polymor-phism. In In FPCA '93: Conference on Func-tional Programming Languages and ComputerArchitecture, Copenhagen, Denmark, 1993.[2] Simon L Peyton Jones and Philip Wadler. Im-perative functional programming. In ConferenceRecord of POPL '93, 1993.[3] Guy L Steele Jr. Building interpreters by com-posing monads. In Conference Record of POPL'94, 1994.

[4] John Launchbury and Simon L Peyton Jones.State in haskell. J. of Lisp and Symbolic Com-putation, 1995.[5] Sheng Liang, Paul Hudak, and Mark Jones.Monad transformenrs and modular interpreters.In Conference Record of POPL '95, 1995.[6] Eugenio Moggi. An abstract view of program-ming languages. Technical report, University ofEdinburgh, 1989.[7] Philip Wadler. Comprehending monads. Mathe-matical Structures in Computer Science, 2, 1992.[8] Philip Wadler. The essence of functional pro-gramming. In Conference Record of POPL '92,1992.[9] Philip Wadler. Monads and composable contin-uations. J. of Lisp and Symbolic Computation,1993.

20

