Structuring functional programs by using monads

Davor Obradovic, University of Pennsylvania

May 1998

Abstract

The notion of monads originates from the category
theory. It became popular in the programming lan-
guages community after Moggi proposed a way to use
monads to structure denotational semantics. Wadler
and others showed how this can be effectively used as
a methodology for building interpreters.

Monads are capable of capturing individual language
features in a modular way. This paper evaluates
two modular approaches for building monadic inter-
preters - Steele’s pseudomonads and Liang, Hudak
& Jones’s monad transformers. We also consider
the the problem of feature interaction in the monad
transformers setting.

1 Monads: Introduction and

Motivation

Is there a practical use for category theory? Cer-
tainly - the programming language theory is a good
example. Many categorical concepts led to impor-
tant discoveries about programming languages and
vice-versa, many ideas from the category theory were
motivated by the programming languages research.
Monads probably fit in both groups.

Category theorists invented monads in the 1960’s
to express certain properties of universal algebra.
Two decades later people started studying pro-
gramming language aspects of monads. Among the
biggest contributors to this promising idea were Eu-
genio Moggi [6] and Philip Wadler [7]. The original
idea was to use monads for presenting the deno-
tational semantics of complex languages. Monads
seemed to be able to capture a variety of commonly

found language properties. At the same time they
can be used as a clean and extensible technique for
implementing these features in interpreters. The key
feature is that monads provide us with a convenient
notion of a computation. Using this, we can enrich
our computational model by distinguishing between
the values and the computations. For example, two
programs (computations) that calculate the same
answer, but generate different screen outputs should
certainly be considered different. This is hard to
achieve in a setting where computations are viewed
statically, as pure functions. Using monads, we
can precisely specify the desired level of distinction
between computations.

This balances the tradeoff between impure and
pure functional languages from the language im-
plementor’s point of view. On one hand, pure
languages, such as Haskell, benefit from the power
of equational reasonong. On the other hand,
many desired features seemed to be very hard to
implement without using impure constructs, such
as arrays, references and certainly 1/0O. Monads
provided solutions that combined the best of both
approaches. We should note that monads are not
special programming language constructs - they are
simply an example of a good data abstraction. A
particularly good data abstraction! Hence, we should
rather say that a program is written in monadic
style, than that it uses monads. This is precisely
one of the big advantages of monads; apart from
the support for higher order functions, they don’t
impose almost any restrictions to the underlying
programming language environment. Monadic style
is just a simple methodology that turned out to
be surprisingly general in a variety of situations.

It can capture individual properties while keeping
the abstraction level appropriately high, thus sav-
ing us from too much concern about technical details.

1.1 What is a monad?

As mentioned earlier, the concept of monads was
coined in the category theory and later adopted by
computer scientists. This section describes mon-
ads from the functional programming and categorical
standpoint. We will use the standard Haskell nota-
tion (with some additions in the chapter 4) through-
out the paper. The reason is that Haskell, as a purely
functional programming language, is very close to the
actual mathematical language commonly used by the
semanticists. This makes the formal reasonong about
our interpreters easier.

A functional programmer thinks of a monad as a
triple (M, unitM, bindM), where M is a type con-
structor, unitM and bindM are polymorphic functions

a->Ma
Ma->(a->Mb) ->Mb,

unitM ::
bindM ::

and the following laws are satisfied:

e Left unit:
(unitM a) ‘bindM‘ k = k a

e Right unit:
m ‘bindM*

unitM = m

e Associativity:

m ‘bindM‘ (\a->((k a) ‘bindM*‘ h)) =
= (m ‘bindM¢ (\a-> k a)) ‘bindM‘ h
for every
m:: Ma
k ::a->Mb
h::b->Mc.

Notice the Haskell syntax for the infix version of
bindM which is ‘bindM‘ and for a lambda abstrac-
tion Az.e which is written as \x -> e.

Intuitively, we can think of a type M a as the type of
computations resulting in a value of type a. unitM
embeds values into computations, such that if v::a
is a value, then unit v is the computation that does
nothing except yields the value v. Similarly, ifm: :M a
is a computation and k: :a -> M bis a function, then
m ‘bindM‘ k is a computation that performs m, ap-
plies k to the resulting value and then performs the
computation returned by k. The word “then” is very
important here, since ‘bindM‘ will indeed be used to
control the order of evaluation.

For a given monad M, we can also define the following
polymorfic functions:

joinM :: M (M a) -> M a

mapM (a->b) > (Ma->Mb»D)
with

joinMm =m ‘bindM‘ id

mapM f m = m ‘bindM‘ (\a -> unitM (f a)).

It is easy to see that with the appropriate types the
following holds in every monad M:

(1) joinM . joinM = joinM . (mapM joinM)
(2) joinM . unitM = id
(3) joinM . (mapM unitM) = id.
The symbol *.” is here used to denote the functional
composition.

As far as category theorists are concerned, a monad
over a category C is a triple (T, u, j), where T : C — C
is a functor, u: Idc — T and j : T? — T are natu-
ral transformations and the following diagrams com-
mute:

T34 T4 724
Tja | l Ja
T24 24 T4
TA “I4 724 4 T4
id N Lia o id

TA

The two definitions are (as expected) isomorphic in a
certain sense. We can regard C as the category whose
objects are our types and arrows are functions with
standard functional composition and identity. The
functor T acts on objects (types) as the type con-
structor M and on arrows (functions) as mapM. Poly-
morphic functions unitM and joinM correspond to
the natural transformations u and j respectively. Fi-
nally, the first commutative diagram corresponds to
the derived rule (1), while the second one corresponds
to (2) and (3).

1.2 Some simple monads

Let’s see a couple of simple examples. The simplest
one is the identity monad I:

type I a = a

unitl a = a
a ‘bindI‘ k = k a

The type constructor I is the identity and so is the
function unitI. bindI is just the ordinary functional
application. This monad, as the extreme case, ex-
actly identifies values with computations.

A more interesting example where this is not the
case is the list monad L. Haskell syntax for the
type of lists whose elements are of the type a is
[al. We also assume the existance of the standard
list functions map :: (a -> b) -> ([a]l -> [bl)
that maps a given function over a list and
join :: [[al]l -> [a] that “flattens” a list of lists
into a single list. The list monad is given by

type L a = [a]
unitl x = [x]
1 ’bindLf f = join (map f 1).

Notice that the monadic functions mapL and joinL
are really the standard map and join list functions,
just as we would normally expect.

Another similar example is the tree monad:

type Tree a = Leaf a
| Node (Tree a) (Tree a)

unitTree x = Leaf x
bindTree (Leaf x)
bindTree (Node t1 t2)
\f -> Node (t1 ‘bindTree‘ f)
(t2 ‘bindTree‘ f)

\f > f x

Type Tree ais the type of regular binary trees whose
leaves hold values of type a. bind-ing the function
f to a tree results in a new tree obtained from the
original one by “appending” to each leaf a new tree.
This new tree is obtained by applying £ to the value
stored in the leaf.

2 Monadic Interpreters

We are now ready for some more interesting exam-
ples. In this section we will see how monads can be
used to implement a simple interpreter for lambda
calculus, as suggested by Philip Wadler in [8].
Wadler demonstrated the flexibility of this idea by
showing how to build a couple of quick variations of
the interpreter.

The interpreter deals with terms and values. Terms

consist of variables, integer constants, additions,
lambda abstractions and applications. A value is
either Wrong (indicating an error), a number, or a
function. When implementing an interpreter, the key
idea is to interpret a function of type a -> b in our
target language as a function of type a -> M a in
our meta-language (Haskell). Nice thing is that we
can do that independetly of the actual monad M. De-
scription of M, which includes details about how are
computations exactly represented and carried out, is
completely separated.
Given any M, we can think of unitM as the identity
function and bindM as the application in that par-
ticular monad. The whole communication between
the monad and the interpreter is done through those
two operations. Here is the actual code for the inter-
preter:

type Name = String

data Term = Var Name
| Con Int

| Add Term Term
| Lam Name Term
| App Term Term
data Value = Wrong
| Num Int
| Fun (Value -> M Value)

type Environment = [(Name, Value)]

showval :: Value -> String

showval Wrong = "<wrong>"

showval (Num i) = showint i

showval (Fun f) = "<function>"

interp :: Term -> Environment -> M Value

interp (Var x) e lookup x e

unitM (Num i)

interp (Con i) e
interm (Add u v) e

interp u e ‘bindM¢ (\a ->

interp v e ‘bindM‘ (\b -> add a b))
interp (Lam x v) e =

unitM (Fun (\a -> interp v ((x,a):e)))
interp (App t u) e =

interp t e ‘bindM¢ (\f ->

interp u e ‘bindM¢ (\a -> apply f a))

lookup :: Name -> Environment -> M Value
lookup x [] = unitM Wrong
lookup x ((y,b):e) = if x==y

then unitM b

else lookup x e

add :: Value -> Value -> M Value
add (Num i) (Num j) = unitM (Num (i+j))

add a b = unitM Wrong
apply :: Value -> Value -> M Value
apply (Fun k) a = k a

apply f a = unitM Wrong

test :: Term -> String

test t = showM (interp t [])

Notice that in the rule for application both the func-
tion and the argument are evaluated, so this is a

call-by-value interpreter. As we’ll shortly see, a
small modification would implement the call-by-name
strategy. But let’s first give some meaning to the
above interpreter.

2.1

Substitute the identity monad I from 1.2 for M in the
above interpreter while defining

Ordinary interpreter

showI = showval.

If we try to test it by evaluating test term0, where

term0 =
" "

App (Lam "x" (Add (Var"x") (Var"x")))

(Add (Con 10) (Comn 11))
conveniently written as termg = (Az.z 4+ 2)(10 + 11),
we get 42 as the result, as expected.
2.2 Error messages

Error reporting can be added to the interpreter by
defining the following monad:

data E a = Suc a | Err String

unitE a = Suc a

(Suc a) ‘bindE‘ k = k a

(Err s) ‘bindE‘ k = Err s

srrorE s = Err s

showE (Suc a) = "Success: " ++ showval a
showE (Err s) = "Error: " ++ s

As before, we have to replace the monad M by E
in the interpreter. Notice how an error, as soon as
discovered, percolates to the top level via bindE func-
tion. To introduce error messages, we simply replace
every occurence of unitE Wrong by the appropriate
call to errorE:

lookup x [] =
errorE ("unbound variable: " ++ x)
add a b =
errorE ("should be numbers: " ++
showval a ++ "," ++ showval b)

apply f a =
errorE ("should be a function: " ++
showval f)
Evaluating test (App (Con 1) (Con 2)) returns
"Error: should be function: 1".
2.3 Output

We can modify our interpreter to include the output
features. The following monad, when included in the
interpreter, accumulates the output during the eval-
uation in the order it occurs.

type 0 a = (String,a)
unit0 a = ("", a)
m ‘bind0‘ k = let (r,a) = m
(s,b) k a
in (r++s, b)

showO (s,a) = "Qutput: " ++ s ++

" Value: " ++ showval a

We pair each value with the output generated for

that value. unitO simply returns a value without
any output, while bind0 does the application and
concatenates the generated outputs. Notice how
‘bind0¢ enforces the correct order of generating out-
put strings. r will be generally evaluated before s,
because of the dependency introduced by a.
This just describes how the output is propagated.
To generate the output, we introduce a new function
out0. We also need to extend the language of terms
and the interpretation function:

:: Value -> 0 ()
(showval a ++ "; ",

outO
outl a =

)

data Term = ... | Out Term
interp (Qut u) e =
interp u e ‘bind0¢ (\a ->
out0 a ‘bind0¢ (\() -> unit0 a))

Interpreting (Out u) returns the value of u as the
result and sends it off to the output, emptying the

output buffer at the same time. An interesting detail
to notice is that bind0 indeed behaves similarly to
the sequencing operator in the imperative languages
(usually denoted by a semicolon). For the above func-
tion body, one would write the following similar im-
perative code:

interp (u,e);
out (a);
return (a);

a =

bind will typically behave like a sequencer in monads
with states.

2.4 Nondeterminism

If we want to model nondeterminism, the results are
going to be lists of values, rather than single values.
The way to do that is, of course, to use the list monad
L from 1.2 together with

showlL m = showlist (map showval m).
The function showlist translates a list of strings into

a single string. Now we include this monad in the
interpreter together with the following updates:

zerolL = []

1 ‘plusl‘* m =1 ++ m

data Term = | Fail | Amb Term Term
interp Fail e = zerol

interp (Amb u v) e =
interp u e ‘plusL‘ interp v e

Terms can now be “ambiguous”, so (Amb u v) results
in the list of all the values that are results of u or v.
For example, evaluating

test
(App (Lam "x" (Add (Var"x")(Var"x")))
(Amb (Con 2) (Con 3)))

yields " [4,6]".

2.5 Call-by-name

When using the call-by-value evaluation strat-
egy, functions are applied only to evaluated ar-
guments, so the type of functional values is
Fun (Value -> M Value). In the call-by-name
interpreter, arguments are passed unevaluated to
functions, so functional values will be represented
with the type Fun (M Value -> M Value). All the
changes are shown below. The apply function basi-
cally looks the same, but it has a different type.

data Value = Wrong
| Num Int
| Fun (M Value -> M Value)
type Environment = [(Name, M Value)]
interp (App t u) e =

interp t e ‘bindM¢ (\f ->

apply £ (interp u e))

lookup x ((y,n):e) = if x==

then n

else lookup x e
apply :: Value -> M Value -> M Value

Variables will now be bound to ”computations”,

rather than their final values, hence the change in the
environment type. The lookup function now does not
have to ”wrap” its result in monadic type anymore,
since the result is already ”wrapped”. Finally, the
change in the application rule reflects the fact that
the argument u is passed unevaluated to the evalu-
ated function.
We can combine call-by-name evaluation with all the
previously described enhancements. For example,
nondeterministic version of the call-by-name inter-
preter would evaluate the old example

test
(App (Lam "x" (Add (Var"x")(Var"x")))
(Amb (Con 2) (Con 3)))

to "[4,5,5,6]", rahter than "[4,6]" what we had
before.

2.6 Overview

Following the same general idea, we can easily extend
our interpreter to deal with continuations, references,
call-by-need evaluation and beyond. This sounds al-
most too good to be true. Let’s briefly summarize
the main points and problems in Wadler’s approach:

e This approach benefits from a reasonably good
separation between the interpreter and the un-
derlying monad.

e Uniformity of the monadic approach makes the
implementation clean, simple and easy to under-
stand.

e The type information becomes more valuable.
Some vital properties are visible just by look-
ing at the types (recall the call-by-name modifi-
cation and the difference in types of functional
values). Now, for instance, we can easily local-
ize the parts of a program that have side-effects
from those that don’t. Usage of different stateful
monads in Haskell is more closely studied in [2]
and [4].

e The problem of interaction between multiple
monadic features in a single interpreter is not ad-
dressed - how does one gradually build a monad
that captures multiple features?

e Finally, efficiency of a monadic implementation
might be a drawback. Monadic implementations
of many common features may require heavy use
of higher-order functions (references and contin-
uations being typical examples). Certain com-
mon monads hopefully could be optimized and
perhaps even be provided as language primitives.

3 Composing Monads

Guy Steele really liked Wadler’s work! But some
things were not good enough. First, Steele wanted
to be able to incrementally add new features to the
existing interpreter by precisely specifying how they
work together. In [3] he showed how to construct
monadic building blocks that one can stack together

(almost like Legos) to obtain monads. In the previous
chapter we saw that Wadler’s interpreter, although
flexible, usually requires some modifications of data
structures to be done by hand for each new feature.
Steele proposed a way to make this process more au-
tomatic.

The main idea was to use pseudomonads. A pseu-
domonad behaves like a monad with a “hole”. When
a monad is composed with a pseudomonad in a cer-
tain sound way, the result is a new monad. It can
then be repeatedly composed with more pseudomon-
ads, thus enriching the interpreter. The interpreter
again deals with terms and values. They now exist on
multiple levels, since we have multiple levels of mon-
ads. Terms and values are hierarchically connected
with projections and form towers of data types. The
next chapter describes monads and pseudomonads in
Steele’s environment.

3.1 Monads and pseudomonads

Guy Steele introduces “monads” and pseudomonads
through the “Haskell” code that supports them (the
reason for quotation will be clear shortly). Notice
that names Monad and Pseudomonad are used for both
type constructors and data constructors.

type Unitfn p q =

P->q
q->((®@->q ->gq

type Bindfn p q

type Pseudobindfn p q =
Monad qr ->q -> (p ->r) —>r

data Monad p q =
Monad (Unitfn p q) (Bindfn p q)

data Pseudomonad p q =
Pseudomonad (Unitfn p q) (Pseudobinfn p q)

unit :: Monad p q -> Unitfn p q
unit (Monad u b) = u
bind :: Monad p q -> Bindfn p q
bind (Monad u b) = b

pseudounit :: Pseudomonad p q ->

Unitfn p q
pseudounit (Pseudomonad u pb) = u
pseudobind :: Pseudomonad p q ->
Pseudobindfn p q
pseudobind (Pseudomonad u pb) = pb

Wadler defines a monad in Haskell as a triple
(M, unitM, bindM) containing one type constructor
and two polymorphic functions. Steele, on the
other hand, defines monads as 4-tuples (p,q,u,b)
containig two types and two (not necessarily poly-
morphic) functions. Intuitively, Steele would like
to treat type q as type M p. But Wadler’s func-

tion bindM :: Ma ->(a->Mb) ->Mb
is still strictly more polymorphic than
b :: q-> (p ->q) -> q. These two definitions

neither match exactly, nor there is an isomorphism
that would establish a natural 1-to-1 correspondence
between the two abstract data types. Each monad
(M, unitM, bindM) corresponds to (but is not
completely described by) a family of Steele’s monads
of the form (p, M p, u, b). Wadler’'s monads are
polymorphic, since they deal with type constructors,
while Steele’s monads appear to be their special
instances.

For example, we can define identity monads of the
type Monad p p for each type p with

idmonad :: Monad p p
idmonad = Monad (\x -> x) (\z k -> k z)

Pseudomonads are essentially monads
parametrized by monads. A pseudomonad en-
capsulates two types (p and q) and operations
pseudounit and pseudobind. pseudounit has the
role of a unit function for ordinary monads, while
pseudobind is a kind of bind parametrized by a
monad. It is convenient to keep the infix notation
by defining operators <<, # and >> in Haskell in such
a way that we can write x <<m>> f for bind m x f
and x <<m#p>> f for pseudobind p m x f. Pseu-
domonads, just like monads, are required to have
certain natural properties:

e Left unit:

unit p a <<m#p>> f = f a

e Right unit:

X <<m#p>> (h . unit p) = h x

e Associativity:

X <<m#p>> (\a-> f a <<m#p>> g) =
(x <<idmonad#p>> \a-> f a)<<m#p>> g

Now we have to specify how do we actually compose
monads with pseudomonads. It is done by using the
operator &.

m&p = Monad
(unit m . pseudounit m)
(\z k => z <«<m>> (\w -> w <<m#p>> k))

If m is a monad and p is a pseudomonad, then m&p
might be a new monad. Left and right unit monad
laws are guaranteed to hold, but associativity needs
to be checked separately. Monads generally do not
compose!

But there is another, perhaps more serious prob-
lem in the given Haskell code. The definition of
the Pseudobind type has a free type variable r and
hence is not legal in the language! Steele’s mo-
tivation for such declaration comes from the fact
that we don’t a-priori have the complete type in-
formation about monads that we eventually want
to compose with a given pseudomonad. Ideally,
we would like to treat the type variable r existen-
tially. That is a reasonable requirement, although
not quite compatible with the current Haskell type
system. Probably the easiest way around this prob-
lem is to include a type variable r in the declaration
as type Pseudobindfn p q r = ..., but Steele re-
jects this as a cumbersome solution. He instead uses
a preprocessor called the program simplifier which cir-
cumvents certain language restrictions and produces
a correct Haskell program.

As expected, the type of the composition operator is

& :: Monad q r -> Pseudomonad p q ->
Monad p r.

It is important not to confuse the operators # and
&. Expressions m#p and m&p do not bear any spe-
cial resemblance apart from the fact that # is used
in the definition of & In fact, they even have
the different types. For f p —> r, the expres-
sion x <<m#p>> f makes sense for x :: q, whereas
X <<m&p>> f requires x :: r.

As one would normally expect, we can compose pseu-
domonads in a natural way, thus obtaining more
pseudomonads. If pa and pb are pseudomonads, then
their composition pb&pa satisfies

m& (pb&pa) = (m&pb)&pa.

3.2 Building an interpreter

An interpreter is a mapping from terms to values.
When adding a new feature, both of those types gen-
erally need to be modified. Following that idea, Guy
Steele introduces the notion of building blocks. A
building block is a function that takes an interpreter
from terms of type t to values of type v and pro-
duces a new interpreter that maps terms of type t’
to values of type v’. It does so by using two lifting
pseudomonads, one of the type Pseudomonad t t’
and the other of the type Pseudomonad v v’.
Multiple composition of buliding blocks generates
two “towers” of data types - one for the terms and
one for the values. Complete interpreter on each level
is given by the corresponding package. A package is
a set (or rather a list) of routines and/or data that
implemet certain fized set of vital functions for the in-
terpreter. In our case, a package can contain routines
of the following eight kinds:

e ParseR - parsing

e InterpR - interpreting

ShowvalR - printing

e ComplainR - error reporting

MakenumR - constructing number values

MakefunR - constructing function values

e ApplyR - applying functions
e NameR - a string that names the interpreter

We immediately see inflexibility of such approach.
The above set of routines is not nearly exhaustive
for the kinds of interpreters we would like to consider.
That is certainly a disadvantage of this approach. Or
rather, that is the price we have to pay for making
things a bit more automatic. We can certainly ben-
efit from the fact that we don’t have to change the
data structures by hand, but at the same time we
are limited to constructing only interpreters of cer-
tain kinds.

Another “meta-objection” is about treating a parser
as a fundamental component of a package. Parser is
completely irrelevant to the monadic implementation
of the interpreter. Steele should have probably been
less concerned with technical issues such as parsing,
since it makes some parts of Haskell code in his pa-
per [3] very tedious to read.

Each package carries the type information about the
current types of terms and values (t and v), top types
of terms and values (t’’ and v’’) and types of val-
ues stored in the environment (ve). Below are the
datatype definitions a package.

data Routine t v t’’ v’’ ve =
ParseR (String -> [(t’’, String)])
| InterpR (t -> [(String, ve)] -> v’?)
| ShowvalR (v -> String)
| ComplainR (String -> v’?)
| MakenumR (Int -> v’?)
| MakefunR ((v’’ -> v’?’) -> ve)
| ApplyR (v’ => v’’ => v??)
| Name String

data Package t v t’’ v’’ ve =
Package [Routine t v t’’ v’’ vel

Notice that the interpreter accepts a term of the
current type, but produces a value of the top type.
This is actually a value of the current type projected
to the top of the value type tower via the unit func-

tion.)

T 1nteg top v

T T

T)

e inter_)pr Py v

T T

T, inter_)pr Py "

T T

T, inter_)pr Py Vi
mTs Pseudomonad 17 15
mT Pseudomonad Ty T
mVs Pseudomonad V; V5
mV; Pseudomonad Vy V3

P, :: Package Ty Vo T" V" Vg
P, :: Package Ty Vi T" V" Vg
P, Package Ty Vo T" V" Vg

We also assume the existence of functions interpr,
parser, complainr, etc. that when given a package,
extract the corresponding component from it.

3.3 Base of the tower

Here we describe how to construct a simple base in-
terpreter on which all the other type towers can be
erected. The only term it interprets is Bogon (pro-
jected to the top of the term tower) and the only
resulting value is Wrong (projected to the top of the
value tower).

data TermZ = Bogon
data ValueZ = Wrong

interpreter tmt tmv top = Package
[ParseR parseZ, InterpR interpZ,
ShowvalR showvalZ, ComplainR complainZ,
NameR nameZ]

where

parseZ s [(unit tmt Bogon, s)]
interpZ Bogon _

complainr top "invalid expression"
compalinZ s = unit tmv Wrong
showvalZ Wrong = "<wrong>"

nameZ "interpreter"

The function interpreter takes three parameters
and produces a package. Such function is called a
prepackege. The parameters are top monad for terms
tmt, top monad for values tmv and the top package
top. tmt and tmv are used for projecting terms and
values to the top of the towers. top is here used
for reporting errors, since we have to report them at
the top level. To complete a prepackage, we need to
give it some suitable parameters. Here we are build-
ing the base level, so top and bottom levels are the
same. Therefore, the identity monad will a be good
candidate for both tmt and tmv. Where do we get
the top package from? Well, we are just working on
constructing one. Hence, we can use a little lazy trick
- define the top cyclically in terms of itself.

complete prepkg = top
where top = prepkg idmonad idmonad top

type Term = TermZ
type Value = ValueZ
interp_pkg = complete interpreter

The complete function “ties a knot” at the top
and returns the top package. This will typically be
used in all further refinements of the interpreter. We
will first stack all the pseudomonads (by stacking
the corresponding building blocks) thus obtaining a
prepackage. Then we can simply apply the complete
function to finish the construction and yield the top
package.

Steele seemed to have problems with recursive def-
initions in Haskell, such as the above one. This is

10

another point where the program simplifier had to
intervene.

3.4 The first floor

This section describes how can one extend an inter-
preter by adding another building block. We describe
an example of the numbers building block.

The term type is extended with constant constructor
and addition, while the value type is extended with
numerical values.

data TermN t’’ t =
Con Int | Add t’’ t’7 |
data ValueN v’’ v = Num Int |

OtherTN t
OtherVN v

mTN = Pseudomonad
(\x -> 0therTN x) mTNbind where
mTNbind m (Con x) f = unit m (Con x)
mTNbind m (Add x y) f = unit m (Add x y)
mTNbind m (OtherTN x) f = f x

mVN = Pseudomonad
(\x -> OtherVN x) mVNbind where
mVNbind m = gxfoo where
gxfoo (Num x) f unit m (Num x)
gxfoo (OtherVN x) f f

X

numbers oldprepkg tmt tmv top =
update oldpkg [<list of new routines>]
where
oldpkg = oldprepkg
(tmt & mTN) (tmv & mVN) top
parseN ...
interpN (Con x) _ = unit tmv (Num x)
interpN (Add x y) env
interpr top x env <<tmv>> (\u ->

interpr top y env <<tmv>> (\v ->

case (u,v) of
(Num j,Num k) -> unit tmv(Num(j+k))
(_, _) -> complainr top (

"should be numbers: " ++

showval top (unit tmv u) ++ ", "

++ showval top (unit tmv v))

))

interpN (OtherTN x) env
interpr oldprepkg x env

showvalN (Num x) = show x
showvalN (OtherVN x) = showvalr oldpkg x

makenumN x unit tmv (Num x)

nameN = ...

The numbers function is an example of a building
block. Tt takes an old prepackage and produces a
new prepackage. In our case, the old prepackage is
interpreter. To get the new package, we need to
complete the resulting new prepackage. We can do it
by using the function complete. It will compose the
pseudomonads mTN and mVN with the identity monad,
leave top to be the fixpoint (the “knot”) as before and
return the final package. The code for that is

type Term = TermN Term TermZ
type Value = ValueN Value ValueZ
interp_pkg = complete(numbers interpreter).

We can perform multiple extensions in a similar fash-
ion. At every stage, the interpreter will typically be
evaluated by an expression of the form

complete (bn(...(b2(bl interpreter))...)),

where b1, b2, ..., bn are some building blocks. We
see that the building blocks composition is generally
not commutative, much like the functional compo-
sition. An interesting problem would be to find the
optimal order of building blocks for a given set of fea-
tures. More general, what kinds of issues are involved
in comparing two building-blocks-based implementa-
tions of the same set of features?

3.5 The program simplifier

The program simplifier in Guy Steele’s environment
has a multiple function:

e Inlining of certain functional definitions

e [(-reductions and a-conversions of terms in a way
that keeps them simple and readable

11

e Substitution and simplification of the explicitly
provided type declarations Term and Value

e Circumvention of some of the problems that the
original type checker had with suggested decla-
rations

Most of the transformations done by the program
simplifier are sound. They are usually based on sim-
ple equational reasoning and any Haskell compiler
can perform them if it finds them useful. But some
of the transformations attempt to “correct” certain
parts of Steele’s code that failed to produce the de-
sired effects or were even rejected as erroneous by the
compiler! Introducing such transformations is not a
good idea for at least two reasons:

e They are potentially unsound.

e Even if they are sound, such rules are not stan-
dard in the language, so everyone who attempts
to use such tool needs to know exactly how they
work. This can be an obstacle for the wide ad-
doption of the approach.

Nevertheless, we do benefit from the program simpli-
fier - it makes our implementation work!
3.6 Overview

Here we give an overview of the basic pros and
cons of the Steele’s approach for building monadic
interpreters.

Pros:

e Making monads extensible through the use of
pseudomonads.

e Dealing with multiple upgrades in a modular
fashion.

Cons:

e Nonstandard definition of a monad, not clearly
related to the “standard” definition.

e Fixed set of possible routines that a package can
contain.

e Using lists of routines for representing packages.
This can be inefficient, especially if we extend
the notion of a package.

e Tight dependence on the program simplifier
whose actions are not clearly defined.

4 Monad Transformers

Philip Wadler described a general monadic methodol-
ogy for building programming language interpreters.
His technique, although very promising, isn’t mod-
ular in its nature. He builds one monad for each
interpreter from the scratch. This works well in cer-
tain simple cases, but the job of creating a good
monad becomes harder as the number of desired fea-
tures grows. The question is how to divide this job
into multiple steps? Previous chapter described Guy
Steele’s attempt to solve this problem by introducing
pseudomonads that can be chained together to form
more complex monads. This approach wasn’t very
general and its implementation faced various prob-
lems due to certain language restrictions of Haskell.
One of the biggest problems was the type system.
This chapter describes a work of Shieng Liang, Paul
Hudak and Mark Jones [5] which tries to remedy
Steele’s problems. They used the Gofer language en-
vironment, which is an enhanced variant of Haskell.
Their key notion is that of a monad transformer
which generalizes pseudomonads. This idea is essen-
tially simpler and more general than the Steele’s idea.
They also treat the problem of lifting operations from
lower layers to higher layers of monad transformers
in a natural way.

4.1 The Gofer environment

In this section we give a brief introduction to the
Gofer constructor class system through a couple of
illustrative examples. The idea behind constructor
classes is similar to the idea of modules (e.g. struc-
tures in SML). We want to be able to generically ex-
press some common features of types or type con-
structors. Consider, for instance, the map function
in Haskell

12

map :: (a -> b) -> [a] -> [b]

which maps a function over a list. We may be inter-
ested in a similar function for mapping over trees.

data Tree a = Leaf a
| Node (Tree a) (Tree a)
Tree a -> Tree b
Leaf (f x)
Node(map f 1) (map f r)

map :: (a -> b) ->
map f (Leaf x)
map f (Node 1 r)

More general, we may want to do that for arbi-
trary number of type constructors. For that purpose,
Gofer provides a way to define signatures for type
and constructor classes and their instances.

class Functor t where
map :: (a ->b) >t a->tb
instance Functor List where

map f [] (1
map f (x:xs) f x

: map f xs
instance Functor Tree where
map f (Leaf x) = Leaf (f x)
map £ (Node 1 r) =
Node (map f 1) (map f r)

It is very natural to define a constructor class for
monads. Functions map and join are automatically
derived from unit and bind as described in 1.1.

class Monad m where

unit :: a -> m a

bind :: ma ->(a->mb) ->mb

map :: (& ->b) ->ma->mb

join :: m (ma) ->m a

map f m = m ‘bind‘ (\a -> unit (f a))
join z = z ‘bind‘ id

Gofer allows us to elegantly define terms and values
as extensible union types. Steele had to use his pro-
gram simplifier for that job (i.e. to “flatten” the data
types from multiple levels into a single union type).
This consequently eliminates most of the Steele’s typ-
ing problems. Traditionally, disjoint union of types is
constructed through the OR operator as shown below.

data OR a b Lal|RPD

L and R are injections of “subtypes” into a “super-
type”. Conversely, a value of the “supertype” can
be projected to one of the “subtypes” using pattern
matching. Generally, we can define the subtyping re-
lation by specifying the injection and the projection.

class SubType sub sup where
inj
proj

sub -> sup
sup —> Maybe sup

data Maybe a = Just a | Nothing

instance SubType a (OR a b) where

inj = L
prj (L x) = Just x
pPrj - = Nothing

Now we can express the subtyping relation that can
reach through all the levels of OR nesting.

instance SubType a b =>
SubType a (OR c b) where

inj = R . inj
prj (R a) = prj a
pPrj - = Nothing

For example, if we declare

type Value = OR Int (OR Fun ()),

the type checker will automatically infer that Int and
Fun are both subtypes of Value.

4.2 Interpreters in Gofer - basics

There are three main components to the interpreter
as seen by Liang, Hudak and Jones: type Term, type
Value and monad InterpM. Following the Wadler’s
idea, InterpM encodes computations. We call it
the interpreter monad of final answers. Those three
components are independent and their “richness” de-
pends on the complexity of the interpreter we want
to build. Interpreting function maps terms to com-
putations of values.

interp :: Term -> InterpM Value

13

We can now define a class InterpC of term types that
can be interpreted.

class InterpC t where

interp :: t —> InterpM Value

Gofer can automatically build instances of that class
for unions of term types.

instance (InterpC t1, InterpC t2) =>
InterpC (OR t1 t2) where

interp (L t)

interp (R t)

interp t
interp t

4.3 Monad transformers

Wadler’s idea about building a single monad for an
interpreter becomes hard for realization when we
want to implement several structurally different fea-
tures, because we need to specify how each feature
interacts with each other. The idea behind monad
transformers is to capture features individually in an
incremental way - build each next feature on the top
of what we already have. This will, however, require
some additional work in order to lift everything to
the common top level.

A monad transformer is a type constructor t such
that if m is a monad, so is t m. We want to be able to
embed m - computations into t m - computations, so
we need a 1ift operator which is a member function
of the class of monad transformers.

class (Monad m, Monad (t m)) =>
MonadT t m where
1lift

::ma —->tma

We want this embedding to be natural in the sense
that it doesn’t change the nature of the existing com-
putations. Formally, we require that every monad
transformer satisfies the following two laws:

e lift . unitM = unitTM

e lift (m ‘bindM‘ k) =

(1ift m) ‘bindTM‘ (lift . k)

Here unitM and bindM refer to the monad m, while
unitTM and bindTM refer to the monad t m.

4.4 Error monad transformer

Here we give an example of a very simple monad
transformer and an interpreter based on it. The
monad transformer ErrorT transforms a monad into
an error monad. There are three typical steps in
defining a monad transformer. First we define the
type constructor:

data Error a = 0k a | Error String

type ErrorT m a = m (Error a)

Gofer system deduces that m in the above declara-
tion is a type constructor. The next step is to define
the transformation of monads through the introduced
type constructor.

instance Monad m => Monad (ErrorT m) where

unit = unit Ok
m ‘bind‘ k =
m ‘bind¢ \a ->
case a of
(0k x) -> k x

(Error msg) -> unit (Error msg)

The last step is to establish that ErrorT is a monad
transformer by defining the lifting operator.

instance (Monad m, Monad (ErrorT m)) =>
MonadT ErrorT m where

lift = map Ok

Since 0k :: a -> Error a, the map function
of m will satisfy map Ok :: m a -> m (Error a),
which shows that the defined 1ift has the appro-
priate type. It is easy to check that such 1ift in-
deed naturally embeds computations into computa-
tions with errors. If we want to play some more, we
can define a special class of error monads which are
capable of encoding erroneous computations via the
special member function err. We also establish the
fact that for every monad m, monad ErrorT m is an
error monad.

class Monad m => ErrMonad m where
err :: String -> m a

instance Monad m =>
ErrMonad (ErrorT m) where

err = unit . Error

14

The unit function from the above definition is from
the monad m.

We are now ready to construct the interpreter for
a small arithmetic language, following the metodol-
ogy described in 4.2. Our interpreter monad will be
the “error-transformation” of the identity monad I.
The final interpreter is simply an instance of the class
InterpC.

TermA
OR Int ()

type Term =
type Value =

type I a = a
type InterpM a = ErrorT I a
data TermA = Num Int
| Add Term Term
instance InterpC TermA where
interp (Num x) = unitInj x
interp (Add x y) =
interp x ‘bindPrj‘ \i->
interp y ‘bindPry‘ \j->
unitInj ((i+j)::Int)

unitInj = unit
m ‘bindPrj‘ k =
m ‘bind‘ \a ->
case (prj a) of
Just x -> k x
Nothing -> err "type error"

inj

err :: String -> InterpM a

The above interpreter is somewhat artificial, since it
is impossible to introduce an error. Indeed, every
expression of the type TermA can be evaluated into
a number. However, if we change the declaration of

Term into something like
type Term = OR TermA (),

we would obviously have the possibility of errors.

4.5 Environment monad transformer

Suppose we want to extend our arithmetic interpreter
to deal with functions. We need to extend our Term

type and define appropriate operations that deal with
functional computations. Our terms can now be func-
tional or arithmetic expressions (including the com-
binations).

type Term = OR TermF TermA
type TermF = Var Name
| LambdaN Name Term
| LambdaV Name Term
| App Term Term
type Name = String

LambdaN and LambdaV perform respectively call-by-
name and call-by-value abstractions. We also assume
the existence of the follwing functions for handling
the environment:

lookupEnv :: Name -> Env ->
Maybe (InterpM Value)
extendEnv :: (Name, InterpM Value) ->

Env -> Env

How do we carry out computations in environments?
Generally, we can transform every monad into an en-
vironment monad through the use of the environment
monad transformer. If r is the type of environments
and m is a monad, then

type Envi rma=r ->ma

is the type of m-computations in environments. The
corresponding monad transformation is given below.

instance Monad m => Monad (EnvT r m) where
unit a \r -> unit a
‘bind‘ k \r >mr ‘bind‘ \a >k ar

m

The unit computation ignores the environment and
returns the unit computation in m. To evaluate
m ‘bind‘ k in the environment r, simply evaluate
m in the environment r yielding the result a and then
evaluate k a in the same environment r.

Lifting is easy, 1ift m is simply a constant function
that ignores the environment.

I
\%

instance (Monad m, Monad (EnvT r m))
MonadT (EnvT r) m where
\r -=> m

lift m

15

As before, we define the class of environment monads.
They can preform computations in environments us-
ing inEnv and read the current environment using
rdEnv. We will see how is this used in the next ex-
ample.

class Monad m => EnvMonad env m where
inEnv :: env -> ma -> m a
rdEnv :: m env
instance Monad m =>
EnvMonad (EnvT r m) where

_

\r -> unit r

inEnv r m ->mr

rdEnv

Now let’s get back to our functional interpreter. We
first define the Value type and then an instance of
the InterpC class. We also have to make sure that
our InterpMis an environment error monad. We can
ensure that by using both ErrorT and EnvT monad
transformers.

OR Int (OR Fun ())
InterpM Value -> InterpM Value

type Value

type Fun

instance InterpC TermF where
interp (Var v) = rdEnv ‘bind‘ \env ->
case lookupEnv v env of
Just val -> val
Nothing ->
err ("unbound variable: " ++ v)

interp (LambdaN s t) =
rdEnv ‘bind‘ \env ->
unitInj(\arg->inEnv
(extendEnv(s,arg) env)
(interp t))

interp (LambdaV s t) =
rdEnv ‘bind‘ \env ->
unitInj(\arg -> arg ‘bind‘ \v ->
inEnv (extendEnv(s,unit v) env)
(interp t))

interp (App el e2) =
interp el ‘bindPrj‘ \f ->
rdEnv ‘bind‘¢ \env ->

f(inEnv env (interp e2))

Interpreting a variable amounts to looking up its
value in the environment. Both call-by-name and
call-by-value abstractions return a function injected
into the Value type and then embedded into the
monad. The difference is that as soon as we apply
the call-by-value version, it immediately reduces its
argument, while the call-by-name version stores the
unevaluated argument in the environment.

4.6 State monad transformer

State monad transformer adds state to a monad.
Suppose that we want to introduce states of type s.
Consider then the following type

type StateT sma =s ->m (s,a).

We can view it as the type of stateful computations in
m that result in a value of type a. A function of that
type takes an old state as an argument and returns
an m-computation of the new state and the result.
We can use this as a base for our state transformer.
As before, we first define the corresponding monadic
transformation.

instance Monad m =>
Monad (StateT s m) where
unit x \s -> unit (s,x)
m ‘bind‘ k = \sO ->
(m s0) ‘bind‘ \(s1l,a) -> k a si

Unit computation of x simply returns x without
changing the state. To evaluate m ‘bind‘ k in the
state s0O, we first evaluate m in the state sO yielding
result a and the new state s1. Then we evaluate k a
in the state s1.

Finally, we complete the definition of the state trans-
former by introducing the lift operator. Notice that
lifted computations don’t change the state, which is
what we expect, since lifting shouldn’t change the
nature of “old” computations.

instance (Monad m, Monad (StateT s m)) =>
MonadT (StateT s) m where
\s -> m ‘bind‘ \x -> unit(s,x)

lift m

16

Naturally, state monads will be able to update the
state. Our update member function will return the
old state as a result and at the same time change the
old state by applying an argument to it.

class Monad m => StateMonad s m where
update :: (s -> s) > m s
instance Monad m =>
StateMonad s (StateT s m) where
update f \s -> unit (f s, s)

Notice that update id simply reads the current
state. We can use the state monad transformer to
implement the support for references. Locations will
be represented as integers. Internal representation of
the storage space is irrelevant. It is, however, impor-
tant that we have the following functions available:

allocLoc InterpM Loc

lookupLoc :: Loc -> InterpM Value

updatelLoc :: (Loc, InterpM Value) ->
InterpM ()

type Loc = Int

Our terms should be extended with reference con-
structs.

data TermR Ref Term
Deref Term
Assign Term Term

data Term OR TermA
(OR TermF

(OR TermR))

The semantics is obvious. To interpret Ref x, we first
evaluate x, then allocate a new cell and store the re-
sult in it. The location of the new cell is returned
as a result. Dereferencing simply does a lookup. As-
signment updates the value stored at a given location
and returns that new value as a result.

instance InterpC TermR where
interp (Ref x) =
interp x ‘bind‘ \val ->
allocLoc ‘bind‘ \loc ->
updateLoc (loc, unit val) ’bind’ _->

unitInj loc

interp (Deref x) =
interp x ‘bindPrj‘ \loc ->
lookupLoc loc

interp (Assign lhs rhs) =
interp lhs ‘bindPrj¢ \loc ->
interp rhs ‘bind‘¢ \val ->
updateLoc (loc, unit val) ‘bind¢ _->
unit val

Notice how the use of bindPrj checks whether a
given computation computes a location and at the
same time extracts the “raw” location number from
it.

4.7 Lifting operations

In the preceding examples we saw that the nature
of certain monads requires them to come equipped
with some additional monadic operations besides
unit and bind. For example, error monads have
String -> m a, environment monads have
Env -> m a -> m a and state monads
have update :: (s -> s) -> m s. What happens
to those operations once we apply a monad trans-
former to our monad? They don’t exist at the top
level anymore. That seems to break the modularity
of the original idea. What’s the solution? Well, lift
all the operations to the common top level! Unfortu-
nately, the way to do that may sometimes be not so
obvious and certainly not doable automatically. Let’s
state the problem precisely.
Suppose that for a given monad m, the set of types
of (possibly monadic) operations is given by the fol-
lowing grammar:

err ::
inEnv ::

T = A (type constants)
| a (type variables)
| 7 — 7 (function types)
| (r,7) (product types)
| mr (monad types).

For a given monad transformer ¢, we inductively de-
fine the mapping []; that maps each type to its cor-

17

responding lifted type across the transformer ¢.

[Al: = A

[a]: = a

[=l = [nli = [m]:
[(rm)]e = (Imle [72]4)
[7] = tm[7]:

The problem of finding a natural lifting through the
monad transformer ¢ consists of finding for each type
7 an operator
LroT— [T
such that the following conditions are met:
1. Ly=id
2. L,=1id

. Vf (‘Cn—)'rzf) "Cﬁ = ‘CTQ f

This is shown on the following commuting dia-

gram:
L-rl — T2 f

|—7'1—|t

‘CTl T

|—7'2—|t
t Lo,

!

T1 — T2

4. L my) = Na,b). (Lr,a,Lr,D)

5. Ly - =lift - (map L;).

The above conditions ensure the naturality of lift-
ing. Naturality is a-priori guaranteed just for lifting
of pure computations, because of the requirements
on the 1ift function. Here we see that the only
problematic case is lifting in functional types. Liang,
Hudak and Jones, besides giving a couple of exam-
ples, don’t give any additional insight about how one
might try to find such natural lifting. They deal with
this problem in an ad-hoc manner. Here we propose
a simple scheme that provides a way to find lifting
operators systematically.

The idea is to try to find for each 7 a pseudoinverse
of L., i.e. an operator

Uy = [T =1

such that

U, - L, =id. (1)
The operator U, projects or unlifts lifted operations.
Such U can help us build £ and vice-versa. But first
we have to realize such inversion on the basic levels.
Formally, we look for a pseudoinverse

unlift =t m 7 — m
of the lifting operator

lift:m7t — tmr.
Hence, we are looking for a function unlift such that
(2)

Intuitively speaking, such operator will exist in all
the cases where 1ift injectively embeds computa-
tions into the next layer.

Suppose we have such an operator. We can then con-
struct £, and U, that satisfy (1) inductively for every

type T:

unlift - lift = id.

L4=1d
Uy =id
L, =1d
U, =id

‘CT1—>T2 =Af ‘CTz - f “Ur,
u‘l'14>7'2 = Af’ uTQ : f : ‘Cﬁ

£(T1,T2) = A(0’7)
Uiz, rp) = Ma,)

Ly - = lift - (map L;)
U, + = (map U;) - unlift

. L
' (Z’{n a, u‘rz b)

An easy inductive proof shows that (1) indeed holds.
To show that the naturality conditions hold, we just
need to verify it for the case of functional lifting, since
other cases are trivial. Indeed, from the above defi-
nition we get

(‘CTl—)Tzf) . ‘C-rl = E'rz . f . u‘rl . £71 = E'rz . f:
since Uy, - L, = id.

Here we give a couple examples. In the case of the
environment, transformer, we had

lift m = \r -> m.

If r0 is any (fixed) environment, we can define a pseu-
doinverse by

unlift 1 = 1 r0.

Obviously, unlift (1ift m) = m.

In the case of the state monad transformer,we had

lift m = \s -> m ‘bind‘ \x -> unit(s,x).

Again, if sO is an arbitrary state, we can define a
pseudoinverse by

unlift 1 = (1 s0) ‘bind‘ \(s,x) -> unit(x).

Indeed, we get

(unlift.lift) (m) =

unlift (\s -> m ‘bind‘ \x -> unit(s,x)) =
(m ‘bind‘ \x -> unit(s0,x)) ‘bind‘

\(s,x) -> unit(x) = /associativity/ =

m ‘bind‘

\x -> unit(s0,x)
m ‘bind‘ \x -> unit(x) =
m ‘bind‘

unit = m.

4.8 Overview

Among the three approaches discussed in this paper,
monad transformers seem to capture most of what
was originally wished for in the most elegant way.
Here are some of the main accomplishments:

e We can say that the Gofer type system with its
constructor classes was definitely a hit. The key
benefit comes from the usage of extensible union
types that eliminates the need for Steele’s towers
of data types. Moreover, automatic inference of
class instances and class methods (injections and
projections, for instance) simplifies the the code
and thus makes it less prone to errors.

e Monad transformers have the modularity of
Steele’s pseudomonads, but the code is smaller
and more efficient. For example, in the case of
monad transformers, we don’t have to deal with

18

‘bind‘ \(s,x) -> unit(x) =

lists of routines (packages) at every level. In-
stead, we need to naturally lift the monadic op-
erations across the monad transformers. This
actually helps us develop a better understand-
ing of the nature of operations we want to lift.

What about generality? Monad transformers
certainly generalize pseudomonads. Moreover,
unlike in Steele’s case, implementor is not lim-
ited with the fixed set of operations that a pack-
age can contain.

Liang, Hudak and Jones spent less time on tech-
nical details (such as parsing). They concen-
trated on the essential ideas.

However, there are also some problems with this ap-
proach:

¢ Finding a natural lifting. The number of poten-
tial liftings grows quadratically with the number
of monad transformers. No systematic proce-
dure is presented, and even the simple schema
described at the end of section 4.7 depends on
finding a pseudoinverse unlift of the 1ift op-
erator.

When a sequence of monad transformers is ap-
plied to build an interpreter monad, the order
in which we apply them matters a lot (rather
than just the set of transformers). It is a non-
trivial task to determine which order will yield
the most efficient code or be the simplest one for
implementing.

Nonstandard environment. The Gofer, even
though undoubtedly useful for this application,
is not (yet) considered as a major Haskell stan-
dard. The author of this paper faced some se-
rious noncompatibility problems while trying to
run some examples.

5 Conclusions and related work

As shown in this paper, monads provide a very gen-
eral framework for modelling programming language
features. The core idea is to use a monad to define the

19

notion of a computation. In the classical A-calculus,
we identifiy types of values and types of computa-
tions. By doing this, we fail to capture some inter-
esting computational aspects, such as various kinds
of states and control over the evaluator.

Monads can be used as an implementation tecnique,
but also as a way to structure the language descrip-
tion. As Moggi pointed out in [6], traditional de-
notational semantics lacks modularity - it does not
provide a general mechanism for looking at various
language aspects separately. Monad transformers [5]
can be used to achieve this in a monad setting. More-
over, they provide a good way of understanding the
language features and their interaction and can even
be used in the documentation of the language design.
Philip Wadler [8] described how monads can be used
to build interpreters. The idea is to construct one
monad for each interpreter. This approach points to
the right direction, but is not quite practical, since it
does not scale - we have to rebuild our monad from
start for each new feature added.

Guy Steele [3] tried to fix that by introducing a way
to compose monads. For that purpose he used pseu-
domonads which are essentially “higher-order” mon-
ads (i.e. monads parametrized by monads). He devel-
oped a method of creating interpreter building blocks,
each of which can implement a separate feature. Such
blocks can then be glued together into a single inter-
preter. His approach failed in several aspects. First,
he used a nonstandard notion of monads. Second, he
struggled with some limitations of the Haskell type
system which are circumvented through the use of
his program simplifier. Actions of the program sim-
plifier are not clearly defined which makes his system
nonstandard, hard to use and possibly erroneous. Fi-
nally, he sacrificed generality in order to make the
process of upgrading the interpreter more automatic.
A further improvement came from S. Liang, P. Hu-
dak and M. Jones [5] who also attacked the prob-
lem of monad compositionality, but with a better
weapon - monad transformers. Monad transformers
generalize pseudomonads and give a generally sim-
ple mechanism for building monads through mul-
tiple layers. Gofer’s type system with constructor
classes [1] proved to be very useful for this purpose.
This approach, however, faced the problem of lifting

of monadic operations to the top level. Only the cor-
rectness criteria for natural lifting is given, but the
authors didn’t provide any guideline about finding an
actual lifting in a general case.

Different aspects of monads were studied by many
other authors.

Jones and Wadler [2] showed how imperative features
can be monadically imported to Haskell by design-
ing a model which enables invocation of C-functions.
This is a rather interesting combination, but its real-
ization requires support for unboxed types which are
somewhat unnatural in lazy programming languages.
Launchbury and Jones [4] closely studied applications
of state transformers for encapsulating diferent kinds
of stateful computations in Haskell.

One may be wondering if there are any computational
aspects at all that can not be modeled by monads?.
Seems like the answer is (surprisingly?) yes! Philip
Wadler [9] found that types of the certain kinds of
continuations are too general to be interpreted in a
monad. This looks like a good area for further re-
search - perhaps we need some kind of generalized
monads?

In general, we can conclude that monads are yet
another witness to the close relationship between
programming languages and category theory. It is
important to investigate this connection throughly,
since it may reveal some valuable discoveries in both
areas. To what extent will this continue to happen
in the future - remains to be seen.

References

[1] Mark P. Jones. A system of constructor classes:
Overloading and implicit higher-order polymor-
phism. In In FPCA ’93: Conference on Func-
tional Programming Languages and Computer
Architecture, Copenhagen, Denmark, 1993.

[2] Simon L Peyton Jones and Philip Wadler. Im-
perative functional programming. In Conference
Record of POPL ’93, 1993.

[3] Guy L Steele Jr. Building interpreters by com-
posing monads. In Conference Record of POPL
94, 1994.

20

[4] John Launchbury and Simon L Peyton Jones.
State in haskell. J. of Lisp and Symbolic Com-
putation, 1995.

[5] Sheng Liang, Paul Hudak, and Mark Jones.
Monad transformenrs and modular interpreters.

In Conference Record of POPL 95, 1995.

[6] Eugenio Moggi. An abstract view of program-
ming languages. Technical report, University of
Edinburgh, 1989.

[7] Philip Wadler. Comprehending monads. Mathe-
matical Structures in Computer Science, 2, 1992.

[8] Philip Wadler. The essence of functional pro-
gramming. In Conference Record of POPL 92,
1992.

[9] Philip Wadler. Monads and composable contin-
uations. J. of Lisp and Symbolic Computation,
1993.

