
Importance Driven Path Tracingusing the Photon MapHenrik Wann Jensen?Dept. of Graphical CommunicationTechnical University of DenmarkAbstract: This paper presents a new importance sampling strategy forMonte Carlo ray tracing in which a rough estimate of the irradiancebased on the photon map is combined with the local re
ection model toconstruct more e�cient probability density functions that can be usedin an importance sampling scheme.The algorithm gives unbiased results, handles arbitrary re
ection modelsand it is particularly e�cient in scenes with highly non-uniform indirectillumination. Initial results and comparisons with traditional importancesampling strategies indicate a reduction in the noise level of more than70%Key Words: Global Illumination, Path Tracing, Importance Sampling, PhotonMap1 IntroductionPhotorealistic rendering requires accurate simulation of global illumination andmuch work has been done in this area in the last 10 years. The problem wasactually solved in 1986 by Kajiya [6] using a method called path tracing. Thismethod is basically a brute force Monte Carlo simulation of light interactionwith a given model. Path tracing is very general and it can be applied to ar-bitrarilly complex models. It requires only small amounts of memory and it isvery applicable to parallel computers. The rendering time with path tracing ishowever so enormous that the method | in spite of being general | is not veryattractive on current computers architectures.Several papers have presented improvements to the path tracing method.Ward et al. [19, 22], did a very good job, by introducing a caching scheme inwhich indirect illumination is stored and reused at ideal di�use surfaces. Thissigni�cantly reduces the number of rays necessary in scenes with many 
at, idealdi�use surfaces. Shirley et al. [15] and Ward [20] reduce the number of shadowrays required to compute direct illumination in scenes with many light sources.Arvo et al. [1] described a technique called Russian roulette that eliminates the? e-mail: igkhwj@unidhp.uni-c.dk url: http://www.gk.dtu.dk/home/hwj/



in�nite re
ection of light rays without introducing bias in the �nal solution. Se-veral authors [10, 4] use importance sampling where the re
ection characteristicsof the surface are used to guide sampling rays into those directions from wherethe light will contribute mostly. Another approach is adaptive sampling wheresamples are concentrated in the most interesting parts of the scene. Lafortune etal. [9] constructs a 5d tree representing the overall 
ux in the scene and uses thistree in the selection of new sampling directions. Adaptive sampling can howevereasily lead to biased solutions [2] and it must be used with great care. Recentlybidirectional path tracing was introduced by Lafortune et al. [8] and Veach etal. [18]. It is a mixture of path tracing from the eye and path tracing from thelight sources and it is particularly e�cient in scenes with highly non-uniformindirect illumination.Currently the simulation of global illumination is obtained most e�cientlyby the two pass methods in which a light pass (ie. radiosity) produces a solutionthat is visualized with a simpli�ed path tracing algorithm [14, 17, 5, 13, 7].Another e�cient method or collection of methods is presented in the Radiancerendering program by Ward [23].These two pass methods and the Radiance program do however degrade topure path tracing in very complex environments where the surfaces are no longerideal di�use or ideal specular or where the objects are either too complex or toomany to be represented by polygons. Even though some of the two pass methodscan let the light pass step work on simpli�ed scenes [13, 7] they still have tovisualize the solution using path tracing in order to eliminate artifacts in thelight pass step. This path tracing step does not utilize the fact that the modeldoes contain information on the distribution of the light and the importancesampling is therefore still only using the re
ection characteristics of the surfaceto guide new sampling rays.This is particularly problematic in scenes with highly non-uniform indirectillumination. These situation are handled more e�ciently using bidirectionalpath tracing, but this method does not use the irradiance stored within themodel. It would be more appropriate to use the information created in the lightpass to guide the path tracing algorithm. This would also permit the use ofthe method in two pass techniques where path tracing is used only for the �rstre
ection seen by the eye [5, 13, 7].In this paper we present an importance sampling scheme in which the scene ispreprocessed and rough estimates of the incoming light are created everywhere inthe model. These rough estimates are used to generate sampling directions basedon probability density functions that more closely �ts the true light contributionas opposed to standard importance sampling methods which only use the localre
ection model.In this way we concentrate the samples in the important parts of the scene.This approach does not give any bias on the �nal solution as opposed to someof the common adaptive strategies that also tries to put more samples intoimportant parts of the scene.



2 Mathematical BackgroundGiven the integral I = Z g(x) dx ; x 2 D � Rn (1)We can evaluate this integral using a Monte Carlo technique known as thesample-mean method [12] by representing the value of the integral as the ex-pected value of any stochastic variable X with p.d.f. p(x), x 2 D such thatp(x) > 0 when g(x) 6= 0I = Z g(x)p(x)p(x) dx = E�g(x)p(x)� (2)An estimate of the integral is obtained by taking N random sample points xidistributed according to p(x) I � 1N NXi=1 g(xi)p(xi) (3)The error on this estimate largely depends on the choice of p(x) and the numberof samples but as a general rule the standard deviation is proportional to 1=pN .That is, in order to halve the error we have to quadruple the number of samples!Careful selection of p(x) can however lower the error. p(x) should be constructedso that more samples are put into those regions where g(x) has the highestabsolute value. It can be shown that the optimal choice for p(x) is [12]p(x) = g(x)I (4)This choice gives a standard deviation of zero always! Unfortunately it alsorequires knowledge of I which is the value we are trying to compute. But ingeneral we can do better by using a p.d.f. that looks like the function we areintegrating instead of just using a uniform distribution.The problem in global illumination is given in the rendering equation [6]. Itexpresses the radiance, Lr , re
ected from position x asLr(x; 	r)=Zall 	ifr(x; 	r ; 	i)Li(x; 	i) cos �i d!i =Zall 	ifr(x; 	r; 	i)d2�i(x; 	i)dAd!i d!i(5)where 	r and 	i are the direction of the re
ected respectively incoming ra-diance/
ux. fr is the BRDF at x, Li is the incoming radiance and �i is theincoming 
ux.In order to solve this integral light is sampled from a number of discretedirections 	i. Just sampling from random directions is in most situations veryine�cient| for a specular surface only light from a small solid angle is importantand it would be more e�cient to sample within this small solid angle.



Most implementations of path tracing and similar Monte Carlo based algo-rithms therefore use importance sampling. These implementations use the knowl-edge of fr to sample those direction from where incoming light will contributemostly to the re
ected radiance. For specular surface this approach is very e�-cient since the choice of sampling direction is signi�cantly narrowed down. Thisis not the case with di�use surfaces since the entire hemisphere can contribute tothe re
ected radiance. A p.d.f. based on the ideal di�use BRDF is particularlyine�cient when the incoming radiance Li is highly non-uniform (ie. the incom-ing radiance is concentrated in small solid angles). In this situation it would bebetter to use the optimal p.d.f. p(x; 	r ; 	i)p(x; 	r ; 	i) / fr(x; 	r; 	i)d2�i(	i)dAd!i (6)Unfortunately this requires knowledge about the incoming 
ux, �i, which is notavailable. However, even a crude estimate of �i can be used to create a moreoptimal p.d.f. and in the following sections we will describe a method in whichthe photon map is used to obtain this estimate.3 The Photon MapThe photon map [7] represents a distribution of photons (particles) throughoutthe scene and it is created by emitting a large number of photons from eachlight source into the scene based upon the emissive characteristics of the lightsource. The technique is similar to particle tracing with the exception that theintersection point of each particle is stored explicitly within the scene.Each photon is traced through the scene using a strategy similar to pathtracing. The �rst object that the photon hits gives rise to two events: Firstlyif the surface of the object is di�use the photon is stored at the intersectionpoint and secondly Russian roulette is used to determine whether the photon isre
ected or absorbed by the object. The new direction of a re
ected photon iscomputed using the BRDF of the surface. We only store the photons representingindirect illumination (ie. photons that have been re
ected at least once). Thelight sources are separated in the sampling process and they should not be partof the irradiance estimate used to compute the p.d.f.The photon represents a small packet of energy arriving at a surface from agiven direction. Since the number of photons can be quite large we have chosena relatively compact representation that occupies only 36 bytes:struct photon {long energy; // Packed energy (RGB)float position[3]; // Photon positionfloat theta,phi; // Photon directionchar normal[3]; // Surface normalchar key; // kd-tree parameterstruct photon *left, *right; // Rest of the kd-tree};



In this structure the photon energy is packed using a method similar to Wardspacked pixels [21]. The energy covers several wavelengths. In other contexts itmight be relevant to store energy for individual wavelengths | this would alsomake the name, photon, more correct.In the photon map we need to be able to locate the n photons that have theshortest distance to a point x. This can be done quite e�ciently using a kd-tree[3].4 Importance Driven Path Tracing using the Photon MapIn the following discussion we assume that the intersection point x and there
ected direction 	r are given and they are therefore omitted. As shown insection 2 the optimal choice of p(�i; �i) to select a sampling directions isp(�i; �i) / fr(�i; �i)d2�i(�i; �i)dAd!i (7)where (�i; �i) = 	i.The existing importance sampling approaches that use fr as the p.d.f. canin most situations use standard transformation techniques to generate randomnumbers with the wanted distribution. In [16] it is described how to create atransformation function T that maps a uniform distribution of points (u; v) onthe unit square onto a sampling direction (�; �). We use the following notationfor describing the transformation of (u; v) into a direction(�; �) = T (u; v) (8)Likewise we use the notation (u; v) = T�1(�; �) to denote the inverse transfor-mation. As an example, to generate a sampling direction based on the BRDFfor an ideal di�use surface the following transformation should be used(�; �) = (acosp1� u; 2�v) (9)In order to take �i into account we apply the information from the photonmap. Like [7] we locate the N photons that have the shortest distance to x. Eachphoton p carries the 
ux ��i;p in the direction (�p; �p) (note that (�p; �p) mustbe transformed from the global representation stored in the kd-tree into a direc-tion compatible with the local coordinate system used at x). If we assume thatall n photons intersected the surface at x then we can compute the contributionfrom each photon p to the re
ected 
ux ��r as��r = fr(�p; �p)��i;p(�p; �p) (10)To use this information in our generation of sampling directions we constructa discrete p.d.f. on the unit square. Each point (u; v) in this unit square corre-sponds to a sampling direction T (u; v) and each incoming photon corresponds to



"u v !(0; 0) (1; 1)00101 520508 923201 3461Fig. 1. The unit square is partitioned into distinct regions and the photon contributionsin each region are accumulated.a point (up; vp) = T�1(�p; �p) in the unit square. For every photon we �nd thecorresponding point in the unit square and we insert the photon energy at thisposition. The unit square is then partitioned into m � n regions (see �g. 1) andthe energy in each region is accumulated. To avoid bias we eliminate all regionswith zero energy (probability) by adding a small fraction of the overall energystored within the unit square to these regions. The result is an estimate of theenergy arriving from di�erent sets of directions. This is our p.d.f. and it containsall of the elements found in equation 7.To use the constructed p.d.f. we create a discrete cumulative probabilitydensity function from the information in the unit square. This is illustrated in
-61:0� (2; 3) Region

CumulativeProbability
Fig. 2. The accumulated energy is used in the creation of a cumulative probabilitydistribution function and this function is used to select the region that contains thenew sampling direction. The dashed line demonstrates how a random value � is mappedinto a speci�c region in unit square.



�g. 2 and as demonstrated in the graph this function is used to select a regionin the unit square based upon a random value �. The chance that a region isselected is proportional to the energy accumulated in that region which meansthat it is more likely that we select a region (ie. set of incoming directions)that contributes signi�cantly to the re
ected radiance. Once a region is foundwe select a random point (u; v) within the region and our sampling directionbecomes (�; �) = T (u; v).Due to the non-uniform sampling we have to scale the radiance returned byour sampling ray. The scaling factor s iss = Total energy in the square(Energy in region) � (number of regions) (11)5 Results and DiscussionWe have implemented the importance sampling algorithm in a program calledMIRO on a Pentium PC with 32MB RAM running Linux. The results have beenproduced using a parallel implementation of the program running on the Linuxmachine and 31 Silicon Graphics workstations. The implementation currentlysupports ideal di�use, ideal specular, rough specular and anisotropic re
ectionmodels. The photon map has only been incorporated in the importance samplingalgorithm for ideal di�use re
ection.Two test scenes have been created. Test scene 1 is an empty version of theCornell box. The walls in the box are white with the exception of the left wallwhich is red and the right wall which is green. There is a small square shapedlight source just below the ceiling. The light source is only illuminating theceiling and most of the scene is therefore illuminated indirectly.The purpose of test scene 1 is to test the convergence speed of importancesampling with and without the photon map. We initially computed a referenceimage using 32000 samples pr. pixel in the resolution 80x60 | we did not useimportance sampling for this computation. Due to the strong indirect illumina-tion we had to use a very large number of samples in order to remove all visiblenoise from the image.The estimate from the photon map depends on several parameters: The num-ber of photons, N , used in the estimate, the number of photons Np stored inthe kd-tree and the number of regions in the discrete p.d.f. To limit the amountof adjustable parameters we use a �xed partitioning of the p.d.f. We found that4x16 (4 �-intervals and 16 �-intervals) gave reasonable results with the values ofN and Np that we tested. In general the number of partitions should be increasedas N and Np become larger.We tested the di�erent con�gurations by creating images using 1; 2; 3; : : : ; 500samples pr. pixel. We measured the variance of the di�erence between the com-puted images and the reference image | also known as the mean-square error,MSE. This value gives a good indication of the amount of noise present in theimage and since we use Monte Carlo techniques it provides a good measure ofthe quality of our images.
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NP=110422(a) (b)Fig. 3. The e�ect of N and Np on the convergence speedThe graph in �g. 3a demonstrates how an increasing number of photons inthe estimate improves the quality of the computed images. Using Np � 60000stored photons we were able to reduce the noise in the images by increasingN to a value of 50 photons. Increasing N beyond this value had only verylittle e�ect on the results. The graph also demonstrates how the convergencespeed is improved when the information from the photon map is included in theimportance sampling scheme. At 500 samples pr. pixel the standard importancesampling method gave a MSE value that was more than 3 times larger than theMSE value obtained when the photon map was used.We also examined the e�ect of Np on the quality of the computed images.Using N = 50 we obtained the results shown in the graph in �g. 3b. With theused parameter con�guration we found that increasing Np beyond 30000 did notimprove the result.In �g. 4 (see colour plates) we have shown the computed images correspond-ing to 100, 200, 300, 400 and 500 samples pr. pixel. The top row contains imagescomputed with standard importance sampling and the bottom row containsimages computed using importance sampling based on the photon map. Theimages demonstrates how the noise level is reduced when the information fromthe photon map is added.Our second test scene was created to test the algorithm in a more realisticenvironment. The desk is illuminated by two light sources: One large in theceiling and one small light bulb within the lamp shade. The light from the lightbulb is scattered di�usely through the lamp shade.We created two images of test scene 2. In �g. 5 we used standard importancesampling and in �g. 6 we used the photon map with Np = 33000 and N = 50.We also created a reference image using 2000 samples pr. pixel and the MSE of



�g. 5 was approximately 4 times larger than the value for �g. 6. The reductionin noise is particularly visible at the wall just behind the lamp shade.The implementation of the photon map has not been optimized. The compu-tation of the photon contribution to the re
ected radiance makes heavy use oftrigonometric functions. Still the computation time of �g. 6 was only increasedwith 20% due to the use of the photon map. The time used by the photon mapwas only a�ected noticeably by changing N and this is primarily due to thechange in the number of evaluations of trigonometric functions.We tried to reduce the e�ect of N on the computation time by replacing thephoton map with hemicubes stored at discrete positions within the scene. Duringimportance sampling the nearest hemicube would represent the incoming 
ux.We did however �nd that this approach su�ered from aliasing problems and theresults obtained were not very good. Instead we plan to limit the number ofdirections for a photons to perhaps 65000. In this way we would be able to uselookup tables and completely avoid trigonometric evaluations.6 Conclusion and Future DirectionsIn this paper we have demonstrated how the use of photon maps in an importancesampling scheme can improve the quality of images computed using the pathtracing algorithm.Based on a rough estimate of the incoming 
ux we concentrateour samples in those directions that contributes mostly to the re
ected radiance.This improves the convergence speed without adding bias to the �nal solution.By using the photon map we were able to reduce the noise level in the computedimages with more than 70% compared with traditional importance samplingapproaches without increasing the number of sampling rays.Future enhancements include further investigation in the parameters for themethod. By increasing the number of photons used we should be able to obtaineven better results. Combining this with a more e�cient usage of the informationin the photon map would make the method very suitable for the visualizationstep in the existing two pass techniques for global illumination.AcknowledgmentsThe author wishes to thank GK for providing excessive computational resourcesand to the reviewers and Eric Lafortune for their helpful comments to the paper.References1. Arvo, James and David Kirk, "Particle Transport and Image Synthesis". Com-puter Graphics 24 (4), 53-66 (1990).2. Arvo, James and David Kirk, "Unbiased Sampling Techniques for Image Syn-thesis". Computer Graphics 25 (4), 153-156 (1991).3. Bentley, Jon Louis and Jerome H. Friedman, "Data Structures for Range Search-ing". Computing Surveys 11 (4), 397-409 (1979).
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Fig. 4. Test scene 1 sampled using 100,200,300,400 and 500 samples pr. pixel. The toprow shows the results using standard importance sampling and the botton row showsthe results when the information from the photon map is added
Fig. 5. Test scene 2 sampled with 50 samples pr. pixel using standard importancesampling
Fig. 6. Test scene 2 sampled with 50 samples pr. pixel using importance samplingenhanced with the photon map


