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ABSTRACT

This paper studies the overall effect of language modelimg o
perplexity and word error rate, starting from a trigram mlode
with a standard smoothing method up to complex state—cf-the
art language models: (1) We compare different smoothingnmet
ods, namely linear vs. absolute discounting, interpotatie.
backing-off, and back-off functions based on relative frexr
cies vs. singleton events. (2) We show the effect of complex
language model techniques by using distant-trigrams atwt au
matically selected word classes and word phrases using a max
imum likelihood criterion (i.e. minimum perplexity). (3) &V
show the overall gain of the combined application of the abov
techniques, as opposed to their separate assessmentuibpist
cations. (4) We give perplexity and word error rate resuftshe
North American Business corpus (NAB) with a training text of
about 240 million words and on the German Verbmobil corpus.

1. INTRODUCTION: LANGUAGE MODELING

In this paper, a statistical speech recognizer is basedsdBdiies
rule [1]:

wi = argmax{Pr(w’{V) . Pr(mﬂw'fl)} ,

N
w' ]

which assigns the most probahi wordsw{’ to an observed
sequence of lengt” of acoustic vectors:]. The language
model is the approximatiops (w?’ ) with parameter$ of the
unknown probability distributiorPr(w1' ). The parameters are
estimated by Maximum Likelihood [8], i.e. by optimizing the
log—likelihood function

F,n(6) := logpe(w]')

on a training setv?¥ . The log—likelihood functiorF will also be
used here for the construction of the language models. Lageu
models are either assessed by computing the perplexity [4]

—1/N
PP = [pg (11/{\’)]

on atestsew?!’ of lengthV which is not part of the training set,
or by performing either a recognition or a rescoring on a word
lattice [12] and computing the resulting word error rate, ithe
Levenshtein distance between the spoken and recognizetswor
In this paper, the training and assessment of language mod-
els is performed on two well-known tasks with quite differen
properties. The first one is the large North American Busines
(NAB) corpus from 1994, consisting of American English news
paper texts. The second one is the small Verbmobil corpums fro
1996, consisting of German spontaneous speech. Detaftad in
mation about these corpora and the respective latticesygeu
by an integrated trigram search, for the rescoring experime
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Table 1: Words in vocabulary, test and training set.

| [ NAB | Verbmobil |
Vocabulary 19977 +2| 5328+8
Training set 240875674 322588
Test set DEV set: 7387
EVL set: 8186 6258

Table 2: Properties of the word lattices for the rescoringesix
ments (GER = graph error rate).

Speakers| Sentence§  GER[%]

del/ins tot

NAB: DEV set 20 310 0.2/0.6 4.1
EVL set 20 316 | 0.1/0.9 3.8
Verbmobil 35 305 | 1.3/0.9 5.9

can be found in Tables 1 and 2. Note that the NAB test set is fur-
ther subdivided into two sets named DEV and EVL. The DEV
setis used for optimizing language model parameters whinh c
not be well estimated from the training set, such as interpol
tion parameters, whereas the EVL set contains unseen tast da
Since the Verbmobil test set is not subdivided, a simplifadnf

of cross—validation on the training set is used.

2. SMOOTHING OF TRIGRAMS

The most common language model is based on trigrams. It is
constructed by applying the chain rule to the language model
probability

po(wi’) = [] po(wnlwi™"), 1

where the word history” ~" is abbreviated a,,, and approxi-
mating the word historyh,, by the two successor words
Wn—2, wn—1 Of word w,, at corpus positiom:

o (Wn|hn) = po(Wn|wWn—2,wWn_1) .
Estimating the probabilities by Maximum Likelihood resLittto
relative frequencies:

N(wn72; Wn—1, wn)
N(wn—o9,wn-1) '

Do (Wn [Wn—2,wn—1) = ()
where N(-) denotes the frequency of the associated word tuple
in the training set. Since each evént,_», w,_1,w;) has its
own fixed probability, the trigram model is called paramietes.
For this reason, the symbéldenoting the model parameters is
useless and will be dropped for the rest of this paper.

For speech recognition tasks with large vocabularies gf, sa
20000 words, the straightforward trigram model result® int



8 - 10'? trigrams, each of them with its own probability. This ] - .
large number cannot be estimated from today’s training skts Table 3: Test set perplexities and word error rates for shingt

up to one billion words. Thus, most probabilities will beiest ~ Methods, NAB corpus.
mated by Eq. (2) as zero, which is not desired and, by the chain

rule Eq. (1), estimates the whole test set as zero if suclymtri DEV set EVL set
appears in it. This is known as the sparse data or zero freguen PP [word errs. [vo] PP [word errs. [v0
pP(E)blem : P ey del/ins WER del/ins WER
) ; ; ; lin. disc.:
To counteract this problem, smoothing methods are applied. backi
. X - S - acking—off ||144.7| 1.7/2.6 13.9|150.4 1.8/3.0 14.8
With smoothlng,'probabllllty mass is dlscqunped from the tri interpolatior]| 148.8 1.5/3.1 14.1|156.5 1.5/3.4 14.8
grams observed in the training set and redistributed overeh abs disc-
maining (unseen) trigrams according to a more robust pritbab béckiné_off 125.8| 1.7/2.4 13.3/127.6 1.9/2.5 135
ity distribution 3(w|h) based on a simplified word history In interpolation| 132.0 1.5/2.7 13.4/135.4 1.6/2.9 13.8
case of the trigram model, the bigram probability distribotis aps. disc.,
used ag(w/h). smﬁqletkqn—B(?f: 122.9 1.8/2.0 13.1{123.7) 2.1/2.3 13.6
; i is i i i i acking—o . .8/2. . . 1/2. .
the Qvg'\Ta‘ﬁ:gnstg"i?‘?é?&?a?f;hOd Is linear discounting [4] with interpolatior|| 121.8 1.8/2.0 12.8|123.4 2.0/2.3 13.6
N(h,w =
) = (1= 2 2 n - p(win)
Table 4: Test set perplexities and word error rates for shingt
or backing—off: methods, Verbmobil corpus.
N(h,w) PP | word errs. [%]
=N NG N(h,w) >0, delfins _WER
p(wlh) = B(w|h) _ linear discounting:
A- Ty otherwise backing—off 52.4| 3.9/3.4 19.6
Dt N (o y—o B [R) interpolation 48.2| 3.3/41 189
Since the most reliably estimated (i.e. the most frequerghes abggéﬁigi%oummg 438| 35732 188
(h,w) are distracted most by using linear discounting, an al- ; ; ' ‘am '
. . . . interpolation 419 3.3/3.2 179
ternative called absolute discounting was proposed in &h@]
! oo - = . absolute discounting
tested in [11]. Using interpolation, this approach resiults singleton—BO:
backing—off 43.9| 3.6/3.0 18.3
p(w]h) = max {0’ N (h]yvlt();')— d} i T;((:)) - B[ interpolation 406 | 33131 17.7

with n4(h) as the number distinct eventd, w) observed in
the training set. Absolute discounting can also be used with
backing—off.

Both the interpolation paramet&rand the discounting value
d would be estimated as zero on the training set because, by defi N(w)
nition, the are no unobserved events in the training set. thhawke F= Z N(w) -log { ] : (3)
called leaving—one—out, a special case of cross—valitai® N
used for that task [10]: each position in the training sefsged,
the event at that position dropped and the probability fatth ~ Once a new word is formed by joining two wordga, b), we

The word pairs are selected by optimizing a unigram—based
log—likelihood criterion:

event estimated on the remaining— 1 events. Thus, events ob- get new counts
served once in the training set (singletons) become unekder _
Closed—form solutions exist for both andd. It is even pos- N(a) := N(a) — N(a,b)
sible to derive a bigram statistics based on singleton evient N(b) := N(b) — N
the probability distribution3(w|h) [7], called singleton back— - (b) : (5) (a,)
off (BO) function. N(c) := N(a,b)
Tables 3 and 4 show the effect of the presented smoothing N = N
methods on the NAB and Verbmobil corpora, respectively. In- w#abe: (w) = N(w)
terpolation is superior to backing—off in most cases, alisdio N := N — N(a,b)
linear discounting in all cases. Using the singleton baffk—o _
function further improves the results. Compared to lineiar d and with these new counts a new unigram log—likelihétd, b)

counting with interpolation as the basic method of smoathin from Eq. (3). Then the difference in unigram—log-likelilabis:
a reduction in perplexity of up to 21% and in word error rate

of up to 9% (relative) is achieved by using absolute disdognt AF(a,b)

in connection with singleton back—off. This smoothing nogth = ~(a b) —

will be used throughout the rest of this paper. _ _ _
= N(a) - logN( ) + N(b) - log N(b) + N(c) - log N(c)

3. WORD PHRASES —N-log N
—N(a) -log N(a) — N(b) -log N(b) + N -log N .

Some word pairs appear to be closely connected to each ather s
that they should be treated as one word. E. g. the city name&“Ne  We also tried a bigram criterion and a unigram criterion llase
York” consists of two words, though it is one notion. Thusg th leaving—one—out, without much improvement. Further, iéglo
trigram (“New”, “York”, w) is, in effect, just a bigram. Using not make much difference if we apply the criterion once fdr al
word phrases, we try to find such word pairs and add them to word pairs (flat selection) or if we include the newly formed
the vocabulary. Word phrases for language modeling were firs  wordsec into the selection, thus obtaining phrases based on word
proposed by [4] and used quite often thereafter. The mostitec triples or even more words (hierarchical selection). Awoth
investigation was performed by [5]. property of phrases is that there is no unique mapping fram th



Table 5. Test set perplexities and word error rates for word

phrases, NAB corpus, 200 phrases (flat selection).

Table 7: Test set perplexities and word error rates for word
classes, NAB corpus.

DEV set EVL set
PP Tword errs. [%]| PP [word errs. [%]
del/ins WER del/ins WER
word trigram [[121.8] 1.8/2.0 12.8]123.4] 2.0/2.3 13.6
phrase trigranj 119.1] 1.7/2.0 12.6[118.0] 1.9/2.2 13.4

Table 6: Test set perplexities and word error rates for word
phrases, Verbmobil corpus, 100 phrases (hierarchicattehy.

PP | word errs. [%]

dellins WER

word trigram | 40.6 | 3.3/3.1 17.7
phrase trigram| 39.5| 3.4/3.0 17.2

G DEV set EVL set
PP Jword errs.[%] PP [word errs.[%
del/ins WER del/ins WER
word trigr. —1[121.8 1.8/2.0 12.8[123.4] 2.0/2.3 13.6
+ class trigr{ 2000|| 116.7| 1.8/2.1 12.4{118.7| 2.0/2.2 13.3
class trigr. [5000[[128.9] 1.8/2.1 13.0{130.6 2.2/2.4 14.0

Table 8: Test set perplexities and word error rates for word
classes, Verbmobil corpus.

G PP | word errs. [%]

del/ins  WER
word trigram — [[ 40.6] 3.3/3.1 17.7
+ class trigram| 100 || 37.9 | 3.7/2.7 17.3
class trigram | 500 || 41.8 | 3.6/3.0 17.7

word to the phrase sequence, because phrases may overlap. We

tried several parsing strategies, based on the sum of alsphr

sequences for a word sequence, on the most probable phrase se on a large corpus within a couple of hours on a usual worksta-
qguence or on the shortest phrase sequence and found not muchtion [9]. Alternative approaches are bottom—up clustefi2lg

difference. Thus, the simplest parsing strategy, basecdhen t
shortest phrase sequence (i.e. maximum coverage of the word
sequence by phrases), is used for the results.

Results are shown in Tables 5 and 6 for the NAB and Verb-
mobil corpus, respectively. For NAB, the optimum number of
phrases in terms of word error rate was optimized on the DEV
set. Adding further phrases improves perplexity but notdvor
error rate. Similar results hold for the Verbmobil corpusheT
reduction in perplexity is up to 4% and in word error rate up to
3% (relative).

4. WORD CLASSES

Using word classes, we partition the vocabulary into a fixed
number of G classes, i.e. we construct a mapping function
G w — G(w) mapping a wordw to its word classG(w), or

gw for short. Then we construct a class trigram statisticsgisin
the language model

P(Wn|wn—2, wn—1) = po(Wn|Gw, ) * P1(Gun |Gwn_s> Gwn_1)

with the membership probabilityo(wr|gw, ) and the transi-
tion probabilitypi (9w, |gw, s 9w, _,). The advantage of this
model is a reduced number of probabilities to be estimated: f
say,G = 100 word classes, there exist only000 000 class tri-
grams. Thus, each probability can be estimated more rgliabl
the cost of a coarser model, however.

We get the classes by optimizing the bigram log—likelihood

Fy; (g) = Z N(g1)7g1u) . IOg N(gw, gm)

9v 9w

-2 Z N(g) -log N(g) + const(G) .

We have also tried the class trigram log-likelihood and ascha-
gram log—likelihood using leaving—one—out, but only witban
erate success. The optimization is performed by the exehang
algorithm depicted in Figure 1, first proposed for word chuist

ing in [6]. By observing that removing a word from its class

gw only affects the countd/(g, g.,) and N (g., g), that most of
these counts are zero and that the same holds for adding word
w to a classk, an efficient implementation of the exchange al-
gorithm can be achieved that clusters a large number ofadass

and clustering using simulated annealing [3].

Results are shown in Tables 7 and 8. Pure class models do
not achieve the performance of word models. However, the lin
ear interpolation of both models reduces the perplexity fpyau
7% and the word error rate by up to 3% (relative).

5. DISTANCE TRIGRAMS

Distance trigrams are word triples with gaps between thalsjor
i.e. the words are not consecutive. We use two types of distan
trigrams: (wn—3, -, wn—1, wy) With a gap of one word between
the first two words of the trigram an@v,,—s, wn—2, -, wy) With

a gap of one word between the last two words of the trigram.
Thus, the interpolation with the usual trigram

plwn|wWn—g, Wn—2,Wpn_1) =
=X - p(wn|wn—3, s Wn_1) + A2 - p(Wn | Wn—3, Wr_2,")
+(1 =X —X2) - p(wn|wn—2,wn—1)

approximates the fourgram. Distance trigrams have beahinse
[13] in the context of maximum entropy, not linear interpgaa.
Results can be seen in Tables 9 and 10. Due to memory
limitations, singleton trigrams were dropped from the aliste
models for the NAB corpus. We get reductions in perplexity by
up to 11% and in word error rate by up to 5%. On the small
Verbmobil corpus, even the fourgram model is outperformed.

start with some initial mappingy — g

for each wordw of the vocabulary do
for each clas& do

tentatively exchange word
from classg., to classk
and update counts
compute perplexity for this
tentative exchange
exchange wordv from classg..,
to classk with minimum
perplexity

do until stopping criterion is met

Figure 1: Exchange algorithm for word classes.



Table 9: Test set perplexities and word error rates for dista

Table 12: Memory and time consumption (RTF = real time fac-
trigrams, NAB corpus.

tor) for smoothing methods and complex language models, NAB

corpus.
DEV set EVL set Memory| CPU time RTF
PP Jword errs.[%] PP [word errs.[% [MBytes][ DEV [ EVL |DEV[EVL
delins WER delfins WER Tin. disc. (int.) 214] 91.6] 107.9 0.03 0.03
word trigram 121.§ 1.8/2.0 12.8[123.4] 2.0/2.3 13.6 abs. disc. (int.) 214| 233.5| 291.5 0.08! 0.09
+ distance trigram 109.5 1.9/1.8 12.4/110.3 2.2/2.1 13.2 + singleton BO 237| 234.5 288.5 0.08| 0.09
+ word phrases 263| 238.1] 305.8 0.08| 0.09
+ word classes 403| 413.7| 494.2 0.15| 0.15
+ distance trign] 832/ 7632.58620.9 2.61| 2.70

Table 10: Test set perplexities and word error rates foadist
trigrams, Verbmobil corpus.

PP | word errs. [%] Table 13: Test set perplexities and word error rates for ghing
del/ins  WER methods and complex language models, Verbmobil corpus.
word trigram 40.6 | 3.3/3.1 17.7
+ distance trigram|| 37.5 | 3.7/2.6 16.9 PP | word errs. [%)]
word fourgram 39.3| 3.6/2.7 17.3 del/ins WER
linear discounting (int.) 48.2 1 3.3/4.1 189
absolute discounting (int.)f 41.9 | 3.3/3.2 17.9
+ singleton BO 40.6 | 3.3/3.1 17.7
Table 11: Test set perplexities and word error rates for shiog + word phrases 39.5| 3.4/3.0 17.2
methods and complex language models, NAB corpus. +word classes 36.2| 3.7/2.6 16.5
+ distance trigrams 349 | 3.5/2.7 16.1
DEV set EVL set
PP Jword errs.[%] PP [word errs.[%
dellins WER del/ins WER
lin. disc. (int.) |[148.§ 1.5/3.1 14.1[156.5 1.5/3.4 14.8 [4] F. Jelinek: “Self-Organized Language Modeling for Sgiee
abs. disc. (int.) ||132.0 1.5/2.7 13.4/135.4 1.6/2.9 13.8 Recognition”, in: A. Waibel and K.-F. Lee (eds.): “Readings

+ singleton BO
+ word phrases

121.8 1.8/2.0 12.8/123.4 2.0/2.3 13.6

119.1) 1.7/2.0 12.6{118.0

1.9/2.2 13.4

in Speech Recognition”, (Morgan Kaufmann Publishers, San
Mateo, CA), pp. 450-506, 1991.

+ word classes||114.2
+ distance trigr| 105.9

1.6/1.9 12.2{112.9 2.0/2.2 13.3

188 11811048 20/22 13.0 [5] D.Klakow: “Language—Model Optimization by Mapping of

Corpora”, IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, Seattle, WA, Vol. II, pp. 701-704, May 1998.

[6] R. Kneser, H. Ney: “Improved Clustering Techniques for
Class—Based Statistical Language Modelling”, 3rd Euro-
pean Conference on Speech Communication and Technology,
Berlin, pp. 973-976, 1993.

[7] R. Kneser, H. Ney: “Improved Backing-Off fom—gram
Language Modeling”, IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, Detroit, MI, Vol. |, pp. 49-52, May
1995.

[8] E. L. Lehmann: “Theory of Point Estimation”, J. Wiley,
New York, 1983.

[9] S.C. Martin, J. Liermann, H. Ney: “Algorithms for Bigram
and Trigram Word Clustering”, Speech Communication, \Vol.
24, No. 1, pp. 19-37, 1998.

[10] H. Ney, U. Essen, R. Kneser: “On Structuring Probatidis
Dependences in Stochastic Language Modelling”, Computer
Speech and Language, Vol. 8, pp. 1-38, 1994.

[11] H. Ney, S.C. Martin, F. Wessel: “Statistical Lan-
guage Modeling Using Leaving—One—Out”, pp. 174-207 in:
S. Young, G. Bloothooft: “Corpus—Based Methods in Lan-
guage and Speech Processing”, Kluwer Academic Publishers,
Dordrecht, The Netherlands, 1997.

[12] S. Ortmanns, H. Ney, X. Aubert: “A Word Graph Algo-
rithm for Large Vocabulary Continuous Speech Recognition”
Computer, Speech, and Language, Vol. 11, No. 1, pp. 43-72,
Jan. 1997.

[13] R. Rosenfeld: “Adaptive Statistical Language Modgiin
A Maximum Entropy Approach”, Ph.D. Thesis, Techni-
cal Report CMU-CS-94-138, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, 114 pages.4199

6. COMBINED MODEL AND CONCLUSIONS

Tables 11 and 13 show that the improvements of each single
language modeling technique are preserved in a combinafion
all methods. The overall reduction in perplexity is up to 33%
and in word error rate up to 16% (relative). Table 12 shows the
cost of this improvement in terms of memory consumption and
CPU time on an Alpha 21164 processor at 533 MHz with 2 MB
cache. Using distance trigrams is especially expensivausec
the number of word trigrams is tripled and the rescoring loas t
work on a longer word history.

We conclude that of all the presented techniques smoothing
has the largest effect on perplexity and word error rate hieme
of the remaining techniques resultin moderate or small aver
ments but almost further double the reduction in perpleaitg
word error rate in combined application.
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