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ABSTRACT

This paper studies the overall effect of language modeling on
perplexity and word error rate, starting from a trigram model
with a standard smoothing method up to complex state–of–the–
art language models: (1) We compare different smoothing meth-
ods, namely linear vs. absolute discounting, interpolation vs.
backing-off, and back-off functions based on relative frequen-
cies vs. singleton events. (2) We show the effect of complex
language model techniques by using distant-trigrams and auto-
matically selected word classes and word phrases using a max-
imum likelihood criterion (i.e. minimum perplexity). (3) We
show the overall gain of the combined application of the above
techniques, as opposed to their separate assessment in pastpubli-
cations. (4) We give perplexity and word error rate results on the
North American Business corpus (NAB) with a training text of
about 240 million words and on the German Verbmobil corpus.

1. INTRODUCTION: LANGUAGE MODELING

In this paper, a statistical speech recognizer is based on the Bayes
rule [1]: wN1 = argmaxw0N1 nPr(w0N1 ) � Pr(xT1 jw0N1 )o ;
which assigns the most probableN wordswN1 to an observed
sequence of lengthT of acoustic vectorsxT1 . The language
model is the approximationp�(wN1 ) with parameters� of the
unknown probability distributionPr(wN1 ). The parameters are
estimated by Maximum Likelihood [8], i.e. by optimizing the
log–likelihood functionFwN1 (�) := log p�(wN1 )
on a training setwN1 . The log–likelihood functionF will also be
used here for the construction of the language models. Language
models are either assessed by computing the perplexity [4]PP := hp�(wN1 )i�1=N
on a test setwN1 of lengthN which is not part of the training set,
or by performing either a recognition or a rescoring on a word
lattice [12] and computing the resulting word error rate, i.e. the
Levenshtein distance between the spoken and recognized words.

In this paper, the training and assessment of language mod-
els is performed on two well–known tasks with quite different
properties. The first one is the large North American Business
(NAB) corpus from 1994, consisting of American English news-
paper texts. The second one is the small Verbmobil corpus from
1996, consisting of German spontaneous speech. Detailed infor-
mation about these corpora and the respective lattices, generated
by an integrated trigram search, for the rescoring experiments
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Table 1: Words in vocabulary, test and training set.

NAB Verbmobil
Vocabulary 19 977 + 2 5328 + 8
Training set 240 875 674 322 588
Test set DEV set: 7387

EVL set: 8186 6258

Table 2: Properties of the word lattices for the rescoring experi-
ments (GER = graph error rate).

Speakers Sentences GER[%]
del/ins tot

NAB: DEV set 20 310 0.2/0.6 4.1
EVL set 20 316 0.1/0.9 3.8

Verbmobil 35 305 1.3/0.9 5.9

can be found in Tables 1 and 2. Note that the NAB test set is fur-
ther subdivided into two sets named DEV and EVL. The DEV
set is used for optimizing language model parameters which can-
not be well estimated from the training set, such as interpola-
tion parameters, whereas the EVL set contains unseen test data.
Since the Verbmobil test set is not subdivided, a simplified form
of cross–validation on the training set is used.

2. SMOOTHING OF TRIGRAMS

The most common language model is based on trigrams. It is
constructed by applying the chain rule to the language model
probability p�(wN1 ) = NYn=1 p�(wnjwn�11 ) ; (1)

where the word historywn�11 is abbreviated ashn, and approxi-
mating the word historyhn by the two successor wordswn�2; wn�1 of wordwn at corpus positionn:p�(wnjhn) = p�(wnjwn�2; wn�1) :
Estimating the probabilities by Maximum Likelihood results into
relative frequencies:p�(wnjwn�2; wn�1) = N(wn�2; wn�1; wn)N(wn�2; wn�1) ; (2)

whereN(�) denotes the frequency of the associated word tuple
in the training set. Since each event(wn�2; wn�1; wn) has its
own fixed probability, the trigram model is called parameterless.
For this reason, the symbol� denoting the model parameters is
useless and will be dropped for the rest of this paper.

For speech recognition tasks with large vocabularies of, say,
20 000 words, the straightforward trigram model results into



8 � 1012 trigrams, each of them with its own probability. This
large number cannot be estimated from today’s training setsof
up to one billion words. Thus, most probabilities will be esti-
mated by Eq. (2) as zero, which is not desired and, by the chain
rule Eq. (1), estimates the whole test set as zero if such a trigram
appears in it. This is known as the sparse data or zero frequency
problem.

To counteract this problem, smoothing methods are applied.
With smoothing, probability mass is discounted from the tri-
grams observed in the training set and redistributed over the re-
maining (unseen) trigrams according to a more robust probabil-
ity distribution�(wj�h) based on a simplified word history�h. In
case of the trigram model, the bigram probability distribution is
used as�(wj�h).

A simple smoothing method is linear discounting [4] with
the two variants interpolationp(wjh) = (1� �) � N(h; w)N(h) + � � �(wj�h)
or backing–off:p(wjh) = 8>>><>>>: (1� �) � N(h; w)N(h) ; N(h;w) > 0,� � �(wj�h)Pw0 :N(h;w0)=0 �(w0j�h) ; otherwise

Since the most reliably estimated (i.e. the most frequent) events(h;w) are distracted most by using linear discounting, an al-
ternative called absolute discounting was proposed in [10]and
tested in [11]. Using interpolation, this approach resultsin:p(wjh) = max�0; N(h; w) � dN(h) � + d � n+(h)N(h) � �(wjh)
with n+(h) as the number distinct events(h;w) observed in
the training set. Absolute discounting can also be used with
backing–off.

Both the interpolation parameter� and the discounting valued would be estimated as zero on the training set because, by defi-
nition, the are no unobserved events in the training set. A method
called leaving–one–out, a special case of cross–validation, is
used for that task [10]: each position in the training set is visited,
the event at that position dropped and the probability for that
event estimated on the remainingN�1 events. Thus, events ob-
served once in the training set (singletons) become unobserved.
Closed–form solutions exist for both� andd. It is even pos-
sible to derive a bigram statistics based on singleton events for
the probability distribution�(wj�h) [7], called singleton back–
off (BO) function.

Tables 3 and 4 show the effect of the presented smoothing
methods on the NAB and Verbmobil corpora, respectively. In-
terpolation is superior to backing–off in most cases, absolute to
linear discounting in all cases. Using the singleton back–off
function further improves the results. Compared to linear dis-
counting with interpolation as the basic method of smoothing,
a reduction in perplexity of up to 21% and in word error rate
of up to 9% (relative) is achieved by using absolute discounting
in connection with singleton back–off. This smoothing method
will be used throughout the rest of this paper.

3. WORD PHRASES

Some word pairs appear to be closely connected to each other so
that they should be treated as one word. E. g. the city name “New
York” consists of two words, though it is one notion. Thus, the
trigram (“New”, “York”, w) is, in effect, just a bigram. Using
word phrases, we try to find such word pairs and add them to
the vocabulary. Word phrases for language modeling were first
proposed by [4] and used quite often thereafter. The most recent
investigation was performed by [5].

Table 3: Test set perplexities and word error rates for smoothing
methods, NAB corpus.

DEV set EVL set
PP word errs. [%] PP word errs. [%]

del/ins WER del/ins WER
lin. disc.:

backing–off 144.7 1.7/2.6 13.9 150.4 1.8/3.0 14.8
interpolation 148.8 1.5/3.1 14.1 156.5 1.5/3.4 14.8

abs. disc.:
backing–off 125.8 1.7/2.4 13.3 127.6 1.9/2.5 13.5
interpolation 132.0 1.5/2.7 13.4 135.4 1.6/2.9 13.8

abs. disc.,
singleton–BO:

backing–off 122.9 1.8/2.0 13.1 123.7 2.1/2.3 13.6
interpolation 121.8 1.8/2.0 12.8 123.4 2.0/2.3 13.6

Table 4: Test set perplexities and word error rates for smoothing
methods, Verbmobil corpus.

PP word errs. [%]
del/ins WER

linear discounting:
backing–off 52.4 3.9/3.4 19.6
interpolation 48.2 3.3/4.1 18.9

absolute discounting:
backing–off 43.8 3.5/3.2 18.8
interpolation 41.9 3.3/3.2 17.9

absolute discounting,
singleton–BO:

backing–off 43.9 3.6/3.0 18.3
interpolation 40.6 3.3/3.1 17.7

The word pairs are selected by optimizing a unigram–based
log–likelihood criterion:F =Xw N(w) � log �N(w)N � : (3)

Once a new wordc is formed by joining two words(a; b), we
get new counts ~N(a) := N(a)�N(a; b)~N(b) := N(b)�N(a; b)~N(c) := N(a; b)w 6= a; b; c : ~N(w) := N(w)~N := N �N(a; b)
and with these new counts a new unigram log–likelihood~F (a; b)
from Eq. (3). Then the difference in unigram–log–likelihood is:�F (a; b)= ~F (a; b)� F= ~N(a) � log ~N(a) + ~N(b) � log ~N(b) + ~N(c) � log ~N(c)� ~N � log ~N�N(a) � logN(a)�N(b) � logN(b) +N � logN :
We also tried a bigram criterion and a unigram criterion based on
leaving–one–out, without much improvement. Further, it does
not make much difference if we apply the criterion once for all
word pairs (flat selection) or if we include the newly formed
wordsc into the selection, thus obtaining phrases based on word
triples or even more words (hierarchical selection). Another
property of phrases is that there is no unique mapping from the



Table 5: Test set perplexities and word error rates for word
phrases, NAB corpus, 200 phrases (flat selection).

DEV set EVL set
PP word errs. [%] PP word errs. [%]

del/ins WER del/ins WER
word trigram 121.8 1.8/2.0 12.8 123.4 2.0/2.3 13.6
phrase trigram 119.1 1.7/2.0 12.6 118.0 1.9/2.2 13.4

Table 6: Test set perplexities and word error rates for word
phrases, Verbmobil corpus, 100 phrases (hierarchical selection).

PP word errs. [%]
del/ins WER

word trigram 40.6 3.3/3.1 17.7
phrase trigram 39.5 3.4/3.0 17.2

word to the phrase sequence, because phrases may overlap. We
tried several parsing strategies, based on the sum of all phrase
sequences for a word sequence, on the most probable phrase se-
quence or on the shortest phrase sequence and found not much
difference. Thus, the simplest parsing strategy, based on the
shortest phrase sequence (i.e. maximum coverage of the word
sequence by phrases), is used for the results.

Results are shown in Tables 5 and 6 for the NAB and Verb-
mobil corpus, respectively. For NAB, the optimum number of
phrases in terms of word error rate was optimized on the DEV
set. Adding further phrases improves perplexity but not word
error rate. Similar results hold for the Verbmobil corpus. The
reduction in perplexity is up to 4% and in word error rate up to
3% (relative).

4. WORD CLASSES

Using word classes, we partition the vocabulary into a fixed
number ofG classes, i.e. we construct a mapping functionG : w ! G(w) mapping a wordw to its word classG(w), orgw for short. Then we construct a class trigram statistics using
the language modelp(wnjwn�2; wn�1) = p0(wnjgwn) � p1(gwn jgwn�2 ; gwn�1 )
with the membership probabilityp0(wnjgwn) and the transi-
tion probabilityp1(gwn jgwn�2 ; gwn�1). The advantage of this
model is a reduced number of probabilities to be estimated: for,
say,G = 100 word classes, there exist only1 000 000 class tri-
grams. Thus, each probability can be estimated more reliably, at
the cost of a coarser model, however.

We get the classes by optimizing the bigram log–likelihoodFbi(G) = Xgv ;gwN(gv; gw) � logN(gv; gw)�2 �Xg N(g) � logN(g) + const(G) :
We have also tried the class trigram log–likelihood and a class bi-
gram log–likelihood using leaving–one–out, but only with mod-
erate success. The optimization is performed by the exchange
algorithm depicted in Figure 1, first proposed for word cluster-
ing in [6]. By observing that removing a wordw from its classgw only affects the countsN(g; gw) andN(gw; g), that most of
these counts are zero and that the same holds for adding wordw to a classk, an efficient implementation of the exchange al-
gorithm can be achieved that clusters a large number of classes

Table 7: Test set perplexities and word error rates for word
classes, NAB corpus.G DEV set EVL set

PP word errs. [%] PP word errs. [%]
del/ins WER del/ins WER

word trigr. — 121.8 1.8/2.0 12.8 123.4 2.0/2.3 13.6
+ class trigr.2000 116.7 1.8/2.1 12.4 118.7 2.0/2.2 13.3
class trigr. 5000 128.9 1.8/2.1 13.0 130.6 2.2/2.4 14.0

Table 8: Test set perplexities and word error rates for word
classes, Verbmobil corpus.G PP word errs. [%]

del/ ins WER
word trigram — 40.6 3.3/3.1 17.7
+ class trigram 100 37.9 3.7/2.7 17.3
class trigram 500 41.8 3.6/3.0 17.7

on a large corpus within a couple of hours on a usual worksta-
tion [9]. Alternative approaches are bottom–up clustering[2]
and clustering using simulated annealing [3].

Results are shown in Tables 7 and 8. Pure class models do
not achieve the performance of word models. However, the lin-
ear interpolation of both models reduces the perplexity by up to
7% and the word error rate by up to 3% (relative).

5. DISTANCE TRIGRAMS

Distance trigrams are word triples with gaps between the words,
i.e. the words are not consecutive. We use two types of distance
trigrams:(wn�3; �; wn�1; wn) with a gap of one word between
the first two words of the trigram and(wn�3; wn�2; �; wn) with
a gap of one word between the last two words of the trigram.
Thus, the interpolation with the usual trigramp(wnjwn�3; wn�2; wn�1) == �1 � p(wnjwn�3; �; wn�1) + �2 � p(wnjwn�3; wn�2; �)+(1� �1 � �2) � p(wnjwn�2; wn�1)
approximates the fourgram. Distance trigrams have been used in
[13] in the context of maximum entropy, not linear interpolation.

Results can be seen in Tables 9 and 10. Due to memory
limitations, singleton trigrams were dropped from the distance
models for the NAB corpus. We get reductions in perplexity by
up to 11% and in word error rate by up to 5%. On the small
Verbmobil corpus, even the fourgram model is outperformed.

start with some initial mappingw ! gw
for each wordw of the vocabulary do

for each classk do
tentatively exchange wordw
from classgw to classk
and update counts
compute perplexity for this
tentative exchange

exchange wordw from classgw
to classk with minimum
perplexity

do until stopping criterion is met

Figure 1: Exchange algorithm for word classes.



Table 9: Test set perplexities and word error rates for distance
trigrams, NAB corpus.

DEV set EVL set
PP word errs. [%] PP word errs. [%]

del/ins WER del/ins WER
word trigram 121.8 1.8/2.0 12.8 123.4 2.0/2.3 13.6
+ distance trigram109.5 1.9/1.8 12.4 110.3 2.2/2.1 13.2

Table 10: Test set perplexities and word error rates for distance
trigrams, Verbmobil corpus.

PP word errs. [%]
del/ins WER

word trigram 40.6 3.3/3.1 17.7
+ distance trigram 37.5 3.7/2.6 16.9
word fourgram 39.3 3.6/2.7 17.3

Table 11: Test set perplexities and word error rates for smoothing
methods and complex language models, NAB corpus.

DEV set EVL set
PP word errs. [%] PP word errs. [%]

del/ins WER del/ins WER
lin. disc. (int.) 148.8 1.5/3.1 14.1 156.5 1.5/3.4 14.8
abs. disc. (int.) 132.0 1.5/2.7 13.4 135.4 1.6/2.9 13.8
+ singleton BO 121.8 1.8/2.0 12.8 123.4 2.0/2.3 13.6
+ word phrases 119.1 1.7/2.0 12.6 118.0 1.9/2.2 13.4
+ word classes 114.2 1.6/1.9 12.2 112.9 2.0/2.2 13.3
+ distance trigr. 105.9 1.8/1.8 11.8 104.5 2.0/2.2 13.0

6. COMBINED MODEL AND CONCLUSIONS

Tables 11 and 13 show that the improvements of each single
language modeling technique are preserved in a combinationof
all methods. The overall reduction in perplexity is up to 33%
and in word error rate up to 16% (relative). Table 12 shows the
cost of this improvement in terms of memory consumption and
CPU time on an Alpha 21164 processor at 533 MHz with 2 MB
cache. Using distance trigrams is especially expensive because
the number of word trigrams is tripled and the rescoring has to
work on a longer word history.

We conclude that of all the presented techniques smoothing
has the largest effect on perplexity and word error rate. Each one
of the remaining techniques result in moderate or small improve-
ments but almost further double the reduction in perplexityand
word error rate in combined application.
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