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AbstractThe Johnson-Lindenstrauss lemma shows that a set of n points in high dimensionalEuclidean space can be mapped down into an O(log n=�2) dimensional Euclideanspace such that the distance between any two points changes by only a factor of(1� �). In this note, we prove this lemma using elementary probabilistic techniques.
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1 IntroductionJohnson and Lindenstrauss [6] proved a fundamental result, which said that any n pointset in Euclidean space could be embedded in O(logn=�2) dimensions without distorting thedistances between any pair of points by more than a factor of (1 � �), for any 0 < � < 1.Recently, this lemma has found several applications, including Lipschitz embeddings ofgraphs into normed spaces [7] and searching for approximate nearest neighbours [5].The original proof of Johnson and Lindenstrauss was much simpli�ed by Frankl and Maehara[2, 3], using geometric insights and re�ned approximation techniques. The proof given inthis note uses elementary probabilistic techniques to obtain essentially the same results.Independently, Indyk and Motwani [5] have obtained a simple proof of a slightly weakerversion of our structural lemma (2.2).2 The Johnson-Lindenstrauss LemmaTheorem 2.1 (Johnson-Lindenstrauss lemma) For any 0 < � < 1 and any integer n,let k be a positive integer such thatk � 4(�2=2� �3=3)�1 lnn: (1)Then for any set V of n points in Rd, there is a map f : Rd ! Rk such that for all u; v 2 V ,(1� �)jju� vjj2 � jjf(u)� f(v)jj2 � (1 + �)jju� vjj2:Further this map can be found in randomized polynomial time.The theorem is proved by showing that the squared length of a random vector is sharplyconcentrated about its mean when the vector is projected onto a random k dimensionalsubspace, and is not distorted by more than (1� �) with probability O(1=n2). Applying thetrivial union bound then gives the theorem.Hence the aim is to estimate the length of a unit vector in Rd when it is projected ontoa random k-dimensional subspace. However, this length has the same distribution as thelength of a random unit vector projected down onto a �xed k-dimensional subspace. Here wetake this subspace to be the space spanned by the �rst k coordinate vectors, for simplicity.Let X1; : : : ; Xd be d independent N(0; 1) random variables, and let Y = 1jjXjj(X1; : : : ; Xd).It is simple to see that Y is a point chosen uniformly at random from the surface of thed-dimensional sphere Sd�1. Let the vector Z 2 Rk be the projection of Y onto its �rst kcoordinates, and let L = jjZjj2. Clearly the expected length � = EL = k=d. We want toshow that L is also fairly tightly concentrated around �.Lemma 2.2 Let k < d. Then2.2a. If � < 1 thenPr[L � �k=d] � �k=2�1 + (1� �)k(d� k) �(d�k)=2 � exp(k2(1� � + ln �)):1



2.2b. If � > 1 thenPr[L � �k=d] � �k=2�1 + (1� �)k(d� k) �(d�k)=2 � exp(k2(1� � + ln �)):The proofs are similar to those for the Cherno�-Hoe�ding bounds [1, 4] and are given inSection 3.Proof: (Theorem 2.1)If d � k, then the theorem is trivial. Else we take a random k-dimensional subspace S,and let v0i be the projection of vertex vi 2 V into S. Then setting L = jjv0i � v0j jj2 and� = (k=d)jjvi� vj jj2, and applying lemma (2.2a), we get thatPr[L � (1� �)�] � exp�k2(1� (1� �) + ln(1� �))�� exp�k2(�� (�+ �2=2))� = exp� � k�24 �� exp(�2 lnn) = 1=n2;where, in the second line, we have used the inequality ln(1� x) � �x � x2=2, valid for allx � 0.Similarly, we can apply lemma (2.2b) and the inequality ln(1+x) � x�x2=2+x3=3 (whichis valid for all x > 0) to getPr[L � (1 + �)�] � exp�k2(1� (1 + �) + ln(1 + �))�� exp�k2(�� + (�� �2=2 + �3=3))� = exp�� k(�2=2� �3=3)2 �� exp(�2 lnn) = 1=n2;Now we can choose the map f(vi) = (pn=k)v0i. By the above calculation, the chance thatfor some �xed pair i; j, the distortion jjf(vi)� f(vj)jj2=jjvi � vj jj2 does not lie in the range[(1� �); (1+ �)] is at most 2=n2. Using the trivial union bound, the chance that some pairof vertices su�ers a large distortion is at most �n2� � 2=n2 = (1 � 1n ). Hence f has thedesired properties with probability at least 1=n. Repeating this projection O(n) times canboost the success probability to any desired constant, giving us the claimed randomizedpolynomial time algorithm.3 An Application: Embedding into arbitrary dimensionsLet (X; �) be a �nite metric. For a map f : X ! Rk , we de�nejjf jjL = maxx;y2X jjf(x)� f(y)jj�(x; y) and jjf�1jjL = maxx;y2X �(x; y)jjf(x)� f(y)jj:2



Now the Lipschitz distortion of the map f is de�ned to be jjf jjL � jjf�1jjL.As a simple corollary of our structure lemma 2.2, we can deduce that any weighted graph canbe embedded into k � C logn dimensions with only O(n2=k(logn)3=2=pk) distortion, andthat such a map can be found in randomized polynomial time. This result was earlier provedby Matou�sek who had used the same projection technique, but he proved the distortionbound from �rst principles.To perform the embedding, we �rst embed the graph into `2 with O(logn) distortion [7],and then project it down to k dimensions using the technique above. If we can show thata unit vector projected down onto k dimensions has D2k=n � L � D1k=n with probability1 � 1=n2, then using the union bound over all �n2� pairwise distances, we would have aprojection with pD1=D2 distortion with probability at least 1=n. Note that we obtain asquare root because L is the square of the Euclidean length, while the distortion is de�nedin terms of the Euclidean length. Taking into account the distortion in the �rst step, thetotal distortion would be O(lognpD1=D2).Applying Lemma (2.2a) with � being D2 = (en4=k)�1 gives us that Pr[L � D2k=n] � 1=n2.Further, taking � to be D1 = (7maxf1; Cg lnn)=k in Lemma (2.2b) gives Pr[L � D1k=n] �1=n2. The proofs of these facts involve routine calculations using the fact that k � C logn.Hence, with probability O(1=n2), D2k=n � L � D1k=n. Thus, with probability O(1=n),the distortion due to the projection itself ispD1=D2 = cn2=k((lnn)=k)1=2 = c exp f2(lnn)=kg ((lnn)=k) ; (2)where c =p7emaxf1; Cg; and the total distortion is c lognpD1=D2 = O(n2=k(logn)3=2=pk).In the same paper [8], Matou�sek showed that for every integer l, there exists a set of npoints in R2l+1 which requires a distortion of 
(n1=l) to embed into R2l. In this sense, theprojection technique (and the analysis) is almost optimal.4 Proofs of tail boundsProof of Lemma (2.2a):We use the fact that if X � N(0; 1), then E[etX2] = 1=p1� 2t, for �1 < t < 12 . We nowprove thatPr[d(X21 + � � �+X2k) � k�(X21 + � � �+X2d)] � �k=2 �1 + k(1� �)d� k �(d�k)=2 (3)Note that this is just another way of stating lemma 2.2aPr[d(X21 + � � �+X2k) � k�(X21 + � � �+X2d)]= Pr[k�(X21 + � � �+X2d)� d(X21 + � � �+X2k) � 0]= Pr[ exp�t(k�(X21 + � � �+X2d)� d(X21 + � � �+X2k))	 � 1] (for t > 0)� E [ exp�t(k�(X21 + � � �+X2d)� d(X21 + � � �+X2k))	] (by Markov's inequality)3



= E [ exp�tk�X2	](d�k)E [ exp�t(k� � d)X2	]k (where X � N(0; 1))= (1� 2tk�)�(d�k)=2(1� 2t(k� � d))�k=2 = g(t):The last line of the derivation gives us the additional constraints that tk� < 12 and t(k� �d) < 12 . The latter constraint is subsumed by the former (since t � 0), and so 0 < t < 1=2k�.Now to minimize g(t), we maximizef(t) = (1� 2tk�)(d�k)(1� 2t(k� � d))kin the interval 0 < t < 1=2k�. Di�erentiating f , we get that the maximum is achieved att0 = (1� �)2�(d� k�) :which lies in the permitted range (0; 1=2k�). Hence we havef(t0) = � d� kd� k��d�k � 1��kand the fact that g(t0) = 1=pf(t0) proves the inequality (3).Proof of Lemma (2.2b):The proof is almost exactly the same as that of lemma (2.2a). The same calculations showPr[d(X21 + � � �+X2k) � k�(X21 + � � �+X2d)]= (1 + 2tk�)�(d�k)=2(1 + 2t(k� � d))�k=2 = g(�t):for 0 < t < 1=2(d� k�). But this will be minimized at �t0, where t0 was as de�ned in theprevious proof. This does lie in the desired range (0; 1=2(d� k�)) for � > 1, which gives usthat Pr[d(X21 + � � �+X2k) � k�(X21 + � � �+X2d)] � �k=2 �1 + k(1� �)d� k �(d�k)=2 :References[1] Chernoff, H. Asymptotic e�ciency for tests based on the sum of observations. Ann.Math. Stat. 23, 1952, pp. 493{507.[2] Frankl, P. and Maehara, H. The Johnson-Lindenstrauss lemma and the sphericityof some graphs. J. Combin. Theory Ser. B 44(3), 1988, pp. 355{362.[3] Frankl, P. and Maehara, H. Some geometric applications of the beta distribution.Ann. Inst. Stat. Math. 42(3), 1990, pp. 463{474.4
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