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Abstract

The Johnson-Lindenstrauss lemma shows that a set of n points in high dimensional
Euclidean space can be mapped down into an O(logn/e?) dimensional Euclidean
space such that the distance between any two points changes by only a factor of
(1 +¢). In this note, we prove this lemma using elementary probabilistic techniques.
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1 Introduction

Johnson and Lindenstrauss [6] proved a fundamental result, which said that any n point
set in Euclidean space could be embedded in O(logn/e?) dimensions without distorting the
distances between any pair of points by more than a factor of (14 ¢), for any 0 < € < 1.
Recently, this lemma has found several applications, including Lipschitz embeddings of
graphs into normed spaces [7] and searching for approximate nearest neighbours [5].

The original proof of Johnson and Lindenstrauss was much simplified by Frankl and Maehara
[2, 3], using geometric insights and refined approximation techniques. The proof given in
this note uses elementary probabilistic techniques to obtain essentially the same results.
Independently, Indyk and Motwani [5] have obtained a simple proof of a slightly weaker
version of our structural lemma (2.2).

2 The Johnson-Lindenstrauss Lemma

Theorem 2.1 (Johnson-Lindenstrauss lemma) For any 0 < € < 1 and any integer n,
let k be a positive integer such that

k>4(/2—€/3)  nn, (1)
Then for any set V of n points in R%, there is a map f : R® — R* such that for all u,v € V.,
(L= e)llu— ol < [If(u) = f)* < (1+e)|lu— ol

Further this map can be found in randomized polynomial time.

The theorem is proved by showing that the squared length of a random vector is sharply
concentrated about its mean when the vector is projected onto a random %k dimensional
subspace, and is not distorted by more than (14 ¢) with probability O(1/n?). Applying the
trivial union bound then gives the theorem.

Hence the aim is to estimate the length of a unit vector in R? when it is projected onto
a random k-dimensional subspace. However, this length has the same distribution as the
length of a random unit vector projected down onto a fixed k-dimensional subspace. Here we
take this subspace to be the space spanned by the first k& coordinate vectors, for simplicity.

Let X1,..., X4 be d independent N(0,1) random variables, and let ¥ = ﬁ(Xl, oo Xa).
It is simple to see that Y is a point chosen uniformly at random from the surface of the
d-dimensional sphere S%1. Let the vector Z € R* be the projection of Y onto its first k
coordinates, and let I = ||Z]|?. Clearly the expected length p = EL = k/d. We want to
show that L is also fairly tightly concentrated around p.

Lemma 2.2 Let k < d. Then
2.2a. If < 1 then

(L= Bk

(d—k)/2
W) < eXp(g(l—ﬁ—l—lnﬁ))-

Pr(L < Bk/d] < 87 (1 +



2.2b. If 3 > 1 then

_ (d=k)/2
fﬂLZﬁwﬂf;mﬂ(r+%;é§) < exp(o(1—F+ 1),

The proofs are similar to those for the Chernoff-Hoeffding bounds [1, 4] and are given in
Section 3. n

Proof: (Theorem 2.1)

If d < k, then the theorem is trivial. Else we take a random k-dimensional subspace 9,
and let v/ be the projection of vertex v; € V into 5. Then setting L = [[v} — v/||?

] and

1= (k/d)||v: — vj]|*, and applying lemma (2.2a), we get that

Pr{L < (1- )]

IN

exp (g(l —(1—¢€)+1In(1- 6)))

exp (g(g —(e+ 62/2))) = exp ( — Zﬁ)
< exp(—2Inn) = 1/n?,

IN

where, in the second line, we have used the inequality In(1 — z) < —2 — 2?/2, valid for all
x > 0.

Similarly, we can apply lemma (2.2b) and the inequality In(1+2) < z —2?/2+ 2% /3 (which
is valid for all z > 0) to get
k
Pr[L> (1+eu] < exp (5(1 (14 ) +In(1+ 6)))

k(e /22— € /3))

IN

exp (g(—G +(e—€)24+ 63/3))) = exp ( _
exp(—21Inn) = 1/n?,

A

Now we can choose the map f(v;) = (y/n/k)v.. By the above calculation, the chance that
for some fixed pair 1, j, the distortion ||f(v;) — f(v;)||*/||vi — v;]|* does not lie in the range
[(1—€),(1+ ¢)] is at most 2/n?. Using the trivial union bound, the chance that some pair
of vertices suffers a large distortion is at most (j) x 2/n® = (1 — 1). Hence f has the
desired properties with probability at least 1/n. Repeating this projection O(n) times can
boost the success probability to any desired constant, giving us the claimed randomized

polynomial time algorithm. n

3 An Application: Embedding into arbitrary dimensions

Let (X, p) be a finite metric. For a map f: X — R¥, we define

W@ =IOl e oz, y)
17l = max ==y 2 e = mas ey — s



Now the Lipschitz distortion of the map f is defined to be || f||L - ||/~ |z

As asimple corollary of our structure lemma 2.2, we can deduce that any weighted graph can
be embedded into k < C'logn dimensions with only O(n?*/*(logn)?/2/\/k) distortion, and
that such a map can be found in randomized polynomial time. This result was earlier proved
by Matousek who had used the same projection technique, but he proved the distortion
bound from first principles.

To perform the embedding, we first embed the graph into {; with O(logn) distortion [7],
and then project it down to k dimensions using the technique above. If we can show that
a unit vector projected down onto k dimensions has Dok/n < L < Dyk/n with probability
1 — 1/n?, then using the union bound over all ( ) pairwise distances, we would have a

projection with /D /Dy distortion with probability at least 1/n. Note that we obtain a
square root because L is the square of the Euclidean length, while the distortion is defined

in terms of the Fuclidean length. Taking into account the distortion in the first step, the
total distortion would be O(logny/D1/D3).

Applying Lemma (2.2a) with 3 being Dy = (en*/*¥)~! gives us that Pr[L < Dyk/n] < 1/n?.
Further, taking 5 to be Dy = (Tmax{1,C}Inn)/k in Lemma (2.2b) gives Pr[L > D1k /n] <
1/n%. The proofs of these facts involve routine calculations using the fact that & < C'logn.
Hence, with probability O(1/n?), Dyk/n < L < Dik/n. Thus, with probability O(1/n),
the distortion due to the projection itself is

V/D1/Dy = en®F(Inn)/k)Y? = cexp {2(lnn)/k} ((Inn)/k), (2)
where ¢ = \/Temax{1, C'}; and the total distortion is clogn/D1 /Dy = O(n*/*(logn)*/? |\/E).

In the same paper [8], Matougek showed that for every integer [, there exists a set of n
points in R?*1 which requires a distortion of Q(nl/l) to embed into R?'. In this sense, the
projection technique (and the analysis) is almost optimal.

4 Proofs of tail bounds

Proof of Lemma (2.2a):

We use the fact that if X ~ N(0,1), then E[e/X"] = 1/y/T = 2L, for —00 < t < 1. We now
prove that

_ gy 4R/
Prld(X7+ -+ X7) S kB(XT + -+ X7)] < M2 (1+ k(1 kﬂ))

Note that this is just another way of stating lemma 2.2a

Prld(X{ + -+ Xf) < kBXT + -+ + X7)]
Pr[kﬁ(X%+---+X§)—d(X%+---+XZ) > 0]

Prlexp {t(kB(XT + -+ X)) —d(X{+---+ X}))} > (for t > 0)
Elexp {t(kB(XT + -+ XJ) —d(X{+ -+ X))} (by Markov’s inequality )

IN



= [exp {tkﬁXz} (@=k g [exp {t (kB —d)X } (where X ~ N(0,1))
= (1 — 2tk B)" P21 = 20(kB — ) = g(1).

The last line of the derivation gives us the additional constraints that tkj3 < % and t(kp —
d) < %. The latter constraint is subsumed by the former (since ¢ > 0), and so 0 < t < 1/2kf3.
Now to minimize ¢(¢), we maximize

F(8) = (1= 2tkB)7R(1 = 26(kB — d))*
in the interval 0 < t < 1/2kf. Differentiating f, we get that the maximum is achieved at

(1-5)
26(d - kp)’

which lies in the permitted range (0,1/2kf3). Hence we have

=5 G)

and the fact that ¢(tg) = 1/4/f(to) proves the inequality (3). n

to =

Proof of Lemma (2.2b):
The proof is almost exactly the same as that of lemma (2.2a). The same calculations show
Prld(X{ + -+ Xf) > kB(X] + -+ X7)]
= (1+ thﬁ) (=R/2(1 4 21k — d)) K2 = g(—1).

for 0 <t < 1/2(d — kB). But this will be minimized at —ty, where ¢y, was as defined in the
previous proof. This does lie in the desired range (0,1/2(d— k3)) for 5 > 1, which gives us
that

_ (d—k)/
Pr[d(Xf-l-----l-Xi?)Zkﬁ(Xf‘l'""FXf)]Sﬂk/z(H'%) ‘
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