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The Centroid method for compressing sets of similar images
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Abstract

Similar images are images with common features, similar pixel distributions, and similar edge distributions.
Fields such as medical imaging or satellite imaging often need to store large collections of similar images. In a set
of similar images the image similarities represent patterns that consistently appear across all images; this results in
“set redundancy”. This paper presents the Centroid method that extracts and uses these similarity patterns to reduce
set redundancy and achieve higher lossless compression in sets of similar images. Experimental results with a
medical image database demonstrate that the Centroid method can deliver significantly improved image compres-
sion.   © 1998 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Research in data compression has grown rapidly
the last 50 years producing a large number of loss-
less and lossy compression methods (for some excel-
lent reviews see Netravali and Limb, 1980; Jain,
1981; Bassiouni, 1985; Rabbani and Jones, 1991;
Wong et al., 1995). Data compression is possible
because of data redundancies. In gray-scale digital
images three basic data redundancies can be identi-
fied and reduced: the coding redundancy, the inter-
pixel (or spatial) redundancy, and the psychovisual
redundancy. Most data compression methods are
based on the same principles and on the same theo-
retical compression model. Fig. 1 depicts the lossless
compression model and Fig. 2 shows the more gen-
eral lossy model (the lossless model can be derived
from the lossy one by omitting the “Quantization”

step). Pixel mapping reduces the interpixel redun-
dancy. Quantization reduces the psychovisual redun-
dancy. The final step of symbol encoding reduces the
coding redundancy.

For individual images, this general compression
model is sufficient. However, sets of similar images
contain additional redundancy due to the existence of
common information that appears as similar patterns
across these images. Compression methods based on
the current compression model only eliminate intra-
image redundancy, but not this type of inter-image
redundancy. The term set redundancy has been intro-
duced by Karadimitriou (1996) to describe the inter-
image redundancy.  It has been shown that identify-
ing the common patterns in sets of similar images
and using them to reduce set redundancy can signifi-
cantly improve compression (Karadimitriou, 1996;
Karadimitriou and Tyler, 1996, 1997).
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Karadimitriou (1996) proposed the Enhanced
Compression Model as a more appropriate model for
compressing sets of similar images. This model in-
cludes an additional step for set redundancy reduc-
tion and it is described in Section 2. Methods that
achieve set redundancy reduction are referred to as
SRC (Set Redundancy Compression) methods. Two
SRC methods are the Min-Max Differential method
(Karadimitriou and Tyler, 1996) and the Min-Max
Predictive method (Karadimitriou and Tyler, 1997).
In this paper a third SRC method is described, the
Centroid method (Section 3). This method creates an
“average image” to capture the common patterns that
appear in a set of similar images. One of the best
application areas for SRC methods is medical imag-
ing. Medical image databases usually store similar
images; therefore, they contain large amounts of set
redundancy. Section 4 presents the application of the
Centroid method on a set of CT brain scans, and
Section 5 contains some concluding remarks.

2. The enhanced compression model

The Enhanced Compression Model is an exten-
sion of the basic compression model and includes an
additional step, the set mapping step (Fig. 3). Set
mapping reduces the set redundancy from a set of
similar images and it can be realized in different
ways. One way is to implement it as an N-dimen-
sional transform by translating the origin of the
N-dimensional coordinate system, where  N  is the
number of pixels in a given image. This N-dimen-

sional transform can reduce the dynamic range of the
pixel values in a set of similar images. This results in
fewer bits per pixel required to store these values.
The following example addresses these concepts.

First, assume that every pixel value in an N-pixel
image represents a coordinate value in the N-dimen-
sional space. Consequently, every N-pixel image de-
fines a unique point in this space. To visualize
these concepts, consider the case of small 1x2
“images”. Every such image contains only 2 pixels
and can be represented by a unique point in the
2-dimensional space. The values of the 2 pixels are
used to define the coordinates  X  and  Y. This is a
2-pixel image:

45 203

The corresponding point in the 2-dimensional space
is presented in Fig. 4. A set of random 2-pixel
images could result in a scatter plot similar to Fig. 5.
As Fig. 5 shows, the range of values is  {0-255}  for
both  X  and  Y  coordinates; therefore, 8 bits are
needed to represent each value. Now, consider a set
of 2-pixel images that are similar to each other. In
this set, suppose that the first pixel’s value in every
image is in the range of  {40-60} and the second
pixel’s value is in the range of {135-165}. The
scatter plot for such a set is presented in Fig. 6. As
we see, all the points are clustered together in the
same area. In this case, we can translate the coordi-

f(x,y)* fc (x,y)**
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Fig. 1.  Lossless compression model. * f (x,y) = original image;  ** fc (x,y) = compressed image.

Quantizationf(x,y)* Pixel
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Fig. 2.  Lossy compression model. * f (x,y) = original image;  ** fc (x,y) = compressed image.
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nate axes so that the points get closer to the origin.
Fig. 7 shows this coordinate system transform.

After translating the origin, the maximum coordi-
nate values in this cluster of points become  Xmax = 20
and  Ymax = 30. Now, only 5 bits are sufficient to
represent these new coordinates (versus 8 before),
each of which corresponds to a value of a pixel in
the transformed images. Of greater importance is the
fact that translating the origin caused the variance of
the pixel values inside every image to decrease; that
is, both pixels in every image have values in the
range of  {0-30}, compared with the original range of
{40-165}. This represents a decrease of 76% in the
variance and results in a reduction of the image
entropy. For example, if it were possible to reduce
the range of pixel values to {0-7}, then the images
could be encoded with only 3 bits/pixel. Note that
this is lossless compression, because it is always
possible to perform an inverse axes shift and recover
the original images. In addition, this compression is
based solely on the properties of the original set of
images, and not on the internal properties of the
individual images. Therefore, additional compression
can be achieved by using any of the existing com-

pression methods to further compress individually
every image in this set.

This example with 2-pixel images demonstrated
how “set mapping” can be implemented as a coor-
dinate axes translation in the 2-dimensional space.
The same procedure can be extended to N-dimen-
sional space for compressing sets of images with  N
pixels per image. Note that if the origin is translated
to the point where the pixel values of the images
become minimum but not negative, then this transla-
tion is equivalent to creating the “minimum image”
from the set and replacing every image by its differ-
ence from this “minimum image”. Analogously, the
“maximum image” could be used instead of the
“minimum image”. In this case, the origin would be
translated to the point where all pixel values become
negative, but with minimum absolute values (Fig. 8).
Finally, the origin could be translated to the centroid
of the cluster (Fig. 9) which corresponds to the
“average image” of the image set. In this case, the
origin translation is equivalent to creating the “aver-
age image” and then replacing every image in the set
with its differences from this “average image”.

Creating and using the “minimum”, “max-
imum”, or “average” images for set mapping was

•
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Fig. 4.  Point defined by a 2-pixel image
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Fig. 3.  The enhanced lossless compression model.     * f (x,y) = original image;     ** fc (x,y) = compressed image.
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the starting point for developing practical methods
based on the Enhanced Compression Model. The
Min-Max Differential (Karadimitriou and Tyler,
1996) and the Min-Max Predictive (Karadimitriou
and Tyler, 1997) methods use the concept of
“minimum” and “maximum” images. In the next
section the Centroid method is described, which uses
the concept of the “average” image.

3. The “Centroid” method

In general, predictive methods are very useful for
image compression. These methods create a predic-
tion for the value of every pixel; then the encoder

stores only the error between this prediction and the
pixel value. If the prediction scheme is good, then
the errors are very small and have a Laplacian
distribution with most of the values very close to
zero. The “average image” from a set of similar
images can be used to predict the pixel values in
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Fig. 6.  Set of similar 2-pixel images
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Fig. 8.  Translating the origin to the “maximum point” of the
cluster, or “maximum image”
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Fig. 9.  Translating the origin to the centroid point, or “average
image”
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each image of the set. A simple model for predicting
the pixel value at position  i  in image  j  is

F mi j i, =                                      (1)

where  Fi,j  is the predicted value and  mi  is the
average value from position  i  across all images. This
prediction scheme results from intuition rather than
mathematical development. However, a formal anal-
ysis can produce more sophisticated and more accu-
rate models. The mathematical development of a
better prediction scheme that uses more effectively
the “average image” is presented next.

Let us assume we have a set of K images, with N
pixels per image. We define  xi,j  to be the pixel
value of pixel  Pi  from image  j. For natural images,
a model that can describe this value is

x x r si j i j i j i j, , , ,= + +−1

where  xi-1,j   is the value of the previous pixel,  ri,j  is
a random error (independent and normally dis-
tributed with zero mean value), and  si,j  is the differ-
ence of the two pixels due to the local change in
intensity values (slope). Taking the sum in Eq. (2)
for pixel position  i  across all  K images and dividing
by  K,  results in
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Subtracting Eq. (4) from Eq. (2) yields
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The term  εi,j  can be considered as an “error term”
that denotes the difference of pixel value  xi,j  from
the mean value  mi  at pixel position  i. From Eq. (5)
we have

x mi j i i j− − −− =1 1 1, ,ε .

Because the images are similar, the slope difference
si,j  at pixel position  i  of image  j will be very close
to the average slope difference at the same pixel
position  i  across all images. Therefore,
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By replacing Eq. (7) and Eq. (8) at Eq. (6) we get

ε εi j i j i jr, , ,= +−1  .

Eq. (5) and (9) define the model for predicting a pixel
value in a set of similar images. In this model, the
error term is serially correlated or autocorrelated.
Forecasting with autocorrelated error terms has been
studied extensively (e.g., Neter et al. (1989)). Linear
regression with one independent variable and first-
order autoregressive error is defined as

x mi j i i j, ,= + ⋅ +β β ε0 1 ,    ε ρ εi j i j i jr, , ,= ⋅ +−1

where  xi,j  is the dependent variable,  mi  is the in-
dependent variable,  β0  and  β1  are the regression
parameters,  ρ   is the autocorrelation parameter, and
ri,j  is an independent and normally distributed ran-
dom error term with zero mean value. The model
defined by Eq. (5) and (9) is the same as the linear
regression model defined by Eq. (10), with

β0 = 0 ,   β1 = 1.0 ,   and   ρ  = 1.0            (11)

 (2)

(3)

(4)

(5)

 (6)

(7)

(8)

(9)
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From statistical theory, a good prediction scheme for
the model of Eq. (10) is

F m ei j i i j+ += + ⋅ + ⋅1 0 1 1, ,β β ρ

where  Fi+1,j  is the forecast for the (unknown) value
xi+1,j ,  and  ei,j  is defined as

( )e x mi j i j i, ,= − + ⋅β β0 1  .

Using Eq. (11)  these equations are simplified to

F m ei j i i j+ += +1 1, , ,           e x mi j i j i, ,= −  .                 (12)

These two equations define a model for predicting
the value of a pixel using the average value for that
pixel position plus a correction term. This is the
basis of the Centroid method. The experimental re-
sults that are presented in the next section show that
this model is more accurate and provides better
compression than the simpler model of Eq. (1).

4. Experimental results

4.1. The application of the Centroid method to medi-
cal images

Medical imaging is an area in which the En-
hanced Compression Model can be used very effec-
tively. The reason is that medical images always
depict parts of the same subject: the human body.
Moreover, the standard procedures used in radiology
result in images very similar to one another. For
example, for every chest X-ray the position of the
patient, the orientation of the imaging device, and
the parameters used are standard. A collection of
1,000 chest X-rays is significantly more self-corre-

lated, in the statistical sense, than a collection of
random images. The same is true for any other
collection of medical images that are grouped to-
gether by modality and type of exam (for example,
brain axial MRI scans, liver CT scans, etc). Conse-
quently, medical image databases store sets of im-
ages with high similarity that contain large amounts
of set redundancy. This redundancy appears as com-
mon patterns across the images which can be used
by the Centroid method to improve compression.

In our experiments we used a small image data-
base with 51 CT brain images collected at M.D. An-
derson Cancer Center in Houston, Texas. The images
were gray-level, with resolution 512x512 pixels, and
were scaled to 8 bits/pixel. They were randomly
selected from patients of both sexes, various ages,
and a variety of pathological conditions. From this
test database, a set of images with high similarity
was formed, containing 10 images (Fig. 10); this set
size was chosen to ensure high similarity among the
images. The remaining images were considered to
belong in other sets. In this small test database, the
size of those other sets was not large enough for
testing purposes. However, a real-world medical im-
age database containing hundreds or thousands of
images can be partitioned in a number of sets with
reasonably large sizes; in that case the Centroid
method can be efficiently implemented in every set.

To facilitate the implementation of the Centroid
method, these images were registered into a standard
position and size. This was done with a semi-auto-
matic procedure, in which three landmark points
were identified in every image and then the images
were rotated, translated, and scaled so that these
three landmark points would coincide with standard

Fig. 10.  The CT images used in the experiments
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positions. This registration is useful in creating the
“average” image. Note, however, that there is no
need to store the registered versions of the original
images. Once the registration parameters (rotation,
translation, and scaling) for every image are known,
these parameters can be used to perform the inverse
registration on the “average” image, instead of us-
ing the registered versions of the original images.
Consequently, there is no change in the original
images.

4.2. Experimental procedure and test results

According to the Enhanced Compression Model,
the Centroid method can be combined with standard
compression techniques to improve their compres-
sion ratios. In our experiments the Centroid method
was tested in combination with three well-known
compression techniques: Huffman encoding, Arith-
metic coding, and Lempel-Ziv compression. The
first two are entropy-based techniques; the third is a
dictionary-based compression scheme. Huffman en-
coding (Huffman, 1952; Knuth, 1985) is one of the
oldest and most widely used compression methods.
Arithmetic coding (Langdon, 1984; Witten et al.,
1987; Moffat et al., 1995) is slower and more diffi-
cult to implement; however, it outperforms the Huff-
man method in compression ratios. Lempel-Ziv
compression (Ziv and Lempel, 1977, 1978) is a
powerful technique with many variations; in this
research the LZW version (Welch, 1984) was used.
All experiments were performed under the Unix
operating system which includes standard implemen-
tations of Huffman and LZW methods (commands
“pack” and “compress”, respectively). For Arith-
metic coding the publicly available software based
on Moffat et al. (1995) was used.

As it has been mentioned in the previous sections,
the main idea of the Centroid method is to use the
“average” image as a predictor. The “average”
image for our test set of CT images is shown in Fig.
11. A simple approach, suggested by Eq. (1), is to
subtract this “average” image from each image to
be compressed and store only the differences. How-
ever, the Centroid method is based on the more
sophisticated model described in Eq. (12). Both ap-
proaches were implemented and tested to demon-
strate their performance. The first approach (taking

the differences from the “average”) is referred to as
the Differential method, and the results are presented
in Table 1. The second approach is the Centroid
method, and the results are presented in Table 2. In
these two tables, the compression ratio is defined as

C
original image size

compressed image size
=

and the improvement in compression is defined as

improvement
C C

C
SRC=

−
⋅100%

where C is the compression ratio achieved when
using a regular compression method only, and  CSRC

is the compression ratio achieved when combining
SRC with that regular compression method.

As shown in Tables 1 and 2, the compression is
improved when the images are pre-processed with
the “average” image. The improvement from the use
of the Centroid method is 18% for Lempel-Ziv,
59% for Arithmetic, and 90% for Huffman compres-
sion. The simpler Differential approach also achieves
some improvement for Arithmetic and Huffman en-
coding (5% and 17% respectively) but not as much as
the Centroid method. These results verify the
validity of the Enhanced Compression Model and
demonstrate the use of the Centroid method for
improving compression in sets of similar images. It
is important to emphasize that the Centroid method
is totally reversible, therefore the overall compres-
sion is lossless.

The performance of the Centroid method was also
compared with the performance of two previously
proposed SRC methods, the Min-Max Differential
(MMD) method (Karadimitriou and Tyler, 1996) and

Fig. 11.  The “average” CT brain image
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the Min-Max Predictive (MMP) method (Karadi-
mitriou and Tyler, 1997). Table 3 presents a sum-
mary of the results from testing the three methods on
the same set of CT images. As this table shows, the
Centroid method produces a larger compression im-
provement than MMD, but smaller than the MMP
method. However, the Centroid method offers a
distinct advantage over MMP: new images can be
inserted in the set and compressed without recomput-
ing the “average” image. In contrast, MMP requires
recomputing the “minimum” and “maximum” im-
ages for the set, as well as recompressing all images.
Thus, the Centroid method offers greater flexibility
for maintaining dynamic image sets, whereas the
MMP method offers better compression for storing
fixed image sets. Clearly, the choice is application-
dependent.

Finally, a note on the computational time re-
quirements. An image file of 262 Kbytes can be pre-
processed by the Centroid method in less than a sec-
ond on a Sun SPARC 20 workstation, which is
approximately as fast as the MMD and MMP meth-
ods. The additional time required by all SRC meth-
ods is a small tradeoff considering the improvement
in compression produced.

5. Conclusion

Image compression is possible because of the
existence of different types of redundancy in digital
images. Current compression methods usually target
the intra-image redundancies; however, sets of simi-
lar images contain significant amounts of inter-image
redundancy, the set redundancy. Set redundancy can
be used to improve compression in sets of similar
images. This paper describes the Enhanced Compres-
sion Model that extends the current theoretical com-
pression model by including a set mapping opera-
tion. Set mapping identifies and uses the common
patterns that appear in similar images to reduce set
redundancy. The Centroid method was developed as

Table 3

Summary of compression improvements (%) using SRC methods

Centroid MMD MMP

Huffman 90 48 129

Arithmetic 59 28 93

Lempel-Ziv 18 13 37

  Table 1

  Experimental results from taking the differences from the average

Average size (Kbytes) Lossless compression ratio Comments

Original image 262 N/A

Huffman compressed 190 1.379 : 1

Differential + Huffman 162 1.617 : 1 17%  improvement

Arithmetic compressed 154 1.701 : 1

Differential + Arithmetic 146 1.795 : 1 5%  improvement

Lempel-Ziv compressed 107 2.449 : 1

Differential + Lempel-Ziv 107 2.449 : 1 0%  improvement

  Table 2

  Experimental results from the Centroid method

Average size (Kbytes) Lossless compression ratio Comments

Original image 262 N/A

Huffman compressed 190 1.379 : 1

Centroid + Huffman 100 2.620 : 1 90%  improvement

Arithmetic compressed 154 1.701 : 1

Centroid + Arithmetic 97 2.701 : 1 59%  improvement

Lempel-Ziv compressed 107 2.449 : 1

Centroid + Lempel-Ziv 91 2.879 : 1 18%  improvement
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a practical technique for performing the set mapping
operation.

One of the best application areas for the Enhanced
Compression Model is medical imaging. Our tests
with CT brain scans showed that when medical
images are pre-processed with the Centroid method,
lossless compression ratios are improved by as much
as two-fold.

There are also many other application areas where
the Enhanced Compression Model can be imple-
mented. For example, satellite image databases often
contain sets of images taken over the same geograph-
ical areas, and under similar weather or lighting
conditions. Therefore, they contain set redundancy
that can be reduced by the Centroid method. Future
research will explore implementation of SRC meth-
ods in these fields. Also the use of lossy methods
will be investigated as an alternative to the use of the
lossless techniques for the Enhanced Compression
Model.
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