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a collection S of n line segments in the plane, andasked to construct a data structure that can e�cientlydetermine for a given query point p the �rst segment(s)in S intersected by vertical rays emanating out fromp. This problem is very well-studied [13, 14, 17, 24,25, 31, 36], and there are a number of solutions thatasymptotically achieve query times of O(logn) usingO(n) space, which is optimal. The query time in eachof these solutions is bounded by the number of point-line comparisons, where one is given a point p and anoriented line L and asked to determine if p is on L, tothe left of L, or to the right of L.We are interested in re-examining the point loca-tion problem, focusing on issues that arise in importantapplication areas, such as geographic information sys-tems (GIS) [6, 7, 18, 35, 40]. Our re-examination of thepoint-location problem focuses on a number of practicalissues that have not been explicitly explored in previouswork, including an examination of the exact number ofpoint-line comparisons used in comparison-based pointlocation methods, as well as an examination of scenar-ios where the set of queries is non-uniform and one de-sires a data structure that can \adapt" over time to thenon-uniformities. Speci�cally, we consider non-uniformquery sequences that satisfy one of the following prop-erties:Spatial Coherence: This is the property that someregions (de�ned implicitly by certain trapezoids)are accessed more frequently than other regions.Such an environment could arise, for example, in aservice-dispatch GIS where certain high-populationregions create more demand requests than low-population regions.Temporal Coherence: This is the property that be-tween any two consecutive queries to the same cellthe set of queries, which we refer to as the work-ing set, is fairly small. Such an environment couldarise, for example, in a robot motion tracking sys-tem where a moving robot periodically requests1



map information based upon its global positioning.Our goal in each case is to provide comparison-based data structures that have O(logn) worst-casequery times (with small constant factors) for all se-quences, but have o(logn) query times (possibly evenO(1)) for sequences that exhibit a su�cient amount ofone of the above properties.1.1 Previous Work. We are not aware of any pre-vious work on the planar point location problem thatexamines specialized query environments such as thosedescribed above, but there is a wealth of literatureon comparison-based solutions to the general planarpoint location problem. The �rst non-trivial solutionto this problem is a method by Dobkin and Lipton [14],based upon a simple, elegant slab method, that answersqueries using at most 2dlogne point-line comparisons1.The main idea of this method is to subdivide the planeinto \slabs" by placing a vertical line through each seg-ment endpoint followed by an ordering of the segmentscrossing each slab by the \above" relation. A locationquery for a point p is easily answered by performing twobinary searches|one to locate the slab containing p andanother to locate the cell in that slab that contains p.Using an interesting trapezoid technique, Preparata [31]showed that one could achieve a query time of 4dlogneusing O(n logn) space, and Kirkpatrick [24] was the �rstto show that one could in fact simultaneously achievean O(logn) query time and O(n) space. His method isbased upon a beautiful hierarchical subdivision method,but the constant factor in the running time is fairlylarge. Because of the questions of practicality raisedby this method, Edahiro, Kokubo, and Asano [16] per-formed a series of empirical benchmarking tests betweenthe trapezoid and hierarchical subdivision methods, aswell as a simple \bucketing" approach, which is not en-tirely comparison-based and actually has a worst-casequery bound of �(n) and a worst-case space bound of�(n2). Still, based upon their benchmarking tests, theyargued that the best practical method at that time wasthe bucketing approach, with the trapezoid method be-ing a close competitor. Following this, Cole [13], Sar-nak and Tarjan [36], and Edelsbrunner, Guibas, andStol� [17] independently showed how to improve theconstant factor in the query time for point locationwhile still achieving linear space. These three methodsare described quite di�erently, but the resulting datastructures are remarkably similar. If optimized for the1Most of the previous papers we review do not actually reportthe constant factors in the number of point-line comparisonsneeded to answer a query. We give here our best estimates for theconstant factors in the worst-case point-line comparison counts ofthe previous methods.

constant factors in their query times, the methods ofCole and Edelsbrunner et al. appear to require 3dlognetime for point-location queries and the method of Sar-nak and Tarjan appears to require 5dlogne time2. Weare not familiar with any previous linear-space methodsthat have a query time approaching the 2dlogne timeachieved by the slab method.1.2 Our results. Because of the great diversity ofuses for planar point location, we consider a variety ofdomains for point-location queries, based upon the en-vironment in which point location queries will be made.In the �rst domain point location queries are fairly uni-form spatially and temporally. That is, location queriesare fairly well spread across all cells de�ned by \slabs"and the i-th query has little or no relation to previ-ous queries. For such environments we show how toachieve a linear-space data structure that can answerqueries in at most 2dlogne + o(logn) point-line com-parisons. For query sequences with spatial or temporalcoherences, however, we show how to design an adaptivepoint location method, so that the amortized time3 com-plexity for accessing a cell i in a sequence of m queriesis �O(minflogn; log(t(i) + 1); log(m=f(i))g) time, wheret(i) is the working set size for cell i (i.e., the numberof di�erent queries between two accesses of cell i) andf(i) is the frequency of accesses to cell i. Note thatthis method simultaneously adapts itself to query en-vironments that satisfy spatial or temporal coherence.In addition, we consider environments in which the col-lection of segments S is too large to conveniently ac-commodate a data structure requiring even just a lin-ear amount of additional memory. In this case we ex-amine an approach based on a simple \walk-through"technique often used in GIS applications, which can beused, for example, to achieve a sub-linear amount ofadditional space while still allowing for O(logn)-timequeries. Recently M�ucke et. al. [29] proposed a ran-domized point location method which is also based on\walk-through" idea, but their analysis was restrictedto Delaunay triangulations.Because of the motivation of our re-examination ofpoint location from practical considerations, we haveimplemented a number of di�erent point-location meth-ods, some based upon previous approaches and oth-ers based upon our techniques. We compare each of2Although the resulting methods are quite similar, the di�er-ences in the constant factors come from the fact that the Cole andEdelsbrunner et al. methods use static complete binary tree astheir primary structures, whereas the Sarnak and Tarjan methoduses a dynamic red-black tree as its primary structure.3We us �O(f(n)) to denote an amortized complexity bound thatis O(f(n)).2



these methods in a fairly comprehensive set of empir-ical benchmarking tests, comparing them over a vari-ety of scenarios for subdivision and query distributions.Our experimental results give strong evidence support-ing our techniques being competitive with \bucketing"approaches for \evenly-distributed" subdivisions andqueries, while being signi�cantly better than the bucketmethod in non-uniform environments.In the sections that follow we outline the main ideasbehind our methods.2 Point Location in Uniform QueryEnvironmentsWe begin by describing our method for environmentswhere the queries are fairly uniform spatially and tem-porally, although the subdivisions themselves may bequite \unbalanced." We �rst present a simple methodfor deterministically constructing a data structure ofsize O(n logn) that answers point location queries with2dlogne point-line comparisons, and we then show howto reduce the space to be O(n).2.1 A Simple Persistent Method. Let S be acollection of n line segments in the plane. We canconstruct a planar point location data structure for Sby applying the persistence [15] paradigm to a left-to-right plane sweep of S using a vertical line, L,as noted by Sarnak and Tarjan [36] (and Cole [13]as well, using a di�erent terminology). Applying thepersistence paradigm to a data structure D allows oneto perform a sequence of updates to D and then lookup the information stored in any previous version ofD. Driscoll et al. [15] show that any linked datastructure D with �xed in- and out-degree can be madepersistent, with the space bound being proportionalto the total number of changes to D, while keepingthe access time proportional to its previous value (butmultiplying the time by a constant factor that is atleast 2). Several researchers (e.g., see Sarnak andTarjan [36] for a survey) have noted that a simplepath copying technique can make any binary tree datastructure persistent with an access time exactly whatit was in its non-persistent version. In this techniqueone simply copies the entire root-to-leaf path for a leaf-node change, keeping unchanged pointers pointing totheir old neighbors.Following an observation of Cole [13], we notethat the segments in S form a partial order by the\above" relation. Moreover, this relation can easilybe constructed in O(n logn) time, and then linearizedvia a topological sort in O(n) additional time. We cantherefore label each edge in S with its rank in this linearorder and these ranks will de�ne a consistent ordering

of the segments in every slab de�ned by the endpointsof the segments in S. This implies that we can use astatic dlogne-height tree T to represent the segmentsintersecting the sweep line L as it moves from left toright. Moreover, if we use the simple path copyingtechnique to make this sweep persistent, then we derivethe following lemma:Lemma 2.1: Given a set S of n non-intersectingline segments (except possibly at segment endpoints),one can construct a point location data structure for Sin O(n logn) time and space that achieves a query timeof 2dlogne.Proof. The time and space bound follow from thediscussion above. The query time is derived as for theslab method|there is one binary search to �nd theappropriate previous version of the search tree followedby a dlogne time search down this tree.We note that this simple method achieves the samespace bound as that of the trapezoid method [31] buthas a worst-case query time that is twice as fast. Wecan further improve the space bound of our method tobe linear, however, while still keeping very close to the2dlogne query time.2.2 Space improvement via �-cuttings. In thecontext of planar point location data structures an �-cutting of a set S of line segments is a partitioning ofthe plane into trapezoids so that the number of segmentsin S intersecting any trapezoid is at most �jSj. For anytrapezoid � we use S� to denote the con
ict list for�|the set of segments in S that intersect � 's interior.In this subsection we make use of the following lemmaabout �-cuttings to reduce the space needed for ourplanar point location data structure to O(n):Lemma 2.2: Let S be a set of n non-crossing linesegments in the plane. One can construct a (1=r)-cutting C of S, together with the con
ict lists forall its trapezoids, so as to have O(r) cells and totalsize O(n), for 2 � r � n. This construction canbe implemented by a randomized algorithm in timeO(n logn+ r� logn+n�) with probability 1� 1=2�, forany � � 1, and deterministically in polynomial time.Our proof of this lemma (which we omit in thispreliminary version) is based upon the general theoryof geometric range spaces [2, 9, 20, 26]. In the contextof point location data structures a range space is de�nedby a set S of line segments and R, the set of allcombinatorially distinct ways of intersecting segmentsof S with trapezoids that have vertical parallel edges.The sets in R are called ranges. Let Y be a subset ofS, and let a parameter r 2 [1; n] be given. Further, letNY (s;S) denote the number of ranges R in RjY suchthat s = jRj and Y \ R = ; (we say such ranges are3



missed by Y ). De�ne f0(r) to be the expected numberof missed ranges generated by an r-sized random sampleS of S (with all such samples equally likely). Y is a(1=r)-semi-net 4 of order ! � 0 ifX0�t�rNY (tn=r;S)maxft!; 1g = O(f0(r));where the sum ranges over all values of t from 0 to rfor which NY (tn=r;X) is non-zero. (Y is simply an �-net [23] if NY (tn=r;S) = 0 for t > 1.)Lemma 2.3: Let (S;R) be a segment-trapezoidrange space. If Y is a subset ofX de�ned by nmutually-independent indicator random variables, each of whichis 1 with probability r=n, then, with probability at least1/2, Y is a (1=r)-semi-net of order ! � n=2 with sizeO(r), provided that f0 is non-decreasing.Proof. The proof follows from applications of gen-eral proof techniques of Chazelle and Friedman [9] andClarkson and Shor [12] for range spaces with �nite VC-dimension (see also [27]).In our case, f0(r) is equal to the number of trape-zoids de�ned by a trapezoidal decomposition of an r-segment subset S � S; hence f0(r) is O(r). We omitthe details of the proof of Lemma 2.2 in this prelimi-nary version. We note, however, that the main chal-lenge in establishing this lemma is proving the time andhigh-probability bounds, as the combinatorial part ofthe proof is based upon using a known double-samplingtechnique of Chazelle and Friedman [9] in conjunctionwith Lemma 2.3.Our method for constructing a point-location struc-ture for S, then, is as follows:1. Apply Lemma 2.2 with � = c logn, for someconstant c � 1, to �nd a (1=r)-cutting C consistingof O(r) trapezoids and their con
ict lists, so asto have O(n) total size, for r = n= log2 n. Thisstep takes O(n logn) time with probability at least1� 1=nc.2. Apply Lemma 2.1 to form a point-location datastructure D for C of size O(r log r) = O(n= logn).3. For each range R� de�ned by a trapezoid � in C,apply Lemma 2.2 with � = c logn= log logn, forsome constant c � 1, to �nd a (1=r� )-cutting C� for� 's con
ict list consisting of O(r� ) trapezoids andtheir respective con
ict lists so as to have O(n=r) =O(log2 n) total size, for r� = r=(log logn). Notethat each con
ict list in this second cutting is of4This de�nition of a semi-net is similar to the (1=r)-semi-cutting notion introduced by Chazelle [8], as well as prooftechniques given in [9, 20, 26].

size at most O((log logn)2). We implement thisstep with a \termination condition," however, thatterminates the computation for � if its running timeexceeds C log3 n, which will occur, of course, withprobability at most 1=2�. If this occurs, then wejust restart the computation of this step for � .4. Apply Lemma 2.1 to form a point-location datastructure D� for each C� of size O(r� log r� ) =O(log2 n= log logn).We can perform a point location for some querypoint p, then, as follows. We search in D to locate thetrapezoid � in C containing p. We then search in D�to locate the trapezoid 
 in C� containing p. Finallywe search in the con
ict list for 
 (with respect to C� )to complete the search for p. By Lemma 2.1, the totaltime for this search is2dlog jCje+ 2dlog jC� je+ d(log logn)2e� 2�log� bnlog2 n��+ 2�log� b log2 n(log logn)2��+d(log logn)2e� 2dlogne+ o(logn);where b is some constant. The total space needed by thisdata structure is O(n). Let us, therefore, analyze thetime needed to construct this data structure. We havealready noted that Steps 1, 2, and 4 can be implementedin O(n logn) time with probability at least 1� 1=nc forany constant c � 1. Likewise, by a simple Cherno�bound analysis [22], we can show that Step 3 also runsin time O(n logn) with probability at least 1� 1=nc forany constant c � 1. Therefore, we have established thefollowing:Theorem 2.1: Given a set S of n non-intersectingline segments (except possibly at segment endpoints),one can construct an O(n)-space comparison-basedpoint-location data structure for S in O(n logn) time,with probability at least 1�1=nc, for any constant c � 1,that can answer point-location queries using at most2dlogne+ o(logn) point-line comparisons.Thus, we can achieve a query time very close tothat of the slab method [14] with just a linear amountof additional space. Indeed, we conjecture that 2blogncis a lower bound on the query time for any linear-spacecomparison-based planar point-location data structure.3 Adaptive Point LocationLet us now address the query environment where weanticipate that the sequence of queries is non-uniformwith respect to space or time. In this section we showthat in such environments one can achieve o(logn)4



(amortized) query times while still maintaining fastpreprocessing bounds and linear space.3.1 Splay Trees. We achieve our results concerningadaptive point location queries by employing the splaytree data structure of Sleator and Tarjan [37]. Splaytrees are self-adjusting binary trees, and they form asimple and very interesting class of \balanced" binarysearch trees. We highlight the term balanced, because,unlike other binary search trees such as AVL trees [1]or red-black trees [21, 39], splay trees do not enforce ex-plicit global structural constraints. Sleator and Tarjande�ne a splay operation at a node v, which involves aseries of rotations to take v to the root (but care is takenhere, as the naive sequence of rotations will not derivethe desired results). A splay is performed at a node vin a splay tree T after node v is accessed, independentof whether v was the objective for a search or for anupdate. Other than this, the access and update oper-ations are performed as for other binary search trees.Sleator and Tarjan show that under these conditions,they can achieve an �O(logn) time complexity for all theaccess and update operations. The space requirementfor a splay tree is clearly O(n). Since no explicit infor-mation (like rank or height) is maintained to achieve thebalance, the constants in the space bound are actuallybetter than those for other search trees. Also Sleatorand Tarjan prove a vast number of useful theorems re-garding a sequence of m accesses in a splay tree, whichwe summarize below.Theorem 3.1 Balance Theorem [37]: The to-tal access time is O((m+ n) logn).Theorem 3.2 Static Optimality Theorem [37]:If every item is accessed at least once, then the total ac-cess time is O �m+Pni=1 f(i) log� mf(i)��, where f(i) isthe access frequency of item i in m accesses.Let ij be the item accessed at search j, where jranges from 1 to m. Let t(j) denote the number ofdi�erent queries before search j and since the last accessof item ij or since the beginning of the sequence if j isthe �rst access of the item ij .Theorem 3.3 Working Set Theorem [37]:The total access time isO(n logn+m+ mXj=1 log(t(j) + 1)):An important fact here is that splay trees achieve allthe above behaviors automatically. The splay heuristicthat realizes the above behaviors is blind to the proper-ties of the access sequence and to the global structureof the tree.

3.2 Persistence of Splay Trees. In this sectionwe discuss how to apply the persistence paradigm ofDriscoll et al. [15] to the splay operations that we lateruse in our algorithm for adaptive point location queries.The main idea is a variant of the path copyingtechnique. We give the details in the full version.The space of the data structure increases by O(1) perrotation during a splay. But the number of rotations isbounded nicely for the temporal and spatial coherentqueries as shown in section 3.1. Thus we have thefollowing:Lemma 3.1: The splay operation in version i of apersistent search tree data taking time t(ni) increasesthe space of the data structure by �O(t(ni)), where niis the number of nodes in the persistent structure atversion i.Our adaptive point location method, then, involvesthe following steps:1. First construct a persistent search structure for thegiven planar subdivision. Initialize all the cells ofthe subdivision which correspond to one or morenodes in the data structure to have a weight ofone. Build a splay tree on top of the roots of thedi�erent versions of persistent structure. We referto this structure as the horizontal structure.2. We keep a count and record of the queries per-formed on the subdivision and also maintain a his-tory information as weights in the cells into whichthe query points fall. For queries numbering fromone to n, we perform the query operation usingthe horizontal and persistent structures. We do asplay operation in both the horizontal and persis-tent structures, but do path copying only in thepersistent structure. We increase the weight of thenode in the persistent structure that contains thequery point by one.3. After n query operations, we reconstruct the per-sistent data structure and also build the horizon-tal structure. For building the persistent searchstructure we use the weights of the nodes to biasthe depth of the nodes. As a result, the nodes oflarger weights will be at smaller depth. Our per-sistent tree is therefore now a globally biased searchtree [5] rather than a simple complete balanced bi-nary tree, but we can still bound its height to beO(logn). This step takes O(n) time and space,which can be amortized by charging O(1) time toeach of the previous n queries.4. We then re-perform the last pn query and splayoperations on the persistent and the horizontalstructures. We do this to reestablish the temporal5



coherence and the working set on the reconstructeddata structure.5. We repeat the previous three steps for the nextn query operations on the newly constructed datastructure.We now analyze the complexity of the constructionof our data structure, the space requirement, and thecost of the query operations. Step 1 takes O(n logn)time and is performed only once. The data structurecreated uses O(n) space. Step 2 takes time proportionalto the total access time in all the splay trees. Theincrease in space for spatial and temporal coherentqueries is �O(1) per query (see static �nger theoremand working set theorem in section 3.1), and for otherarbitrary queries the increase in space is �O(logn).Therefore the increase in space for n queries in steptwo is O(n) for adaptive point location queries. Therest of the steps clearly require linear time. This resultcombined with the properties of the splay trees outlinedin section 3.1 achieve the following result. Suppose welabel the cells in the region as 1; 2; � � � ; O(n). Let ijbe the cell accessed during the search j, let t(j) be thenumber of di�erent cells accessed before search j sincethe last access of cell ij , and let f(ij) be the frequencyof access of cell ij . Then we have,Theorem 3.4: Given a set S of n non-intersectingline segments (except possibly at segment endpoints),one can construct an O(n)-space point location datastructure for S in O(n logn) time that achieves a querytime over a sequence of m queries that is�O (logmin fn;m=f(ij); t(j) + 1g) ;where the cells in region of IR2 are de�ned by the\slabs".Thus, we have achieved an adaptive point locationmethod.4 Space-Limited Environments and EpsilonCutting MethodsThe �nal environment we consider is that in which theamount of additional space is limited to be sub-linear.In this case, we assume the subdivision de�ned by Sis already a trapezoidal map or a triangulation, withthe adjacencies given. For such cases we can easilyadapt our Theorem 2.1 to use a two-level (1=r)-cuttingof size O(r) with r = n= logn. We can perform apoint location query, then, by searching down a pointlocation structure de�ned upon this set (say, usingTheorem 2.1 itself) and then resolve the last dlognesegments by traversing through S itself towards thequery point. In fact, this approach gives rise to anextremely simple method for performing point locations

in small subdivisions: just store a random sample ofthe edges of size O(pn). One can answer a query,then, in O(pn) expected time (independent of inputdistribution) by �nding the closest segment in thisrandom sample and then traversing S from this edgeto the query point.We implemented this method and other variationswhich we discuss in the next section.5 Experimental ResultsIn this section we describe experiments conducted onnew and existing methods of planar point location andgive some discussion as to the results observed.5.1 Experimental Setup. The simple persistencemethod based on path copying, epsilon net methodsof planar point location (which are simple variants ofour �-cutting method), adaptive point location methods,as well as the Edahiro et al. [16] bucket method,were implemented and experiments were conducted tocompare the query times of the various methods.All algorithms were implemented in C++ using theLEDA [28, 30] library of data structures and algorithms(v3.2.1), and they were compiled on a SUN SPARCstation ELC running SUN OS Release 4.1.1 with theg++ compiler (v4.2).Three di�erent classes of input subdivisions wereused to test the performance of the above algorithms.These are the uniform subdivision or Delaunay triangu-lation, a random triangulation produced by the LEDApackage which we call the LEDA subdivision, and ahighly non-uniform subdivision that we call diagonalgraphs. Numerous instances of each of these types ofsubdivisions were generated and they ranged in sizefrom 1000 vertices to 30,000 vertices. Our motiva-tion behind this selection of inputs is that we wanteda method whose performance is oblivious to the distri-bution of the edges and the shapes of the faces in thesubdivision.We used three types of query data for testing. Weused query data distributed uniformly over the entiredomain, spatially coherent query data, i.e., queries thatare restricted to lie in a small cell in the subdivision, andtemporally coherent query data wherein the number ofdi�erent query points is a �xed constant.5.2 Experiment 1: Uniformly DistributedQuery Data. We conducted extensive experiments us-ing these di�erent methods on di�erent types of inputsubdivisions. We summarize our conclusions here.For the bucket method experiments were conductedwith linear sized grids with � � pn divisions along xand y axis, and we varied the constant � to be 1, 2, and6



3 [16]. We tested epsilon-net methods with net sizes pnand n= logn.For each experiment, we used subdivisions of sizesranging from 1000 to 30,000 vertices. For each such size,�ve di�erent subdivisions of that type were selected.And for each such selection, several runs were conductedby selecting di�erent random samples of a given size,which would expect to be epsilon nets, and for eachrun 10,000 queries were performed. We then computedan average of these values to obtain the probe time fora given method on a particular type of subdivision ofgiven size and for a sample of a certain size.Figure 1 shows the results for experiments con-ducted on Delaunay subdivisions. The epsilon-netmethod based on red-black tree with net size n= logn,bucket methods with � equal to two and three, and sim-ple persistence method all perform equally well. As theconstant � is increased, the bucket method performsbetter as expected.Figure 2 shows the results for experiments con-ducted on LEDA subdivisions which are basically ran-dom triangulations. The bucket method performs verypoorly as the number of triangles intersecting a grid cellis large leading to larger probe time. The epsilon-netmethods perform well as the randomness in the algo-rithm takes care of the bad distribution.Figure 3 show similar results for experiments con-ducted on diagonal subdivisions.We also conducted experiments to test the relativequanlity of one random sample (expected epsilon-nets)to another. We use the average number of facestraversed in the second phase of the algorithm as ameasure of quality of a given net. We computedthe mean and standard deviation for the number offaces traversed for �fteen di�erent random epsilon-nets.These �fteen means are presented in Fig. 4 as Gaussiancurves, each of which has a mean that is the same asthe sequence being observed and a standard deviationthat corresponds to that of same sequence.The 15 means have values ranging from 6.59through 9.21, and they have a median value of 7.17.Thus, the average number of faces crossed in the bestnet of the �fteen is 72% of that of the worst net and92% of that of the median net. This suggests that ifpoint location speed is critical, and preprocessing timeis abundant, one may wish to observe the performanceof a number of random samples during the preprocess-ing phase and choose the best of those observed for theactual net to be used. Alternatively, if preprocessingtime is not so abundant, one can be con�dent that therandomly selected net that is chosen on the �rst try isnot likely to be much worse than the best if a few ran-dom samples were selected and the best one was used.

5.3 Experiment 2: Spatial Coherent QueryData. We implemented the adaptive point locationmethod using persistent splay tree and conducted sev-eral experiments. We allowed the query range (a rect-angular box within the bounding box of the subdivi-sion) to be a parameter. The query range was perturbedrandomly to lie anywhere in the bounding box and thequery points are then chosen randomly from the relo-cated query region. The subdivision was chosen to liewithin a unit square. We experimented with query re-gions which are of squared shape and of size 0.01 � 0.01,0.05 � 0.05, and 0.1 � 0.1, respectively.Figure 5 shows results for experiments on Delaunaysubdivisions of various sizes with query points restrictedto lie within a region of size 0.01 � 0.01. This �gureshows the results for three methods: namely, the bucketmethod, the persistence method that uses red-blacktrees, and the persistence method that uses splay trees.Each method was tested on Delaunay triangulationof sizes ranging from 1000 to 15,000 vertices. For eachsize, �ve di�erent subdivisions were selected for testingand on each subdivision three di�erent query boxes ofgiven size were tested. Each test consisted of 10,000probe points. These values were averaged for each of the�fteen tests which were then averaged to get the timeper probe for a subdivision of given size. We observethat the splay tree method gives a better performancethan the other two methods. We also observe thatthe bucket method has a probe time that is essentiallyconstant (as expected for Delaunay triangulation), butthe constant is larger than the other two methods.Figures 6 and 7 show the results for similar spatialexperiments conducted on LEDA subdivisions and di-agonal subdivisions, respectively. We observe that thesplay tree method gives a better performance than theother two methods as expected. The bucket methodperforms very poorly for both subdivisions. The buck-eting strategy we used here (pn �pn sized grid) failsas there are number of long triangles with bad aspectratio in both subdivisions.We conclude that to get consistent performance fordi�erent types of subdivision for adaptive point loca-tion queries one needs special techniques to adapt theunderlying data structure storing the given subdivision.5.4 Experiment 3: Temporal Coherent QueryData. We now discuss the adaptive point locationmethod for temporally coherent query point distribu-tions. In this case we allowed the working set size tobe a parameter. Query points equal in number to thesize of the working set were drawn randomly within thebounding box of the subdivision. These points formthe set of points from which all the query points were7



drawn. The subdivision was chosen to lie within a unitsquare. We experimented with working sets of sizes 1,20, and 50, respectively.Figure 8 shows results for experiments on Delaunaysubdivisions of various sizes with query points drawnfrom a working set of size 20.Each method is tested on Delaunay triangulationof sizes ranging from 1000 to 15000 vertices. Weconducted experiments similar to the spatial coherenttests. We observe that the splay tree method gives abetter performance than the other two methods.Figures 9 and 10 show the results for similar tem-poral coherent experiments conducted on LEDA sub-divisions and diagonal subdivisions, respectively. Weobserve that the splay tree method again gives a betterperformance than the other two methods as expected.We conclude that it helps to pay attention to thenature of query distribution and to adapt the datastructure to the application requirements. Also, oneneeds to choose methods that perform well for all typesof input distributions.6 ConclusionsIn this paper we outline strategies for performing pointlocation queries very fast using linear or sub-linearspace. Moreover, we de�ne methods that are e�cientfor a number of di�erent query environments, includinguniform query environments, non-uniform query envi-ronments, and space-limited query environments. Weleave as an open problem the proof or disproof of ourconjecture that 2blognc is a lower bound for the querytime in a linear-space comparison-based point locationdata structure.All of our methods assume that the planar subdi-vision does not change over time, but environments al-lowing for dynamic changes to the subdivision over timeare well-motivated and well-studied, as well [3, 4, 10, 11,19, 32, 33, 34, 38]. Thus, another interesting open prob-lem is whether one can, say, achieve the adaptive querybounds of Theorem 3.4 in such dynamic environments,where one allows insertions and deletions of vertices andedges in the subdivision S.References[1] G. Adel'son-Vel'skii and E. Landis. An algorithm forthe organization of information. Soviet Math. Dokl.,3:1259{1262, 1962.[2] N. M. Amato, M. T. Goodrich, and E. A. Ramos.Parallel algorithms for higher-dimensional convex hulls.In Proc. 35th Annu. IEEE Sympos. Found. Comput.Sci., pages 683{694, 1994.[3] M. J. Atallah, M. T. Goodrich, and K. Ramaiyer.Biased �nger trees and three-dimensional layers ofmaxima. In Proc. 10th Annu. ACM Sympos. Comput.
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Figure 1: Average Query Times for di�erent methods onuniform subdivisions. The plots labeled � = 1, � = 2,and � = 3 represent the bucket method with the �parameter set to the value noted. The plot labeled per-sistent represents the path-copying persistence method.The other plots are for the �-net methods, using eithernode-copying persistence or LEDA persistence, with netsizes of either the square root of n or n= logn, as noted.
bucket

e-net-ncp

e-net-leda

persistent
Subdivision size (in thousands of vertices)

0 2 4 6 8 10

Q
ue

ry
 T

im
e 

(in
 m

ill
is

ec
on

ds
)

0

1

2

3

4

5

6

7

Figure 2: Average Query Times for di�erent methodson LEDA Subdivision.
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Figure 3: Average Query Times for di�erent methodson Diagonal Subdivision.
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Figure 4: The mean and standard deviations, repre-sented as Gaussian curves, for each of �fteen epsilonnets chosen.9
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Figure 5: Spatial Coherent Experiments on UniformSubdivisions. The Query Region is a Square of Size0.01 � 0.01.
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Figure 6: Spatial Coherent Experiments on LEDASubdivisions. The Query Region is a Square of Size0.01 � 0.01.
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Figure 7: Spatial Coherent Experiments on DiagonalSubdivisions. The Query Region is a Square of Size0.01 � 0.01.
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Figure 8: Temporal Coherent Experiments on UniformSubdivisions. The Working Set Size is 20.
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Figure 9: Temporal Coherent Experiments on LEDASubdivisions. The Working Set Size is 20.
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Figure 10: Temporal Coherent Experiments on Diago-nal Subdivisions. The Working Set Size is 20.10


