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Abstract

Given a collection & of n line segments in the plane,
the planar point location problem is to construct a
data structure that can efficiently determine for a given
query point p the first segment(s) in S intersected by
vertical rays emanating out from p. It is well known that
linear-space data structures can be constructed so as to
achieve O(logn) query times. But applications, such
as those common in geographic information systems,
motivate a re-examination of this problem with the goal
of improving query times further while also simplifying
the methods needed to achieve such query times. In
this paper we perform such a re-examination, focusing
on the issues that arise in three different classes of point-
location query sequences:
e sequences that are reasonably uniform spatially and
temporally (in which case the constant factors in
the query times become critical),

e sequences that are non-uniform spatially or tempo-
rally (in which case one desires data structures that
adapt to spatial and temporal coherence), and

e sequences that must be performed in space-limited
environments (in which case one desires sub-linear
space data structures).

We present and analyze simple methods for adapting
previous point location approaches to each of these en-
vironments. Our analysis consists of both a theoreti-
cal analysis of the constant factors in asymptotic query
times as well as an experimental analysis over a range
of subdivision and query domains.

1 Introduction

Planar point location is a classic and important problem
in computational geometry. In this problem one is given
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a collection § of n line segments in the plane, and

asked to construct a data structure that can efficiently

determine for a given query point p the first segment(s)
in § intersected by vertical rays emanating out from

p. This problem is very well-studied [13, 14, 17, 24,

25, 31, 36], and there are a number of solutions that

asymptotically achieve query times of O(logn) using

O(n) space, which is optimal. The query time in each

of these solutions is bounded by the number of point-

line comparisons, where one is given a point p and an
oriented line L and asked to determine if p is on L, to

the left of L, or to the right of L.

We are interested in re-examining the point loca-
tion problem, focusing on issues that arise in important
application areas, such as geographic information sys-
tems (GIS) [6, 7, 18, 35, 40]. Our re-examination of the
point-location problem focuses on a number of practical
issues that have not been explicitly explored in previous
work, including an examination of the exact number of
point-line comparisons used in comparison-based point
location methods, as well as an examination of scenar-
ios where the set of queries is non-uniform and one de-
sires a data structure that can “adapt” over time to the
non-uniformities. Specifically, we consider non-uniform
query sequences that satisfy one of the following prop-
erties:

Spatial Coherence: This is the property that some
regions (defined implicitly by certain trapezoids)
are accessed more frequently than other regions.
Such an environment could arise, for example, in a
service-dispatch GIS where certain high-population
regions create more demand requests than low-
population regions.

Temporal Coherence: This is the property that be-
tween any two consecutive queries to the same cell
the set of queries, which we refer to as the work-
ing set, is fairly small. Such an environment could
arise, for example, in a robot motion tracking sys-
tem where a moving robot periodically requests



map information based upon its global positioning.

Our goal in each case is to provide comparison-
based data structures that have O(logn) worst-case
query times (with small constant factors) for all se-
quences, but have o(logn) query times (possibly even
O(1)) for sequences that exhibit a sufficient amount of
one of the above properties.

1.1 Previous Work. We are not aware of any pre-
vious work on the planar point location problem that
examines specialized query environments such as those
described above, but there is a wealth of literature
on comparison-based solutions to the general planar
point location problem. The first non-trivial solution
to this problem is a method by Dobkin and Lipton [14],
based upon a simple, elegant slab method, that answers
queries using at most 2[logn] point-line comparisons®.
The main idea of this method is to subdivide the plane
into “slabs” by placing a vertical line through each seg-
ment endpoint followed by an ordering of the segments
crossing each slab by the “above” relation. A location
query for a point p is easily answered by performing two
binary searches—one to locate the slab containing p and
another to locate the cell in that slab that contains p.
Using an interesting trapezoid technique, Preparata [31]
showed that one could achieve a query time of 4[logn]
using O(n log n) space, and Kirkpatrick [24] was the first
to show that one could in fact simultaneously achieve
an O(logn) query time and O(n) space. His method is
based upon a beautiful hierarchical subdivision method,
but the constant factor in the running time is fairly
large. Because of the questions of practicality raised
by this method, Edahiro, Kokubo, and Asano [16] per-
formed a series of empirical benchmarking tests between
the trapezoid and hierarchical subdivision methods, as
well as a simple “bucketing” approach, which is not en-
tirely comparison-based and actually has a worst-case
query bound of ©(n) and a worst-case space bound of
©(n?). Still, based upon their benchmarking tests, they
argued that the best practical method at that time was
the bucketing approach, with the trapezoid method be-
ing a close competitor. Following this, Cole [13], Sar-
nak and Tarjan [36], and Edelsbrunner, Guibas, and
Stolfi [17] independently showed how to improve the
constant factor in the query time for point location
while still achieving linear space. These three methods
are described quite differently, but the resulting data
structures are remarkably similar. If optimized for the

TMost of the previous papers we review do not actually report

the constant factors in the number of point-line comparisons
needed to answer a query. We give here our best estimates for the
constant factors in the worst-case point-line comparison counts of
the previous methods.

constant factors in their query times, the methods of
Cole and Edelsbrunner et al. appear to require 3[logn]
time for point-location queries and the method of Sar-
nak and Tarjan appears to require 5[logn] time?. We
are not familiar with any previous linear-space methods
that have a query time approaching the 2[logn] time
achieved by the slab method.

1.2 Our results. Because of the great diversity of
uses for planar point location, we consider a variety of
domains for point-location queries, based upon the en-
vironment in which point location queries will be made.
In the first domain point location queries are fairly uni-
form spatially and temporally. That is, location queries
are fairly well spread across all cells defined by “slabs”
and the 2-th query has little or no relation to previ-
ous queries. For such environments we show how to
achieve a linear-space data structure that can answer
queries in at most 2[logn] + o(logn) point-line com-
parisons. For query sequences with spatial or temporal
coherences, however, we show how to design an adaptive
point location method, so that the amortized time® com-
plexity for accessing a cell ¢ in a sequence of m queries
is O(min{logn, log(t(i) + 1),log(m/f(i))}) time, where
t(i) is the working set size for cell i (i.e., the number
of different queries between two accesses of cell i) and
f(i) is the frequency of accesses to cell i. Note that
this method simultaneously adapts itself to query en-
vironments that satisfy spatial or temporal coherence.
In addition, we consider environments in which the col-
lection of segments S is too large to conveniently ac-
commodate a data structure requiring even just a lin-
ear amount of additional memory. In this case we ex-
amine an approach based on a simple “walk-through”
technique often used in GIS applications, which can be
used, for example, to achieve a sub-linear amount of
additional space while still allowing for O(logn)-time
queries. Recently Miicke et. al. [29] proposed a ran-
domized point location method which is also based on
“walk-through” idea, but their analysis was restricted
to Delaunay triangulations.

Because of the motivation of our re-examination of
point location from practical considerations, we have
implemented a number of different point-location meth-
ods, some based upon previous approaches and oth-
ers based upon our techniques. We compare each of

ZAlthough the resulting methods are quite similar, the differ-

ences in the constant factors come from the fact that the Cole and
Edelsbrunner et al. methods use static complete binary tree as
their primary structures, whereas the Sarnak and Tarjan method
uses a dynamic red-black tree as its primary structure.

3We us O(f(n)) to denote an amortized complexity bound that

is O(f(n)).



these methods in a fairly comprehensive set of empir-
ical benchmarking tests, comparing them over a vari-
ety of scenarios for subdivision and query distributions.
Our experimental results give strong evidence support-
ing our techniques being competitive with “bucketing”
approaches for “evenly-distributed” subdivisions and
queries, while being significantly better than the bucket
method in non-uniform environments.

In the sections that follow we outline the main ideas
behind our methods.

2 Point
Environments

Location in Uniform Query

We begin by describing our method for environments
where the queries are fairly uniform spatially and tem-
porally, although the subdivisions themselves may be
quite “unbalanced.” We first present a simple method
for deterministically constructing a data structure of
size O(nlogn) that answers point location queries with
2[logn] point-line comparisons, and we then show how
to reduce the space to be O(n).

2.1 A Simple Persistent Method. Let S be a
collection of n line segments in the plane. We can
construct a planar point location data structure for S
by applying the persistence [15] paradigm to a left-
to-right plane sweep of S using a vertical line, L,
as noted by Sarnak and Tarjan [36] (and Cole [13]
as well, using a different terminology). Applying the
persistence paradigm to a data structure D allows one
to perform a sequence of updates to D and then look
up the information stored in any previous version of
D. Driscoll et al. [15] show that any linked data
structure D with fixed in- and out-degree can be made
persistent, with the space bound being proportional
to the total number of changes to D, while keeping
the access time proportional to its previous value (but
multiplying the time by a constant factor that is at
least 2). Several researchers (e.g., see Sarnak and
Tarjan [36] for a survey) have noted that a simple
path copying technique can make any binary tree data
structure persistent with an access time exactly what
it was in its non-persistent version. In this technique
one simply copies the entire root-to-leaf path for a leaf-
node change, keeping unchanged pointers pointing to
their old neighbors.

Following an observation of Cole [13], we note
that the segments in & form a partial order by the
“above” relation. Moreover, this relation can easily
be constructed in O(nlogn) time, and then linearized
via a topological sort in O(n) additional time. We can
therefore label each edge in S with its rank in this linear
order and these ranks will define a consistent ordering

of the segments in every slab defined by the endpoints
of the segments in §. This implies that we can use a
static [logn]-height tree T to represent the segments
intersecting the sweep line L as it moves from left to
right. Moreover, if we use the simple path copying
technique to make this sweep persistent, then we derive
the following lemma:

Lemma 2.1: Given a set S of n non-intersecting
line segments (except possibly at segment endpoints),
one can construct a point location data structure for S
in O(nlogn) time and space that achieves a query time
of 2[logn].

Proof. The time and space bound follow from the
discussion above. The query time is derived as for the
slab method—there is one binary search to find the
appropriate previous version of the search tree followed
by a [logn]| time search down this tree. [ |

We note that this simple method achieves the same
space bound as that of the trapezoid method [31] but
has a worst-case query time that is twice as fast. We
can further improve the space bound of our method to
be linear, however, while still keeping very close to the
2[logn] query time.

2.2 Space improvement via e-cuttings. In the
context of planar point location data structures an e-
cutting of a set S of line segments is a partitioning of
the plane into trapezoids so that the number of segments
in S intersecting any trapezoid is at most €|S|. For any
trapezoid 7 we use S, to denote the conflict list for
T—the set of segments in S that intersect 7’s interior.
In this subsection we make use of the following lemma
about e-cuttings to reduce the space needed for our
planar point location data structure to O(n):

Lemma 2.2: Let S be a set of n non-crossing line
segments in the plane. One can construct a (1/r)-
cutting C of S, together with the conflict lists for
all its trapezoids, so as to have O(r) cells and total
size O(n), for 2 < r < n. This construction can
be implemented by a randomized algorithm in time
O(nlogn + rélogn + nd) with probability 1 —1/2%, for
any § > 1, and deterministically in polynomial time.

Our proof of this lemma (which we omit in this
preliminary version) is based upon the general theory
of geometric range spaces [2, 9, 20, 26]. In the context
of point location data structures a range space is defined
by a set S of line segments and R, the set of all
combinatorially distinct ways of intersecting segments
of & with trapezoids that have vertical parallel edges.
The sets in R are called ranges. Let Y be a subset of
S, and let a parameter r € [1,n] be given. Further, let
Ny (s,8) denote the number of ranges R in R|y such
that s = |R| and Y N R =  (we say such ranges are



missed by V). Define fo(r) to be the expected number
of missed ranges generated by an r-sized random sample
S of & (with all such samples equally likely). Y is a
(1/r)-semi-net? of order w > 0 if

> Ny(tn/r,S)max{t*,1} = O(fo(r)),

0<t<r

where the sum ranges over all values of ¢ from 0 to r
for which Ny (tn/r, X) is non-zero. (Y is simply an e-
net [23] if Ny (tn/r,S) =0 for t > 1.)

Lemma 2.3: Let (S,R) be a segment-trapezoid
range space. IfY is a subset of X defined by n mutually-
independent indicator random variables, each of which
is 1 with probability r /n, then, with probability at least
1/2,Y is a (1/r)-semi-net of order w < n/2 with size
O(r), provided that fy is non-decreasing.

Proof. The proof follows from applications of gen-
eral proof techniques of Chazelle and Friedman [9] and
Clarkson and Shor [12] for range spaces with finite VC-
dimension (see also [27]). [ |

In our case, fo(r) is equal to the number of trape-
zoids defined by a trapezoidal decomposition of an r-
segment subset S C S; hence fo(r) is O(r). We omit
the details of the proof of Lemma 2.2 in this prelimi-
nary version. We note, however, that the main chal-
lenge in establishing this lemma is proving the time and
high-probability bounds, as the combinatorial part of
the proof is based upon using a known double-sampling
technique of Chazelle and Friedman [9] in conjunction
with Lemma 2.3.

Our method for constructing a point-location struc-
ture for S, then, is as follows:

1. Apply Lemma 2.2 with § = clogn, for some
constant ¢ > 1, to find a (1/r)-cutting C consisting
of O(r) trapezoids and their conflict lists, so as
to have O(n) total size, for r = n/log?n. This
step takes O(nlogn) time with probability at least
1—1/n°.

2. Apply Lemma 2.1 to form a point-location data
structure D for C of size O(rlogr) = O(n/logn).

3. For each range R, defined by a trapezoid 7 in C,
apply Lemma 2.2 with § = clogn/loglogn, for
some constant ¢ > 1, to find a (1/r,)-cutting C, for
7’s conflict list consisting of O(r,) trapezoids and
their respective conflict lists so as to have O(n/r) =
O(log”® n) total size, for r, = r/(loglogn). Note
that each conflict list in this second cutting is of

" “This

his definition of a semi-net is similar to the (1/r)-semi-

cutting notion introduced by Chazelle [8], as well as proof
techniques given in [9, 20, 26].

size at most O((loglogn)?). We implement this
step with a “termination condition,” however, that
terminates the computation for 7 if its running time
exceeds Clog3 n, which will occur, of course, with
probability at most 1/2%. If this occurs, then we
just restart the computation of this step for 7.

4. Apply Lemma 2.1 to form a point-location data
structure D, for each C, of size O(r,logr,) =
O(log® n/ loglogn).

We can perform a point location for some query
point p, then, as follows. We search in D to locate the
trapezoid 7 in C containing p. We then search in D,
to locate the trapezoid v in C, containing p. Finally
we search in the conflict list for v (with respect to C,)
to complete the search for p. By Lemma 2.1, the total
time for this search is

2Mlog|C[] + 2[log |C.|] + [(loglogn)?]

bn blog® n
2o (g ) | 428 (egtogn )|
+[(loglogn)*]
< 2[logn] + o(logn),

IN

where b is some constant. The total space needed by this
data structure is O(n). Let us, therefore, analyze the
time needed to construct this data structure. We have
already noted that Steps 1, 2, and 4 can be implemented
in O(nlogn) time with probability at least 1 —1/n° for
any constant ¢ > 1. Likewise, by a simple Chernoff
bound analysis [22], we can show that Step 3 also runs
in time O(nlogn) with probability at least 1 —1/n¢ for
any constant ¢ > 1. Therefore, we have established the
following;:

Theorem 2.1: Given a set S of n non-intersecting
line segments (except possibly at segment endpoints),
one can construct an O(n)-space comparison-based
point-location data structure for S in O(nlogn) time,
with probability at least 1—1/n¢, for any constant ¢ > 1,
that can answer point-location queries using at most
2[logn] + o(logn) point-line comparisons.

Thus, we can achieve a query time very close to
that of the slab method [14] with just a linear amount
of additional space. Indeed, we conjecture that 2|logn|
is a lower bound on the query time for any linear-space
comparison-based planar point-location data structure.

3 Adaptive Point Location

Let us now address the query environment where we
anticipate that the sequence of queries is non-uniform
with respect to space or time. In this section we show
that in such environments one can achieve o(logn)



(amortized) query times while still maintaining fast
preprocessing bounds and linear space.

3.1 Splay Trees. We achieve our results concerning
adaptive point location queries by employing the splay
tree data structure of Sleator and Tarjan [37]. Splay
trees are self-adjusting binary trees, and they form a
simple and very interesting class of “balanced” binary
search trees. We highlight the term balanced, because,
unlike other binary search trees such as AVL trees [1]
or red-black trees [21, 39], splay trees do not enforce ex-
plicit global structural constraints. Sleator and Tarjan
define a splay operation at a node v, which involves a
series of rotations to take v to the root (but care is taken
here, as the naive sequence of rotations will not derive
the desired results). A splay is performed at a node v
in a splay tree T after node v is accessed, independent
of whether v was the objective for a search or for an
update. Other than this, the access and update oper-
ations are performed as for other binary search trees.
Sleator and Tarjan show that under these conditions,
they can achieve an O(logn) time complexity for all the
access and update operations. The space requirement
for a splay tree is clearly O(n). Since no explicit infor-
mation (like rank or height) is maintained to achieve the
balance, the constants in the space bound are actually
better than those for other search trees. Also Sleator
and Tarjan prove a vast number of useful theorems re-
garding a sequence of m accesses in a splay tree, which
we summarize below.

Theorem 3.1 Balance Theorem [37]: The to-
tal access time is O((m + n)logn).

Theorem 3.2 Static Optimality Theorem [37]:

If every item is accessed at least once, then the total ac-
cess time is O (m + >0, f(i)log (%)), where f(i) is
the access frequency of item i in m accesses.

Let ¢; be the item accessed at search j, where j
ranges from 1 to m. Let #(j) denote the number of
different queries before search j and since the last access
of item ¢; or since the beginning of the sequence if j is
the first access of the item ¢;.

Theorem 3.3 Working Set Theorem [37]:
The total access time is

O(nlogn +m + Z log(t(j) + 1)).

=1

An important fact here is that splay trees achieve all
the above behaviors automatically. The splay heuristic
that realizes the above behaviors is blind to the proper-
ties of the access sequence and to the global structure
of the tree.

3.2 Persistence of Splay Trees. In this section
we discuss how to apply the persistence paradigm of
Driscoll et al. [15] to the splay operations that we later
use in our algorithm for adaptive point location queries.

The main idea is a variant of the path copying
technique. We give the details in the full version.
The space of the data structure increases by O(1) per
rotation during a splay. But the number of rotations is
bounded nicely for the temporal and spatial coherent
queries as shown in section 3.1. Thus we have the
following:

Lemma 3.1: The splay operation in version i of a
persistent search tree data taking time t(n;) increases
the space of the data structure by O(t(n;)), where n;
is the number of nodes in the persistent structure at
version 1.

Our adaptive point location method, then, involves
the following steps:

1. First construct a persistent search structure for the
given planar subdivision. Initialize all the cells of
the subdivision which correspond to one or more
nodes in the data structure to have a weight of
one. Build a splay tree on top of the roots of the
different versions of persistent structure. We refer
to this structure as the horizontal structure.

2. We keep a count and record of the queries per-
formed on the subdivision and also maintain a his-
tory information as weights in the cells into which
the query points fall. For queries numbering from
one to n, we perform the query operation using
the horizontal and persistent structures. We do a
splay operation in both the horizontal and persis-
tent structures, but do path copying only in the
persistent structure. We increase the weight of the
node in the persistent structure that contains the
query point by one.

3. After n query operations, we reconstruct the per-
sistent data structure and also build the horizon-
tal structure. For building the persistent search
structure we use the weights of the nodes to bias
the depth of the nodes. As a result, the nodes of
larger weights will be at smaller depth. Our per-
sistent tree is therefore now a globally biased search
tree [5] rather than a simple complete balanced bi-
nary tree, but we can still bound its height to be
O(logn). This step takes O(n) time and space,
which can be amortized by charging O(1) time to
each of the previous n queries.

4. We then re-perform the last /n query and splay
operations on the persistent and the horizontal
structures. We do this to reestablish the temporal



coherence and the working set on the reconstructed
data structure.

5. We repeat the previous three steps for the next
n query operations on the newly constructed data
structure.

We now analyze the complexity of the construction
of our data structure, the space requirement, and the
cost of the query operations. Step 1 takes O(nlogn)
time and is performed only once. The data structure
created uses O(n) space. Step 2 takes time proportional
to the total access time in all the splay trees. The
increase in space for spatial and temporal coherent
queries is O(1) per query (see static finger theorem
and working set theorem in section 3.1), and for other
arbitrary queries the increase in space is O(logn).
Therefore the increase in space for n queries in step
two is O(n) for adaptive point location queries. The
rest of the steps clearly require linear time. This result
combined with the properties of the splay trees outlined
in section 3.1 achieve the following result. Suppose we
label the cells in the region as 1,2,---,0(n). Let i;
be the cell accessed during the search 7, let ¢(j) be the
number of different cells accessed before search j since
the last access of cell i;, and let f(i;) be the frequency
of access of cell i;. Then we have,

Theorem 3.4: Given a set S of n non-intersecting
line segments (except possibly at segment endpoints),
one can construct an O(n)-space point location data
structure for § in O(nlogn) time that achieves a query
time over a sequence of m queries that is

O (logmin {n,m/f(i;),t(5) +1}),

where the cells in region of R? are defined by the
“slabs”.

Thus, we have achieved an adaptive point location
method.

4 Space-Limited Environments and Epsilon
Cutting Methods

The final environment we consider is that in which the
amount of additional space is limited to be sub-linear.
In this case, we assume the subdivision defined by &
is already a trapezoidal map or a triangulation, with
the adjacencies given. For such cases we can easily
adapt our Theorem 2.1 to use a two-level (1/r)-cutting
of size O(r) with r = n/logn. We can perform a
point location query, then, by searching down a point
location structure defined upon this set (say, using
Theorem 2.1 itself) and then resolve the last [logn]
segments by traversing through S itself towards the
query point. In fact, this approach gives rise to an
extremely simple method for performing point locations

in small subdivisions: just store a random sample of
the edges of size O(y/n). One can answer a query,
then, in O(y/n) expected time (independent of input
distribution) by finding the closest segment in this
random sample and then traversing S from this edge
to the query point.

We implemented this method and other variations
which we discuss in the next section.

5 Experimental Results

In this section we describe experiments conducted on
new and existing methods of planar point location and
give some discussion as to the results observed.

5.1 Experimental Setup. The simple persistence
method based on path copying, epsilon net methods
of planar point location (which are simple variants of
our e-cutting method), adaptive point location methods,
as well as the Edahiro et al. [16] bucket method,
were implemented and experiments were conducted to
compare the query times of the various methods.

All algorithms were implemented in C++ using the
LEDA [28, 30] library of data structures and algorithms
(v3.2.1), and they were compiled on a SUN SPARC
station ELC running SUN OS Release 4.1.1 with the
g++ compiler (v4.2).

Three different classes of input subdivisions were
used to test the performance of the above algorithms.
These are the uniform subdivision or Delaunay triangu-
lation, a random triangulation produced by the LEDA
package which we call the LEDA subdivision, and a
highly non-uniform subdivision that we call diagonal
graphs. Numerous instances of each of these types of
subdivisions were generated and they ranged in size
from 1000 vertices to 30,000 vertices. Our motiva-
tion behind this selection of inputs is that we wanted
a method whose performance is oblivious to the distri-
bution of the edges and the shapes of the faces in the
subdivision.

We used three types of query data for testing. We
used query data distributed uniformly over the entire
domain, spatially coherent query data, i.e., queries that
are restricted to lie in a small cell in the subdivision, and
temporally coherent query data wherein the number of
different query points is a fixed constant.

5.2 Experiment 1: Uniformly Distributed
Query Data. We conducted extensive experiments us-
ing these different methods on different types of input
subdivisions. We summarize our conclusions here.

For the bucket method experiments were conducted
with linear sized grids with a * \/n divisions along x
and y axis, and we varied the constant « to be 1, 2, and



3 [16]. We tested epsilon-net methods with net sizes v/n
and n/logn.

For each experiment, we used subdivisions of sizes
ranging from 1000 to 30,000 vertices. For each such size,
five different subdivisions of that type were selected.
And for each such selection, several runs were conducted
by selecting different random samples of a given size,
which would expect to be epsilon nets, and for each
run 10,000 queries were performed. We then computed
an average of these values to obtain the probe time for
a given method on a particular type of subdivision of
given size and for a sample of a certain size.

Figure 1 shows the results for experiments con-
ducted on Delaunay subdivisions. The epsilon-net
method based on red-black tree with net size n/logn,
bucket methods with « equal to two and three, and sim-
ple persistence method all perform equally well. As the
constant « is increased, the bucket method performs
better as expected.

Figure 2 shows the results for experiments con-
ducted on LEDA subdivisions which are basically ran-
dom triangulations. The bucket method performs very
poorly as the number of triangles intersecting a grid cell
is large leading to larger probe time. The epsilon-net
methods perform well as the randomness in the algo-
rithm takes care of the bad distribution.

Figure 3 show similar results for experiments con-
ducted on diagonal subdivisions.

We also conducted experiments to test the relative
quanlity of one random sample (expected epsilon-nets)
to another. We use the average number of faces
traversed in the second phase of the algorithm as a
measure of quality of a given net. We computed
the mean and standard deviation for the number of
faces traversed for fifteen different random epsilon-nets.
These fifteen means are presented in Fig. 4 as Gaussian
curves, each of which has a mean that is the same as
the sequence being observed and a standard deviation
that corresponds to that of same sequence.

The 15 means have values ranging from 6.59
through 9.21, and they have a median value of 7.17.
Thus, the average number of faces crossed in the best
net of the fifteen is 72% of that of the worst net and
92% of that of the median net. This suggests that if
point location speed is critical, and preprocessing time
is abundant, one may wish to observe the performance
of a number of random samples during the preprocess-
ing phase and choose the best of those observed for the
actual net to be used. Alternatively, if preprocessing
time is not so abundant, one can be confident that the
randomly selected net that is chosen on the first try is
not likely to be much worse than the best if a few ran-
dom samples were selected and the best one was used.

5.3 Experiment 2: Spatial Coherent Query
Data. We implemented the adaptive point location
method using persistent splay tree and conducted sev-
eral experiments. We allowed the query range (a rect-
angular box within the bounding box of the subdivi-
sion) to be a parameter. The query range was perturbed
randomly to lie anywhere in the bounding box and the
query points are then chosen randomly from the relo-
cated query region. The subdivision was chosen to lie
within a unit square. We experimented with query re-
gions which are of squared shape and of size 0.01 x 0.01,
0.05 x 0.05, and 0.1 x 0.1, respectively.

Figure 5 shows results for experiments on Delaunay
subdivisions of various sizes with query points restricted
to lie within a region of size 0.01 x 0.01. This figure
shows the results for three methods: namely, the bucket
method, the persistence method that uses red-black
trees, and the persistence method that uses splay trees.

Each method was tested on Delaunay triangulation
of sizes ranging from 1000 to 15,000 vertices. For each
size, five different subdivisions were selected for testing
and on each subdivision three different query boxes of
given size were tested. Each test consisted of 10,000
probe points. These values were averaged for each of the
fifteen tests which were then averaged to get the time
per probe for a subdivision of given size. We observe
that the splay tree method gives a better performance
than the other two methods. We also observe that
the bucket method has a probe time that is essentially
constant (as expected for Delaunay triangulation), but
the constant is larger than the other two methods.

Figures 6 and 7 show the results for similar spatial
experiments conducted on LEDA subdivisions and di-
agonal subdivisions, respectively. We observe that the
splay tree method gives a better performance than the
other two methods as expected. The bucket method
performs very poorly for both subdivisions. The buck-
eting strategy we used here (y/n x \/n sized grid) fails
as there are number of long triangles with bad aspect
ratio in both subdivisions.

We conclude that to get consistent performance for
different types of subdivision for adaptive point loca-
tion queries one needs special techniques to adapt the
underlying data structure storing the given subdivision.

5.4 Experiment 3: Temporal Coherent Query
Data. We now discuss the adaptive point location
method for temporally coherent query point distribu-
tions. In this case we allowed the working set size to
be a parameter. Query points equal in number to the
size of the working set were drawn randomly within the
bounding box of the subdivision. These points form
the set of points from which all the query points were



drawn. The subdivision was chosen to lie within a unit
square. We experimented with working sets of sizes 1,
20, and 50, respectively.

Figure 8 shows results for experiments on Delaunay
subdivisions of various sizes with query points drawn
from a working set of size 20.

Each method is tested on Delaunay triangulation
of sizes ranging from 1000 to 15000 vertices. We
conducted experiments similar to the spatial coherent
tests. We observe that the splay tree method gives a
better performance than the other two methods.

Figures 9 and 10 show the results for similar tem-
poral coherent experiments conducted on LEDA sub-
divisions and diagonal subdivisions, respectively. We
observe that the splay tree method again gives a better
performance than the other two methods as expected.

We conclude that it helps to pay attention to the
nature of query distribution and to adapt the data
structure to the application requirements. Also, one
needs to choose methods that perform well for all types
of input distributions.

6 Conclusions

In this paper we outline strategies for performing point
location queries very fast using linear or sub-linear
space. Moreover, we define methods that are efficient
for a number of different query environments, including
uniform query environments, non-uniform query envi-
ronments, and space-limited query environments. We
leave as an open problem the proof or disproof of our
conjecture that 2|logn] is a lower bound for the query
time in a linear-space comparison-based point location
data structure.

All of our methods assume that the planar subdi-
vision does not change over time, but environments al-
lowing for dynamic changes to the subdivision over time
are well-motivated and well-studied, as well [3, 4, 10, 11,
19, 32, 33, 34, 38]. Thus, another interesting open prob-
lem is whether one can, say, achieve the adaptive query
bounds of Theorem 3.4 in such dynamic environments,
where one allows insertions and deletions of vertices and
edges in the subdivision S.
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Figure 1: Average Query Times for different methods on
uniform subdivisions. The plots labeled a = 1, a = 2,
and a = 3 represent the bucket method with the a
parameter set to the value noted. The plot labeled per-
sistent represents the path-copying persistence method.
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node-copying persistence or LEDA persistence, with net
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= bucket

Query Time (in milliseconds)

== e-netleda

size (in thousands of vertices)

Figure 2: Average Query Times for different methods
on LEDA Subdivision.

= emetleda

g
§
8
&
E
£
o
£
E
2>
&
g
o

Subdivision size (in thousands of vertices) — persistant

Figure 3: Average Query Times for different methods
on Diagonal Subdivision.
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Figure 5: Spatial Coherent Experiments on Unif
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Figure 6: Spatial Coherent Experiments on LE
Subdivisions. The Query Region is a Square of
0.01 x 0.01.
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Figure 7: Spatial Coherent Experiments on Diag
Subdivisions. The Query Region is a Square of
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Figure 8: Temporal Coherent Experiments on Uniform
Subdivisions. The Working Set Size is 20.

Time Per Probe (milli-sec)

30.00 3

25.00
20.00 -

I
i

Bucket
e Rbt Persistance
10.00

’ — | Splay Persistance

0.00

15.00

0 5000 10000 15000

Number of Vertices

Figure 9: Temporal Coherent Experiments on LEDA
Subdivisions. The Working Set Size is 20.
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Figure 10: Temporal Coherent Experiments on Diago-
nal Subdivisions. The Working Set Size is 20.



